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Generalization of the Hartree-Fock approach to collision processes

Yukap Hahn
Department of Physics, University of Connecticut, Storrs, Connecticut 06269
and TRG, 49 Timber Drive, Storrs, Connecticut 06268
(Received 9 September 1996; revised manuscript received 12 Decembgr 1996

The conventional Hartree and Hartree-Fock approaches for bound states are generalized to treat atomic
collision processes. All the single-particle orbitals, for both bound and scattering states, are determined simul-
taneously by requiring full self-consistency. This generalization is achieved by introducingisaze (a) the
weak asymptotic boundary condition, which maintains the correct scattering energy and target orbitals with
correct number of nodes, arftl) square integrable amputated scattering functions to generate self-consistent
field (SCPB potentials for the target orbitals. The exact initial target and final-state asymptotic wave functions
are not required and thus need not be speciigatiori, as they are determined simultaneously by the SCF
iterations. To check the asymptotic behavior of the solution, the theory is applied to elastic electron-hydrogen
scattering at low energies. The solution is found to be stable and the weak asymptotic condition is sufficient to
produce the correct scattering amplitudes. The SCF potential for the target orbital shows the strong penetration
by the projectile electron during the collision, but the exchange term tends to restore the original form.
Potential applicabilities of this extension are discussed, including the treatment of ionization and shake-off
processed.S1050-294{@7)03806-1

PACS numbdrs): 32.80.Cy, 34.10tx, 24.10-i

[. INTRODUCTION approximately satisfy the necessary boundary condition, or
introduced complex collision enerdyl0], complex coordi-

Many-particle bound systems are often treated by a selfrateq11], etc. Of course, there are many other approaches to
consistent fieldSCH approach, where the wave function for scattering problems, which are fully developed and com-
a complex interacting system is represented by products ahonly used 12,13 but are not SCF theories.
single-particle orbitals and the interactions are given by the The Hartree and Hartree-Fock approaches are generalized
SCFs of all the other particles. Thus the Hartfd¢ and here to atomic scattering problems, in which the difficulties
Hartree-Fock(HF) [2] approaches to atomic bound-state (i) and (i) are removed simultaneously in a self-consistent
problems involving many electrons have been employed exway and all the orbitals are treated on an equal footing. Full
tensively and various extensions and refinements, includingelf-consistency can be imposg¢d4], exactly as in the
multiconfiguration mixing, the random-phase approximationbound-state case, without wave-packet construction and box
and relativistic theories for highg ions, have been success- normalization with periodic boundary conditions. In the gen-
fully applied to many ionic and molecular as well as solid- eralized HF(GHF) theory, to be discussed in Sec. Il, the
state problems. The theory has also been applied to treatifgpund and continuum orbitals can be systematically im-
multiply excited states where the configuration energies mayproved by incorporating configuration interactions. To test
lie above the first ionization threshold. With currently avail- the present approach, the GHF theory was apflieti15]
able computers, atomic and molecular structures are rowearlier to the simplest scattering systems of positron-
tinely calculated3—7]. The wave functions thus generated hydrogen scattering below the first pickup threshold and to
are often sulfficiently accurate for evaluation of various tran-electron-hydrogen scattering without exchanges, below the
sition matrix elements. In all cases, however, the individuan=2 excitation threshold. The preliminary result is very en-
orbital energies are negative and the corresponding waveouraging and the calculation is extended here to include the
functions are square integrable. exchange effect.

