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Three-particle breakup near threshold when the Wannier exponent diverges
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Wannier theory predicts an infinite threshold exponent for the breakup of three charged particles if two of
the particles have equal charges and the ratio of the charge of one of these to the charge of the third particle
has the value {4). We show that the Wannier picture of ridge propagation remains valid and that the
threshold law changes to the foranc E~ Yexp(— «/EY®). The classical and quantum results differ, which is in
contrast to the generic Wannier case. We show that the classical limit of the threshold law explains the
threshold behavior obtained numerically by classical trajectory calcula{isa950-2947@7)08106-7

PACS numbd(s): 34.80.Dp

I. INTRODUCTION a strongly suppressed, though finite cross section for finite
positive energies. Due to the exponential suppression an ex-

Wannier theory of three-particle breakup has been sucperimental determination of the threshold law may be diffi-
cessfully extended to the case of arbitrary masses ancult; however, our main emphasis is to demonstrate that the

charges over recent yedit,2). It predicts a power law theory presented here heals a shortcoming of the Wannier
theory, which cannot make any predictions about the slope
oxE* (1)  of the cross section fa@/q=4 at all. In this context we aim

to clarify the relation between the Wannier picture of ridge
for the breakup cross section near the threskold+0.E is  propagation and classical mechanics. It has been shown that
the total energy of the system. The threshold exporient the breakup of three charged particles reduces to a purely
depends on the charges and masses of the individual pattassical process$] in the generic Wannier case, even if the
ticles. In the case where one of the particles has mmasd  starting point is a quantum-mechanical or semiclassical one.
chargeq and the other two particles have equal maddes However, we will demonstrate that this statement does not
and charges- Q (g andQ have the same signthe exponent hold in general, but depends on the final state interaction.

is given by[1,2] In Sec. Il we present the theory, which is employed in
Sec. Il to derive the quantum-mechanical threshold law. The
_ 3<1 16 1+2M/m\¥? 1 2 relation to the classical threshold law is then discussed in
a9 1-omg) @ @ sec. Iv.
In the casesn>M, Q=1, andg=1 the original Wannier Il. THEORY
result {=1.127 for electron impact ionization of neutral at- i i ,
oms is recoveref]. We use the same set of Jacobi coordinates as in[REf.

One question however has so far remained unanswereff denotes the vector between the wing particles of mass
What happens when the ratio of the charges of the wing%\"’ andr is the vector from.the th|r.d particle of mass to
particles to the charge of the third particleQéq=4 and the _he center of mass of the wing particles. The IatFer is written
Wannier exponent becomes infinite? The classical equatiorf8 coOmponents parallel and orthogonal to the axis defined by
of motion in the vicinity of the Wannier ridge do not allow the wing particlesr=xR+yR,. The hat denotes unit vec-
an analytical solution in this cagd], in contrast to what we tors. We also introduce the reduced masags-M/2 and
call the generic Wannier cag/q<4 [3]. Wannier’s picture  u,=2Mm/(2M + m). Threshold breakup is characterized by
of trajectories converging to and diverging from the potentialR— o, and motion in the vicinity of the Wannier saddle by
ridge, however, is still valid even for this exceptional casex~0 and y~0. Quantum mechanically the Schinger
Quantum mechanically these trajectories are related to corequation must be solved in a region around the Wannier
vex and concave wave fronts traveling along the potentiatidge incorporating appropriate boundary conditions. We use
ridge[5]. We show how this picture can be incorporated intoatomic units throughout, but keep the dependenck omthe
this borderline case. We derive the guantum mechanicatquations explicitly in order to take the classical limit later
threshold law and the leading-order terms of the aymptoti®n.
series near threshold. We also derive the semiclassical limit In the Wannier theory the potential is expanded around
for the threshold law, and show how the numerically deterthe equilibrium configuratiorx=0 andy=0 up to second
mined classical threshold laj4] emerges analytically from order:
our analysis.

