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Quantum code words contradict local realism
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Quantum code words are highly entangled combinations of two-state systems. The standard assumptions of
local realism lead to logical contradictions similar to those found by Bell, Kochen, and Specker, Greenberger,
Horne and Zeilinger, and Mermin. The new contradictions have some noteworthy features that did not appear
in the older ones.@S1050-2947~97!00306-5#

PACS number~s!: 03.65.Bz, 89.80.1h, 89.70.1c
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Quantum code words are highly entangled combinati
of two-state quantum systems~qubits!. They are structured in
such a way that if one~or sometimes more! of the qubits is
perturbed, there remains enough quantum information
coded in the remaining qubits for restoring the original co
word unambiguously@1–4#. In this article, we investigate
some properties of the five-qubit code words invented
Bennettet al. @5# ~which are equivalent, up to a change
bases of the individual qubits, to the five-qubit code words
Laflammeet al. @2#!. The logical 0 is represented by th
quantum state

u0L&5
1

4
@2 u00000&2 u11000&2u01100&2u00110&

2u00011&2u10001&1 u10010&1u10100&1u01001&

1u01010&1u00101&1 u11110&1u11101&

1u11011&1u10111&1u01111&], ~1!

where, e.g.,u10010& means u1& ^ u0& ^ u0& ^ u1& ^ u0&, and
u0& andu1& are any two orthogonal states of a physical qub
The logical 1, denoted byu1L&, is obtained by exchanging a
the u0& and u1& in u0L&. These two code words have th
useful property of being invariant under cyclic permutatio
of the physical qubits. This greatly simplifies the calculatio
below.

Let sx , sy , andsz be the standard Pauli spin matrice
andsu denote the unit matrix~the latter will also be denoted
by the symbol 1, with no risk of error!. It is convenient to
introduce the notation

sabcde[s1as2bs3cs4ds5e[sa^ sb^ sc^ sd^ se ,
~2!

where the indicesabcdemay be any combination ofu, x,
y, and z. It is then readily verified thatu0L& and u1L& are
eigenvectors, with eigenvalue 1, of the 32 following ope
tors:suuuuu, 6szzzzz, and
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sxzuzx, syxuxy, szyuyz, 7suxzxu,

7syuzuy, 6sxyzyx, ~3!

and their cyclic permutations. The upper and lower sig
refer to u0L& and u1L&, respectively,~this convention will be
followed throughout this article!. These 32 operators~with
either choice of sign! form an Abelian group; those that ar
unsigned in Eq.~3! form an invariant subgroup. The exis
tence of such a group associated with this type of quan
error correction codes seems to be quite general. A gro
theoretic framework for codes has been extensively de
oped by Gottesman@6# and by Calderbanket al. @7#.

It is well known that, for any entangled state, it is possib
to find operators whose correlations violate Bell’s inequa
@8,9#. However the code word~1! leads to a stronger type o
violation, without inequalities@10,11#. In this paper, it will
be shown that the code word~1! and its associated operato
~3! yield a rich crop of ‘‘quantum paradoxes.’’ It appears th
these paradoxical properties are inherent to all code word
quantum error correcting codes. In particular, this is ob
ously true of the nine-qubit code words of Shor@1#, since the
latter are built from triads of Mermin states@11#.

It should be noted that the Mermin states,

~ u000&6u111&)/A2, ~4!

can be used as code words, for correcting a ‘‘bit erro
(0↔1) in any one of the three qubits~but no other type of
error!. These states are eigenvectors, with eigenvalue11, of
an eight-element Abelian group

suuu , 7sxyy , 7syxy , 7syyx ,

6sxxx , szzu, szuz, suzz. ~5!

To obtain quantum paradoxes for the five-qubit code~1!, we
note first that for each qubit, each one ofsx , sy , andsz is
an ‘‘element of reality,’’ as defined by Einstein, Podolsk
and Rosen@12#. This is so because the observable value
any one of these operators can be ascertained by meas
only otherqubits, ‘‘without disturbing in any way’’@12# the
element of reality under consideration. For example, if
have prepared the five qubits in the stateu0L&, the result
of a measurement ofs1x can be predicted with certainty b
In-
4089 © 1997 The American Physical Society



t
-
its

t

Eq

in

ul
p
m

to

t
.
n
n
ds
ts

o

ta

nu

si

o
is
ie
su
u

the

is
ice,

efs.

er
y

ally
uar-

t

4090 55DAVID P. DiVINCENZO AND ASHER PERES
measuring s2z and s3x , because we know tha
s1xs2zs3xu0L&52u0L&. That result will, henceforth, be de
noted byv(s1x). Note that only the second and third qub
have to be measured in order to determinev(s1x) ~it is not
necessary to measure the fourth and fifth ones!. Other ways
of determiningv(s1x) without interacting with the first qubi
are to measures4xs5z , or s3xs4ys5y , or s2xs3ys4zs5y ,
or s2xs3zs5z , or s2ys3ys4x , or s2ys3zs4ys5x , or
s2zs4zs5x , as may be seen from the various operators in
~3! and their cyclic permutations.

