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All-order relativistic many-body calculations for the electron affinities
of Ca2, Sr2, Ba2, and Yb2 negative ions

Euripides N. Avgoustoglou and Donald R. Beck
Physics Department, Michigan Technological University, Houghton, Michigan 49931

~Received 22 January 1997!

Electron affinities are evaluated for negative ions formed by the attachment of one electron to atoms with
closed subshells, using relativistic many-body perturbation theory. In particular, we investigate the Ca2,
Sr2, Ba2, and Yb2 ions. Starting from a model space that consists of nondegenerate valence Dirac-Hartree-
Fock orbitals, we first approximate the energy of the attached electron as the lowest eigenvalue of a second-
order effective Hamiltonian. Higher-order correlation corrections are calculated in the linear cluster approxi-
mation. The Breit interaction is also included in the first order. Our results are in good agreement with recent
experiments and show a clear improvement over the second-order Dyson equation. Comparisons with other
many-body calculations are also presented.@S1050-2947~97!00706-3#

PACS number~s!: 31.15.Ar, 31.15.Md, 31.25.Eb, 32.10.Hq
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I. INTRODUCTION

Over the years, negative ions have attracted increa
interest from both the experimental and the theoretical sta
points. Especially, after the review article by Hotop a
Lineberger@1# and the monograph by Massey@2#, substantial
developments in the experimental techniques led to hig
accurate measurements, as well as new predictions, of
eral electron affinities, providing an outstanding challen
for improved theoretical calculations. From more recent
views @3–6#, it becomes clear that substantial theoretical
vestigation is still necessary in order to achieve theoret
values of the same accuracy as the ones quoted by re
experiments.

In the present study, we calculate the electron affinities
systems where an electron is attached outside a closed
shell atom. Our basic motivation stems from recent meas
ments of the electron affinities of Ca2 @7# and Ba2 @8# based
on the combination of laser photodetachment and reson
ionization spectroscopy and where accuracy of order 1%
accomplished. These systems, along with Sr2 @9#, have also
been the subject of considerable theoretical interest for
last ten years@10–26# and several computational techniqu
have been tested to overcome the sensitivity of the res
due to correlation corrections.

From the perspective of many-body theory, studies ha
in principle, been based on the solution of Dyson’s equat
@27,14#, where the proper self-energy is approximated in s
ond order, while higher-order correlation corrections we
selectively included@17,21#. As was shown by Dzubaet al.
@21#, such an approach leads to the proper estimation of
fine-structure splitting but their calculated electron affinit
were in poor agreement with experiment. A systematic inc
sion of higher-order correlations, recently accomplished
Salomonson, Warston, and Lindgren@26#, led to a significant
improvement in the agreement between theory and exp
ment for the electron affinities of Ca2 and Sr2. These cor-
rections were calculated nonrelativistically, while the fin
structure splitting was still obtained from the second-or
Dyson equation.

