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Making complex scaling work for long-range potentials
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We examine finite basis set implementations of complex scaling procedures for computing scattering am-
plitudes and cross sections. While ordinary complex scaling, i.e., the technique of multiplying all interparticle
distances in the Hamiltonian by a complex phase factor, is known to provide convergent cross-section expres-
sions only for exponentially bounded potentials, we propose a generalization, based on Simon’s exterior
complex scaling technique, that works for long-range potentials as well. We establish an equivalence between
a class of complex scaling transformations carried out on the time-independent Schro¨dinger equation and a
procedure commonly referred to as the method of complex basis functions. The procedure is illustrated with a
numerical example.@S1050-2947~97!07406-4#

PACS number~s!: 34.80.Bm, 03.65.Nk
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I. INTRODUCTION

The method of complex coordinates or complex scal
~i.e., the idea of treating the Hamiltonian as a function
complex position variables! is well known in physics. The
idea was first used over 30 years ago in the theory of po
tial scattering to extend the region of analyticity of the J
function into the lower halfk plane @1#. It also has a long
history in atomic and molecular physics as the basis for v
ous methods used in computational scattering theory da
back to the early seventies@2,3#. Most of the applications
have centered on the calculation of resonances in atoms
molecules whose energies and lifetimes, under complex s
ing, are related to the real and imaginary parts of the disc
eigenvalues of an analytically continued Hamiltonian@4#.
Nevertheless, as Reinhardt pointed out in his 1982 rev
@5#, it is important to bear in mind that the original motiva
tion for interest in the method, and indeed the principal m
tivation for this study, was the prospect of calculating sc
tering cross sections without explicit enforcement
asymptotic boundary conditions. In contrast to the devel
ment of ‘‘direct’’ methods for evaluating resonances bas
on complex scaling@6#, this other aspect has received far le
attention@7,8# and, apart from applications to photoioniz
tion @9–12#, has met with only partial success. The reaso
A solution of the full scattering problem requires matrix e
ements of the resolvent between continuum functions.
fortunately, the method of complex scaling as originally p
sented only provides convergent expressions for th
quantities in the case of interaction potentials that fall
exponentially@2,13#, which would appear to exclude most o
the problems encountered in atomic and molecular phys
Although methods based on complex scaling or, more ac
rately, on the use of complex basis functions@8# have been
proposed to tackle this harder problem, it is probably fair
say that, after many years, no definitive method for entir
551050-2947/97/55~6!/4253~10!/$10.00
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circumventing the specification of boundary conditions h
emerged.

One notable extension of the complex coordinate met
was Simon’s exterior complex scaling procedure@14#, in
which the coordinates are only scaled outside a~hyper!-
sphere of radiusur u5R0 . The motivation for this develop-
ment was the desire to treat Hamiltonians that have nona
lyticities in the interior region, such as the Born
Oppenheimer Hamiltonian whose electron-nuclear attrac
terms are not dilatation analytic when viewed solely as
function of the electronic coordinates@15#. In computational
applications, exterior complex scaling has been used ma
in direct numerical integration methods@16–18#, although
there have been a few attempts, in connection with resona
evaluations, to implement the method in a basis@19–21#.

The purpose of this paper is to show that exterior scal
can be used to formulate a procedure for solving the
scattering problem using only square-integrable functio
and that, unlike the original complex scaling method, t
method is not restricted to exponentially bounded potenti
To be able to implement the method with arbitrary ba
functions, we have found it necessary to generalize Simo
procedure to a broader class of transformations, where
transition from real to scaled coordinates is smoothly carr
out over a finite range.

The method is outlined in the following sections, after
brief review of the earlier techniques. We then make so
comments on the connection between complex scaling
complex basis function methods. Section V presents so
numerical examples and Sec. VI has some concluding
marks.

II. COMPLEX SCALING

For notational simplicity, we will use the symbolr to
refer collectively to all the interparticle coordinates in a
4253 © 1997 The American Physical Society
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N-body system. The starting point for a definition of th
complex coordinate method is to introduce a scaling ofr by
a real factoreuPR under which the wave function is mappe
as

C~r !→eNu/2C~eur !, ~1!

where the factoreNu/2 must be included to preserve the no
malization of the wave function. Sinceu is real, this corre-
sponds to a unitary transformation of the Hamiltonian,Hu
5U(u)HU21(u), and the spectrum ofHu is independent of
u.

