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Making complex scaling work for long-range potentials
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We examine finite basis set implementations of complex scaling procedures for computing scattering am-
plitudes and cross sections. While ordinary complex scaling, i.e., the technique of multiplying all interparticle
distances in the Hamiltonian by a complex phase factor, is known to provide convergent cross-section expres-
sions only for exponentially bounded potentials, we propose a generalization, based on Simon’s exterior
complex scaling technique, that works for long-range potentials as well. We establish an equivalence between
a class of complex scaling transformations carried out on the time-independentiSghroequation and a
procedure commonly referred to as the method of complex basis functions. The procedure is illustrated with a
numerical exampld.S1050-294{@7)07406-4

PACS numbd(s): 34.80.Bm, 03.65.Nk

[. INTRODUCTION circumventing the specification of boundary conditions has
emerged.

The method of complex coordinates or complex scaling One notable extension of the complex coordinate method
(i.e., the idea of treating the Hamiltonian as a function ofwas Simon’s exterior complex scaling proceddifigd], in
complex position variabless well known in physics. The Which the coordinates are only scaled outsidehgpey-
idea was first used over 30 years ago in the theory of poteriphere of radiugr|=R,. The motivation for this develop-
tial scattering to extend the region of analyticity of the Jostment was the desire to treat Hamiltonians that have nonana-
function into the lower halk plane[1]. It also has a long lYticities in the interior region, such as the Born-
history in atomic and molecular physics as the basis for variOPPenheimer Hamiltonian whose electron-nuclear attraction
ous methods used in computational scattering theory datin}?rm-? are not dilatation analytic when viewed solely as a
back to the early seventid®,3]. Most of the applications function of the eIec_;tronlc coordlnat§$5]. In computational _
have centered on the calculation of resonances in atoms a@@pl_lcatlons, exterior complt_ax scaling has been used mainly
molecules whose energies and lifetimes, under complex scaP? direct numerical integration method46-18, although
ing, are related to the real and imaginary parts of the discretfhere have been a few attempts, in connection with resonance
eigenvalues of an analytically continued Hamiltonig]. ~ €valuations, to implement the method in a b4s8-21.
Nevertheless, as Reinhardt pointed out in his 1982 review The purpose of this paper is to show that exterior scaling
[5], it is important to bear in mind that the original motiva- ¢an be used to formulate a procedure for solving the full
tion for interest in the method, and indeed the principal mo-Scattering problem using only square-integrable functions
tivation for this study, was the prospect of calculating scat-2nd that, unlike the original complex scaling method, the
tering cross sections without explicit enforcement of method is not rgstncted to exponentially bpunded potentla_ls.
asymptotic boundary conditions. In contrast to the developJ© be able to implement the method with arbitrary basis
ment of “direct” methods for evaluating resonances basedunctions, we have found it necessary to generalize Simon’s
on complex scalingi6], this other aspect has received far lessProcedure to a broader class of transformations, where the
attention[7,8] and, apart from applications to photoioniza- transition fr(_)rr_l real to scaled coordinates is smoothly carried
tion [9—12], has met with only partial success. The reason®ut over a finite range. _ _

A solution of the full scattering problem requires matrix el- ~ The method is outlined in the following sections, after a
ements of the resolvent between continuum functions. Unbrief review of the earlier techniques. We then make some
fortunately, the method of complex scaling as originally pre-comments on the connection between complex scaling and
sented only provides convergent expressions for thes@omple_:x basis function methods. Section V presents_ some
quantities in the case of interaction potentials that fall offfumerical examples and Sec. VI has some concluding re-
exponentially{2,13], which would appear to exclude most of Mmarks.

the problems encountered in atomic and molecular physics.

Although methods based on complex scajing or, more accu- Il. COMPLEX SCALING

rately, on the use of complex basis functid@$ have been

proposed to tackle this harder problem, it is probably fair to For notational simplicity, we will use the symbol to

say that, after many years, no definitive method for entirelyrefer collectively to all the interparticle coordinates in an
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N-body system. The starting point for a definition of the E. To evaluate the scattering amplitudeTomatrix, we re-
complex coordinate method is to introduce a scaling by  quire matrix elements of the resolvent between continuum
areal factore’ e R under which the wave function is mapped functions. Specifically, what is required is limo({ | V(E

as —H+ig) V|yo), wherey, is a continuum function. Un-
Nolo ) fortunately, with ordinary complex scaling, these so-called
W(r)—e "W (e’r), (1) “free-free” elements only converge for exponentially