Our approach is based on relativistic Rayleig
551050-2947/97/55~6!/4143~7!/$10.00
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Schrödinger many-body perturbation theory~RMBPT!,
where correlations beyond second order are evaluated in
linear cluster approximation@28–31#. This method has been
applied to atomic systems such as the alkalis, with one
lence electron outside a closed shell leading to an agreem
with experiment of order less than 0.1%@30,32#. However,
in these systems the valence electron is bound due to
screened Coulomb field of the closed subshell ion, while
the negative ions under consideration the electron is m
more weakly bound due to the polarization potential of t
neutral atom. This difference leads to a more demand
study of correlation corrections in the latter case that can
at first realized by the lowest-order approximation to t
valence-electron energy. In the alkalis, starting from
VN21 Hartree-Fock~HF! model potential of the positively
charged closed core, a fair approximation of the lowest-or
energy of the valence electron can be obtained@33#, creating
an excellent starting point for the subsequent successful
plication of the RMBPT. But in negative ions, starting fro
the VN HF potential of the neutral atom, all the single
particle valence orbitals are unbound, leading to no phys
realization of the attached electron as a single-particle
lence state. In spite of that, we may assume that the w
function for the attached electron can be represented
linear combination of unbound HF valence orbitals that
members of a nondegenerate model space@28,34#. This hy-
pothesis is closely related to the formulation of the quasip
ticle orbital of the attached electron from the second-or
Dyson equation as a superposition of a complete basis s
HF orbitals @14#. By choosing the members of our mod
space to be the dominant components of this quasipar
wave function, we are led to a matrix equation that involv
the effective HamiltonianHeff @29#. After excluding the en-
ergy of the atomic core, the electron affinity can simply
defined as the opposite of the binding energy of the attac
electron and this corresponds to the lowest eigenvalue
Heff. This approach enables us to obtain a first approxima
to theHeff from second-order perturbation theory, which
formally very similar to the self-energy matrix of the secon
order Dyson equation@14#, but of significantly lower dimen-
sion. At this level, the calculated electron affinities from t
4143 © 1997 The American Physical Society
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two methods are very close, but they are essentially a fa
of two different from the most recent experimental valu
Our next step is to take advantage of the low dimension
our model space and to include systematically single-
pair-correlation corrections to all orders. Our final resu
improve the agreement with experiment to the level of 1
for the cases of Ca2, Sr2, and Ba2 and enable us to give a
estimate for a possible positive-electron affinity for the mo
complicated case of Yb2.

II. FORMALISM

Our method is developed using the formal similarities b
tween the case of atoms with one valence electron~for ex-
ample, the alkalis! and the considered negative ions resulti
from the attachment of one electron to a closed subs
atom. The system is described by the relativistic ‘‘no-pa
Hamiltonian@35#

H5H01VI . ~2.1!

In second quantization, the model HamiltonianH0 and the
perturbationVI are written, respectively, as

H05(
i

« iai
†ai , ~2.2!

VI5
1

2(i jkl gi jkl ai
†aj

†alak2(
i j

Ui j ai
†aj , ~2.3!

wherea† anda stand for fermionic creation and annihilatio
operators and« i stands for the positive eigenvalues of t
one-electron Dirac equation

h~r !w i~r !5« iw i~r !, ~2.4!

h~r !5ca•p1~b21!c21V nuc~r !1U~r !. ~2.5!

If N is the number of core electrons, the negative ion
considered as a (N11) electron system and, following Re
@14#, we chooseU(r ) to be theVN HF model potential of the
atomic core, defined as

Ui j5E w i
†~r !U~r !w j~r !d

3r5(
c

~gic jc2gicc j!,

~2.6!

with gi jkl standing for the two-electron matrix element of t
Coulomb interaction

gi jkl5E E d3r 1d
3r 2

r 12
w i
†~r1!w j

†~r2!wk~r1!w l~r2!.

~2.7!

According to the index convention followed, the lette
a,b,c,d correspond to core states;v,w correspond to va-
lence states;m,n,r ,s correspond to virtual states; an
i , j ,k,l correspond to all orbitals.

Our goal is to solve the time-independent many-bo
Schrödinger equation

HuC&5EuC&. ~2.8!
or
.
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For the case of a particle outside a closed shell, we have
following expression of the model-space state vectors@36#:

uFv&5av
†u0c&, ~2.9!

where u0c& denotes the closed subshell ground state of
neutral atom.

In the studies related to atoms with one valence elect
outside a closed core, there is essentially no mixing am
valence states and the model space consists of only one
vector. But in negative ions the wave function of the attach
electron is realized as a linear combination of several
bound orbitals@14#. Therefore, in this case, the solution
the Schro¨dinger equation is obtained by acting with the wa
operatorVv on a linear combination of nondegenerate st
vectors, defined in Eq.~2.9!. This approach was employe
successfully in the case of a nearly degenerate model s
for particle-hole systems@31,37#, but, as it has been show
theoretically by Lindgren@28#, it can also be applied to this
more general case of a nondegenerate model space.