The complex coordinate method analytically continu
Hu by considering a broader class of~nonunitary! scaling
transformationseu,uPC. In this paper, we use the term
‘‘uniform’’ or ‘‘ordinary’’ complex scaling to denote this
transformation which scales all interparticle coordinates b
complex constant. There is a considerable literature on
properties of the Hamiltonian under this~nonunitary! trans-
formation for the class ofdilatation analytic potentials
@5,22#, the principal results of which can be summarized
follows.

~1! The bound-state eigenvalues ofHu are the same a
those ofH for uarguu<p/2.

~2! The segments of the continuous spectrum ofHu be-
ginning at each scattering threshold are rotated into the lo
half plane by an angle 2 Imu (Imu.0).

~3! Hu may have isolated complex eigenvalues~reso-
nances!, and correspondingL2 eigenfunctions, in the wedg
formed by the continuous spectra ofH andHu . They are
independent ofu as long as they are not covered by branch
of the continuous spectrum ofHu .

Property 3 has accounted for the attractiveness of unif
complex scaling as a means for finding resonances. C
sider, for example, the case ofs-wave scattering from a
spherically symmetric potentialV(r ). One simply chooses a
basis ofL2 functions, forms a~complex symmetric! matrix
representation of the operator

Hu~r !52
1

2
e22u

d2

dr2
1V~reu!, ~2!

diagonalizes it and variesu to find those eigenvalues whic
are roughly independent of the scaling angle. In practice,
eigenvalues may depend strongly on the rotation angle
basis sets that are not carefully optimized and modificati
of the method, which need not concern us here, are need
make the method practical for many-electron systems@23#.
We refer the interested reader to several reviews for fur
details@5,6,24#.

It is property 2 that has stimulated interest in comp
scaling as a way to implement scattering theories that do
rely on explicit enforcement of asymptotic boundary con
tions. The idea is to express the quantity of interest, suc
a scattering amplitude, as a matrix element of the resolv
or full Green’s function lim«→0(E2H1 i«)21 and to use the
fact that the latter can be approximated as the inverse of
matrix representation ofE2Hu in an L2 basis, i.e., as (Ẽ
2H̃u)

21 @2,8#. Because the continuous spectrum ofHu has
been rotated off the real axis, the matrix (Ẽ2H̃u)

21 is a
meaningful approximation to the resolventfor real values of
s
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E. To evaluate the scattering amplitude orT matrix, we re-
quire matrix elements of the resolvent between continu
functions. Specifically, what is required is lim«→0^c0uV(E
2H1 i«)21Vuc0&, wherec0 is a continuum function. Un-
fortunately, with ordinary complex scaling, these so-cal
‘‘free-free’’ elements only converge for exponential
bounded potentialsV @2,13#. Our main purpose here will be
to show how such a construction can be made to work e
in the case of a Hamiltonian with long-range interactions

The method of exterior complex scaling was proposed
Simon @14# as a logical extension of uniform complex sca
ing to deal with potentials that may have interior nonanal
icities, but are well behaved outside some~hyper!sphere of
finite volume @25#. Specifically, Simon suggested the ma
ping

QR0 ,f
~r !5 H r , r,0

R01~r2R0!e
if, r>R0

. ~3!

The spectral properties of the Hamiltonian under this m
general scaling transformation are the same as those l
above for uniform complex scaling. The particular examp
that prompted Simon’s work was the Born-Oppenheim
Hamiltonian with fixed, real nuclear coordinates. T
nonanalyticity of the electron-nuclear attraction terms sp
trouble for uniform scaling@15#, but are readily accommo
dated under exterior complex scaling.

The slope of the contour defined by Simon’s exter
complex scaling changes discontinuously atR0 , which can
complicate its implementation in certain applications@26#.
We will therefore first consider a more general class of tra
formations which pass smoothly from real to complexr and
then return to exterior complex scaling as a limiting case.
will use the term smooth exterior scaling to distinguish th
class of mappings from Simon’s original prescription, whi
we call sharp exterior scaling, while the term ‘‘complex sc
ing’’ without modifiers can refer to any method which allow
the position variables to take on complex values.

Consider some smooth complex contourR(r ) which has
the properties

R~r !5 H r , r→0
reif, r→`

~4!

but is otherwise arbitrary. We first need to determine
explicit form of the transformed Schro¨dinger equation as a
function of the real coordinater .

The implementation of complex scaling requires that o
take into account the metric which accompanies the sca
operator. In analogy with Eq.~1!, we define the operator tha
does the scaling as

UC~r !5J~r !C„R~r !…, ~5!

where the Jacobian is

J~r !5S dRdr D
1/2

~6!

and the scaled Schro¨dinger equation is

UHU21UC5EUC. ~7!
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55 4255MAKING COMPLEX SCALING WORK FOR LONG-RANGE . . .
The inverse ofU is given by

U21C5
1

J„R21~r !…
C„R21~r !…, ~8!

whereR21(r ) is the inverse of the function defining th
contour.

