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Generalization of the Hartree-Fock approach to collision processes
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The conventional Hartree and Hartree-Fock approaches for bound states are generalized to treat atomic
collision processes. All the single-particle orbitals, for both bound and scattering states, are determined simul-
taneously by requiring full self-consistency. This generalization is achieved by introducing twoAnsätze: ~a! the
weak asymptotic boundary condition, which maintains the correct scattering energy and target orbitals with
correct number of nodes, and~b! square integrable amputated scattering functions to generate self-consistent
field ~SCF! potentials for the target orbitals. The exact initial target and final-state asymptotic wave functions
are not required and thus need not be specifieda priori, as they are determined simultaneously by the SCF
iterations. To check the asymptotic behavior of the solution, the theory is applied to elastic electron-hydrogen
scattering at low energies. The solution is found to be stable and the weak asymptotic condition is sufficient to
produce the correct scattering amplitudes. The SCF potential for the target orbital shows the strong penetration
by the projectile electron during the collision, but the exchange term tends to restore the original form.
Potential applicabilities of this extension are discussed, including the treatment of ionization and shake-off
processes.@S1050-2947~97!03806-7#

PACS number~s!: 32.80.Cy, 34.10.1x, 24.10.2i
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I. INTRODUCTION

Many-particle bound systems are often treated by a s
consistent field~SCF! approach, where the wave function fo
a complex interacting system is represented by product
single-particle orbitals and the interactions are given by
SCFs of all the other particles. Thus the Hartree@1# and
Hartree-Fock~HF! @2# approaches to atomic bound-sta
problems involving many electrons have been employed
tensively and various extensions and refinements, includ
multiconfiguration mixing, the random-phase approximati
and relativistic theories for high-Z ions, have been succes
fully applied to many ionic and molecular as well as sol
state problems. The theory has also been applied to trea
multiply excited states where the configuration energies m
lie above the first ionization threshold. With currently ava
able computers, atomic and molecular structures are
tinely calculated@3–7#. The wave functions thus generate
are often sufficiently accurate for evaluation of various tra
sition matrix elements. In all cases, however, the individ
orbital energies are negative and the corresponding w
functions are square integrable.

Previous attempts to extend the approach to scatte
problems involving continuum orbitals have met with va
ous conceptual and technical complications. The princ
difficulties in extending the theory are well known:~i! the
non-normalizability of the continuum scattering functio
makes the SCF averaging of the potentials using the c
tinuum orbitals inoperative and~ii ! the strong asymptotic
boundary condition requires exact target internal functio
prior to solving the scattering problem. Most textbooks
the HF theory do not even mention these difficulties. Nev
theless, some attempts have been made over the yea
extend the theory to collision problems, with little succe
An early study separated@8# the open channel space from th
rest in the determinantal set of scattering equations, e
mated@9# the accuracy requirement of the target function
551050-2947/97/55~6!/4238~6!/$10.00
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approximately satisfy the necessary boundary condition
introduced complex collision energy@10#, complex coordi-
nates@11#, etc. Of course, there are many other approache
scattering problems, which are fully developed and co
monly used@12,13# but are not SCF theories.

The Hartree and Hartree-Fock approaches are genera
here to atomic scattering problems, in which the difficulti
~i! and ~ii ! are removed simultaneously in a self-consiste
way and all the orbitals are treated on an equal footing. F
self-consistency can be imposed@14#, exactly as in the
bound-state case, without wave-packet construction and
normalization with periodic boundary conditions. In the ge
eralized HF~GHF! theory, to be discussed in Sec. II, th
bound and continuum orbitals can be systematically
proved by incorporating configuration interactions. To te
the present approach, the GHF theory was applied@14,15#
earlier to the simplest scattering systems of positr
hydrogen scattering below the first pickup threshold and
electron-hydrogen scattering without exchanges, below
n52 excitation threshold. The preliminary result is very e
couraging and the calculation is extended here to include
exchange effect.