The solution of Eq.~2.9! takes the form

uC&5(
v

CvVvufv& ~2.10!

and, via the correlation operatorxv defined as

Vv511xv , ~2.11!

we transform Eq.~2.9! into an eigenvalue equation

(
v

Hv8,v
eff Cv5ECv8, ~2.12!

where the effective HamiltonianHeff is given by

Hv8,v
eff

5^Fv8uH~11xv!uFv& ~2.13!

and the equation for the correlation operator is

@xv ,H0#uFv&5VI~11xv!uFv&2(
v8

xv8uFv8&

3^Fv8uV~11xv!uFv&. ~2.14!

We approximate the correlation operator up to pair ex
tations, i.e.,

x'(
i j

ai
†ajx j

i1
1

2(i jkl ai
†aj

†alakxkl
i j , ~2.15!

and the correlation correction to the model-space states
fined in Eq.~2.9! becomes

xvuFv&5S (
ma

xa
mam

† aaav
†1 (

mÞv
xv
mam

† 1(
mna

xva
mnam

† an
†aa

1
1

2 (
mnab

xab
mnam

† an
†abaaav

†D u0c&. ~2.16!

This approximation leads to the following system
coupled equations for the correlation coefficients:
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~«a2«m!xa
m5Ra

m , ~2.17!

~«a1«b2«m2«n!xab
mn5Rab

mn , ~2.18!

~«v2«m!xv
m5Rv

m2(
v8

xv8
mRv

v8 , ~2.19!

~«v1«a2«m2«n!xva
mn5Rva

mn2(
v8

xv8a
mnRv

v8 , ~2.20!

whereRj
i andRkl

i j are defined, respectively, as

Rj
i5(

ma
g̃ia jmxa

m2(
mab

gab jmx̃ab
im1(

mna
giamnx̃ ja

mn ,

~2.21!

Rkl
i j 5gi jkl1(

mn
gi jmnxkl

mn1(
ab

gabklxab
i j 1(

m
gi jmlxk

m

2(
a

ga jklxa
i 1(

ma
g̃a jmlx̃ka

im1(
m

gjimkx l
m

2(
a

gailkxa
j 1(

ma
g̃aimkx̃ la

jm , ~2.22!

with tilded terms including the exchange parts of the fo
indexed objects~for example,g̃i jkl5gi jkl2gjilk ).

This formalism leads to the following expression f
Heff:

Hv8v
eff

5«vdv8v1(
abm

gabvmx̃ ab
mv81(

amn
gv8amnx̃ va

mn

1(
ma

g̃v8avmxa
m . ~2.23!

In lowest order,x j
i50 and Eq.~2.23! becomes

Hv8v
eff

5«vdv8v1(
abm

gabvmg̃mv8ab
«a1«b2«v82«m

1(
amn

gv8amng̃mnva

«v1«a2«m2«n
. ~2.24!

This relation reveals the non-Hermitian nature of th
method. Practically, this is only a formal disadvantage, si
there is always the option to forceHeff to be Hermitian@34#
by simply defining

H̄eff5
1

2
@Heff1~Heff!†#. ~2.25!

However, for the cases under consideration, we found
the lowest eigenvalue of this matrix and that of Eq.~2.24!
were different at the level of 1 meV, which lies at the limi
of the numerical accuracy of the present calculation. The
fore, we proceeded with the non-Hermitian expression
Heff. We would also like to mention an improved manifes
Hermitian formalism forHeff, systematically presented b
Lindgren@38#, the realization of which lies beyond the sco
of this work.
r