NoI2 , bounded potential¥ [2,13]. Our main purpose here will be
where the factoe™"“ must be included to preserve the nor- 1, show how such a construction can be made to work even

malization of the wave function. Sinagis real, this corre- i, the case of a Hamiltonian with long-range interactions.

sponds to i’;\lunitary transformation of the Hamiltoniah, The method of exterior complex scaling was proposed by
=U(#)HU (0), and the spectrum df, is independent of  gimon[14] as a logical extension of uniform complex scal-
0. ing to deal with potentials that may have interior nonanalyt-

H, by considering a broader class @fonunitary scaling  finjte volume[25]. Specifically, Simon suggested the map-
transformationse?, #e C. In this paper, we use the terms ping

“uniform” or “ordinary” complex scaling to denote this

transformation which scales all interparticle coordinates by a r, r<o

complex constant. There is a considerable literature on the Qry.4(M)= Ro+(r—Rpe'?, r=Ry ©)
properties of the Hamiltonian under thisonunitary trans-

formation for the class ofdilatation analytic potentials  The spectral properties of the Hamiltonian under this more
[5,22], the principal results of which can be summarized aggeneral scaling transformation are the same as those listed

follows. above for uniform complex scaling. The particular example
(1) The bound-state eigenvalues Mf, are the same as that prompted Simon's work was the Born-Oppenheimer
those ofH for |arg 6|<m/2. Hamiltonian with fixed, real nuclear coordinates. The

(2) The segments of the continuous spectrunHgfbe-  nonanalyticity of the electron-nuclear attraction terms spell
ginning at each scattering threshold are rotated into the lowerouble for uniform scalind15], but are readily accommo-
half plane by an angle 2 160(Im6>0). dated under exterior complex scaling.

(3 H, may have isolated complex eigenvalugsso- The slope of the contour defined by Simon's exterior
nance$ and corresponding? eigenfunctions, in the wedge complex scaling changes discontinuouslyRat which can
formed by the continuous spectra bHf andH,. They are complicate its implementation in certain applicatidrs].
independent ob as long as they are not covered by branchedNe will therefore first consider a more general class of trans-
of the continuous spectrum of,. formations which pass smoothly from real to compteand

Property 3 has accounted for the attractiveness of unifornthen return to exterior complex scaling as a limiting case. We
complex scaling as a means for finding resonances. Comwill use the term smooth exterior scaling to distinguish this
sider, for example, the case sfwave scattering from a class of mappings from Simon’s original prescription, which
spherically symmetric potentid(r). One simply chooses a we call sharp exterior scaling, while the term “complex scal-
basis ofL? functions, forms acomplex symmetricmatrix  ing” without modifiers can refer to any method which allows
representation of the operator the position variables to take on complex values.

Consider some smooth complex cont®(r) which has

2 the properties

1 d
Ho(r)=—§e—20d—rz+V(re9), 2
r, r—0

RID=1reis, 1o

4

diagonalizes it and varieg to find those eigenvalues which
are roughly independent of the scaling angle. In practice, the
eigenvalues may depend strongly on the rotation angle foput is otherwise arbitrary. We first need to determine the
basis sets that are not carefully optimized and modification§Xplicit form of the transformed Schiger equation as a
of the method, which need not concern us here, are needed fignction of the real coordinate.

make the method practical for many-electron syst¢a. The implementation of complex scaling requires that one
We refer the interested reader to several reviews for furthefake into account the metric which accompanies the scaling
details[5,6,24. operator. In analogy with Eq1), we define the operator that

It is property 2 that has stimulated interest in complexdoes the scaling as

scaling as a way to implement scattering theories that do not _

rely on explicit enforcement of asymptotic boundary condi- U (r)=J(n)¥(R(r)), ®)

tions. The idea is to express the quantity of interest, such as L
) . ! Where the Jacobian is

a scattering amplitude, as a matrix element of the resolvent

or full Green’s function lim_,o(E—H+ig) ! and to use the dR\ 12

fact that the latter can be approximated as the inverse of the J(r)= (—) (6)

matrix representation oE—H, in an L basis, i.e., asg

been rotated off the real axis, the matrige{H,) ! is a
meaningful approximation to the resolvednt real values of UHU UV =EUV. @
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The inverse ol is given by ~ o

