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All-order relativistic many-body calculations for the electron affinities
of Ca™, Sr~, Ba™, and Yb™ negative ions
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Electron affinities are evaluated for negative ions formed by the attachment of one electron to atoms with
closed subshells, using relativistic many-body perturbation theory. In particular, we investigate the Ca
Sr~, Ba , and Yb™ ions. Starting from a model space that consists of nondegenerate valence Dirac-Hartree-
Fock orbitals, we first approximate the energy of the attached electron as the lowest eigenvalue of a second-
order effective Hamiltonian. Higher-order correlation corrections are calculated in the linear cluster approxi-
mation. The Breit interaction is also included in the first order. Our results are in good agreement with recent
experiments and show a clear improvement over the second-order Dyson equation. Comparisons with other
many-body calculations are also presen{&1.050-294{@7)00706-3

PACS numbsgs): 31.15.Ar, 31.15.Md, 31.25.Eb, 32.10.Hq

I. INTRODUCTION Schralinger many-body perturbation theoryRMBPT),
where correlations beyond second order are evaluated in the
Over the years, negative ions have attracted increasiniinear cluster approximatiof28—31. This method has been
interest from both the experimental and the theoretical standcapplied to atomic systems such as the alkalis, with one va-
points. Especially, after the review article by Hotop andlence electron outside a closed shell leading to an agreement
Lineberge 1] and the monograph by Massgg], substantial ~with experiment of order less than 0.1%80,32. However,
developments in the experimental techniques led to highlyn these systems the valence electron is bound due to the
accurate measurements, as well as new predictions, of sesereened Coulomb field of the closed subshell ion, while in
eral electron affinities, providing an outstanding challengehe negative ions under consideration the electron is much
for improved theoretical calculations. From more recent remore weakly bound due to the polarization potential of the
views [3—6], it becomes clear that substantial theoretical in-neutral atom. This difference leads to a more demanding
vestigation is still necessary in order to achieve theoreticastudy of correlation corrections in the latter case that can be
values of the same accuracy as the ones quoted by receat first realized by the lowest-order approximation to the
experiments. valence-electron energy. In the alkalis, starting from the
In the present study, we calculate the electron affinities oi/N~! Hartree-Fock(HF) model potential of the positively
systems where an electron is attached outside a closed sutharged closed core, a fair approximation of the lowest-order
shell atom. Our basic motivation stems from recent measureenergy of the valence electron can be obtaif88], creating
ments of the electron affinities of Cqd 7] and Ba™ [8] based an excellent starting point for the subsequent successful ap-
on the combination of laser photodetachment and resonangsication of the RMBPT. But in negative ions, starting from
ionization spectroscopy and where accuracy of order 1% wathe VN HF potential of the neutral atom, all the single-
accomplished. These systems, along with $8], have also particle valence orbitals are unbound, leading to no physical
been the subject of considerable theoretical interest for theealization of the attached electron as a single-particle va-
last ten year$10—26 and several computational techniqueslence state. In spite of that, we may assume that the wave
have been tested to overcome the sensitivity of the resultsinction for the attached electron can be represented as a
due to correlation corrections. linear combination of unbound HF valence orbitals that are
From the perspective of many-body theory, studies havenembers of a nondegenerate model sg&@834. This hy-
in principle, been based on the solution of Dyson’s equatiorpothesis is closely related to the formulation of the quasipar-
[27,14, where the proper self-energy is approximated in secticle orbital of the attached electron from the second-order
ond order, while higher-order correlation corrections wereDyson equation as a superposition of a complete basis set of
selectively included17,21]. As was shown by Dzubat al.  HF orbitals[14]. By choosing the members of our model
[21], such an approach leads to the proper estimation of thepace to be the dominant components of this quasiparticle
fine-structure splitting but their calculated electron affinitieswave function, we are led to a matrix equation that involves
were in poor agreement with experiment. A systematic incluthe effective HamiltoniaH®™ [29]. After excluding the en-
sion of higher-order correlations, recently accomplished byergy of the atomic core, the electron affinity can simply be
Salomonson, Warston, and Lindgr26], led to a significant defined as the opposite of the binding energy of the attached
improvement in the agreement between theory and experelectron and this corresponds to the lowest eigenvalue of
ment for the electron affinities of Caand Sr . These cor- H®M. This approach enables us to obtain a first approximation
rections were calculated nonrelativistically, while the fine-to the H®™ from second-order perturbation theory, which is
structure splitting was still obtained from the second-ordeformally very similar to the self-energy matrix of the second-
Dyson equation. order Dyson equatiofiL4], but of significantly lower dimen-
Our approach is based on relativistic Rayleigh-sion. At this level, the calculated electron affinities from the
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two methods are very close, but they are essentially a factdfor the case of a particle outside a closed shell, we have the
of two different from the most recent experimental values.following expression of the model-space state vect86s:

Our next step is to take advantage of the low dimension of

our model space and to include systematically single- and |®,)=a]|0,), 2.9
pair-correlation corrections to all orders. Our final results

improve the agreement with experiment to the level of 109gvhere|O;) denotes the closed subshell ground state of the
for the cases of Ca, Sr™, and Ba~ and enable us to give an heutral atom.

estimate for a possible positive-electron affinity for the more In the studies related to atoms with one valence electron
complicated case of Yb. outside a closed core, there is essentially no mixing among

valence states and the model space consists of only one state
vector. But in negative ions the wave function of the attached
electron is realized as a linear combination of several un-
Our method is developed using the formal similarities be-bound orbital§ 14]. Therefore, in this case, the solution to
tween the case of atoms with one valence electfonex-  the Schrdinger equation is obtained by acting with the wave
ample, the alkalisand the considered negative ions resultingoperator(), on a linear combination of nondegenerate state
from the attachment of one electron to a closed subshellectors, defined in Eq.2.9). This approach was employed
atom. The system is described by the relativistic “no-pair” successfully in the case of a nearly degenerate model space
Hamiltonian[35] for particle-hole systemg31,37, but, as it has been shown
theoretically by Lindgrer28], it can also be applied to this
H=Hy+V,. (2.1 more general case of a nondegenerate model space.
The solution of Eq(2.9) takes the form

II. FORMALISM

In second quantization, the model Hamiltonidg and the
perturbationV, are written, respectively, as

[W)=2 C,Qy|d,) (2.10
HOZE SiaiTai , (22) ) . .
i and, via the correlation operatgt, defined as
1 Q,=1+x,, (2.11
VFz% gijklaiTajTalak_iEj Ujala;, (2.3

we transform Eq(2.9) into an eigenvalue equation

wherea' anda stand for fermionic creation and annihilation
operators and; stands for the positive eigenvalues of the 2 Hi?UCU:ECU,, (2.12
one-electron Dirac equation v '

h(r)ei(r)=g;e;(r), (2.4  Where the effective HamiltoniaH " is given by

h(r)=ca-p+(B—1)c2+V ,r)+U(r). (2.5 HET, =(@, [H(1+x,)[®,) (2.13

If N is the number of core electrons, the negative ion isand the equation for the correlation operator is
considered as aN+1) electron system and, following Ref.
N .
[14], we chooseJ(r) to be theV™ HF model potential of the [xo Holl®,)=Vi(1+ x,)| D) = > xor| P,
atomic core, defined as o

X<(DU/|V(1+XU)|(I)U>' (214
Us= [ el 0@ =3 (G- geey.

2.6 We approximate the correlation operator up to pair exci-

tations, i.e.,
with g;;, standing for the two-electron matrix element of the
Coulomb interacti N B ISR SR
oulomb interaction X~i2j a, anj—’_E% ;a3 » (2.15
d’r,d%, : _ _
ik = — - ¢i(r)ej(r)en(r)ei(ra). and the correlation correction to the model-space states de-
12

2.7) fined in Eq.(2.9 becomes

According to the index convention followed, the letters O V=
_ Xo| )
a,b,c,d correspond to core states,w correspond to va-
lence states;m,n,r,s correspond to virtual states; and 1
i,j,k,I correspond to all orbitals. +Z mnat oty 2 atllo 21
Our goal is to solve the time-independent many-body zm%bxab man2sad, ||0c) (2.16
Schralinger equation

m,t T m4t mnyt 4T
z Xaamaaav+ E Xv a'm—'— E Xvaamanaa
ma m#v mna

This approximation leads to the following system of
H|W)=E|¥). (2.8 coupled equations for the correlation coefficients:
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(ea—emXa =Ry, (2.17)
(8a+8b_8m_8n)ngn: ?bn, (2.18
(2.19