Next, we need an expression for the radial kinetic-ene
operator under this transformation. The algebra simpli
considerably if we represent the contour in the followi
form @26#:

R~r !5E
0

r

q~r 8!dr8, ~9!

with

q~r !5 H1, r→0
eif, r→`

~10!

so that

J~r !5q1/2~r ! ~11!

for functions q that are continuous. Finally, if we defin
w(r ) as the original wave function on the contour, i.e.,

UC~r ![J~r !w~r !5q1/2~r !w~r !, ~12!

then it can be shown that

U
d2

dr2
U21~r !q1/2~r !w~r !5

1

q2
q1/2w92

q8

q3
q1/2w8,

~13!

where the primes denote differentiation with respect to
real coordinater . The transformed radial Schro¨dinger equa-
tion Ĥw(r )5Ew(r ) involves the Hamiltonian operator

Ĥ~r !52
1

2 F 1q2 d2

dr2
2
q8

q3
d

drG1V„R~r !…. ~14!

This representation of the second derivative operator n
allows us to derive a symmetric matrix representation of
scaled Schro¨dinger equation in a basis. The idea is to expa
just w(r )[C„R(r )…, and notUC(r ) which contains the
Jacobian factor, in a basis

w~r !5(
n

Cnxn~r !. ~15!

Inserting this expression into Eq.~14!, multiplying from the
left with q(r )xm(r ) and integrating overr gives

(
n

H̃mnCn5E(
n

S̃mnCn , ~16!

with

S̃mn5E
0

`

xm~r !xn~r !q~r !dr, ~17!

H̃mn5T̃mn1Ṽmn , ~18!
y
s

e

w
e
d

Ṽmn5E
0

`

xm~r !V„R~r !…xn~r !q~r !dr, ~19!

T̃mn52
1

2 E
0

`

xm~r !F 1

q~r !
xn9~r !2

q8~r !

q2~r !
xn8~r !Gdr,

~20a!

5
1

2 E
0

`

xm8 ~r !
1

q~r !
xn8~r !dr, ~20b!

where the last expression comes from integration by p
and the assumption that the basis functions vanish at
origin and infinity. Note that the kinetic-energy elemen
given by Eq.~20b! obviously define acomplex symmetric
matrix.

Equations~17!–~20! which, together with the transforme
Hamiltonian in Eq.~14!, are the principal results of this sec
tion, show how to represent the transformed radial Sch¨-
dinger equation in a basis. In the limiting case of sharp
terior scaling,q(r ) changes discontinuously from 1 toeif at
r5R0 and some care is needed to properly define the kine
energy elements. It can be shown that Eq.~20b! still gives
the correct representation of the kinetic-energy operato
this instance. Note that, unlike Kurasov, Scrinzi, and Elan
@26#, we have not included the Jacobian factorAq(r ) in the
definition of the scaled wave function in Eq.~5! so that,
under sharp exterior scaling,C„R(r )… is notdiscontinuous at
R0 . However, the derivatives ofC„R(r )… ~with respect to
r ! are discontinuous. The implication is that, even with t
kinetic-energy operator properly defined via Eq.~20b!, an
analytic basis set cannot give uniform convergence w
sharp exterior scaling because such an expansion canno
resent the cusp discontinuity in the wave function atR0 .

III. COMPLEX SCALING VS COMPLEX BASIS
FUNCTIONS

At this point, it is possible to establish a connection b
tween complex scaling and another class of techniques c
monly referred to as complex basis function methods.
some implementations of complex scaling, it is possible
reinterpret the prescription of using realL2 functions in con-
nection with a complex Hamiltonian as being entire
equivalent to using complex basis functions with a re
Hamiltonian. For example, with uniform scaling, we ha
q(r )5eif;r and thus have to construct matrix elements
the form

I5eifE
0

`

xm~r !H~reif!xn~r !dr. ~21!