Previous attempts to extend the approach to scattering It is important to distinguish the present approach from all
problems involving continuum orbitals have met with vari- the existing scattering theories in which the asymptotic
ous conceptual and technical complications. The principaboundary conditions must be specified “exactly” in order to
difficulties in extending the theory are well know() the  properly define the scattering problem. This condition is re-
non-normalizability of the continuum scattering function laxed in the GHF approach, however. Thus, for example, we
makes the SCF averaging of the potentials using the corsonsider theR-matrix method, which is perhaps the most
tinuum orbitals inoperative andii) the strong asymptotic accurate procedure available for low-energy scattering. First
boundary condition requires exact target internal functionf all, in the R-matrix approach, the exact asymptotic cluster
prior to solving the scattering problem. Most textbooks onfunctions(such as oxygen atom in its ground and some ex-
the HF theory do not even mention these difficulties. Never<cited states in the™ O scattering have to be prepared to
theless, some attempts have been made over the years dpecify the asymptotic conditions. Since this cannot be done
extend the theory to collision problems, with little success.in practice when the bound clusters involved in the
An early study separatd@] the open channel space from the asymptotic region have more than one electron, naturally the
rest in the determinantal set of scattering equations, estguestion of how good these functions should be arigd'®
mated[9] the accuracy requirement of the target function toare not talking here about the distortion inside the matching
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radius) The usual recipe is that the bound cluster functions  u(r)=s(r)+c(r)—[sin(per) + Ry O Per)1/(Per),

should be “much better” than the desired accuracy of the

scattering amplitudes. The GHF approach answers this ques-

tions automatically, where all the orbitals, including the andR; is the reactance matrixR,=tand,). The exact target
asymptotic ones, are calculated self-consistently at the sanfenction 1= i is required in Eq(2) for the asymptotic
time. Second, the most profound difference between théoundary condition and this function must be supplied be-
GHF theory and all other collision theories is that theforehand in order to fully define the scattering problem to be
asymptotic conditions are never assumed to be imposed exolved. For target atoms with more than one electron, this is
actly in the GHF approach, even in the hydrogen case, as tha general not possible and the question of how accurate such
example in this paper will show. Third, the division of the functions should be arises.

space into the inner and outer regions and subsequent match- Now we derive a set of SCF equations analogous to Eq.
ing are not present in the GHF approach. This also has thel) for the scattering problem posed above. Due to the fact
advantage when high Rydberg states with long wavethat (u,u)=, however, it is not possible to project the
function tails are treated by the same amputation. Schralinger equation using the orbital for the functiony,

The SCF approach presented below seems to work. Thas in Eq.(1). Furthermore, if the requirement on the target
examples considered are for the purpose of showing the corfiunction ¢ is relaxed, so thai is no longer exact, then the
vergence to the correct asymptotic values rather than gettingcattering energe..= E— E,:# €. and this will change the
the exact phase shifts. These will come later with multicon-scattering functiou. These two points are directly related to
figuration mixing, especially for complex targets. the difficulties(i) and (ii) discussed above. To resolve these
difficulties, we introduce two simple operationAhsaze.
First, for the purpose of projections of the forih), we in-
troduce the amputated wave functi@xWF) in place ofu, as

In order to discuss the main elements of the theory of the
GHF approach, we concentrate on the two-electron systems, X(2)=(e.~Kpu(2) (AWF). (4)
such as He and™ H, without loss of essential aspects of the
theory. The total Hamiltonian is written as=K,+K, Evidently, X is a square-integrable function, wiX|X);
+V;+V,+Vy,, in obvious notation. In a single- <. This function then can be used in the projection of the
configuration approximation, the HF wave function for the equation for they orbital. The introduction of the AWF is
bound system is written as Wyr=]¢a(1)¢(2) based on the observation that the essential dynamical infor-
+ea(2)Yp(1)]/v2, wheree=+1 or —1 for S=0 or 1, Mmation carried byu is in X and not in the long-range tail
respectively, and g, )= Sagp fOr @,8= a or b. The represented by the asymptotic partwofOn the other hand,

bound-state Hartree-Fock equations are obtained by the prée tail gives rise to the non-normalizability difficulty. There
jections, as may be other ways of constructing a square-integral function

for the projection purpose, but the AWF cleanly gets rid of
_ _ this troublesome part. The equation for the target funcifon
JH—E ¥y =0. 1 . .
(ol Vi) (o is then given by