(e, ~emXy =RI— 2 Xp Ry
v

(e, +ea=em—en)Xpa = Rya— 2 XyaRy » (220

WhereR} andR}, are defined, respectively, as
R] = 2 aiaij;T_ 2 gabjr‘r&;nt:"' E giamn’)\(’}gnv
ma mab mna
(2.21

REI:gijkl+E gijmnxﬂ]”+2 gablegb"'z Qijml)(ﬂ1
mn ab m
-> gajkIXIz;1+E Gajm|}'k“;+2 jimkX"
a ma m

_g gaiIkXL_"% Taimkxln' (2.22
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Even though our formalism is a rather straightforward
generalization of the method presented in R8&6)], its nu-
merical realization is a much more complicated numerical
task, mainly because of the slow convergence of the iteration
process and the large basis sets necessary in order to improve
the accuracy of the calculation. Our basis sets for single par-
ticle wave functions were created using Bespline method
[39], essentially in the same way as in Rgt4], but we
found that the choice of a larger cavity radius (60 a.u. instead
of 40) helped converge the iteration process. Simple modifi-
cations of our code enabled us to test it directly against well
established calculations before applying it for any new re-
sults. As a first test, we solved the second-order Dyson equa-
tion and we found agreement with the corresponding pub-
lished values of Refg§14,26]. The next test was to constrain
our method to a single-member model space and derive the
results for neutral lithium presented in RE30] and the cor-
responding third-order terms for neutral cesium presented in
Ref.[32].

In the application of the method to negative ions, special
attention was given to the synthesis of the model space. Our
criteria were based on the similarity between E24) and
the matrix form of the second-order Dyson equafitd]

S (a3 XP)ei=e00i, @25

with tilded terms including the exchange parts of the four J

indexed objectgfor example,@'im =ijkl — Gjilk) -

This formalism leads to the following expression for

Heff:

eff __ ~mv’ ~mn
Hv’v_suév’v+2 JabumX ab +2 Jv’amnX va
abm amn

+2 av’aumX?- (2.23
ma
In lowest order ;=0 and Eq.(2.23 becomes
eff gabvmamv’ab
)= o+
HU v 8U5U v a%msa_{_sb_sv/_sm
gv’amrﬁmnva (2.24)

amn &, €3~ &m—€p

where the self-energy matrix elemerﬁﬁz) are defined as

giamngmnja

2(2)_ E gabjmgmiab
U aFmeatep,—e0—&m amneotea—em—en

(2.27

and the quasiparticle orbitako(r) of the attached electron
with angular quantum numbde and binding energy is
written as an expansion @il the HF orbitals with the same
angular quantum number, i.e.,

wo<r>=2i cigi(r). (2.28

As shown in Ref[14], a set of 25 states is a sufficient nu-
merical realization of this expansion, but still the solution of
the second-order equatid@.26) is an expensive numerical

This relation reveals the non-Hermitian nature of thistask that results in relatively poor agreement with the most
method. Practically, this is only a formal disadvantage, sinc@ccurate recent experiments.

there is always the option to for¢¢®" to be Hermitian34]
by simply defining

E“%[HeffﬂHeff)T]. (2.29

In the all-order approach vie®", we found that a model
space consisting of six valence states was sufficient for the
second-order equatid.24) to give a lowest eigenvalue less
than 10% different from the binding energy of the quasi-
particle wave function obtained from E¢.26. From the
similarity of these two equations it is obvious that these

However, for the cases under consideration, we found thagtates have to be chosen to be the valence HF orbitals that

the lowest eigenvalue of this matrix and that of Eg.24)

dominate in the expansiof2.28. So, technically, we used

were different at the level of 1 meV, which lies at the limits the second-order Dyson equation as the first step in our ap-
of the numerical accuracy of the present calculation. Thereproximation. By raising the dimension of the model space,
fore, we proceeded with the non-Hermitian expression fowe found that the new mixing coefficien®, of Eq. (2.10

Hef. We would also like to mention an improved manifestly were of magnitude<0.1, which was our cutoff criterion,
Hermitian formalism forH®", systematically presented by similarly to Ref.[40]. For example, in the case of Caour
Lindgren[38], the realization of which lies beyond the scope model space consists of sip,,, valence states with rang-

of this work.