V= JO Xm(NVR(r)xn(r)g(r)dr, (19

=1\ — -1
U wr= J(R—l(r)) \I’(R (r))y (8) 1 1 ,
= ” " q'(r)
where R™1(r) is the inverse of the function defining the Tmn="75 Jo Xm(r)[q(r) Xn(r) q%(r) Xn(r)dr,
contour. (20a
Next, we need an expression for the radial kinetic-energy

operator under this transformation. The algebra simplifies 1 (= 1
considerably if we represent the contour in the following =5 fo Xm(T) W)(n(f)dr, (20b)
form [26]:

; where the last expression comes from integration by parts
R(r):f q(r’)dr’, (9) and the assumption that the basis functions vanish at the
0 origin and infinity. Note that the kinetic-energy elements
given by Eq.(20b) obviously define acomplex symmetric
matrix.
1, r—0 Equations17)—(20) which, together with the transformed
q(r):{eid) oo (10 Hamiltonian in Eq.(14), are the principal results of this sec-
' tion, show how to represent the transformed radial Schro
so that dinger equation in a basis. In the limiting case of sharp ex-
terior scalingg(r) changes discontinuously from 1 & at
J(r)=q¥4r) (11 r =Ry and some care is heeded to properly define the kinetic-
energy elements. It can be shown that E2Db) still gives
for functions g that are continuous. Finally, if we define the correct representation of the kinetic-energy operator in
¢(r) as the original wave function on the contour, i.e.,  this instance. Note that, unlike Kurasov, Scrinzi, and Elander
[26], we have not included the Jacobian fact@y(r) in the

with

= _ql2
U (r)=J(re(r)=g"r)e(r), (12 definition of the scaled wave function in E¢) so that,
then it can be shown that under sharp exterior sgalir@',(R(r)) is notdispontinuous at
Ry. However, the derivatives o¥ (R(r)) (with respect to
> L T r) are discontinuous. The implication is that, even with the
UgrzU "o ne(r)= gd e g kinetic-energy operator properly defined via Eg0b), an

(13) analytic basis set cannot give uniform convergence with
sharp exterior scaling because such an expansion cannot rep-

where the primes denote differentiation with respect to theesent the cusp discontinuity in the wave functiorRgt

real coordinate. The transformed radial Schiimger equa-

tion I:|go(r)= E¢(r) involves the Hamiltonian operator Ill. COMPLEX SCALING VS COMPLEX BASIS
FUNCTIONS
- 1[1 d? ¢
HN=-3 @ar gar +V(R(r)). (14 At this point, it is possible to establish a connection be-

tween complex scaling and another class of techniques com-

This representation of the second derivative operator nognonly referred to as complex basis function methods. For
allows us to derive a symmetric matrix representation of theé§ome implementations of complex scaling, it is possible to
scaled Schidinger equation in a basis. The idea is to expand€interpret the prescription of using rda functions in con-

just o(r)=Y(R(r)), and notUW¥(r) which contains the nection with a complex Hamiltonian as being entirely
Jacobian factor, in a basis equivalent to using complex basis functions with a real

Hamiltonian. For example, with uniform scaling, we have
q(r)=€'*Vr and thus have to construct matrix elements of

QD(I’)=; Coxn(r). (15 the form
Inserting this expression into E@L4), multiplying from the _ i¢f°° )
left with q(r) x(r) and integrating over gives I=e 0 Xl PR ) xn(r)dr. @)

~ _ = It is easy to see that if we make the change of variable
; HmnCn= EE SmnCn» (16 r—re~'%in the above integral and use Cauchy’s theorem to
distort the integration contour back to the real axis, we get
with
_ w |=j Xm(re " OH(r) xn(re”'%)dr, (22)
Smn= fo Xm() xn(r)q(r)dr, 17) 0

_ . so that we can view the case of uniform scaling as being
Hmn=Tmn+ Vinn, (18  equivalent to using a real Hamiltonian and working with
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complex basis functiong,(re'#) and a scalar product de- IV. SCATTERING

fined without complex conjugation of the radial functions. . . . . .
, i . . We will next investigate the question of applying the for-
While complex scaling and complex basis functions are