It is easy to see that if we make the change of varia
r→re2 if in the above integral and use Cauchy’s theorem
distort the integration contour back to the real axis, we g

I5E
0

`

xm~re2 if!H~r !xn~re
2 if!dr, ~22!

so that we can view the case of uniform scaling as be
equivalent to using a real Hamiltonian and working wi
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complex basis functionsxn(re
2 if) and a scalar product de

fined without complex conjugation of the radial function
While complex scaling and complex basis functions
equivalent in this simple case, the complex basis funct
interpretation turned out to be more flexible, since it allow
one to mix real and complex basis functions in many-bo
problems where the wave functions are represented as or
products. The inner-core orbitals in a heavy atom beco
highly oscillatory under uniform complex scaling whic
causes severe convergence problems. With complex b
function methods, one can use real basis functions to exp
the core orbitals and complex functions only for the ou
orbitals@23#. The method is then no longer the same as u
form complex scaling and may well not correspond to
easily derived variable scaling of the Hamiltonian operat
The ‘‘method of complex basis functions’’@23,24# played an
important role in the evolution of numerical scattering me
ods, since it enabled practical calculations to be perform
on many-electron atoms as well as molecules. In fact, so
progress was made in establishing a relationship~but not an
identity! between computations carried out with complex b
sis functions and the exterior complex scaling concept@27#.

The development of the preceding section enables u
make a clearer connection between complex scaling
complex basis functions. The matrix elements we have
consider@Eqs.~17!, ~19!, and~20!# have the form

H̃mn5E
0

`

xm~r !H„R~r !…xn~r !q~r !dr

5E
0

`

xm~r !H„R~r !…xn~r !
dR

dr
dr. ~23!

If we can constructR21, the inverse of the function which
defines the contour, then we can make the change of vari
from r to x, wherer5R21(x) and again use Cauchy’s theo
rem to carry out the integration along the realx axis. The
result is

H̃mn5E
0

`

xm„R
21~x!…H~x!xn„R

21~x!…dx, ~24!

which establishes the desired connection between com
scaling and an equivalent complex basis. For the cas
uniform complex scaling, as well as sharp exterior scali
the inverse map is simplyR21(r )5r * . In fact, any smooth
mapping that satisfies

R21~x!5 H x, x→0
xe2 if, x→`

~25!

and has a smooth inverse can be used to define a s
complex basis functions to use in Eq.~24!. Note that with
exterior scaling, there is no need for mixing real and co
plex basis functions; the inner-core orbital problem in ma
electron systems is automatically handled in a natural w
since tight functions that do not extend beyondR0 are effec-
tively left real.
.
e
n
d
y
ital
e

sis
nd
r
i-
n
r.

-
d
e

-

to
d
to

le

ex
of
,

of

-
-
y,

IV. SCATTERING

We will next investigate the question of applying the fo
malism outlined above to a collision problem. For simplicit
we will consider the case ofs-wave scattering from a spher
cally symmetric potential. The scattering cross section is p
portional to the squared modulus of theT matrix, which is
defined as

T~E!5E
0

`

c0~r !V~r !c†~r !dr

[E
0

`

c0~r !V~r !„c0~r !1cscat~r !…dr, ~26!

wherecscat(r ) is the scattered wave part of the full scatteri
wave function. TheT matrix can also be expressed in term
of the full Green’s function

T~E!5E
0

`

c0~r !„V~r !1V~r !G1~r ,r 8!V~r 8!…c0~r !dr dr8

5 lim
e→0

^c0uV1V~E1 i«2H !21Vuc0&, ~27!

with

c05A2/k sin~kr !, E5k2/2. ~28!

Note that with these definitions,T5eidsind, whered is the
phase shift. The scattered wave part of theT-matrix is now
approximated as

^c0uV~E1 i«2H !21Vuc0&' f̄ •~ES̃2H̃u!21
• f̄ , ~29!

where the matricesS̃ and H̃ are defined in Eqs.~17!–~20!
and f̄ is a vector with elements

f m5A2/kE
0

`

xm~r !V„R~r !…sin„kR~r !…q~r !dr, ~30!

Since the continuous spectrum ofHu has been rotated into
the lower half plane, this representation should converge
real E if V is sufficiently well behaved. Unfortunately, a
Baumel, Crocker, and Nuttall@13# have pointed out,V(r )
must be exponentially bounded for Eq.~29! to converge
since sin(kr) diverges exponentially under coordinate rot
tion. This will be formally true both for uniform scaling o
exterior scaling. With exterior complex scaling, howeve
there is a way around this problem.

Although the development to this point allows an
switching functionq(r ) that satisfies Eq.~10!, we will see
that there are distinct advantages to having a contour
coincidesexactlywith the real axis over a finite range 0<r
<R0 . We can then replace the original potentialV(r ) by a
finite range potentialVR0

(r ) that vanishes beyondR0 and is

identical toV(r ) for r,R0

VR0
~r !5 HV~r !, r<R0

0, r.R0
. ~31!