ing from 4 to 9. The validity of this argument is shown in the
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following table, where the six dominant amplitudgsof the -1 ; T .
4p4» Ca™ quasiparticle orbital derived from E@2.26 are *
compared to the coefficients, resulting from the solution I
of Eq.(2.12. The corresponding values agree at the level of 27 \
1%, while the coefficients; account for 99.5% of the unit 3 ‘ ‘\.i
norm of the quasiparticle orbital. ‘=; s .o 1
g .-e
n Ci CU Eo \’,\\ /& L]
d)- _4 v AR
4 0.385833 0.393995 L2 L L o ./'\‘
5 -0.598645 -0.605019
6 -0.556163 -0.557406 5 L. : ! ! !
7 0.345933 0.343157 Y 5 10 15 20
8 -0.197454 -0.193125 Order of perturbation
9 -0.118553 -0.113864

FIG. 1. The logarithm of ten of the norm of timgh-order con-
tribution (H{Y) to the effective Hamiltonian, in atomic units, for
In the summations over core orbitals, we included a certhe 4p,, state of Ca.

tain number of outer shells. These define our active core. By
performing separate second-order calculations, including aR the corresponding convergence pattern of the electron af-
core orbitals, we found that the missing inner-core correlafinity is shown. At the point where the iteration process was
tions were less than 5% of the calculated electron affinitiesierminated, the value of the logarithm of this norm was
similarly to Ref.[26]. To go beyond second order, we itera- around —4.5, which corresponded to less than a 0.05%
tively solved Eqs.(2.17—(2.20. After every iteration, the change in the value of the electron affinity between succes-
new correlation coefficients were used to calculate the newive iterations.
He™ matrix from Eq.(2.23. The electron affinity is defined The Breit interaction can be introduced as a perturbation
as the opposite of the lowest eigenvalue of this matrix. Theof the form
solution of Eqs.(2.17—(2.20 involves differences between
core and valence orbitals. For the orbitals of the outermost
core shell, these differences are small and lead to slow con-
vergence of our method, since they are involved as denomi-
nators in our iteration scheme. In order to speed up the iterayhere bij is the two-particle matrix element of instanta-
tion process, certain truncations were necessary. For eagfeous Breit operatdn(r,),
angular quantum numbée=*1,+2 ... ,=11, we created
40 basis states, but we used 30 of them for the correlation
corrections beyond second order. In addition, certain cutoff
criteria were also applied to the magnitude of the pair corre-
lation coefficients. The numerical realization of this methodysing the expansion coefficien®, from Eq.(2.12, we can
was a very big computational task and was performed on thgstimate the lowest-order Breit correction
two alpha stations available in our group. After the trunca-
tions, the time for every iteration ranged from 24 h of CPU
time for the case of Ca to 48 h for Ba and 3(1)22 C,Co (D, |Vg|D,), (2.32
Sr™ and 72 h for Yb . Convergence is an important concern vy
in problems of this type[41,42. For the cases of
Sr~, Ba™, and Yb ™, the large cost in computational time
forced us to terminate the iteration process when the differ- ; . It

i

i

!

1
VB:E% bijwial alaay, (2.30

1 " ~
b(rlz):_le[al'az"‘al'rlza’z'rlﬂ- (2.30

2]
o

ence in the lowest eigenvalue df™ between two successive
iterations was less than 0.1 meV. Usually, ten iterations were
needed to achieve this level of nhumerical precision. But for
the computationally less demanding case of Cae were
able to test convergence using the criterion suggested by Na-

» [4)]
o o
T T

Electron affinity (meV)
W
o

[ i vy \ /Q\
kano and Obar§42], which is based on the logarithm of the o 11 A R e T T, ]
norm of thenth-order H{¥) contribution to theH®" matrix. Fo
This is taken as the difference between the resulttd 10 [ '“I' ]
aftern—1 andn iterations and is defined as é
0 ) 2 i ) 1 L 1 n n 1
0 5 10 15 20

1/2
||Hgf‘f)|=(2 |(Hgf‘f))v,v|2) ) (2.29 Number of iterations
v v
FIG. 2. The convergence pattern for the electron affinity of the

In Fig. 1 the logarithm oH{ is presented up to twentieth 4p, , state of Ca, derived from the diagonalization of the iterated
order of perturbation for thep,, state of Ca, while in Fig. ~ H®f
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TABLE |. Calculated electron affinities from second-order Dyson equ%@;en, second-ordeH ®
E®, and all-orderH®™ E(Pa" along with the lowest-order BreB™) for Ca”, Sr™, Ba~, and Yb~, in
comparison with most recent experimeni&©)= E®Pa0+ B() The active core is given in parentheses.