. . e ; . _malism outlined above to a collision problem. For simplicity,
equivalent in this simple case, the complex basis function . . . .
we will consider the case afwave scattering from a spheri-

interpretation turned out to be more flexible, since it aIIowedCaII svmmetric potential. The scatterind cross section is pro-
one to mix real and complex basis functions in many-body ysy P ' 9 ; onisp
Prtlonal to the squared modulus of thematrix, which is

problems where the wave functions are represented as orbitg fined

products. The inner-core orbitals in a heavy atom becom elined as

highly oscillatory under uniform complex scaling which o

causes severe convergence problems. With complex basis T(E):f zpo(r)V(r)l,bT(r)dr

function methods, one can use real basis functions to expand 0

the core orbitals and complex functions only for the outer o

orbitals[23]. The method is then no longer the same as uni- Ef Yo(NV(r) (o(r)+ 5r))dr, (26)

form complex scaling and may well not correspond to an 0

easily derived variable scaling of the Hamiltonian operator

The “method of complex basis functiong23,24] played an

important role in the evolution of numerical scattering meth-

ods, since it enabled practical calculations to be performe

on many-electron atoms as well as molecules. In fact, some o

progress was made in establishing a relationghigi not an T(E)=f Po(N)(V(r) +V(r)G™ (r,r" )V(r'))io(r)dr dr’

identity) between computations carried out with complex ba- 0

sis functions and the exterior complex scaling con¢et. = lim (o|V+V(E+ie—H) V| yy), (27)
The development of the preceding section enables us to e—0

make a clearer connection between complex scaling and

complex basis functions. The matrix elements we have tavith

considerEgs.(17), (19), and(20)] have the form

wherey°®®{r) is the scattered wave part of the full scattering
wave function. Thel' matrix can also be expressed in terms
8f the full Green’s function

Yo= 12k sinkr), E=k?/2. (28)

~ (= Note that with these definitiong,=e'’sins, where § is the

Hmn= JO Xm(NHR(r)) xn(r)a(r)dr phase shift. The scattered wave part of Thenatrix is now
approximated as

dRrR

=f Xm(DHR())xn(r) 5 dr- (23 (Yo|V(E+ie—H) W|yo)~F-(ES—H,) 1f, (29

0
where the matrice$ and H are defined in Eqs(17)—(20)
If we can construcR™%, the inverse of the function which andf is a vector with elements
defines the contour, then we can make the change of variable

from r to x, wherer =R~ (x) and again use Cauchy’s theo- % )
rem to carry out the integration along the reabxis. The fm= V2/kfo Xm(PV(R(r))sin(kR(r))q(r)dr, (30
result is

Since the continuous spectrum Mf, has been rotated into
_ w the lower half plane, this representation should converge for
HngJ m(RTX)HX) xn(R™(x))dx, (24  real E if V is sufficiently well behaved. Unfortunately, as
0 Baumel, Crocker, and Nuttall3] have pointed outV(r)
must be exponentially bounded for E(R9) to converge
which establishes the desired connection between complesince sinkr) diverges exponentially under coordinate rota-
scaling and an equivalent complex basis. For the case dfon. This will be formally true both for uniform scaling or
uniform complex scaling, as well as sharp exterior scalingexterior scaling. With exterior complex scaling, however,
the inverse map is simplR~1(r)=r*. In fact, any smooth there is a way around this problem.
mapping that satisfies Although the development to this point allows any
switching functionq(r) that satisfies Eq(10), we will see
that there are distinct advantages to having a contour that
(25) coincidesexactlywith the real axis over a finite ranges(r
<R,. We can then replace the original potentglr) by a
finite range potentia‘VRO(r) that vanishes beyon, and is
and has a smooth inverse can be used to define a set pfentical tov(r) for r<R,
complex basis functions to use in E@4). Note that with
exterior scaling, there is no need for mixing real and com- V(r), r<R,
plex basis functions; the inner-core orbital problem in many- VRo(r): 0, r>R, : 31
electron systems is automatically handled in a natural way,
since tight functions that do not extend beydrglare effec- We can use exterior scaling to calculate thenatrix corre-
tively left real. sponding to this potentidlr relying on Eq.(29) to approxi-

X, X—0

-1 _ )
RECO=xe 14, xooo
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mate the scattered wave part in a basis seiNo$quare- TABLE I. Phase shift fors-wave scattering by an exponential

integrable functions with Eqs.(17)—(20) defining the potentialN refers to the number of Laguerre-type functions used in
required matrix elements. Sind&; (r) is a finite-range po- the calculation. Results are given for both uniform complex scaling
0

tential, the method will converge for any valueR{ if N is ?:rtrj]estr:r(;oth exterior scaling. See text for basis set and contour pa-

large enough. This truncation of the potential allows us to
define a process that limits to the correct physical result as N