It is important to distinguish the present approach from
the existing scattering theories in which the asympto
boundary conditions must be specified ‘‘exactly’’ in order
properly define the scattering problem. This condition is
laxed in the GHF approach, however. Thus, for example,
consider theR-matrix method, which is perhaps the mo
accurate procedure available for low-energy scattering. F
of all, in theR-matrix approach, the exact asymptotic clus
functions~such as oxygen atom in its ground and some
cited states in thee2O scattering! have to be prepared to
specify the asymptotic conditions. Since this cannot be d
in practice when the bound clusters involved in t
asymptotic region have more than one electron, naturally
question of how good these functions should be arises.~We
are not talking here about the distortion inside the match
4238 © 1997 The American Physical Society
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55 4239GENERALIZATION OF THE HARTREE-FOCK APPROACH . . .
radius.! The usual recipe is that the bound cluster functio
should be ‘‘much better’’ than the desired accuracy of
scattering amplitudes. The GHF approach answers this q
tions automatically, where all the orbitals, including t
asymptotic ones, are calculated self-consistently at the s
time. Second, the most profound difference between
GHF theory and all other collision theories is that t
asymptotic conditions are never assumed to be imposed
actly in the GHF approach, even in the hydrogen case, as
example in this paper will show. Third, the division of th
space into the inner and outer regions and subsequent m
ing are not present in the GHF approach. This also has
advantage when high Rydberg states with long wa
function tails are treated by the same amputation.

The SCF approach presented below seems to work.
examples considered are for the purpose of showing the
vergence to the correct asymptotic values rather than ge
the exact phase shifts. These will come later with multico
figuration mixing, especially for complex targets.

II. THEORY OF THE GHF APPROACH

In order to discuss the main elements of the theory of
GHF approach, we concentrate on the two-electron syste
such as He ande2H, without loss of essential aspects of th
theory. The total Hamiltonian is written asH5K11K2
1V11V21V12, in obvious notation. In a single
configuration approximation, the HF wave function for t
bound system is written as CHF5]ca(1)cb(2)
1«ca(2)cb(1)]/&, where «511 or 21 for S50 or 1,
respectively, and (ca ,cb)5dagb for a,b5 a or b. The
bound-state Hartree-Fock equations are obtained by the
jections, as

~ca ,@H2Et#CHF!50. ~1!

Here the normalizability (ca ,cb)5da,b is essential. The HF
equations~1! can also be derived by a variational principl
When all the orbitals involved are of the bound-state ty
then thecaare square integrable and the integrations impl
in Eq. ~1! are well defined. Thus the HF orbital equations~1!
are mutually coupled, nonlinear, and contain the s
consistent mean fields for each bound electroni51 or 2.

We now try to extend Eq.~1! to scattering problems in
which one of the electrons occupies a continuum orbitac
5(ec ,l c) with collision energyec and the orbital angula
momentuml c . The simple single-configuration wave fun
tion may be given in the formCGHF5c(1)u(2)
1«c(2)u(1), wherec denotes the bound-state orbital a
u the continuum orbital. To make the problem simpler,
limit the scattering energy to the single-channel elastic
gion 0<ec,0.75 Ry, i.e., the totalE in the range21 Ry
<E,20.25 Ry, whereE5ec1Eb . The asymptotic bound
ary condition for the direct channel is given by (l c50)

CGHF→cb1~rW1!uc~rW2!, ~2!

where

~K11V1!cbn5Ebncbn~rW1!, ~3a!
s
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uc~r !5s~r !1c~r !→@sin~pcr !1R0 cos~pcr !#/~pcr !,
~3b!

andR0 is the reactance matrix~ R05tand0). The exact target
function cb15c1s is required in Eq.~2! for the asymptotic
boundary condition and this function must be supplied
forehand in order to fully define the scattering problem to
solved. For target atoms with more than one electron, thi
in general not possible and the question of how accurate s
functions should be arises.

Now we derive a set of SCF equations analogous to
~1! for the scattering problem posed above. Due to the f
that (u,u)5`, however, it is not possible to project th
Schrödinger equation using the orbitalu for the functionc,
as in Eq.~1!. Furthermore, if the requirement on the targ
function c is relaxed, so thatc is no longer exact, then the
scattering energyect5E2EbtÞec and this will change the
scattering functionu. These two points are directly related
the difficulties~i! and ~ii ! discussed above. To resolve the
difficulties, we introduce two simple operationalAnsätze.
First, for the purpose of projections of the form~1!, we in-
troduce the amputated wave function~AWF! in place ofu, as

X~2![~ec2K2!u~2! ~AWF!. ~4!

