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Inverting a time-dependent harmonic oscillator potential by a unitary transformation
and a class of exactly solvable oscillators

Ali Mostafazadeh*
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~Received 2 December 1996; revised manuscript received 24 January 1997!

A time-dependent unitary~canonical! transformation is found that maps the Hamiltonian for a harmonic
oscillator with time-dependent real mass and real frequency to that of a generalized harmonic oscillator with
time-dependent real mass and imaginary frequency. The latter may be reduced to an ordinary harmonic
oscillator by means of another unitary~canonical! transformation. A simple analysis of the resulting system
leads to the identification of a previously unknown class of exactly solvable time-dependent oscillators. Fur-
thermore, it is shown how one can apply these results to establish a canonical equivalence between some real
and imaginary frequency oscillators. In particular it is shown that a harmonic oscillator whose frequency is
constant and whose mass grows linearly in time is canonically equivalent with an oscillator whose frequency
changes from being real to imaginary and vice versa repeatedly.@S1050-2947~97!07205-3#

PACS number~s!: 03.65.Bz, 03.65.Ge, 03.65.Nk
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The solution of the Schro¨dinger equation,Hc5 i ċ, for a
harmonic oscillator with time-dependent massm and fre-
quencyv, i.e.,

H~ t !5
1

2m~ t !
p21

m~ t !v2~ t !

2
x2, ~1!

has been the subject of continuous investigation since
late 1940’s,@1–4#. The main reason for the interest in th
problem is its wide range of application in the description
physical systems. Although by now there exist dozens
articles on the subject, a closed analytic expression for
time-evolution operator is still missing. Recently, Ji and K
@4# showed that using the Lewis-Riesenfeld method@2# one
can construct an invariant operator in terms of the~two in-
dependent! solutions of the classical dynamical equations

d

dt Fm~ t !
d

dt
xc~ t !G1m~ t !v2~ t !xc~ t !50, ~2!

and therefore reduce the solution of the Schro¨dinger equation
to that of Eq.~2!, for v(t),m(t)PR.1 The case where the
frequencyv is imaginary has been considered only in t
time-independent case@5#.

The purpose of this paper is to study the implications
the recently developed method of adiabatic unitary trans
mation of the Hilbert space@6# for this problem. The basic
idea of this method is to use the inverse of the adiabatic
approximate time-evolution operator to transform to a m
ing frame. This transformation has proven to lead to so
interesting results for the system consisting of a magn
dipole in a changing magnetic field. The analogy betwe
the dipole system and the time-dependent harmonic osc

*Electronic address: alimos@phys.ualberta.ca
1Note that the casem50 is a singularity of the problem. The

results of this article are only valid for the cases where the m
does not vanish. These can, however, be treated in the lim
sensem→0. In other words, I shall only consider time period
during which the mass is nonzero but can be arbitrarily small.
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tor is best described in terms of the relation between th
dynamical groups, namely, SU(2) and SU(1,1)@7#.

Let us first concentrate on the real frequency ca
v(t)PR. Then the Hamiltonian~1! and its eigenvectors
un;t& can be expressed in terms of the creation (a†) and
annihilation (a) operators, namely,

H~ t !5v~ t !@a†~ t !a~ t !11/2#, ~3!

un;t&5
1

An!
a†n~ t !u0;t&, ~4!

where

a~ t !:5
1

&
~ek~ t !x1 ie2k~ t !p!,

k~ t !:5 1
2 ln@m~ t !v~ t !#, ~5!

and u0;t& corresponds to the ground state at timet, i.e.,
a(t)u0;t&50.2 Similarly to the time-independent case the e
genvalue equation

H~ t !un;t&5En~ t !un;t& ~6!

is satisfied forEn(t)5En„v(t)…5v(t)(n11/2). Therefore
the eigenvalues are nondegenerate and the adiabatically
proximate time-evolution operator@6# may be expressed as

U0~ t !:5(
n

eian~ t !un;t&^n;0u, ~7!

where

an~ t !:5dn~ t !1gn~ t !, dn~ t !:52E
0

t

En~ t8!dt8,

gn~ t !:5 i E
0

t

Ann~ t8!dt8, ~8!

ss
g
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55 4085INVERTING A TIME-DEPENDENT HARMONIC . . .
Amn~ t !:5 Km;tU d

dt Un;t L . ~9!