Ro—. Thus, by choosing thmterior region large enough, Uniform Smooth Exterior
we can insure that the truncated potential differs insignifi- k=0.15
cantly from the physical potential under considerafiaf]. 5 —0.89851172 —0.000 003 17
We can contrast the above procedure to the situation that 10 —1.046 153 20 0.548 948 06
pertains to uniform complex scaling with a truncated long- 15 —1.058 928 49 —0.950 252 63
range potential. In the latter case, it is convenient to use the 20 —1.047 23252 —1.027 465 88
“complex basis set” interpretation of uniform scalirge., 25 —1.051 195 81 —1.062 783 68
Eqg. (22)], so that we can continue to use the same real, 30 —1.050 256 94 —1.046 716 28
finite-range potenna‘VRo(r). The matrix elements of the po- 35 —1.050 417 02 —1.051 224 59
tential would then be of the form 40 —1.050 403 38 —1.050 281 54
" 45 —1.050 400 37 —1.050 404 85
_ 0 —ig —ig 50 —1.050 402 26 —1.050 406 59
'Ry fo Xn(re TOVIr) xo(re =)dr. 32 55 —1.050 401 68 —1.050 400 28
60 —1.050 401 80 —1.050 402 73
In contrast to the case of exterior scaling w\'iho(r), uni- K=0.35
form scaling will not yield physically meaningful results as 5 1.423 933 79 0.000 008 38
Ry is increased. Indeed, in the linfRy—«, the matrix ele- 10 1.460 337 20 0.212 813 71
ments defined in Eq32) become, after the change of vari- 15 1.461 222 77 1.436 323 77
abler —re'? 20 1.461 247 16 1.455 724 39
" 25 1.461 247 57 1.461 076 10
Ig, lim = e‘¢J Xm(DV(re'®) xn(r)dr, (33 30 1.461 247 56 1.461 245 73
Ry 0 35 1.461 247 56 1.461 248 05
40 1.461 247 56 1.461 248 37
which is precisely the case that Baumel, Crocker, and Nuttall
[13] showed to be divergent. k=0.35
We will now give the specific form of the transformation 45 1.461 247 56 1.461 248 45
we used to implement smooth exterior scaling. We chose 50 1.461 247 56 1.461247 59
55 1.461 247 56 1.461 247 64
1, r<Rp—h 60 1.461 247 56 1.461 247 59
q(r)= f(r), Ro—h<r<Rg+h, (34 k=0.55
e? r>Ry+h 5 1.155 837 18 —0.000 027 24
10 1.144 127 89 0.226 360 78
where f(r) is a smooth switching function defined ¢R, 15 1.144 235 25 0.922 345 22
—h<r<Ry+h]. To insure uniform convergence with an 20 1.144 234 35 1.141 72379
analytic basis, we warft(r) to be continuously differentiable 25 1.144 234 36 1.142 999 29
at r=Ry*h. We thus chosd(r) to be the lowest order 30 1.144 234 36 1.144 086 07
polynomial needed to make(r) and q'(r) continuous at 35 1.144 234 36 1.144 226 53
Ro—h andRy+h. If we define 40 1.144 234 36 1.144 232 62
45 1.144 234 36 1.144 232 18
f(r):1+(ei¢>_1)p(r_R0)' (35) 50 1.144 234 36 1.144 234 34
h 55 1.144 234 36 1.144 234 16
then the requirement is th&(—1)=0, P(1)=1, P'(—-1) o0 1142850 Llaazsaze
=0 andP’(1)=0. These conditions uniquely defigx)
P(x)=2%(2+3x—x3). (36)  ties associated with a less than exponential fall off of the

potential at large distances, but have no measurable effect on
the cross section.
We do not expect this remedy to come without a price.
V(R(r))=V(r), r<Ry—h It's obvious that the basis set one chooses must have ele-
VRr,= 0, r=Ry,—h . 37) ments that extend beyond the complex turning p&pt if
not, the eigenvalues d¢f , would effectively be real and Eq.
We reiterate that by zeroing the potential on the complex29) would not yield a sensible result. Even for a short-
portion of the contour, we eliminate any numerical difficul- ranged potential then, we expect that a larger number of

The truncated potentiz)d’Ro is defined as
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FIG. 1. Unitarity of the calculate® matrix
(S=e??) for s-wave scattering by an exponential
potential atk=0.55. Upper curve is for smooth
scaling; lower curve is for exterior scaling.