Il. THEORY OF THE GHF APPROACH

Here the normalizability ¢, ,5) = 9, g is essential. The HF (X(2)|H—E{¥eu(1,2)7.=0 (5)
equationg1) can also be derived by a variational principle. ' A
When all the orbitals involved are of the bound-state type

then theys ,are square integrable and the integrations implie his can be done immediately using thieto project the

in Eq. (1) are well defined. Thus the HF orbital equatidty - . .
are mutually coupled, nonlinear, and contain the Self_scatterlng equation. The only problem is that now, due to the

consistent mean fields for each bound elecired or 2. approximate nature of the function _itse_lf, the scatt_ering
We now try to extend Eq(l) to scattering problems in energy 1S no Ionge_(_ec. To rem‘?dy this situation, we intro-

which one of the electrons occupies a continuum orlital duce the secondnsaz, by requiring that

=(e.,l;) with collision energye. and the orbital angular DITE— K, —V 1Y) 0 (WAC 6

momentuml .. The simple single-configuration wave func- (Y(DI[Bor =Ky =Va|ud )>r1_> ( )- ©

tion may be given in the formWYgye=(1)u(2)

ow we proceed to deriving the equation for theorbital.

" . which definesk,; for given ¢ obtained from Eq(5). The
+ey(2)u(l), where ¢ denotes the bound-state orbital and weak asymptotic conditiofWAC) (6) allows us not only to

u the continuum orbital. To make the problem simpler, we "~ " : )
limit the scattering energy to the single-channel elastic re_retaln the exact scattering energy throughout the SCF it-

gion O<e,<0.75 Ry, i.e., the totaE in the range—1 Ry eration cycles, but also places a constraintyoto satisfy

<E<—0.25 Ry, wheréE= e, + E, . The asymptotic bound- approximately the conditiorf2). However, it is not at all

" . L cleara priori whether Eq(6) is strong enough to lead to the
ary condition for the direct channel is given b€ 0) correct solution of the original problem of the elastic scatter-

R - ing. This is tested in the example given below. Now we have
W onE— Pp1(r)uc(ra), 2
(P(D)|H-E(|Vene(1,2>7 =0 (7)
where
with the Ansatz(6). The coupled equation&) and (7) are
(K1+ V1) hon=Epnihon(F1), (39  reduced to the form
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[Ko+U(2)—eJu(ry)=—gY(r>), (89 using the same basis set involved in the total wave function.
In fact, it is not necessary that we have to project in this way.
[Ki+Up—Epx]eh(r])=—gYy(ry), (8b)  Apparently, this is not the case with E(), where the am-
putated functiorX was used instead. In genefab] we may
where introduce weighting function8V during the projection and
let
Ue(2)=(V 1ot Vol )i 0l 9)7, (9a)
EbX: Ebt_EXl_EXZZEbt_ Ex, (gb) <lr//I|WI[H_E]|lPt>:O! (11)

Vx(L)=(X|Vit Valuz, >/(X|u)z, where differentW, may be associated with eagh. All the

integrals in Eq(11) are then well defined. Therefore, in the

=BxitUp(1)—Exy  as -, (99 Case of the GHF approach, the amputationuofmay be
which defines botfEy, andU,, and viewed as a special example of the weighted projection, with
the weight functionW=U_., or Wu=U_.u+eY.. Such a
Ex2=(X(2)|Ky—ec[u(2))7, /[(X[u)r,. (9d)  procedure can be effective if a judicious choice of the weight
function W is made. Further generalizing this aspect of the
The exchange terms are defined by approach, the weighted projection method in the context of

the coupled-channel theory has been discussed in detail in
Ye(2)=(H(DH=EJu(D))1(2)[(4]y), (108 Ref. [15], where proper construction & to optimize the

coupled-channel equations was illustrated.
Yo(1)=(X(2)[H=E{|#(2))2u(1)/(X|u). (10D We simply note that the procedut&l) is related to the

In Yy, the term proportional tai(1) is dropped to ensure variational principle with a trial functio V¥ and making a