There are, therefore, eight different ways of determin
v(s1x) by means of measurements performed on theother
qubits. However, these measurements cannot all be sim
neously carried out, if each one of the qubits is tested se
rately, because they involve mutually incompatible, nonco
muting one-particle operators~although the eightproductsof
operators do commute, however, because their commuta
always involve an even number of anticommutations!. The
notion of ‘‘element of reality’’ tacitly implies that these eigh
different determinations ofv(s1x) agree with each other
This may be intuitively obvious. However, classical intuitio
is a notoriously bad guide in the quantum world. There is
way of experimentally verifying that the eight metho
agree.~At most, it is possible to verify that for some subse
of these operators, for example,s2zs3x ands4xs5z can be
tested simultaneously. There are only five such pairs am
the eight operator products listed above.! The assumption
that all eight ways of determiningv(s1x) necessarily agree
is manifestly counterfactual. It is an example of the me
physical hypothesis known aslocal realism. This hypothesis
is incompatible with quantum mechanics, and leads to
merous contradictions, as will now be shown.

As one example, among many, consider the following
operators:6s1zs2zs3zs4zs5z , and7s1xs2zs3x and cyclic
permutations of the five qubits. If we measure the values
these six operators for one of the code words, the result
with certainty. If the qubits are widely separated, the eas
way of measuring any one of these operators is to mea
separately the physical qubits involved in it, and then to m
ea
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a
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tiply the results. It is therefore tempting to assume that
values of the spin components ofindividual qubits also sat-
isfy

v~s1z! v~s2z! v~s3z! v~s4z! v~s5z!561 ~6!

and

v~s1x! v~s2z! v~s3x!571, ~7!

and all cyclic permutations of Eq.~7!. There are six equali-
ties written above. The product of their right-hand sides
21. But on the left-hand side each symbol appears tw
and therefore, the product of the left-hand sides is11. We
have reached a contradiction, of the same type as in R
@10# and @11#. It is graphically illustrated in Fig. 1.

It is also possible to obtain a Bell-Kochen-Speck
@13,14# type of contradiction, which does not refer to an
particular quantum state, such as Eq.~1!. Consider the fol-
lowing array of operators:

FIG. 1. Each side of the pentagon corresponds to three mutu
compatible measurements. The product of the three results is g
anteed to have value71, for u0L& andu1L&, respectively. Moreover,
the product of the fivesz has to be61. There is no consistent se
of values for the 12 operators.
s1z s2z s3z s4z s5z 1 1 1 1 1 s1zs2zs3zs4zs5z

s1z 1 1 1 1 1 s2x 1 1 s5x s5xs1zs2x

1 s2z 1 1 1 s1x 1 s3x 1 1 s1xs2zs3x

1 1 s3z 1 1 1 s2x 1 s4x 1 s2xs3zs4x

1 1 1 s4z 1 1 1 s3x 1 s5x s3xs4zs5x

1 1 1 1 s5z s1x 1 1 s4x 1 s4xs5zs1x

~8!
nite
a-
ctu-
e

o-
inal
sets
All the operators in that array have eigenvalues61, and,
therefore, each one will yield one of these values, if m
sured in the standard way. Moreover, all the operators
each row commute, and their product is 1. Therefore, if
the operators on one of the rows are actually measured
product of the resulting values is 1. Likewise, all the ope
tors in each column commute, and their product is 1,except
those of the last column, whose product is21. It is therefore
-
n
ll
he
-

clearly impossible to associate to each operator a defi
value61, that is unknown but would be revealed by a me
surement of that operator, if such a measurement were a
ally performed. This is the multiplicative form of th
Kochen-Specker contradiction@15,16#.

The original, additive form of the Kochen-Specker the
rem can also be obtained from the above array. In its orig
formulation, that theorem asserted that there exist finite
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of projection operators, such that it is impossible to attrib
to each one of the operators a bit value, ‘‘true’’ or ‘‘false
subject to the two following constraints:

~i! ~KS1! two orthogonal projection operators cannot bo
be true.

~ii ! ~KS2! if a subset of orthogonal projection operators
complete~i.e., it has a sum equal to the unit operator!, one of
these projection operators is true.