5 10 15 20 25 30 35
number of basis functions

functions will be required to achieve a given level of accu-element basis functions depend explicitly on the interval

racy with exterior scaling than with uniform scaling and thatboundaries, we write them as;(r)="f;(r,r;,ri;1). In our

the number of functions required will grow &% increases. implementation of the method, we used Hermite interpolat-
We can recover Simon’s original exterior complex scalinging polynomialsf;(r,r;,ri,,), which are uniquely defined

contour by lettingh— 0 in Eq.(34), in which casej changes on the intervalr;,r;, 4] from the conditions

discontinuously aR,. Equation(20b) can still be used to

define the kinetic-energy matrix, but analytic basis functions k

will not give uniform convergence with this prescription gk fi(nririe) =0, r=ri,

since the derivative of the wave functigwith respect to

r) is discontinuous aR,. However, the cusp discontinuity in dx

the wave function at the poirR, that occurs with sharp —x fi(r,ririz)=0, r=ri;q. (40

exterior scaling can be accommodated by using a nonana- dr

lytic set of basis functions that are only defined on finite
intervals. The continuous variabteis replaced by a grid of
nodes O<r,<r,<---<r,<o. Finite element basis func-
tions {; n(r) are defined to be identically zero outside a
given interval

For these functions, there is a simple proportionality between
fi(rrri 1) and fi(R(,R(1),R(ri+1)), where R(r) is

any linear function of . Since the exterior scaling contour is
a linear transformation on, we can thus write

fin(0)=0 relfi il 1=l (39 | amnHEOE e,
We use the labein to indicate the boundary conditions im-
posed on the basis functions at the nodes, for example, zero (Niv2)
or unity at the right or left end of the interval. The finite XJ’R“,) Fm(R(r),R(ri),R(ri+1))
element functions are then combined into a smaller set of '
continuous basis functions on which the Hamiltonian is pro- XHR())f,((r),R(r;),R(r;+1))dR. (41

jected. To accommodate exterior scaling, we simply require

the pointR, to coincide with one of the nodes. To construct This relation is remarkable for two reasons. Firstly, it shows
the required Hamiltonian matrix elements, we have to conthat the finite elements naturally scale onto the rotated con-
sider terms of the form tour and thus can handle any step discontinuity in the wave
function at the pointRy. Moreover, if analytic forms are
available for the matrix elements for real intervals, then the
right-hand side of Eq41) shows that those same formulas,
evaluated for complex nodal points, give the correct values
for the matrix elements of the Hamiltonian on the complex
part of the contour. This would not be true if the turning
point R, fell between two nodes. It is important to bear in
where, by construction, the poiR, never lieswithin the  mind that the identity expressed in E4.1) does not in any
interval [r;,r,.41] and, henceR(r) is always smooth over sense represent a contour distortion of the integral defined in
the integration range. To underscore the fact that the finité&q. (39).

f:a,mmH(R(r))gj,nmq(r)dr

r:

i+1 dR
=0 §i,m(r)H(R(r))§i,n(r)adf, (39

ri
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V. EXAMPLES TABLE Il. Phase shift fors-wave scattering by truncated long

. . - . range potentialN refers to the number of Laguerre-type functions
In this section we will illustrate some of the ideas we haVeused in a smooth exterior scaling calculation. See text for basis set

outlined with several numerical examples. We will first re- 3ng contour parameters.
port the results of calculations using analytic basis functions