Evidently, X is a square-integrable function, witĥXuX& rW
,`. This function then can be used in the projection of t
equation for thec orbital. The introduction of the AWF is
based on the observation that the essential dynamical in
mation carried byu is in X and not in the long-range tai
represented by the asymptotic part ofu. On the other hand
the tail gives rise to the non-normalizability difficulty. Ther
may be other ways of constructing a square-integral func
for the projection purpose, but the AWF cleanly gets rid
this troublesome part. The equation for the target functioc
is then given by

^X~2!uH2EtuCGHF~1,2!& rW250, ~5!

Now we proceed to deriving the equation for theu orbital.
This can be done immediately using thec to project the
scattering equation. The only problem is that now, due to
approximate nature of thec function itself, the scattering
energy is no longerec . To remedy this situation, we intro
duce the secondAnsätz, by requiring that

^c~1!u@Ebt2K12V1#uc~1!& rW1→0 ~WAC!. ~6!

which definesEbt for given c obtained from Eq.~5!. The
weak asymptotic condition~WAC! ~6! allows us not only to
retain the exact scattering energyec throughout the SCF it-
eration cycles, but also places a constraint onc to satisfy
approximately the condition~2!. However, it is not at all
cleara priori whether Eq.~6! is strong enough to lead to th
correct solution of the original problem of the elastic scatt
ing. This is tested in the example given below. Now we ha

^c~1!uH2EtuCGHF~1,2!. rW1
50 ~7!

with the Ansatz~6!. The coupled equations~5! and ~7! are
reduced to the form
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4240 55YUKAP HAHN
@K21Uc~2!2ec#u~rW2!52«Yc~rW2!, ~8a!

@K11Ub2EbX#c~rW1!52«Yb~rW1!, ~8b!

where

Uc~2![^cuV121V2uc& rW1 /^cuc& rW1, ~9a!

EbX5Ebt2EX12EX25Ebt2EX , ~9b!

VX~1![^XuV121V1uurW2 ./^Xuu& rW2

[EX11Ub~1!→EX1 as r 1→`, ~9c!

which defines bothEX1 andUb , and

EX25^X~2!uK22ecuu~2!& rW2 /^Xuu& rW2. ~9d!

The exchange terms are defined by

Yc~2!5^c~1!uH2Etuu~1!&1c~2!/^cuc&, ~10a!

Yb~1!5^X~2!uH2Etuc~2!&2u~1!/^Xuu&. ~10b!

In Yb , the term proportional tou(1) is dropped to ensure
‘‘approximate orthogonality’’ betweenX and c. More ex-
plicitly, the term^XuK21V22Ebtuc& in Yb is dropped to en-
sure that the spurious long-range contribution toYb is absent.
This term is generally small and should approach zero as
target functionc improves with the multiconfiguration inter
action. Furthermore, this term represents the overlap betw
the two amputated functionsX and xb5(K21V22Ebt)c
and thus, if nonzero, must be eliminated using a Lagrang
multiplier, in complete analogy with the bound-state H
case. We also note thatYb turned out to be very small, a
compared withUb andV1. Reasons for this unexpected b
desirable feature of the theory are not yet clear.

It is simple to convertu to X and vice versa, as from Eq
~8a! u5s1gUcu1«gYc , where g5(ec2K2)

21, or X
5g21u5Ucu1«Yc sinceg

21s50. All the integrals in ex-
pression~8! are finite, thus the difficulty~i! is eliminated.
The set~8!, with Eqs.~4! and ~6!, is the desired set of SCF
equations for the GHF approach, in its lower-order appro
mation without the configuration interaction. It is importa
to maintain the mathematical consistency of Eq.~9b! with
Eq. ~9a! plus Eq.~7!.