Units: meV.
State EQon E® E(pai B E() Expt.
Ca (3s?3p®4s?)
4py, 57.8 56.2 22.8 0.4 224 24.68) 2
4psp 51.4 50.2 18.4 -0.3 18.1 19.m) 2
Sr™(3d4s24p®5s?)
5Py 101.7 98.8 48.8 -0.9 47.9 w°
5p3p 77.1 74.2 374 -0.6 36.8
Ba (4d'%s25p®6s?)
6P 204.7 200.6 147.0 1.7 145.3 144(6p°
6P3p2 141.3 136.6 97.3 1.1 96.2 89@E°
Yb ™ (4d'%s?5p®41196s?)
6P 45.0 48.4 ~0 >104
%Referencd7].
bReferencd9].
‘Referencd8].
dreferencd43].
or, with the help of relation$2.29 and(2.9), been chosen for comparison have explicitly measured the
fine-structure splitting. A review of the experimental status,
~ as well as most of the theoretical calculations, is presented in
B(l): E Cva’vaCv" (233) P

Ref. [25]. In the fourth column of Table | we present the
calculated electron affinitie(P2" in the pair approximation.
The contribution of this correction was found at the 1% levelWWe see that these values are consistently much closer to

cov’

of the calculated electron affinities from the CoulodB. experiment. The inclusion of the lowest-order BBt in
column five reduce& P2 around 1% and their sum is listed
. RESULTS asE™Y in column six of Table I. The negative sign BfY) is

with respect to the electron affinity, which, as we mentioned,
The first step toward numerical realization of our methodis simply the opposite of the binding energy. For the case of
was to solve the second-order Dyson equat®26). In ad-  Ca~, the agreement is improved to the level of 10% error for
dition to the importance of this calculation as the criterionpoth 4p,,, and 4ps, states. The same agreement is accom-
for the formulation of our model space, we were also enableglished for the §,,, and &5, states of Ba, along with the
in this way to set a common background for comparison withsp, ., state of Sr. For the 5, state of SF, our value of
other many-body calculations. The resulting electron affini-36.8 meV leads to a fine-structure splitting of 11.1 meV that
ties from this approach are listed Eﬁﬁgzy)son in the second lies outside the experimental value of(86meV given by
column of Table I. In the first column of this table, we de- Berkovits et al. [9]. Our good agreement with all the other
note the states for the attached electron using the valendi&e cases in connection to the relatively large experimental
orbital with the smallest principle quantum number of thoseerror of this measurement, might pose a motivation for fur-

six that form the model space. For example, thep{g” ther experimental investigation of this system.
state of Ca is essentially a superposition of For the Yb, we have a case that tests the validity of
4p12,5p1s2, - - -, 9Py Valence states. In the third column of higher-order correlation corrections in the prediction of new

Table 1, we present the electron affiniti€?), calculated electron affinities. As we can see from Table I, the second-
from the diagonalization of the second-ordef" (2.24.  order resultsE@),,, and E? predict a positive electron af-
Since the model space includes the orbitals that dominate ifinity of 45 meV. This value is in agreement with the esti-
the expansiori2.28), these values differ less than 10% from mate of 54+ 27 meV from the density-functional calculation
E(Dzy)son. In comparison to the most recent experimental valuesf Vosko, Chevary, and Mayd22] and is approximately
for the cases of Ca, Sr™, and Ba' listed in the last column half the value of 98.5 meV from many-body nonrelativistic
of this table, we see that the second-order calculations ovetalculation of Gribakina, Gribakin, and Ilvan¢%8]. In the
estimate the electron affinities by around 70% for Band latter case the active core included only tre# euter shell,
100% for Ca and Sr, while the agreement for the fine while in our case the active core included all five outer sub-
structure is better and at the error level of 20% forBand  shells. But after including higher-order correlation correc-
Ca™ and 10% for Sr. The experimental values that have tions, the system became unbound. Because of the large
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TABLE Il. Comparison of the electron affinities and the corresponding fine-structure splitiBgsor
Ca, Sr, and Ba with other many-body calculations. Units: meV.