on a smoothly scaled contour. To examine questions of con- N Ro=25 R,=35
vergence, it is convenient to work with a setldf functions
that can be systematically increased toward completeness k=0.15
without running into problems of numerical linear depen- 10 —0.010800 94 —0.000 000 15
dence. We chose the set of functions 20 —0.069 561 68 —0.164 917 53
30 —0.060 820 42 —0.061 41067
\¥2 NP 40 —0.060 917 40 —0.060 926 53
X = e e (A, (49 50 —0.060 944 40 —0.061 025 23
60 —0.060 945 59 —0.061 030 83
whereL2(\r) is an associated Laguerre polynomial. These 70 —0.060 945 56 —0.061 03078
functions are orthonormal di®,.c] and give simple analytic 80 —0.060 945 58 —0.061 03078
expressions for matrix elements of thavave kinetic energy 90 —0.060 945 59 —0.061 030 79
) 100 —0.060 945 59 —0.061 03078
Y d k=0.35
Tmn= Zjo Xma (1) gz Xna()dr 10 ~0.000 384 21 —0.000 000 01
3 5 20 —0.099 657 09 —0.037 669 36
2 5. a4 (2m>+9m“+13m+6) _ 30 —0.100 319 07 ~0.100 177 26
™ 12J(n+ 1)(n+2)(m+1)(m+2) 40 —0.100 336 19 —0.100 404 43
50 —0.100 336 28 —0.100 411 17
(43 60 —0.100 336 39 —0.100 41098
These analytic formulas can even be used to simplify the 0 —0.100336 48 —0.100410 97
evaluation of matrix elements carried out on a complex con- 80 —0.100 336 48 —0.100 410 97
tour where numerical quadrature is required, i.e., where we 90 —0.100 336 48 —0.100 411 06
use 100 —0.100 336 49 —0.100 411 09
k=0.55
[ RO 2 Cormseats  -00a3oras:
30 —0.118 84509 —0.114 737 08
=2 XmaTDHRED XA (AW, . (44) 40 ~0.118 665 69 ~0.118511 86
! 50 —0.118 658 89 —0.118 669 29
. 60 —0.118 658 68 —0.118 689 69
We can make use of the fact thar) = e"’_’ for_ r>Ry+h to _ 70 —0.118 658 54 ~0.118 691 13
simplify evaluation of the overlap and klngtlc-energy matrix 80 —0.118 658 59 0118 691 33
elgments. In the case of the overlap matrix, for example, we 90 0118 658 57 0.118 691 37
write 100 —0.118 658 56 —0.118 691 29
fo Xma (M) xna(r)g(r)dr and compared the results obtained from uniform complex

scaling, i.e.,H(r)—H(re'?), with smooth exterior scaling
o H(r)—H(R(r)). The contour used the polynomial switch-
fo Xma(T) ing function described in Sec. IV. For these calculations, we
choseRy=20.0 anch=4.0. The Laguerre scale factorwas
Ro+h set to 2.0 and the rotation angle was 30° for both sets of
XXn,A(f)df—f Xm,x(f)Xn,x(f)dr} calculations. Table | shows the behavior of tiwave phase
0 shift (defined here as the phase of the calculafechatrix)
for several values ok. The convergence is faster with uni-
~ei¢5m,n+2 Xm,)\(rj)xn'x(rj)(q(rj)—e“f’)wj , form scaling than with smooth exterior scaling, as we con-
J jectured, because with smooth exterior scaling one first needs
(45)  to span the region from the origin &, before one begins to
see convergence. This can be seen in Fig. 1, which compares
where the quadrature points only cover the intefM@R,  uniform and smooth exterior scaling fa=0.55. The mea-

Ro+h _
= fo X (D xna(r)g(r)dr+e'¢

+h]. sure of convergence for this comparison is the unitarity of
We first considereds-wave scattering from the short- the S matrix (S=e??), which is computed from th& ma-
range potential trix asS=1+2iT.

The next case we consider $swave scattering from the
V(r)y=—e™' (46)  long-range potential
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FIG. 2. Unitarity of the calculate® matrix
(S=e??) for s-wave scattering by a long-range
potential ak=0.55. The divergent upper curve is
for a potential which is not truncated on the com-
plex part of the integration contour.

abs(ISI-1)

5 10 15 20 25 30 35 40 45 50 55
number of basis functions

1 F=riva |3 [r=riz1)? r=riy
V(r)= ——7, (47 Poi r)=( 6 -1 +10|,
( (1+1)* oi Fi—ri+1 Fi—ri+1 Fi—ri+1
for which uniform complex scaling diverges. We again stud- r—ri 2 [r—ri )2
; i i ' - Ppi(r)=(ris1—ry) 3
ied convergence with the smooth exterior scaling transforma: : fi—ri.q fi—fiq
tion, this time zeroing the potential beyoRg—h, where the
contour begins to turn off the real axis. Results are shown in _7 r=rivg 4
Table 1l for severalk values and two different values of Fi—risq '

Ry. All other parameters of the contour and basis are the
same as in the preceding case. The rate of convergence is 1 F—riq
similar to what was found with the exponential potential, but  Pyi(r)= > (ri— ri+1)2< P— )
the converged phase shifts show a slight dependence on polirl
Ry, reflecting their dependence on the point beyond which

the potential is truncated. For comparison, we also show, iRy, ri<r=<r,,, and zero elsewhere. The functios, are