We can use exterior scaling to calculate theT matrix corre-
sponding to this potentialTR0 relying on Eq.~29! to approxi-
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mate the scattered wave part in a basis set ofN square-
integrable functions with Eqs.~17!–~20! defining the
required matrix elements. SinceVR0

(r ) is a finite-range po-

tential, the method will converge for any value ofR0 if N is
large enough. This truncation of the potential allows us
define a process that limits to the correct physical resul
R0→`. Thus, by choosing theinterior region large enough
we can insure that the truncated potential differs insign
cantly from the physical potential under consideration@28#.

We can contrast the above procedure to the situation
pertains to uniform complex scaling with a truncated lon
range potential. In the latter case, it is convenient to use
‘‘complex basis set’’ interpretation of uniform scaling@i.e.,
Eq. ~22!#, so that we can continue to use the same r
finite-range potentialVR0

(r ). The matrix elements of the po
tential would then be of the form

I R05E
0

R0
xm~re2 if!V~r !xn~re

2 if!dr. ~32!

In contrast to the case of exterior scaling withVR0
(r ), uni-

form scaling will not yield physically meaningful results a
R0 is increased. Indeed, in the limitR0→`, the matrix ele-
ments defined in Eq.~32! become, after the change of var
able r→reif

I R0 lim
R0→`

5eifE
0

`

xm~r !V~reif!xn~r !dr, ~33!

which is precisely the case that Baumel, Crocker, and Nu
@13# showed to be divergent.

We will now give the specific form of the transformatio
we used to implement smooth exterior scaling. We chos

q~r !5H 1, r,R02h
f ~r !, R02h,r,R01h
eif, r.R01h

, ~34!

where f (r ) is a smooth switching function defined on@R0
2h,r,R01h#. To insure uniform convergence with a
analytic basis, we wantf (r ) to be continuously differentiable
at r5R06h. We thus chosef (r ) to be the lowest orde
polynomial needed to makeq(r ) and q8(r ) continuous at
R02h andR01h. If we define

f ~r !511~eif21!PS r2R0

h D , ~35!

then the requirement is thatP(21)50, P(1)51, P8(21)
50 andP8(1)50. These conditions uniquely defineP(x)

P~x!5 1
4 ~213x2x3!. ~36!

The truncated potentialVR0
is defined as

VR0
5 HV„R~r !…5V~r !, r,R02h

0, r>R02h . ~37!

We reiterate that by zeroing the potential on the comp
portion of the contour, we eliminate any numerical difficu
o
s

-

at
-
e

l,

ll

x

ties associated with a less than exponential fall off of
potential at large distances, but have no measurable effec
the cross section.

We do not expect this remedy to come without a pric
It’s obvious that the basis set one chooses must have
ments that extend beyond the complex turning pointR0 ; if
not, the eigenvalues ofH̃u would effectively be real and Eq
~29! would not yield a sensible result. Even for a sho
ranged potential then, we expect that a larger number

TABLE I. Phase shift fors-wave scattering by an exponentia
potential.N refers to the number of Laguerre-type functions used
the calculation. Results are given for both uniform complex scal
and smooth exterior scaling. See text for basis set and contou
rameters.

N Uniform Smooth Exterior

k50.15
5 20.898 511 72 20.000 003 17
10 21.046 153 20 0.548 948 06
15 21.058 928 49 20.950 252 63
20 21.047 232 52 21.027 465 88
25 21.051 195 81 21.062 783 68
30 21.050 256 94 21.046 716 28
35 21.050 417 02 21.051 224 59
40 21.050 403 38 21.050 281 54
45 21.050 400 37 21.050 404 85
50 21.050 402 26 21.050 406 59
55 21.050 401 68 21.050 400 28
60 21.050 401 80 21.050 402 73

k50.35
5 1.423 933 79 0.000 008 38
10 1.460 337 20 0.212 813 71
15 1.461 222 77 1.436 323 77
20 1.461 247 16 1.455 724 39
25 1.461 247 57 1.461 076 10
30 1.461 247 56 1.461 245 73
35 1.461 247 56 1.461 248 05
40 1.461 247 56 1.461 248 37

k50.35
45 1.461 247 56 1.461 248 45
50 1.461 247 56 1.461 247 59
55 1.461 247 56 1.461 247 64
60 1.461 247 56 1.461 247 59

k50.55
5 1.155 837 18 20.000 027 24
10 1.144 127 89 0.226 360 78
15 1.144 235 25 0.922 345 22
20 1.144 234 35 1.141 723 79
25 1.144 234 36 1.142 999 29
30 1.144 234 36 1.144 086 07
35 1.144 234 36 1.144 226 53
40 1.144 234 36 1.144 232 62
45 1.144 234 36 1.144 232 18
50 1.144 234 36 1.144 234 34
55 1.144 234 36 1.144 234 16
60 1.144 234 36 1.144 234 22
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FIG. 1. Unitarity of the calculatedS matrix
(S[e2id) for s-wave scattering by an exponentia
potential atk50.55. Upper curve is for smooth
scaling; lower curve is for exterior scaling.
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functions will be required to achieve a given level of acc
racy with exterior scaling than with uniform scaling and th
the number of functions required will grow asR0 increases.