“approximate orthogonality” betweeX and ¢. More ex- closure app@([nzation on the Green’s functiﬁnguch that
plicitly, the term(X|K o+ V,— Epg #)in Y, is dropped to en-  CGV¥—(E—E)""V¥=aV¥V' a new trial function, with
sure that the spurious long-range contributioifjds absent. @t @S & constant variational parameter. Here the weight func-
This term is generally small and should approach zero as th#on was the interaction potential. This form was previ-
target functiony improves with the multiconfiguration inter- CUSly used effectively in deriving the nucleon-nucleus poten-

action. Furthermore, this term represents the overlap betwedk! [16]. _ _ L
the two amputated function¥ and y,=(Ko+V,—Ep) ¢ A more serious problem with the use of the weighting

and thus, if nonzero, must be eliminated using a LagrangiaﬁmCti‘?” in the projection proce_dure 'is the fact that often the
multiplier, in complete analogy with the bound-state HFresuI_tmg set of coupled equations Is not apparently “sym-
case. We also note thitt, turned out to be very small, as metric” with respect to the initial- and final-state exchanges.

compared withU, andV,. Reasons for this unexpected but 1hat is, due to the noncommutativity ¥/ with H, in gen-
desirable feature of the theory are not yet clear. eral, the projected operators are not Hermitian. We had simi-

It is simple to convert to X and vice versa, as from Eq. lar situations with the usual sturmian function expansion of
(88 u=s+gUu+egY., where g=(e.—K )’—1 or X the total wave function, where the normalization of the basis
—g lu= Ucu+CeYC sincie,gfls=0. All the intfagra,ls in ex. Setis defined in terms of the weighting potential; the scatter-

pression(8) are finite, thus the difficulty(i) is eliminated. ing equations are projected onto different basis function sub-

The set(8), with Eqgs.(4) and (6), is the desired set of SCF SPaces with the Weighting potentials, resulting in a set of
equations for the GHF approach, in its lower-order approxi-COUpled equations with the operators that are not Hermitian.

mation without the configuration interaction. It is important 1n€ non-Hermiticity can violate unitarityFor a slightly dif-
to maintain the mathematical consistency of E2p) with ferent reason, the Faddeev equations also give an asymmetric
Eq. (93 plus Eq.(7) set of operators that couple different rearrangement channels;

We emphasize that the formulation given above wil bethis is only in appearance, and the resulting amplitudes are

valid if the two Ansaze the AWF and the WAC, can deliver quite symmetrjc). . . . .
the correct amplitudes that satisfy the original boundary con- Therefore, in order to avoid possible spurious properties,

ditions. The convergence of the asymptotic boundary condilt is useful to check the Hermiticity of the equations involved

tion is therefore the critical test of the theory. This is aot |n.t.h<.e G.HF approach_. As is shown pelow,. n fact, ELlal
priori apparent. The example given in Sec. Ill is to demon-Miticity s preserved in an asymmetric projectiolt). The
strate this pointand not so much to calculate the correct Hermiticity of the coupled set of equations forand y may
phase shift within the simple static and static-exchange ap-be _demonstrateq by shqwmg that the pamcu!ar choice of the
proximations. The full demonstration of the problem requiregV€ighting function W in the amputation is such that

the multiconfiguration interaction, which we plan to reportLH,W]=0. This property should be useful in guaranteeing
on in the future. the unitarity of the scattering amplitude, especially when

multichannel scattering is involved, and in securing the real

bound-state energies. First, tlieequation(7) is obtained

with the weighting functionV=1, so that the resulting op-
A comment on the projection procedure is in order. Theerator after they projection from the both sides is Hermitian.

usual coupled-channel method proceeds with the expansiorherefore, we concentrate on E®), in which, due to the

of the typeW¥ - or ¥ and the projection is carried out use of the left weightW in the functionX, the resulting

Ill. HERMITICITY OF THE GHF EQUATIONS
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operator fory may not be Hermitian. However, we recall the
special form of the amputatiof@), which can be combined
with Eqg. (8a), as

X(2)=[U(2) +elc]u, 4)
wherel is the exchange integral operator, and the commuta
tivity within | also follows in the same way. Evidentli,u
=Y.. In Eq. (5 the K,-dependent term is symmetric when
Eq. (4) is used forX, as the twoK, operators involved are
the same. On the other hand, the rest of the terms in&q.
may be made Hermitian by using E@'). This completes
the proof. Note that the Hemiticity of the operators in the
coupled SCF equations is guaranteed here by the very spec
choice of the amputating operator. In some sense, this suy
gests that the choice o¥ in amputatingu adopted here may
be unique.