Fig. 2, the results of a calculation in which the long-rangegptained by interchanging; andr;,, in the formulas for
potential is not truncated. It is noteworthy that calculationsp

using the untruncated potential can provide useful results for "\ye can use these polynomials to define three basis func-
a range of basis set values, before they ultimately begin t§ons at each node; which span the intervalr;_;,ri4],

diverge. , o . and have vanishing value, first and second derivative at the
We also implemented sharp exterior scaling in a finiteg,q points. The basis functions are defined as

element basis of fifth-order Hermite interpolating polynomi-
als. In each intervalr;,r;,;], we can uniquely define six Xii(D=P: (N +Q;;_1(r)) (50)
independent polynomialB; ;(r) andQ;;(r), j=0,1,2 from b b bt
the conditions

(=R
Fi—li+1

(49

and are plotted in Fig. 3. It is obvious from Ed9) that the
basis functions defined in E¢0) scale onto the contour as

k described in Sec. IV. In particular, at the pomt=R,, we

aﬁpj,i(ri):é\j,k see that

dk ) j,k:O,l,z . X

WPj’i(riH):O lim (x; i(Ro+&)=(e'") x; i(Ro—2)). (51)

e—0

d Thus the functionyy; guarantees continuity of the wave
gk Qui(fi+1) =y function atr;=R,, while x;; and x,; impose the proper
4 . j,k=0,1,2 (48)  discontinuity conditions on the first and second derivatives,
I Qi(r)=0 respectively. To impose boundary conditions that the wave

function vanish at the origin and last grid point, we simply
omit the functionsy; and xon and removeP; ; andQ; y,
The explicit formulas for theéP; ; are j=1,2 from the definition of the basis functions.
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TABLE Ill. Phase shift fors-wave scattering by truncated long-
range potential. Results from exterior scaling calculations using fi-

e N nite elements.
A . . : N Nodal spacing k=0.35 k=0.55
i-2 i1 i i+1 42

12,5 —0.099 959 82 —0.104 554 62

5.0 —0.100 403 13 —0.118 680 40

2.0 —0.100 394 47 —0.118 67591

1.0 —0.100 391 89 —0.118 673 24

. 0.5 —0.100 396 82 —0.118 673 16

w2 0.25 —0.100 396 82 —0.118673 16

potential can be truncated at this distance without physical
consequence, then exterior scaling can be implemented in an
L2 basis and provides a method for solving the full scattering
problem without explicitly enforcing asymptotic boundary
) ) o ) conditions, even in cases involving long-range potentials
FIG. 3. Basis functions for finite element calculations. Upperwhere uniform scaling diverges. For analytic basis functions,
panel: ;o; center panely;,; lower panel:y;,. See textfor o 56 smooth exterior scaling to assure uniform conver-
definition of the functions. gence; for sharp exterior scaling, finite element basis sets can
. - be employed. These developments allow the method to be
The exterior scaled finite element method was also ap-~ | . .
applied to the kinds of nonresonant scattering problems en-

plied to the long-range pqtentlal probl_em pfe""’“s'y ConSId'countered in atomic and molecular physics. The fact that the
ered. For these calculations, the grid points were evenl

spaced from 0 ta,=100 with R, fixed at 25 and the rota- theractlon region is represgnted in real coordinates also qb—
' R X . V{ates the need for the mixtures of real and complex basis
tion angle was set at 20°. Once again, the potential was s

equal to zero along the complex portion of the contour TabIeunCtions that have previously been used to weat many-
q 9 PiEXp ) electron systems. We can also show that the present devel-

lll shows the behavior of the computed phase shifts at Sevc')pment allows us to make contact with other formulations of

Er:iheonde:%ﬁ\?;s:;32?”?2 c:(l;lt he grid spacing. Evidently, the%cattering in which cross sections are evaluated by calculat-
9 y rapidly. ing the flux through a surface outside the interaction region.
This will be the subject of another study.

i+2

VII. DISCUSSION

We have shown that, with exterior .complex_ scaling,. we ACKNOWLEDGMENTS
can answer the question posed by the title of this paper in the
affirmative. Exterior complex scaling was originally intro-  This work was performed under the auspices of the U.S.
duced as a generalization of uniform complex scaling to deaDepartment of Energy by the Lawrence Livermore National
with potentials that suffered interior nonanalyticities, butLaboratory under Contract No. W-7405-Eng-48. Computer
were analytic outside a sphere of finite radius. What we havéime was supplied by the National Energy Research Scien-
shown is that by making this radius large enough so that thé&fic Computing Center.
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