We can recover Simon’s original exterior complex scali
contour by lettingh→0 in Eq.~34!, in which caseq changes
discontinuously atR0 . Equation~20b! can still be used to
define the kinetic-energy matrix, but analytic basis functio
will not give uniform convergence with this prescriptio
since the derivative of the wave function~with respect to
r ! is discontinuous atR0 . However, the cusp discontinuity i
the wave function at the pointR0 that occurs with sharp
exterior scaling can be accommodated by using a non
lytic set of basis functions that are only defined on fin
intervals. The continuous variabler is replaced by a grid of
nodes 0,r 1,r 2,•••,r n,`. Finite element basis func
tions z i ,m(r ) are defined to be identically zero outside
given interval

z i ,m~r !50 r¹@r i ,r i11#, i51,...,n. ~38!

We use the labelm to indicate the boundary conditions im
posed on the basis functions at the nodes, for example,
or unity at the right or left end of the interval. The finit
element functions are then combined into a smaller se
continuous basis functions on which the Hamiltonian is p
jected. To accommodate exterior scaling, we simply requ
the pointR0 to coincide with one of the nodes. To constru
the required Hamiltonian matrix elements, we have to c
sider terms of the form

E
0

`

z i ,m~r !H„R~r !…z j ,n~r !q~r !dr

5d i , jE
r i

r i11
z i ,m~r !H„R~r !…z i ,n~r !

dR

dr
dr, ~39!

where, by construction, the pointR0 never lieswithin the
interval @r i ,r i11# and, hence,R(r ) is always smooth ove
the integration range. To underscore the fact that the fi
-
t

s

a-

ro

of
-
e
t
-

te

element basis functions depend explicitly on the inter
boundaries, we write them asz i , j (r )[ f j (r ,r i ,r i11). In our
implementation of the method, we used Hermite interpo
ing polynomials f j (r ,r i ,r i11), which are uniquely defined
on the interval@r i ,r i11# from the conditions

dk

drk
f j~r ,r i ,r i11!5d j ,k , r5r i ,

dk

drk
f j~r ,r i ,r i11!50, r5r i11. ~40!

For these functions, there is a simple proportionality betwe
f j (r ,r i ,r i11) and f j„R(r ),R(r i),R(r i11)…, where R(r ) is
any linear function ofr . Since the exterior scaling contour
a linear transformation onr , we can thus write

E
0

`

z i ,m~r !H„R~r !…z j ,n~r !q~r !dr}d i , j

3E
R~r i !

R~r i11!

f m„R~r !,R~r i !,R~r i11!…

3H„R~r !…f n„~r !,R~r i !,R~r i11!…dR. ~41!

This relation is remarkable for two reasons. Firstly, it sho
that the finite elements naturally scale onto the rotated c
tour and thus can handle any step discontinuity in the w
function at the pointR0 . Moreover, if analytic forms are
available for the matrix elements for real intervals, then
right-hand side of Eq.~41! shows that those same formula
evaluated for complex nodal points, give the correct valu
for the matrix elements of the Hamiltonian on the compl
part of the contour. This would not be true if the turnin
point R0 fell between two nodes. It is important to bear
mind that the identity expressed in Eq.~41! does not in any
sense represent a contour distortion of the integral define
Eq. ~39!.
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V. EXAMPLES

In this section we will illustrate some of the ideas we ha
outlined with several numerical examples. We will first r
port the results of calculations using analytic basis functi
on a smoothly scaled contour. To examine questions of c
vergence, it is convenient to work with a set ofL2 functions
that can be systematically increased toward complete
without running into problems of numerical linear depe
dence. We chose the set of functions

xn,l~r !5
l3/2

@~n11!~n12!#1/2
re2lr /2Ln

2~lr !, ~42!

whereLn
2(lr ) is an associated Laguerre polynomial. The

functions are orthonormal on@0,̀ # and give simple analytic
expressions for matrix elements of thes-wave kinetic energy

Tm,n[2 1
2 E

0

`

xm,l~r !
d2

dr2
xn,l~r !dr

5l2F2dm,n/81
~2m319m2113m16!