A possible experimental realization of the situation ana-
lyzed in this paper would be the measurement of the inte-
grated ionization cross section of the beryllium antiprotonic
ion [Be*" + p~ ] by another beryllium ion B¥ . We predict  with the coefficients

Co Cwx* CpVy?
VRN=-7~ 5 w5 & ®)

1050-2947/97/5%)/42636)/$10.00 55 4263 © 1997 The American Physical Society



4264 W. IHRA, F. MOTA-FURTADO, AND P. F. OMAHONY 55

Co=Q(49—Q), C,,=320Q, C,=164Q. (4 The effective potentiak(R) has an imaginary part be-
cause the Schrdinger equation is solved in a finite region of
The wave function is written as configuration space. Since/2<ard E—¢(R)]<r, the real
1 and imaginary parts of the momentu(R) are both posi-
W(R,r)= ﬁzp(R)go(R;x,y). (5) tive, and the wave function in E@6) is indeed an outgoing

wave with decaying amplitude. The decaying amplitude is
associated with particles contributing to single escape instead

The wave function for the relative motion of the wing par- 4t three particle breakup. The wave function for the bending
ticles is written as a WKB ansatz with outgoing wave bound-5,4 stretching motion asymptotically has the form

ary conditions

K(R) |f)r, '
where the momentum is given by The wave function iry, which corresponds to angular cor-
relations, has a Gaussian peak around the equilibrium con-
K(R)=V2ur[E+Cy/R—eg(R)]. (7)  figuration. The wave function ix is related to the energy

distributions, which is uniform around the equilibrium con-
The effective potentiat (R) takes the coupling between the figuration corresponding to an equal energy sharing of the
relative motion of the wing particles and the bending andenergies of the wing particles. These two features of the
stretching motion around the Wannier configuration into acstandard Wannier theory remain unchanged in the case when
count. It can be derived directly from a diabatic solution forthe wannier exponent becomes infinite. Singg, deter-

¢(R,x,y) [2,5]. Alternatively, substituting potentidB) into  mines the angular and energy distribution we call it the dis-
the Schrdlnger equatlon and leInﬁl leads to the adiabatic tribution function for matters of abbreviation.

Schralinger equation The normalization constam, is chosen to normalize the
202 2 19 Cox®  Cypy? integral of the square qf the oscillator i to unity. The

[_ _(_z+_z+_ _) N 7 }(Pas)(R;X’y) choice of the normalization constal has to be addressed

2pr\ 0X°dyT Y Ay 2R 2R carefully. In Ref.[7] the transformation from adiabatic to

=2(R) @ag( RIX,Y) ®) diabatic wave functiong,s, was treated on an equal footing

for the harmonic and antiharmonic oscillators, resulting in
for the motion inx andy. The transformation between adia- €qual forms of the coupling matrix elements. This requires a
batic and diabatic ionization channels was carried out in Reflormalization of the wave functions of the antiharmonic os-
[7]. It can be seen from Eq11) in [7] that the adiabatic and Cillator in the same way as for the harmonic oscillator. From
diabatic channels coincide to ordeR#P for the case where the view point of the adiabatic or “hidden crossing” theory,
Co=0, i.e., whenQ/q=4. It is therefore sufficient to con- the emergence of the normalization constant was clarified in

sider Eq.(8), which has the form of a one-dimensional in- Ref. [8]. It is proportional toR"®. This scaling of the nor-
verted harmonic oscillator ix, and a two-dimensional har- malization constant withR had to be taken into account in

monic oscillator |ny The energy for the |owest-|ying state the diabatic theory of Re[?] as well to derive the correct

with 1S symmetry is ¥Vannier exponent. There it was attributed to a phase-space
actor.
i h The break-up cross section is proportional to the survival
e(R)=- 5 OxT oy, wX:_/_Ml 2R3 Cyas probability P(E) on the saddle which is given by the square
' of the exponential part of the wave functi¢n,9,8,11:
f
Wy=" 1Ry Cy2 C)
My

. (12

P(E)=ex;{ - EImj K(R)dR
h Ro

which, taking Eq.(4) into account, become

To arrive at the cross section, the survival probability must

6Qq. be multiplied by the square of the distribution function taken

Mr at a value R=Rc, where the asymptotic distribution
(10 emerges. The relation betwe®ga and the energ¥ will be

) L i addressed in Sec. lll. The square of the distribution function

The minus sign in the first term of E49) was chosen t0 st be integrated over the coordinatesand y, and the

meet outgoing wave boundary conditions for the asymptotiGntegrated ionization cross section for a given angular mo-
wave function inx. This corresponds to the picture of Wing mentumL then gives

particles falling off the Wannier ridge as they move toward

larger interparticle distance. Such events lead to single ion-

ization only. SinceCy=0, the Coulomb term in Eq7) van- o(E) L(2L+1)R(1:/4 (E). (13
ishes, and the leading-order contribution comes from the ef- E+I

fective potentiak (R), which is of leading order R®2. This

is the essential difference with the generic Wannier case. | denotes the ionization potential of the target.

) |Cl|:2

s(R)zﬁ|Cl| exp —i tan*li
R 2
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Ill. QUANTUM-MECHANICAL THRESHOLD LAW real part of the effective potentidl0) does not change the
form of the threshold law to be deduced, but only the nu-
merical constants.