IV. CALCULATION OF ELECTRON AND POSITRON
SCATTERING FROM HYDROGEN
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FIG. 1. Phase shifts for the elastic electron-hydrogen scattering
are calculated in the various approximations for both the singlet and
triplet states; STT denotes the static approximation without ex-

This section attempts to show that the GHF theory formu-change and STFX the static approximation with exchange effects

lated in Sec. Il with two principahnsazeworks in the sense
that the overall solution satisfies approximately the correc
asymptotic boundary condition®BC). Since the require-

included. In STT and STFX, the exact target functibp is used
for comparison. GHA denotes the Hartree approximation with
# i1 and without the exchanges. GHF denotes the phase shift ob-

ment on the ABC |S Changed to an apprOleate one |n th@]ned |n the GHF approximation, Where bOth the target funCtion

GHF theory, it is not automatically satisfied. Although in the

and the scattering function are simultaneously determined self-

present case where the ABC can be specified exactly in tem@nsistently. Thg GHF valuésolid curveg are very close to that of
of the hydrogenic function, the GHF theory takes the SCF> ' X (dashed linesfor both S=0 and 1.

value, as will be clear below.

Ey, is then calculated b¥,;=E,x+ Ex from (9b).

The simple set of equations derived above is applied t0 " (g) This completes the full iteration cycle. If the resulting

the single-channel electron-hydrogen scattering, WithO,
the scattering energg, below the excitation threshold, i.e.,
e.<0.75 Ry, and the total enerdy<—0.25 Ry. Recently,
we applied the generalized Hartree approximati@hA) to
the positron-hydrogen and electron-hydrogen scattering
without exchange$14]. They are perhaps the simplest ex-

energyE,; and the phase shif# from u are not within the
small allowed change from the previous iteration values,
then we go back and repeat the first four steps above, until
the self-consistency is attained. This way, both the target
Rinction ¢ with its orbital energyE,,; and the scattering func-
tion u with the phase shif6 are simultaneously determined.

amples in which the theory may be tested. The fact that the Tpe converged phase shifts for the singlet and triplet
exact target states are available provides a convenient basigytes in the electron-hydrogen elastic scattering are pre-
to examine the validity of the theory without getting in- sented in Fig. 1, together with the static without exchanges
volved in the complicated numerical analysis. The physmqs-r-r) and the static exchang&TFX) approximations for
involveq in 'Fhe collision are clearly brought out by this comparison. Here both the STT and STFX approximations
mean-field picture. _ o are determined with the exagt. The GHA is equivalent to

The solution of.Eq.(8) involves the following iteration  {he STT approximation and the calculated from Eq(8b)
steps for self-consistency. without the exchange terM, . The GHF approach with one

(@) First, we arbitrarily choose/= s and E,=—1RY.  configuration in¥ o, gives phase shifts that are very close
The potentialU o= (4{Vio+V,| )7, is evaluated; le¥c=0 5 the STFX values, for botB=0 and 1. This is surprising
for the first iteration, with(y|#);=1. because the apparent enhancememigis wiped out when

(b) Equation (8a is numerically solved foru and the the exchange term is added in theequation. This may be
phase shiftogr evaluated in accordance with E@b), for  understood from the symmetrgor antisymmetry of the
the scattering energies = (p.a,)> Ry. This gives the phase wave functions; when the projectile penetrates the bound or-
shift s, corresponding to the static approximation withoutbital, we can assign the penetrated electron as the new “in-
exchange. The resulting is used to evaluate the exchange ner core” electron without changing the physics. In this
termY.. Repeat thaicalculation until a self-consistency is sense, the GHF theory describes a quite different physics
reached with the exchange term. from the GHA. The approximate target functigrcalculated

(c) The amputated functioK=(e.—K,)u=U.u+eY.is  with Eq. (8b) also turned out to be very close to that of the
evaluated using the scattering functiancalculated in(b) exact value. Nevertheless, the GHF binding endfgyde-

above.