e

at

e-
r

Even though our formalism is a rather straightforwa
generalization of the method presented in Ref.@30#, its nu-
merical realization is a much more complicated numeri
task, mainly because of the slow convergence of the itera
process and the large basis sets necessary in order to imp
the accuracy of the calculation. Our basis sets for single p
ticle wave functions were created using theB-spline method
@39#, essentially in the same way as in Ref.@14#, but we
found that the choice of a larger cavity radius (60 a.u. inst
of 40! helped converge the iteration process. Simple mod
cations of our code enabled us to test it directly against w
established calculations before applying it for any new
sults. As a first test, we solved the second-order Dyson eq
tion and we found agreement with the corresponding p
lished values of Refs.@14,26#. The next test was to constrai
our method to a single-member model space and derive
results for neutral lithium presented in Ref.@30# and the cor-
responding third-order terms for neutral cesium presente
Ref. @32#.

In the application of the method to negative ions, spec
attention was given to the synthesis of the model space.
criteria were based on the similarity between Eq.~2.24! and
the matrix form of the second-order Dyson equation@14#

(
j

~« id i j1S i j
~2!!cj5«0ci , ~2.26!

where the self-energy matrix elementsS i j
(2) are defined as

S i j
~2!5 (

a,b,m

gab jmg̃miab

«a1«b2«02«m
1 (

a,m,n

giamng̃mn ja

«01«a2«m2«n
~2.27!

and the quasiparticle orbitalc0(r ) of the attached electron
with angular quantum numberk and binding energy«0 is
written as an expansion ofall the HF orbitals with the same
angular quantum number, i.e.,

c0~r !5(
i
ciw i~r !. ~2.28!

As shown in Ref.@14#, a set of 25 states is a sufficient nu
merical realization of this expansion, but still the solution
the second-order equation~2.26! is an expensive numerica
task that results in relatively poor agreement with the m
accurate recent experiments.

In the all-order approach viaHeff, we found that a mode
space consisting of six valence states was sufficient for
second-order equation~2.24! to give a lowest eigenvalue les
than 10% different from the binding energy«0 of the quasi-
particle wave function obtained from Eq.~2.26!. From the
similarity of these two equations it is obvious that the
states have to be chosen to be the valence HF orbitals
dominate in the expansion~2.28!. So, technically, we used
the second-order Dyson equation as the first step in our
proximation. By raising the dimension of the model spa
we found that the new mixing coefficientsCv of Eq. ~2.10!
were of magnitude,0.1, which was our cutoff criterion
similarly to Ref.@40#. For example, in the case of Ca2, our
model space consists of sixnp1/2 valence states withn rang-
ing from 4 to 9. The validity of this argument is shown in th
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following table, where the six dominant amplitudesci of the
4p1/2 Ca

2 quasiparticle orbital derived from Eq.~2.26! are
compared to the coefficientsCv resulting from the solution
of Eq. ~2.12!. The corresponding values agree at the leve
1%, while the coefficientsci account for 99.5% of the uni
norm of the quasiparticle orbital.

n ci Cv

4 0.385833 0.393995
5 -0.598645 -0.605019
6 -0.556163 -0.557406
7 0.345933 0.343157
8 -0.197454 -0.193125
9 -0.118553 -0.113864