We emphasize that the formulation given above will
valid if the twoAnsätze, the AWF and the WAC, can delive
the correct amplitudes that satisfy the original boundary c
ditions. The convergence of the asymptotic boundary con
tion is therefore the critical test of the theory. This is noa
priori apparent. The example given in Sec. III is to demo
strate this point~and not so much to calculate the corre
phase shift! within the simple static and static-exchange a
proximations. The full demonstration of the problem requi
the multiconfiguration interaction, which we plan to repo
on in the future.

III. HERMITICITY OF THE GHF EQUATIONS

A comment on the projection procedure is in order. T
usual coupled-channel method proceeds with the expan
of the typeCHF or CGHF and the projection is carried ou
he
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using the same basis set involved in the total wave funct
In fact, it is not necessary that we have to project in this w
Apparently, this is not the case with Eq.~5!, where the am-
putated functionX was used instead. In general@15# we may
introduce weighting functionsW during the projection and
let

^c i uWi@H2E#uC t&50, ~11!

where differentWi may be associated with eachc i . All the
integrals in Eq.~11! are then well defined. Therefore, in th
case of the GHF approach, the amputation ofu may be
viewed as a special example of the weighted projection, w
the weight functionW.Uc , or Wu.Ucu1«Yc . Such a
procedure can be effective if a judicious choice of the wei
functionW is made. Further generalizing this aspect of t
approach, the weighted projection method in the contex
the coupled-channel theory has been discussed in deta
Ref. @15#, where proper construction ofW to optimize the
coupled-channel equations was illustrated.

We simply note that the procedure~11! is related to the
variational principle with a trial functionGVCand making a
closure approximation on the Green’s functionG such that
GVC→(E2Ē)21VC5a tVC a new trial function, with
a t as a constant variational parameter. Here the weight fu
tion was the interaction potentialV. This form was previ-
ously used effectively in deriving the nucleon-nucleus pot
tial @16#.

A more serious problem with the use of the weighti
function in the projection procedure is the fact that often
resulting set of coupled equations is not apparently ‘‘sy
metric’’ with respect to the initial- and final-state exchange
That is, due to the noncommutativity ofW with H, in gen-
eral, the projected operators are not Hermitian. We had s
lar situations with the usual sturmian function expansion
the total wave function, where the normalization of the ba
set is defined in terms of the weighting potential; the scat
ing equations are projected onto different basis function s
spaces with the weighting potentials, resulting in a set
coupled equations with the operators that are not Hermit
The non-Hermiticity can violate unitarity.~For a slightly dif-
ferent reason, the Faddeev equations also give an asymm
set of operators that couple different rearrangement chann
this is only in appearance, and the resulting amplitudes
quite symmetric.!

Therefore, in order to avoid possible spurious propert
it is useful to check the Hermiticity of the equations involve
in the GHF approach. As is shown below, in fact, the H
miticity is preserved in an asymmetric projection~11!. The
Hermiticity of the coupled set of equations foru andc may
be demonstrated by showing that the particular choice of
weighting function W in the amputation is such tha
@H,W#50. This property should be useful in guaranteei
the unitarity of the scattering amplitude, especially wh
multichannel scattering is involved, and in securing the r
bound-state energies. First, theu equation~7! is obtained
with the weighting functionW51, so that the resulting op
erator after thec projection from the both sides is Hermitian
Therefore, we concentrate on Eq.~5!, in which, due to the
use of the left weightW in the functionX, the resulting
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operator forc may not be Hermitian. However, we recall th
special form of the amputation~4!, which can be combined
with Eq. ~8a!, as

X~2!5@Uc~2!1«I c#u, ~48!

whereI is the exchange integral operator, and the commu
tivity within I also follows in the same way. Evidently,I cu
5Yc . In Eq. ~5! theK2-dependent term is symmetric whe
Eq. ~4! is used forX, as the twoK2 operators involved are
the same. On the other hand, the rest of the terms in Eq~5!
may be made Hermitian by using Eq.~48!. This completes
the proof. Note that the Hemiticity of the operators in t
coupled SCF equations is guaranteed here by the very sp
choice of the amputating operator. In some sense, this
gests that the choice ofW in amputatingu adopted here may
be unique.