In the physical interpretation of the Kochen-Specker th
rem, orthogonal projectors correspond to mutually comp
ible quantum measurements, whose results are arbitraril
beled 1 and 0, or ‘‘yes’’ and ‘‘no.’’ The theorem asserts th
there exist sets ofn yes-no questions, such that none of t
2n possible answers is compatible with the sum rules
quantum mechanics. This implies that there can be no s
quantum physics, with hidden variables that would ascr
definite outcomes to then yes-no tests~provided that the
hidden variables are not ‘‘contextual,’’ namely, that the a
swer to each question is unique, and does not depend o
choice of other questions being asked!.

A set of Kochen-Specker projectors can now be obtai
from the above array of operators as follows.

~a! There is one complete set of eigenvectors that
common to all the operators in the first row: it is the ‘‘cla
sical’’ basisu00000&, u00001&, . . . , u11111&. The 32 projec-
tors on these vectors form a complete orthogonal set.

~b! There is one complete set of eigenvectors that
common to all the operators in the last column of the arr
These are the codewordsu0L& andu1L&, and the 15 mutations
of each one of them, obtained by letting one of the Pa
matrices act on one of the physical qubits. The 32 projec
on these orthonormal vectors form another complete
Each one is moreover orthogonal to 16 vectors of the ‘‘cl
sical’’ basis, and vice versa.

~c! Each one of the five other rows in array~8! generates
eight mutually orthogonal four-dimensional subspaces,
form a complete set. For example, the subspaces that c
spond to the third row are the tensor products of the eig
vectors ofs1x , s2z , s3x , and the complete subspaces of t
two other qubits. The products of the three eigenvectors

1
2 ~ u0&6u1&)^ ~ u0& or u1&)^ ~ u0&6u1&), ~9!

or

1
2 ~ u000&1n u001&1m u100&1mn u101&) for ^s2z&51,

~10!
1
2 ~ u010&1n u011&1m u110&1mn u111&) for ^s2z&521,

where m5^s1x& and n5^s3x&. The eight corresponding
projection operators thus are

1
4 ~ u000&1nu001&1mu100&1mnu101&)

3~^000u1n^001u1m^100u1mn̂ 101u! ^1^1, ~11!
ys
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1
4 ~ u010&1nu011&1mu110&1mnu111&)

3~^010u1n^011u1m^110u1mn̂ 111u! ^1^1, ~12!

respectively. There are, therefore, 40 projectors of rank
They satisfy many mutual orthogonality relations, for e
ample, any projector witĥs1x&51 in the third row of array
~8! is orthogonal to any projector witĥs1x&521 in the
sixth row.

Moreover, any rank 4 projector is orthogonal to many
the 64 projectors of rank 1, listed above. For example, all
projectors in Eq.~12!, for anym andn, are orthogonal to all
the ‘‘classical’’ vectorsua0cde&. All the projectors in Eq.
~12! with m5n ~so that^s1xs2zs3x&521) are orthogonal
to u1L& and to all its mutations of types4ds5eu1L&, and to
some others. They are also orthogonal to the various m
tions of u0L&, generated bys1y , s1z , s2x , s2y , s3y ,
s3z , or any odd number of the latter.~Not all these vectors
are distinct, however.!

These numerous orthogonality relations have as a co
quence that the constraints KS1 and KS2 cannot both
satisfied: there is no way of assigning to all these project
operators numerical values 1~‘‘true’’ ! and 0~‘‘false’’ !, that
are compatible with all the orthogonality and completen
relations. The easiest way to see that is to note that if
were possible, all the operators in array~8! would acquire
definite values, and we have already seen that this is imp
sible. The novel features in this Kochen-Specker contrad
tion is that projectors of rank 4 are used, and that the to
number of projectors involved is remarkably low, when co
pared to the number of dimensions: 104/3253.25, while a
similar construction in four dimensions requires 24 vect
@17#, and in eight dimensions, 40 vectors are involved@18#.

We have likewise investigated the seven-qubit co
words of Steane@3#. They are simultaneous eigenvectors
128 matrices of order 128, which are direct products of th
to seven Pauli matrices, and form an Abelian group. Th
are subsets of ten group elements with properties simila
those listed in Eqs.~6! and ~7!: each Pauli matrix corre-
sponds to a local ‘‘element of reality,’’ because the result
its measurement can be predicted with certainty by exam
ing only other qubits. However, if it is assumed, in acco
dance with local realism, that each one of the local Pa
matrices is associated with a definite numerical value,61,
an algebraic contradiction appears.
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