(d) Evaluate the effective potentiél,, and the constants
Ex;, andEy,, as well as the exchange tervy. Solve Eq.
(8b) for ¢ and the energ¥,x. The correct binding energy

viates slightly from—1 Ry. This variation in the binding
energy is given in Fig. 2, wherAE,;=E,;— E4is plotted
for S=0 and 1. The smallness &E,; shows that the weak
asymptotic conditiori6), which replaces the exact one in Eq.
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FIG. 2. The apparent binding ener&yy as determined by Eq.
(9b) and the actual binding ener@y,; are shown for the singlet and
triplet spin states. Although the potentidl, is quite distinct from
the CoulombicVy, Ey, is very close to the exact value efl Ry.
The energy shift iEy=Ex;+Ex,=E,—Epx. We presentAE,
=Ep—E4s, showing the strong energy dependenca(Ry)
=(p.ao)?. The effective binding energy in the potentid), is also
given E;x|10 for bothS=0 and 1.

(3a), still places a strong enough constraint on the solution to
lead eventually to the correct boundary condition. Also FIG. 3. (a) The SCF iteration-converged potentlad}, and the
shown in Fig. 2 is the actual enerdgy,y obtained from Eq. exchange ternt, are given forp.a,=0.4 andS=1. The direct
(8b). The finalE,,; is obtained from this by adding the shift potential is compared with the pure Coulombic potential Note
Ex. the drastic change ib, from V. (b) The effective direct potential
Incidentally, we also calculated the excited-state scattert. and the exchange teriyi; are shown forp.a,=0.4 andS=1.
ing using the same GHF code by simply setting the approxil. is compared with the static potentiglk(i/4¢). The amputated
mate energy values for thes23s, etc., states. The solutions wave functionX merges intoY, at larger. Clearly, (X,X)<x.
automatically converged to the specific asymptotic values as
long as the initial choice was close to one particular energyx; + Ex, is also large. The direct potentibl, and the ex-
Epni- The converged energies for the bound electron arehange potentiaYy for the bound orbital are given in Fig.
close to —1/n’Ry and the corresponding wave functions 3(a) for the triplet state ang.a,=0.4. Figure 8) contains
have the correct numbers of nodes associated with the pathe direct potentialU. and the exchange ter, for the
ticular n. However, none of these functions are exact, as thegontinuum orbitalu. Overall, the solutions with thAnsaze
are determined by the self-consistency. This is also the cadd) and(6) are found to be very stable. For comparison, we
with the 1s scattering, where the exact wave function isnote that, in the positron-hydrogen and in the electron-
known, but the GHF approach instead approximately deterhydrogen scattering without exchanges, the penetration ef-
mines it by the SCF. The only way to confirm whether thefect was found 14,15 to be significant.
calculated wave function corresponds to that of the desired One important and desirable consequence of fixing the
channel is to “count nodes” of the wave function. This is in continuum energy, is that in a multichannel scattering all
fact precisely the behavior we encounter in the bound-statthe asymptotic energies must be specified and held fixed
calculation by the conventional HF procedure; a bad initialthroughout the calculation, and this is independent of how
guess at the binding energy allows drift in the calculatedaccurately the asymptotic cluster functions are determined.
values to some othar states of the same symmetry. On the  The calculation presented here shows that theAwseze
other hand, the scattering energy¢ remains the same we introduced in Sec. Il in the formulation of the GHF ap-
throughout the iterations. We do not pursue this interestingproach seem to be effective in producing the correq-
aspect of the GHF approach further here because for excitgaroximatg asymptotic boundary condition. It is not the pur-
target scattering we have to include all the open channelpose here to demonstrate the effectiveness of the GHF
with channel binding energies larger than that particular exapproach in generating the accurate phase shift. This will
cited state, and this requires automatically the generalizatioaome with multiconfiguration mixing, just as in the bound-
of the GHF computation described in Sec. V. State case.
Another unexpected result of this calculation is that the
effective potentiall, for the bound orbitals is nearly one-
half of the direct potentiaV/,, for r>3a,. This large devia-
tion found inUy from V, is apparently caused by the pen- The theory developed above for a simple three-body,
etration of the target cloud by the projectile electron. Thissingle-channel scattering system may be extended to more
time this penetration effect is explicitly demonstrated usinggeneral systems. Of course, these require extensive numeri-
the SCF picture. As a result, the corresponding energy shiftal computations, the results of which will be reported else-