IV. CALCULATION OF ELECTRON AND POSITRON
SCATTERING FROM HYDROGEN

This section attempts to show that the GHF theory form
lated in Sec. II with two principalAnsätzeworks in the sense
that the overall solution satisfies approximately the corr
asymptotic boundary conditions~ABC!. Since the require-
ment on the ABC is changed to an approximate one in
GHF theory, it is not automatically satisfied. Although in t
present case where the ABC can be specified exactly in te
of the hydrogenic function, the GHF theory takes the S
value, as will be clear below.

The simple set of equations derived above is applied
the single-channel electron-hydrogen scattering, withL50,
the scattering energyec below the excitation threshold, i.e
ec,0.75 Ry, and the total energyE,20.25 Ry. Recently,
we applied the generalized Hartree approximation~GHA! to
the positron-hydrogen and electron-hydrogen scatter
without exchanges@14#. They are perhaps the simplest e
amples in which the theory may be tested. The fact that
exact target states are available provides a convenient b
to examine the validity of the theory without getting in
volved in the complicated numerical analysis. The phys
involved in the collision are clearly brought out by th
mean-field picture.

The solution of Eq.~8! involves the following iteration
steps for self-consistency.

~a! First, we arbitrarily choosec.c1s andEbt.21Ry.
The potentialUc5^cuV121V2uc& rW1 is evaluated; letYc50

for the first iteration, witĥ cuc& rW51.
~b! Equation ~8a! is numerically solved foru and the

phase shiftdGHF evaluated in accordance with Eq.~5b!, for
the scattering energiesec5(pca0)

2 Ry. This gives the phase
shift dSTT, corresponding to the static approximation witho
exchange. The resultingu is used to evaluate the exchan
termYc . Repeat theucalculation until a self-consistency i
reached with the exchange term.

~c! The amputated functionX5(ec2K2)u5Ucu1«Yc is
evaluated using the scattering functionu calculated in~b!
above.

~d! Evaluate the effective potentialUb and the constants
EX1 andEX2, as well as the exchange termYb . Solve Eq.
~8b! for c and the energyEbX . The correct binding energy
a-

ial
g-

-

t

e

s
F

o

s

e
sis

s

t

Ebt is then calculated byEbt5EbX1EX from ~9b!.
~e! This completes the full iteration cycle. If the resulting

energyEbt and the phase shiftd from u are not within the
small allowed change from the previous iteration values,
then we go back and repeat the first four steps above, unt
the self-consistency is attained. This way, both the targe
functionc with its orbital energyEbt and the scattering func-
tion u with the phase shiftd are simultaneously determined.

The converged phase shifts for the singlet and triplet
states in the electron-hydrogen elastic scattering are pre
sented in Fig. 1, together with the static without exchanges
~STT! and the static exchange~STFX! approximations for
comparison. Here both the STT and STFX approximations
are determined with the exactc1s . The GHA is equivalent to
the STT approximation and thec calculated from Eq.~8b!
without the exchange termYb . The GHF approach with one
configuration inCGHF gives phase shifts that are very close
to the STFX values, for bothS50 and 1. This is surprising
because the apparent enhancement indGHAis wiped out when
the exchange term is added in theu equation. This may be
understood from the symmetry~or antisymmetry! of the
wave functions; when the projectile penetrates the bound or
bital, we can assign the penetrated electron as the new ‘‘in
ner core’’ electron without changing the physics. In this
sense, the GHF theory describes a quite different physic
from the GHA. The approximate target functionc calculated
with Eq. ~8b! also turned out to be very close to that of the
exact value. Nevertheless, the GHF binding energyEbt de-
viates slightly from21 Ry. This variation in the binding
energy is given in Fig. 2, whereDEbt5Ebt2E1sis plotted
for S50 and 1. The smallness ofDEbt shows that the weak
asymptotic condition~6!, which replaces the exact one in Eq.