In the generic Wannier cagg/q<4 the dominating in- The survival probability(12) is calculated in the Appen-
teraction in the final channeb) is an attractive Coulomb  dix under condition17). The leading term is independent of

potential. A valid approximation in this case is to expand thethe starting radiu®, and gives the threshold behavior
survival probability as

B _z =Im[—&(R)]
P(E)—ex;{ ﬁfRo—Ko(R) dR}, (14

A. Limitas E—+0

PrlE)=exd — x/EYS], E—+0 (18)

wherek is given in the analytical form

with the zero-order momentum 1(2us\" . | | o 1
K= —— I'(3)T(3)|C4q|*sin 3 7r—arctara\/—E .
Ko(R) = V2ur(E+Co/R). (15)

(19
This is, however, not possible f@/q=4, because the Cou-

lomb potential vanishes and the dominant interaction in th ‘b ified. In the standard Wannier th th
ionization channel is the potentiél0). The full expression c must be specified. In the standard Wannier theory the
(12) must be calculated instead. The radRischaracterizes radius at ‘.Nh'Ch the asymptotic energy distribution emerges 1

- gharacterlzed by the transition from the Coulomb zone in

are close together. In the reaction zone the correlated motio‘f’fhICh the potential energy dominates to the asympiofic free

of the three particles must in principle be treated fully quan—égﬂﬁ d\;vrr;/etr)it\:\?:enct%lgotvmvs zeonn?ersgysc(;éllgﬂzz f/(églgf\}ﬁ% The
tum mechanically. As has been shown else the . o . !
u icatly w e rise to an additional factdE ~Y* in the near-threshold cross

reaction zone contributes with an additional factor to the . . . DY
double escape probability which goes to a nonzero constar??cuon[s]' Since the attractive Coulomb potential is missing

at E=0, and which depends only very weakly on the tota/iN OUr case, standard Wannier theory has to be modified at

this point. The Coulomb zone is replaced by the coupling
energy near threshold. It therefore plays no role for the be- L . : .
havior of the ionization probability as a function of the ex- zone which is dominated by the effective poten(d). The

cess energy, and need not concern us further. The value Bpundary between the coupling zone and the asymptofic free

__E-23 ;
R should be chosen on physical grounds. If one of the wingﬁoﬂe t.hen scales d&c~E~“" This leads to the threshold
particles is initially bound to the particle with masg the ehavior

To relate this result to the cross section, Etp), the radius

binding energy i€, = — u(Qq)?/ (242n?) depending on the ~Ubay /16

quantum numben of the initial state. Here the reduced mass o BB Trexil — /BT, 20
u=mM/(M+m) has been introduced. In a classical picture

the incoming particle polarizes the bound particle in its orbit, B. Leading-order corrections to threshold law

and a reasonable choice 'lﬁﬁ is twice the diStanCEO of the We now discuss corrections to the threshold [2@ aris-
expectation value of the radius of the bound particle in itsing from higher-order terms in the evaluation of the survival
orbit, which is probability, and estimate the range of validity of the thresh-

old law. The first correction of the survival probability de-

212
Ry~ 257N _ (16) pends on the starting radilg, and givessee the Appendijx
©(QQ)
ZIU'R 1/2 1 1
Threshold breakup is characterized by the condition that the P(E) =Py (E)ex T) co Earctaﬁ—
excess energ¥ is much less than the binding energy . V2

With the above choicél6), it can be easily verified that this

714
is equivalent to the condition % 12RL/A_ 0
8|Cl| RO 7ﬁ|cl|l72E . (21)
E<#|C4q|/R32, 17

o _ ~ The energy-dependent part of the correction determines the
This in turn means that the motion on the Wannier ridgeenergy range over which the threshold 1&18) is valid. As

starts in a region where the effective potential dominateshe criterion for the critical energfc above which the
over the kinetic energy of the particles. Notice that the reathreshold behavior is modified, we choose

part of the potentia(10) is repulsive, and thus introduces a

potential barrier through which the system has to tunnel on ;{ 1 1 4Rc7)/4

the Wannier ridge because of conditigh7). This can be ex —\/Z,U,RCO{ _arctaﬁ_)_gfﬁiEc ~0.9,
understood as a purely quantum-mechanical effect: The 2 V2] Th IC4l

bending motion iny has a quantum-mechanical zero point (22)
energy which must be subtracted from the total enédgr . . .