In the summations over core orbitals, we included a c
tain number of outer shells. These define our active core
performing separate second-order calculations, including
core orbitals, we found that the missing inner-core corre
tions were less than 5% of the calculated electron affinit
similarly to Ref.@26#. To go beyond second order, we iter
tively solved Eqs.~2.17!–~2.20!. After every iteration, the
new correlation coefficients were used to calculate the n
Heff matrix from Eq.~2.23!. The electron affinity is defined
as the opposite of the lowest eigenvalue of this matrix. T
solution of Eqs.~2.17!–~2.20! involves differences betwee
core and valence orbitals. For the orbitals of the outerm
core shell, these differences are small and lead to slow c
vergence of our method, since they are involved as deno
nators in our iteration scheme. In order to speed up the it
tion process, certain truncations were necessary. For
angular quantum numberk561,62, . . . ,611, we created
40 basis states, but we used 30 of them for the correla
corrections beyond second order. In addition, certain cu
criteria were also applied to the magnitude of the pair co
lation coefficients. The numerical realization of this meth
was a very big computational task and was performed on
two alpha stations available in our group. After the trunc
tions, the time for every iteration ranged from 24 h of CP
time for the case of Ca2 to 48 h for Ba2 and
Sr2 and 72 h for Yb2. Convergence is an important conce
in problems of this type @41,42#. For the cases o
Sr2, Ba2, and Yb2, the large cost in computational tim
forced us to terminate the iteration process when the dif
ence in the lowest eigenvalue ofHeff between two successiv
iterations was less than 0.1 meV. Usually, ten iterations w
needed to achieve this level of numerical precision. But
the computationally less demanding case of Ca2, we were
able to test convergence using the criterion suggested by
kano and Obara@42#, which is based on the logarithm of th
norm of thenth-order (Heff

(n)) contribution to theHeff matrix.
This is taken as the difference between the resultingHeff

aftern21 andn iterations and is defined as

iHeff
~n!i5S (

v8v
u~Heff

~n!!v8vu
2D 1/2. ~2.29!

In Fig. 1 the logarithm ofHeff
(n) is presented up to twentiet

order of perturbation for the 4p1/2 state of Ca
2, while in Fig.
f
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2 the corresponding convergence pattern of the electron
finity is shown. At the point where the iteration process w
terminated, the value of the logarithm of this norm w
around 24.5, which corresponded to less than a 0.05
change in the value of the electron affinity between succ
sive iterations.

The Breit interaction can be introduced as a perturbat
of the form

VB5
1

2(i jkl bi jkl ai
†aj

†alak, ~2.30!

where bi jkl is the two-particle matrix element of instanta
neous Breit operatorb(r12),

b~r12!52
1

2r 12
@a1•a21a1• r̂12a2• r̂12#. ~2.31!

Using the expansion coefficientsCv from Eq.~2.12!, we can
estimate the lowest-order Breit correction

B~1!5(
vv8

CvCv8^Fv8uVBuFv&, ~2.32!

FIG. 1. The logarithm of ten of the norm of thenth-order con-
tribution (Heff

(n)) to the effective Hamiltonian, in atomic units, fo
the 4p1/2 state of Ca2.

FIG. 2. The convergence pattern for the electron affinity of
4p1/2 state of Ca

2, derived from the diagonalization of the iterate
Heff.
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TABLE I. Calculated electron affinities from second-order Dyson equationEDyson
(2) , second-orderHeff

E(2), and all-orderHeff E(pair), along with the lowest-order BreitB(1) for Ca2, Sr2, Ba2, and Yb2, in
comparison with most recent experiments.E(tot)5 E(pair)1 B(1). The active core is given in parenthese
Units: meV.

State EDyson
(2) E(2) E(pair) B(1) E(tot) Expt.

Ca2(3s23p64s2)
4p1/2 57.8 56.2 22.8 -0.4 22.4 24.55~10! a

4p3/2 51.4 50.2 18.4 -0.3 18.1 19.73~10! a

Sr2(3d104s24p65s2)
5p1/2 101.7 98.8 48.8 -0.9 47.9 48~6! b

5p3/2 77.1 74.2 37.4 -0.6 36.8

Ba2(4d105s25p66s2)
6p1/2 204.7 200.6 147.0 -1.7 145.3 144.62~6! c

6p3/2 141.3 136.6 97.3 -1.1 96.2 89.60~6! c

Yb2(4d105s25p64 f 146s2)
6p1/2 45.0 48.4 '0 .10d

aReference@7#.
bReference@9#.
cReference@8#.
dReference@43#.
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or, with the help of relations~2.29! and ~2.9!,

B~1!5 (
cvv8

CvCv8b̃cvcv8. ~2.33!