FIG. 1. Phase shifts for the elastic electron-hydrogen scattering
are calculated in the various approximations for both the singlet and
triplet states; STT denotes the static approximation without ex-
change and STFX the static approximation with exchange effects
included. In STT and STFX, the exact target functionc1s is used
for comparison. GHA denotes the Hartree approximation withc
Þc1s and without the exchanges. GHF denotes the phase shift ob
tained in the GHF approximation, where both the target function
and the scattering function are simultaneously determined self
consistently. The GHF values~solid curves! are very close to that of
STFX ~dashed lines! for bothS50 and 1.
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~3a!, still places a strong enough constraint on the solution
lead eventually to the correct boundary condition. Al
shown in Fig. 2 is the actual energyEbX obtained from Eq.
~8b!. The finalEbt is obtained from this by adding the shi
EX .

Incidentally, we also calculated the excited-state scat
ing using the same GHF code by simply setting the appro
mate energy values for the 2s, 3s, etc., states. The solution
automatically converged to the specific asymptotic values
long as the initial choice was close to one particular ene
Ebnt . The converged energies for the bound electron
close to21/n2Ry and the corresponding wave functio
have the correct numbers of nodes associated with the
ticularn. However, none of these functions are exact, as t
are determined by the self-consistency. This is also the c
with the 1s scattering, where the exact wave function
known, but the GHF approach instead approximately de
mines it by the SCF. The only way to confirm whether t
calculated wave function corresponds to that of the des
channel is to ‘‘count nodes’’ of the wave function. This is
fact precisely the behavior we encounter in the bound-s
calculation by the conventional HF procedure; a bad ini
guess at the binding energy allows drift in the calcula
values to some othern states of the same symmetry. On t
other hand, the scattering energyec remains the same
throughout the iterations. We do not pursue this interes
aspect of the GHF approach further here because for exc
target scattering we have to include all the open chan
with channel binding energies larger than that particular
cited state, and this requires automatically the generaliza
of the GHF computation described in Sec. V.

Another unexpected result of this calculation is that
effective potentialUb for the bound orbitals is nearly one
half of the direct potentialV1, for r.3a0. This large devia-
tion found inUb from V1 is apparently caused by the pe
etration of the target cloud by the projectile electron. T
time this penetration effect is explicitly demonstrated us
the SCF picture. As a result, the corresponding energy s

FIG. 2. The apparent binding energyEbX as determined by Eq
~9b! and the actual binding energyEbt are shown for the singlet an
triplet spin states. Although the potentialUb is quite distinct from
the CoulombicV1, Ebt is very close to the exact value of21 Ry.
The energy shift isEX5EX11EX25Ebt2EbX . We presentDEbt

5Ebt2E1s, showing the strong energy dependence.ec(Ry!
5(pca0)

2. The effective binding energy in the potentialUb is also
givenEbXu10 for bothS50 and 1.
o
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EX11EX2 is also large. The direct potentialUb and the ex-
change potentialYb for the bound orbital are given in Fig
3~a! for the triplet state andpca050.4. Figure 3~b! contains
the direct potentialUc and the exchange termYc for the
continuum orbitalu. Overall, the solutions with theAnsätze
~4! and ~6! are found to be very stable. For comparison,
note that, in the positron-hydrogen and in the electro
hydrogen scattering without exchanges, the penetration
fect was found@14,15# to be significant.

One important and desirable consequence of fixing
continuum energyec is that in a multichannel scattering a
the asymptotic energies must be specified and held fi
throughout the calculation, and this is independent of h
accurately the asymptotic cluster functions are determine

The calculation presented here shows that the twoAnsätze
we introduced in Sec. II in the formulation of the GHF a
proach seem to be effective in producing the correct~ap-
proximate! asymptotic boundary condition. It is not the pu
pose here to demonstrate the effectiveness of the G
approach in generating the accurate phase shift. This
come with multiconfiguration mixing, just as in the boun
state case.