the relative motion of the two wing particles. However, it which translates into the condition

must be emphasized that even with the real part@R) E AR

absent, the imaginary part arising from the stretching motion —C <01 —_ (23
in x only leads to an imaginary part iR(R). Neglect of the | Ep| MRMr
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For the fictitious case of electron impact ionization of a neu-dence orR with a powerv=2. Since the radial kinetic en-
tral atom with chargeg= 3, which has been treated in Ref. ergy itself behaves typically like B?, it dominates over the
[4], one has the threshold coefficiesi= 12.056 a.u., and the effective potential, and the above result does not apH.
critical energy is Ec/|Ey|~0.2. The Wannier law for

electron-impact ionization on hydrogeg=1) is known to IV. CLASSICAL LIMIT

be valid up to approximately 2.7 eMQ]. Thus, while the _ i ) ) o

form of the threshold law itself changes the departure from [N this section we discuss the classical limit of the sur-
the threshold behavior still relates to approximately the samival probability. Dimitrijevic, Grujic, and Simonovicper-
ratio of the excess energy to the binding energy. For the regPrmed classical trajectoryl calculations for the above-
case of ionization of the beryllium antiprotonic ion mentioned fictitious casg=3 and fitted the results to a
[B&**+p~] by another beryllium ion BE the threshold threshold law of the fornj4]

coefficient is much larger, namely=409.2 a.u., and the _

ratio of the critical excess energy to the binding energy is Po(E)~exd —NXoE]l, Xo=Ry/2 (26)

Ec/|Ep|~0.075 which corresponds tdEc~0.54M,=27  (¢f Sec. 3.1 of their paperThey obtained the numerical
keV. Another, less esoteric example is the single ionization,5;,e \ = 1.364. The breakup probability depends explicitly

of Be’" in a collision with a BE™ ion. Here the exponential on the starting radiui, of the outgoing trajectories. This
suppression of the energy behavior of the cross section isyn pe linked to the scaling properties

even more dramatic due to the small mass ratio of the elec-

tron to the remaining B¥ ions. The threshold coefficient is r—7r, p—>p/\/;, E—E/r, >0 (27)
k=4922 for this case. Effectively such a large threshold ex-

ponent leads to a threshold behavior of the cross sectionf classical Coulomb systeni8]. The findings of Ref[4]
which can be interpreted as resulting from an infinite Wan-are purely numerical, and no explanation could be given for
nier exponent. However, because of the small efficiency irthe energy dependence of the classical cross section and the
creating the Beryllium antiprotonic ion, the latter examplevalue of the coefficienk.

may be better suited for an experimental study, absolute The classical calculations of Refd] as well as the
values of the cross section near threshold will be larger comguantum-mechanical approach presented here treat the
pared to the first. breakup process as a half-collision reaction. However, appar-
ently the results differ completely, which needs explanation.
C. Extension to other potentials In the following we will show that the behavide6é) of the

i i breakup cross section can be recovered as the classical limit

_ A simple argument for the threshold behavior of the Sur-4¢ the theory presented here. The classical limit corresponds
vival probability (18) can be given on the basis of a scaling {, %0, while keeping the excess energyand the binding
argument. Neglecting the total enerdy in the coupling zon&nerqvE, constant. The later condition impliesn=const

the integrand in Eq(12) scales aR™*". Instead of taking g therefore the starting radius must be kept fixed at a cer-
the upper limit of the integral to be infinite the survival prob- ;. \a1ue R,. The effective potential10) scales linearly

o .. _ 2/3
ability is integrated up to the boundaRc=(%|C,|/E) with 7, so the classical limit corresponds to the condition
between the coupling zone and the asymptotic free zone

where the kinetic energy of the particles dominates the po- 7|Cy

tential energy. The probability therefore scales REE) Rz <E. RosR<e=. (28)
ocexp[—KR}:"‘], which corresponds to the previously derived

result(18). Since the argument is rather general we concluderhis is the opposite of conditioil7) for the quantum-
that any motion which is governed asymptotically by a po-mechanical threshold law to hold. The proper interpretation

tential of the form of the above conditiori28) is that in the classical limit the
c absolute value of the zero point energy of the effective po-
e(R)== (ImC<0 and RE>0, 0<»<2) tential (10) is small compared to the excess enegyNote
R that the values chosen in the classical calculations of [R&f.