The contribution of this correction was found at the 1% le
of the calculated electron affinities from the CoulombHeff.

III. RESULTS

The first step toward numerical realization of our meth
was to solve the second-order Dyson equation~2.26!. In ad-
dition to the importance of this calculation as the criteri
for the formulation of our model space, we were also enab
in this way to set a common background for comparison w
other many-body calculations. The resulting electron affi
ties from this approach are listed asEDyson

(2) in the second
column of Table I. In the first column of this table, we d
note the states for the attached electron using the vale
orbital with the smallest principle quantum number of tho
six that form the model space. For example, the ‘‘4p1/2’’
state of Ca2 is essentially a superposition o
4p1/2,5p1/2, . . . ,9p1/2 valence states. In the third column o
Table I, we present the electron affinitiesE(2), calculated
from the diagonalization of the second-orderHeff ~2.24!.
Since the model space includes the orbitals that dominat
the expansion~2.28!, these values differ less than 10% fro
EDyson
(2) . In comparison to the most recent experimental val

for the cases of Ca2, Sr2, and Ba2 listed in the last column
of this table, we see that the second-order calculations o
estimate the electron affinities by around 70% for Ba2 and
100% for Ca2 and Sr2, while the agreement for the fin
structure is better and at the error level of 20% for Ba2 and
Ca2 and 10% for Sr2. The experimental values that hav
l

d
h
i-

ce
e

in

s

r-

been chosen for comparison have explicitly measured
fine-structure splitting. A review of the experimental statu
as well as most of the theoretical calculations, is presente
Ref. @25#. In the fourth column of Table I we present th
calculated electron affinitiesE(pair) in the pair approximation.
We see that these values are consistently much close
experiment. The inclusion of the lowest-order BreitB(1) in
column five reducesE(pair) around 1% and their sum is liste
asE(tot) in column six of Table I. The negative sign ofB(1) is
with respect to the electron affinity, which, as we mention
is simply the opposite of the binding energy. For the case
Ca2, the agreement is improved to the level of 10% error
both 4p1/2 and 4p3/2 states. The same agreement is acco
plished for the 6p1/2 and 6p3/2 states of Ba

2, along with the
5p1/2 state of Sr2. For the 5p3/2 state of Sr2, our value of
36.8 meV leads to a fine-structure splitting of 11.1 meV th
lies outside the experimental value of 26~8! meV given by
Berkovitset al. @9#. Our good agreement with all the othe
five cases in connection to the relatively large experimen
error of this measurement, might pose a motivation for f
ther experimental investigation of this system.

For the Yb2, we have a case that tests the validity
higher-order correlation corrections in the prediction of n
electron affinities. As we can see from Table I, the seco
order resultsEDyson

(2) andE(2) predict a positive electron af
finity of 45 meV. This value is in agreement with the es
mate of 54627 meV from the density-functional calculatio
of Vosko, Chevary, and Mayer@22# and is approximately
half the value of 98.5 meV from many-body nonrelativist
calculation of Gribakina, Gribakin, and Ivanov@18#. In the
latter case the active core included only the 6s2 outer shell,
while in our case the active core included all five outer su
shells. But after including higher-order correlation corre
tions, the system became unbound. Because of the l
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TABLE II. Comparison of the electron affinities and the corresponding fine-structure splittingsDEfs for
Ca2, Sr2, and Ba2 with other many-body calculations. Units: meV.