V. EXTENSIONS OF THE THEORY

The theory developed above for a simple three-bo
single-channel scattering system may be extended to m
general systems. Of course, these require extensive num
cal computations, the results of which will be reported el

FIG. 3. ~a! The SCF iteration-converged potentialUb and the
exchange termYb are given forpca050.4 andS51. The direct
potential is compared with the pure Coulombic potentialV1. Note
the drastic change inUb from V1. ~b! The effective direct potentia
Uc and the exchange termYc are shown forpca050.4 andS51.
Uc is compared with the static potentialVst(c1s). The amputated
wave functionX merges intoYc at larger . Clearly, ~X,X!,`.
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where. We simply list some of the major potentiality of th
approach as it is developed here.

~i! More than one~closed-channel! term may be added to
C t as well as a mixture of other bound-state configuratio
This is the same as the configuration interaction in the us
HF approach, and we expect that this will makec approach
c1s . This is the most pressing task in proving the validity
the GHF theory with one- and two-electron targets. The
lidity of the basicAnsätze~4! and~6! in providing the correct
converged amplitudes must be tested in full by includ
other configurations.

~ii ! More than one~open! scattering channel may be in
cluded for inelastic and rearrangement scatterings. Since
continuum orbitals are treated here the same way as
bound orbitals, except for the amputation, this problem
equivalent to that of~i! above and the purely bound-state H
procedures. It is of theoretical interest as to how the re
rangement channels are handled in practice, where the
thogonality’’ among the channels are much more difficult
treat.

~iii ! Scattering systems with more than one particle in
continuum, as in collisional ionization, may be treated
additional amputations. We may then have a consistent
to evaluate the Auger amplitudes that involve both the bo
and continuum orbitals determined by the SCF proced
More importantly, we may be able to treat the ionizati
channels, as well as the multiparticle cluster channels, as
positronium formation in the poistron-atom scattering.

~iv! The GHF theory may also be adopted to treat
loosely bound states that are spatially extended to large
tances and thus cumbersome to be treated together
tightly bound orbitals in a SCF calculation. This is a we
come improvement of the conventional HF procedure, wh
the large spatial orbitals are not readily treated with the sa
kind of accuracy with the more compact orbitals within t
same configurations. The amputated function provide
more compact description of such states, and this is so
what equivalent to the quantum-defect procedure@17#.

~v! In view of the strong penetration of the bound orb
by the projectile particles, especially in the nonexchan
cases, it is of special interest to examine whether the sh
off processes during a collision process may be better tre
by the GHF approach. The usual procedure of estimating
s
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shake-off probabilities by the overlap of wave functions
the initial- and final-state configurations can be extended
natural way using the wave functions generated by the G
approach.

VI. CONCLUSION

Summarizing, we have presented a simple generaliza
of the SCF theory to scattering problems, in which the pr
cipal obstacles in the HF approach have been remove
terms of the amputated scattering functions and w
asymptotic conditions. The rigid requirement for the exa
target wave functions is also relaxed.

To illustrate the approach, the theory has been applie
elastic electron-hydrogen scattering in the lowest Hartr
Fock approximation, with full exchange. The theory trea
both the bound and continuum orbitals on an equal foot
and the solution can be systematically improved by confi
ration interaction. The SCF iterations converged well and
solution with Eqs.~4! and~6! was found stable. It is not ye
clear whether the twoAnsätze ~4! and ~6! provide the opti-
mum way to generalize the HF procedure to collision pro
lems, but they seem to work well thus far, with a limited s
of cases tested. This generalization would eventually be
corporated into all the bound-state multiconfiguration H
codes for extended versatility. The fact that we obtained
result very close to the STFX values with the sing
configuration GHF wave function we have used is most
couraging.

We reemphasize that the GHF presented here is fun
mentally different in its basic approach from all the previo
collision theories in that the asymptotic boundary conditio
are relaxed in a controlled way. This could in princip
change the original scattering problem altogether. Howe
the sample calculation in Sec. III showed that in fact t
calculation seems to converge to the corret asymptotic c
ditions, albeit weakly. The WAC~6! is sufficient; it is simlar
to a node counting in the usual HF calculation. As such,
example given here should not be taken as a test of
power of the theory in producing the accurate phase sh
This can be accomplished with multiconfiguration mixin
The real potential of the GHF approach should become
parent as soon as we start to apply it to treat the collis
problems with targets that involve more than one electro
s
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