Ca Sr- Ba™

4pyp 4pzz  AEts 5piz 5paz AEgs 6P 6pas2 AE¢s
this work 22 18 4.3 48 37 11.1 145 96 49.1
Salomonsoret al.? 19 13 6.2 54 29 25
Johnsonet al.? 57 93 192
Dzubaet al.® 56 49 6.9 102 80 22 57
Gribakinet al.® 58 129 144
experiment 24.580)¢ 19.7310)¢ 4.8° 486)" 26(8) " 144.626)9 89.606) 9 55.029) 9
8Referencd 26].
PReference 14].
‘Referencd21].
dReferencd17].
*Referencd7].
'Referencd9].
9Referencd8].

amount of computational time needed in this case, we The most critical comparison of our method is with re-
stopped our process one iteration after the system was fourgpect to the recent work of Salomonson, Warston, and
unbound. At that point, it was unbound at the level of 2 meV.Lindgren[26] for the cases of Ca and Sr . In their calcu-
Considering the numerical constraints that we posed in orddtion, the correlation corrections beyond second order were
to carry out this calculation and according to the consistency!so evaluated in a systematic way similar to ours, but non-
of our results for the previous experimentally well estap-relativistically. The relativistic corrections were included
lished cases, we claim that if Ybis bound, its electron from the difference of a second-order Dyson equation per-
affinity must be very close to the lowest possible obsewatioﬁorm?d both relat|V|st|caI!y and nonre_la‘qwshcally. Smce. we
threshold of 10 meV posed by the only experimental work inconsidered f[he same active core, their fine-structure splittings
which this negative ion was detectpB]. agree precisely with the differences between the values
In Table I, we present our results in comparison with ESkon OF the pyjp 5 States listed in Table I. The good agree-
otherab initio many-body calculations. Here, because of thement between the two calculations shows that the intrinsi-
numerical constraints, as well as the missing correlation corcally relativistic nature of our method in these cases compen-
rections starting from triple excitations, the values for thesates for the missing correlation corrections, due to a certain
calculated electron affinities were truncated at the level of xlass of triple excitations that they included.
meV, while for the less-sensitive-to-correlation fine-structure I conclusion, by performing a fully relativistic calcula-
splitting, one more significant figure was kept. The relativis-tion, we were able to achieve excellent agreement with the
tic calculation of Johnson, Sapirstein, and Blundi&] cor- ~ most accurate recent measurements for the electron affinities
responds to the solution of the second-order Dyson equatio®f Ca~, Ba™, and Sr. Our method was based on the for-

(2.26). Therefore, their values can be directly compared tonulation of an optimum nondegenerate model space, com-
our E(DZy)Son of Table I. The small difference of 1 meV for Dined with a systematic inclusion of correlation corrections

Ca~ can be attributed to the slightly different basis Sets,beyond second order that had been successfully tested for the
while the differences for St and Ba~ occur because of the Similar but relatively simpler case of the alkalis. The consis-
inclusion of an extra subshell in our active core. In the non{€Ncy of our results and the good agreement with the more
relativistic calculation of Gribakiret al.[17], based also on Ccomplete, but nonrelativistic beyond-second-order calcula-
the second-order Dyson equation, part of the valence statd9n Py Salomonson, Warston, and Lindgre®], lead us to
involved in the intermediate summations were created in th§U99est a new measurement for thpsb for Sr. For

field of the atomic core with a hole in the outer shell. This YP ~» higher-order correlations led to a slightly unbound sys-
difference in the model potential led to a different estimationt®M. but the approximations that we made to make the treat-
of order-by-order correlation effects. However, the inclusionMent of the system computationally manageable do not ex-
of selected third-order contributions brought their estimatiort!ude the possibility of an electron affinity around 10 meV.
to the level of the second-order relativistic Dyson equationin this case, further theoretical, as well as experimental, in-
using the HF model potential of the closed core. We noté/€stigation is necessary.

that this calculation does not distinguish betwesm,, and
nps, levels and therefore can be compared only qualitatively
with relativistic calculations, as well as experiments. The We would like to acknowledge useful discussions with
posting of their results under thep,,, columns is only a Professor W. Johnson. Furthermore, we thank the Computer
matter of presentation. A similar idea by Dzuitaal.[21] of  Science Department of Michigan Technological University
using virtual excited states, relativistically this time, in afor providing substantial computational support of the work.
core-hole potential along with a certain class of effects beThis research was partially supported by the National Sci-
yond the second order, also gave results closlé(D%)Qon. ence Foundation through Grant No. 93-17828.
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