12A~n11!~n12!~m11!~m12!
G .
~43!

These analytic formulas can even be used to simplify
evaluation of matrix elements carried out on a complex c
tour where numerical quadrature is required, i.e., where
use

E xm,l~r !H„R~r !…xn,l~r !q~r !dr

'(
i

xm,l~r i !H„R~r i !…xn,l~r i !q~r i !wi . ~44!

We can make use of the fact thatq(r )5eif for r.R01h to
simplify evaluation of the overlap and kinetic-energy mat
elements. In the case of the overlap matrix, for example,
write

E
0

`

xm,l~r !xn,l~r !q~r !dr

5E
0

R01h

xml~r !xn,l~r !q~r !dr1eifF E
0

`

xm,l~r !

3xn,l~r !dr2E
0

R01h

xm,l~r !xn,l~r !drG
'eifdm,n1(

j
xm,l~r j !xn,l~r j !„q~r j !2eif…wj ,

~45!

where the quadrature points only cover the interval@0,R0
1h#.

We first considereds-wave scattering from the shor
range potential

V~r !52e2r ~46!
s
n-

ss
-

e

e
-
e

e

and compared the results obtained from uniform comp
scaling, i.e.,H(r )→H(reif), with smooth exterior scaling
H(r )→H„R(r )…. The contour used the polynomial switch
ing function described in Sec. IV. For these calculations,
choseR0520.0 andh54.0. The Laguerre scale factorl was
set to 2.0 and the rotation angle was 30° for both sets
calculations. Table I shows the behavior of thes-wave phase
shift ~defined here as the phase of the calculatedT matrix!
for several values ofk. The convergence is faster with un
form scaling than with smooth exterior scaling, as we co
jectured, because with smooth exterior scaling one first ne
to span the region from the origin toR0 before one begins to
see convergence. This can be seen in Fig. 1, which comp
uniform and smooth exterior scaling fork50.55. The mea-
sure of convergence for this comparison is the unitarity
theS matrix (S5e2id), which is computed from theT ma-
trix asS5112iT.

The next case we consider iss-wave scattering from the
long-range potential

TABLE II. Phase shift fors-wave scattering by truncated lon
range potential.N refers to the number of Laguerre-type functio
used in a smooth exterior scaling calculation. See text for basis
and contour parameters.

N R0525 R0535

k50.15
10 20.010 800 94 20.000 000 15
20 20.069 561 68 20.164 917 53
30 20.060 820 42 20.061 410 67
40 20.060 917 40 20.060 926 53
50 20.060 944 40 20.061 025 23
60 20.060 945 59 20.061 030 83
70 20.060 945 56 20.061 030 78
80 20.060 945 58 20.061 030 78
90 20.060 945 59 20.061 030 79
100 20.060 945 59 20.061 030 78

k50.35
10 20.000 384 21 20.000 000 01
20 20.099 657 09 20.037 669 36
30 20.100 319 07 20.100 177 26
40 20.100 336 19 20.100 404 43
50 20.100 336 28 20.100 411 17
60 20.100 336 39 20.100 410 98
70 20.100 336 48 20.100 410 97
80 20.100 336 48 20.100 410 97
90 20.100 336 48 20.100 411 06
100 20.100 336 49 20.100 411 09

k50.55
10 20.000 361 34 20.000 000 01
20 20.132 563 05 20.043 013 91
30 20.118 845 09 20.114 737 08
40 20.118 665 69 20.118 511 86
50 20.118 658 89 20.118 669 29
60 20.118 658 68 20.118 689 69
70 20.118 658 54 20.118 691 13
80 20.118 658 59 20.118 691 33
90 20.118 658 57 20.118 691 37
100 20.118 658 56 20.118 691 29
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FIG. 2. Unitarity of the calculatedS matrix
(S[e2id) for s-wave scattering by a long-rang
potential atk50.55. The divergent upper curve i
for a potential which is not truncated on the com
plex part of the integration contour.
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V~r !5
1

~11r !4
, ~47!

for which uniform complex scaling diverges. We again stu
ied convergence with the smooth exterior scaling transfor
tion, this time zeroing the potential beyondR02h, where the
contour begins to turn off the real axis. Results are show
Table II for severalk values and two different values o
R0 . All other parameters of the contour and basis are
same as in the preceding case. The rate of convergen
similar to what was found with the exponential potential, b
the converged phase shifts show a slight dependence
R0 , reflecting their dependence on the point beyond wh
the potential is truncated. For comparison, we also show
Fig. 2, the results of a calculation in which the long-ran
potential is not truncated. It is noteworthy that calculatio
using the untruncated potential can provide useful results
a range of basis set values, before they ultimately begin
diverge.