V. EXTENSIONS OF THE THEORY
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where. We simply list some of the major potentiality of the shake-off probabilities by the overlap of wave functions in
approach as it is developed here. the initial- and final-state configurations can be extended in a

(i) More than ongclosed-channglterm may be added to natural way using the wave functions generated by the GHF

¥, as well as a mixture of other bound-state configurationsapproach.

This is the same as the configuration interaction in the usual

HF approach, and we expect that this will makepproach VI. CONCLUSION

15. This is the most pressing task in proving the validity of  Summarizing, we have presented a simple generalization
the GHF theory with one- and two-electron targets. The vaof the SCF theory to scattering problems, in which the prin-
lidity of the basicAnsaze(4) and(6) in providing the correct cipal obstacles in the HF approach have been removed in
converged amplitudes must be tested in full by includingterms of the amputated scattering functions and weak
other configurations. asymptotic conditions. The rigid requirement for the exact

(i) More than oneopen scattering channel may be in- target wave functions is also relaxed.
cluded for inelastic and rearrangement scatterings. Since the To illustrate the approach, the theory has been applied to
continuum orbitals are treated here the same way as thelastic electron-hydrogen scattering in the lowest Hartree-
bound orbitals, except for the amputation, this problem is~ock approximation, with full exchange. The theory treats
equivalent to that ofi) above and the purely bound-state HF both the bound and continuum orbitals on an equal footing
procedures. It is of theoretical interest as to how the rearand the solution can be systematically improved by configu-
rangement channels are handled in practice, where the “oration interaction. The SCF iterations converged well and the
thogonality” among the channels are much more difficult tosolution with Eqs.(4) and(6) was found stable. It is not yet
treat. clear whether the tw@\nsadze (4) and(6) provide the opti-

(iii ) Scattering systems with more than one particle in themum way to generalize the HF procedure to collision prob-
continuum, as in collisional ionization, may be treated bylems, but they seem to work well thus far, with a limited set
additional amputations. We may then have a consistent wagf cases tested. This generalization would eventually be in-
to evaluate the Auger amplitudes that involve both the boundorporated into all the bound-state multiconfiguration HF
and continuum orbitals determined by the SCF procedurecodes for extended versatility. The fact that we obtained the
More importantly, we may be able to treat the ionizationresult very close to the STFX values with the single-
channels, as well as the multiparticle cluster channels, as tteonfiguration GHF wave function we have used is most en-
positronium formation in the poistron-atom scattering. couraging.

(iv) The GHF theory may also be adopted to treat the We reemphasize that the GHF presented here is funda-
loosely bound states that are spatially extended to large disnentally different in its basic approach from all the previous
tances and thus cumbersome to be treated together witvllision theories in that the asymptotic boundary conditions
tightly bound orbitals in a SCF calculation. This is a wel- are relaxed in a controlled way. This could in principle
come improvement of the conventional HF procedure, wherehange the original scattering problem altogether. However,
the large spatial orbitals are not readily treated with the saméhe sample calculation in Sec. Il showed that in fact the
kind of accuracy with the more compact orbitals within the calculation seems to converge to the corret asymptotic con-
same configurations. The amputated function provides ditions, albeit weakly. The WA®G) is sulfficient; it is simlar
more compact description of such states, and this is somée a node counting in the usual HF calculation. As such, the
what equivalent to the quantum-defect procedusd. example given here should not be taken as a test of the

(v) In view of the strong penetration of the bound orbits power of the theory in producing the accurate phase shift.
by the projectile particles, especially in the nonexchangélhis can be accomplished with multiconfiguration mixing.
cases, it is of special interest to examine whether the shak&he real potential of the GHF approach should become ap-
off processes during a collision process may be better treatguhrent as soon as we start to apply it to treat the collision
by the GHF approach. The usual procedure of estimating thproblems with targets that involve more than one electron.
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