(249 namely,Ry=0.1 a.u.,R,=1 a.u. and energieE<0.1 a.u.
actually fall within the threshold regim@7) if treated quan-
tum mechanically.
P. (E _ (EV2-1my 2 The survival probab!I|ty(12) with the momentum given
i B)ocexil — ] @9 by Eq. (7) and Cy;=0 is expanded under conditiof28),
Especially for the cas®/q>4, which we have not dealt Which gives the classical threshold law
with so far, we recover the result for the tunneling probabil-

in the final channel results in a threshold law of the form

ity through a repulsive Coulomb potentiab€1). In this Pd(E):exl{— E /ZMREJmM(Z:—l]dR}

case the threshold law does not arise from the effect of the h R, ER

potentiale (R) but from the Coulombic nature of the final- "

state interaction. Note that this differs from the generic Wan- _ -~ 32QQq)ur 1 29
nier caseQ/q<4, where the Coulomb interaction is attrac- My VXoE '

tive and the coupling potential is essential to derive the
Wannier law(1). However, care has to be taken if the de- The bending and stretching motion decouple in the expres-
pendence of the interaction in the final channel has a depersion for the classical ionization probability, and the bending
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motion iny is irrelevant because it contributes with a real with the integral
part only in the effective potential.

The analytical expressidi29) has the same form as the fit
to the numerical results d#]. For the valuesy=3%, Q=1, *

2 —_
ur=13, andu,=2 of the fictitious system, the value of the J(a,b)=35Im XOX a+b/xdx (A2)
coefficient isk = \2, which departs from the numerical value
by only 5%. Residual differences between the analytical
value and the fit value may be related to the quadratic apPartial integration gives
proximation(3) of the potential energy around the Wannier
ridge, while the classical trajectory calculations were per-
formed without this approximation. Quantum mechanically Ja,b)=7,+ jzzlm[x2/3\/a+ b/x]5,
(A=1), condition(28) corresponds to the high-energy limit. 0
This also explains the observation of Rgf] that the classi- b (e dx
cal limit of the ionization probability has the same behavior +img | — . (A3)
as the far-from-threshold probability for ionization by heavy 2 Jxox*\Ja+bix
ions[13].

The classical[3] and quantum-mechanical derivation . .
[5,8] of the threshold law(1) for the generic Wannier case FO“’% “?a' and pqsmve, which c_orrespondsEf0>0,_ the_ up-
aper limit of the first term7; vanishes. The contribution of

lead to identical results. This is in contrast to the exception T . . X
caseQ/q=4 discussed here. In the generic Wannier casethe lower limit is calculated in the limia<<|b|/x, which
Eq. (14) is valid because of the dominance of the scale-cOrresponds to Eq17). It gives

independent attractive Coulomb potential in the final chan- 1

nel. Since the potential(R) is proportional takz, the depen- _ _ pl4 A L 13/4

dence on# drops out, and the quantum-mechanical and J1(2,b) Ro imyb 2R° IM=+0(Ro™), (Ad)

Jb
classical results coincide to lowest orderfin

V. SUMMARY with

We have derived the threshold law for three-particle
breakup near threshold in the case when the Wannier expo- — o 7l Y2 i L
nent is infinite. The threshold law changes from a power law imyb 2ugh|Cy| ™ sinl zargb)]
to an exponential behavior as a function of the the excess 1
energy. An experimental realization of this behavior should argb)=7—tan !—. (AB)
be feasible, although the strong suppression of the cross sec- V2
tion near threshold will probably make it difficult to confirm
the analytically derived threshold coefficiest ) ) _
The Wannier picture Of propagation on the ridge Of theThe term eXD_Z/ﬁjl] contributes to the correction term in
three-particle potential remains valid. The classical threshol&d. (21). So does eXp-2/%.7,]. The later also determines
|aW, however’ differs from its quantum_mechanicaj Counter_the threshold behavior of the survival probablllty The inte-
part. This fact requires a refinement of the statement tharal is available in closed form:
Wannier theory is essentially a classical theory. The derived
analytic form of the classical threshold law explains the be-

havior of previous numerical classical trajectory calculations. 3b 114
Jo(a,b)=Im| —=—= ,F4[3,3;3;—bl/(axp)]|.
2X; Ja
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APPENDIX 2y
The survival probability(12) is calculated with the mo- 3a__, 1 13/4
mentum(7), Co=0, and the coupling potential given by Eq. + ﬂRO Im%+o( Ro™)- (A7)

(10). We change the integration variablexe R*2. The sur-

vival probability takes the form When the expansion@\4) and (A7) for 7, and 7, are in-
serted into(Al) expressions(18), (19), and (21) for the
threshold behavior of the breakup cross section and the

2
P(E)ZEXF{_ 7 J2rrE ~2ushCo | (AD - echold coefficient reslt
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