We also implemented sharp exterior scaling in a fin
element basis of fifth-order Hermite interpolating polynom
als. In each interval@r i ,r i11#, we can uniquely define six
independent polynomialsPj ,i(r ) andQj ,i(r ), j50,1,2 from
the conditions

dk

drk
Pj ,i~r i !5d j ,k

dk

drk
Pj ,i~r i11!50

, j ,k50,1,2

dk

drk
Qj ,i~r i11!5d j ,k

dk

drk
Qj ,i~r i !50

, j ,k50,1,2 ~48!

The explicit formulas for thePj ,i are
-
a-

in

e
is
t
on
h
in
e
s
or
to

e
-

P0,i~r !5S r2r i11

r i2r i11
D 3F6S r2r i11

r i2r i11
D 2215S r2r i11

r i2r i11
D110G ,

P1,i~r !5~r i112r i !S r2r i11

r i2r i11
D 2F3S r2r i11

r i2r i11
D 2

27S r2r i11

r i2r i11
D14G ,

P2,i~r !5
1

2
~r i2r i11!

2S r2r i11

r i2r i11
D 3F S r2r i11

r i2r i11
D21G ,

~49!

for r i<r<r i11 and zero elsewhere. The functionsQj ,i are
obtained by interchangingr i and r i11 in the formulas for
Pj ,i .

We can use these polynomials to define three basis fu
tions at each noder i which span the interval@r i21 ,r i11#,
and have vanishing value, first and second derivative at
end points. The basis functions are defined as

x j ,i~r ![„Pj ,i~r !1Qj ,i21~r !… ~50!

and are plotted in Fig. 3. It is obvious from Eq.~49! that the
basis functions defined in Eq.~50! scale onto the contour a
described in Sec. IV. In particular, at the pointr i5R0 , we
see that

lim
«→0

„x j ,i~R01«!5~eif! jx j ,i~R02«!…. ~51!

Thus the functionx0,i guarantees continuity of the wav
function at r i5R0 , while x1,i and x2,i impose the proper
discontinuity conditions on the first and second derivativ
respectively. To impose boundary conditions that the wa
function vanish at the origin and last grid point, we simp
omit the functionsx0,1 andx0,N and removePj ,1 andQj ,N ,
j51,2 from the definition of the basis functions.
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The exterior scaled finite element method was also
plied to the long-range potential problem previously cons
ered. For these calculations, the grid points were eve
spaced from 0 tor N5100 withR0 fixed at 25 and the rota
tion angle was set at 20°. Once again, the potential was
equal to zero along the complex portion of the contour. Ta
III shows the behavior of the computed phase shifts at s
eral energies as a function of the grid spacing. Evidently,
method converges very rapidly.

VII. DISCUSSION

We have shown that, with exterior complex scaling,
can answer the question posed by the title of this paper in
affirmative. Exterior complex scaling was originally intro
duced as a generalization of uniform complex scaling to d
with potentials that suffered interior nonanalyticities, b
were analytic outside a sphere of finite radius. What we h
shown is that by making this radius large enough so that

FIG. 3. Basis functions for finite element calculations. Upp
panel: x j ,0 ; center panel:x j ,1 ; lower panel:x j ,2 . See text for
definition of the functions.
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potential can be truncated at this distance without phys
consequence, then exterior scaling can be implemented i
L2 basis and provides a method for solving the full scatter
problem without explicitly enforcing asymptotic bounda
conditions, even in cases involving long-range potenti
where uniform scaling diverges. For analytic basis functio
we use smooth exterior scaling to assure uniform conv
gence; for sharp exterior scaling, finite element basis sets
be employed. These developments allow the method to
applied to the kinds of nonresonant scattering problems
countered in atomic and molecular physics. The fact that
interaction region is represented in real coordinates also
viates the need for the mixtures of real and complex ba
functions that have previously been used to treat ma
electron systems. We can also show that the present de
opment allows us to make contact with other formulations
scattering in which cross sections are evaluated by calcu
ing the flux through a surface outside the interaction regi
This will be the subject of another study.
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TABLE III. Phase shift fors-wave scattering by truncated long
range potential. Results from exterior scaling calculations using
nite elements.

Nodal spacing k50.35 k50.55

12.5 20.099 959 82 20.104 554 62
5.0 20.100 403 13 20.118 680 40
2.0 20.100 394 47 20.118 675 91
1.0 20.100 391 89 20.118 673 24
0.5 20.100 396 82 20.118 673 16
0.25 20.100 396 82 20.118 673 16
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