Ca2 Sr2 Ba2

4p1/2 4p3/2 DEfs 5p1/2 5p3/2 DEfs 6p1/2 6p3/2 DEfs

this work 22 18 4.3 48 37 11.1 145 96 49.1
Salomonsonet al. a 19 13 6.2 54 29 25
Johnsonet al.b 57 93 192
Dzubaet al. c 56 49 6.9 102 80 22 57
Gribakinet al. d 58 129 144
experiment 24.55~10! e 19.73~10! e 4.8e 48~6! f 26~8! f 144.62~6! g 89.60~6! g 55.02~9! g

aReference@26#.
bReference@14#.
cReference@21#.
dReference@17#.
eReference@7#.
fReference@9#.
gReference@8#.
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amount of computational time needed in this case,
stopped our process one iteration after the system was fo
unbound. At that point, it was unbound at the level of 2 me
Considering the numerical constraints that we posed in o
to carry out this calculation and according to the consiste
of our results for the previous experimentally well esta
lished cases, we claim that if Yb2 is bound, its electron
affinity must be very close to the lowest possible observa
threshold of 10 meV posed by the only experimental work
which this negative ion was detected@43#.

In Table II, we present our results in comparison w
otherab initiomany-body calculations. Here, because of
numerical constraints, as well as the missing correlation c
rections starting from triple excitations, the values for t
calculated electron affinities were truncated at the level o
meV, while for the less-sensitive-to-correlation fine-structu
splitting, one more significant figure was kept. The relativ
tic calculation of Johnson, Sapirstein, and Blundell@14# cor-
responds to the solution of the second-order Dyson equa
~2.26!. Therefore, their values can be directly compared
our EDyson

(2) of Table I. The small difference of 1 meV fo
Ca2 can be attributed to the slightly different basis se
while the differences for Sr2 and Ba2 occur because of the
inclusion of an extra subshell in our active core. In the no
relativistic calculation of Gribakinet al. @17#, based also on
the second-order Dyson equation, part of the valence st
involved in the intermediate summations were created in
field of the atomic core with a hole in the outer shell. Th
difference in the model potential led to a different estimat
of order-by-order correlation effects. However, the inclus
of selected third-order contributions brought their estimat
to the level of the second-order relativistic Dyson equat
using the HF model potential of the closed core. We n
that this calculation does not distinguish betweennp1/2 and
np3/2 levels and therefore can be compared only qualitativ
with relativistic calculations, as well as experiments. T
posting of their results under thenp1/2 columns is only a
matter of presentation. A similar idea by Dzubaet al. @21# of
using virtual excited states, relativistically this time, in
core-hole potential along with a certain class of effects
yond the second order, also gave results close toEDyson

(2) .
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The most critical comparison of our method is with r
spect to the recent work of Salomonson, Warston, a
Lindgren @26# for the cases of Ca2 and Sr2. In their calcu-
lation, the correlation corrections beyond second order w
also evaluated in a systematic way similar to ours, but n
relativistically. The relativistic corrections were include
from the difference of a second-order Dyson equation p
formed both relativistically and nonrelativistically. Since w
considered the same active core, their fine-structure splitt
agree precisely with the differences between the val
EDyson
(2) of thep1/2,3/2 states listed in Table I. The good agre

ment between the two calculations shows that the intrin
cally relativistic nature of our method in these cases comp
sates for the missing correlation corrections, due to a cer
class of triple excitations that they included.

In conclusion, by performing a fully relativistic calcula
tion, we were able to achieve excellent agreement with
most accurate recent measurements for the electron affin
of Ca2, Ba2, and Sr2. Our method was based on the fo
mulation of an optimum nondegenerate model space, c
bined with a systematic inclusion of correlation correctio
beyond second order that had been successfully tested fo
similar but relatively simpler case of the alkalis. The cons
tency of our results and the good agreement with the m
complete, but nonrelativistic beyond-second-order calcu
tion by Salomonson, Warston, and Lindgren@26#, lead us to
suggest a new measurement for the 5p3/2 for Sr2. For
Yb2, higher-order correlations led to a slightly unbound sy
tem, but the approximations that we made to make the tr
ment of the system computationally manageable do not
clude the possibility of an electron affinity around 10 me
In this case, further theoretical, as well as experimental,
vestigation is necessary.
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