Following the ideas developed in Ref.@6#, let us next use
U0

21(t)5U0
†(t) to perform a unitary transformation of th

Hilbert space. Recall that under a general unitary transfor
tion uc(t)&→uc8(t)&5U(t)uc(t)&, the HamiltonianH and
the corresponding time-evolution operator transform acco
ing to

H~ t !→H8~ t !5U~ t !H~ t !U†~ t !2 iU~ t !U̇†~ t !, ~10!

U~ t !→U8~ t !5U~ t !U~ t !U†~0!. ~11!

These equations are obtained by demanding that the
evolution in the transformed frame is governed by the Sch¨-
dinger equation corresponding to the transformed Ham
tonianH8. Note that unlike other observables that transfo
linearly, i.e.,O→U(t)OU†(t), the Hamiltonian undergoes a
affine transformation. In particular, its spectrum genera
changes if the transformation is time dependent.

SubstitutingU0
† for U in ~10!, one can show@6# that

H8~ t !52 i (
nÞm

e2 i [am~ t !2an~ t !]Amn~ t !um;0&^n;0u. ~12!

In order to express the transformed HamiltonianH8 in a
closed form, one must first computeAmn . This can be done
directly by substituting Eq.~4! in ~9! or indirectly using the
identity

Amn~ t !5
^m;tu @dH~ t !/dt# un;t&

En~ t !2Em~ t !
for mÞn,

which is obtained by differentiating both sides of Eq.~6! and
making use of the orthonormality ofun;t&. The latter method
turns out to be much simpler. It yields

Amn~ t !5
k̇~ t !

2
@An~n21!dm,n222Am~m21!dm22,n#.

~13!

Here use is made of the well-known relations

a~ t !un;t&5Anun21;t&, a†~ t !un;t&5An11un11;t&,

ȧ~ t !5k̇~ t !a†~ t !. ~14!

Note that Eq.~13! is also valid form5n since due to the fac
that un;t& can be chosen to be real,Ann(t)50. In particular
gn(t)50. Hence,an(t)5dn(t)5(n11/2)d(t), where

d~ t !:52E
0

t

v~t!dt. ~15!

Substituting the expressions foran andAmn in Eq. ~12! and
performing the summation overm, one finds

H8~ t !5
2 i k̇~ t !

2 (
n

@An~n21!e2id~ t !un22;0&^n;0u

2A~n11!~n12!e22id~ t !un12;0&^n;0u#
a-

-

e

l-

y

5
2 i k̇~ t !

2
@e2id~ t !a2~0!2e22id~ t !a†2~0!#

5
k̇~ t !

2
$sin@2d~ t !#~e22k~0!p22e2k~0!x2!

1cos@2d~ t !#~xp1px!%. ~16!

Next consider the Schro¨dinger equation in the transforme
frame:H8(t)uc8(t)&5 i uċ8(t)&. The presence of a total de
rivative k̇ on the right-hand side of Eq.~16!, suggests a
redefinition of the time t→t8:5k(t). Note that for
k̇(t)50, i.e.,v(t)5c/m(t) for some constantcPR, H8(t)
vanishes identically and the adiabatic approximation is ex
Furthermore, fork̇,0, one can consider the time-revers
system for whichk̇.0. The time-evolution operator for th
original system is obtained from that of the time-revers
system by inversion. Therefore, without loss of general
one can assumek̇(t).0.3 The latter allows for the above
mentioned redefinition of timet→t8. This leads to the
Schrödinger equation h(t8)uc8(t8)&5 i uċ8(t8)& for the
Hamiltonian

h~ t8!:5 1
2 $sin@2d̃~ t8!#~e22k0p22e2k0x2!

1cos@2d̃~ t8!#~xp1px!%,

5
1

2m8~ t8!
p21

m8~ t8!v82~ t8!

2
x2

1 1
2 b~ t8!~xp1px!, ~17!

where

d̃~ t8!:5d„t~ t8!…, k0 :5k~0!,

m8~ t8!:5
e2k0

sin@2d̃~ t8!#
, v8~ t8!:5 isin@2d̃~ t8!#, ~18!

b~ t8!:5cos@2d̃~ t8!#5A11v82~ t8!. ~19!

Hence, the transformed Hamiltonian is a generalized h
monic oscillator@7#:

h~ t8!5 1
2 @a~ t8!p21b~ t8!~xp1px!1g~ t8!x2#,

~20!

a~ t8!:51/m8~ t8!, g~ t8!:5m8~ t8!v82~ t8!

with a real massm8(t8) and an imaginary frequenc
v8(t8)5 ie2k0/m8(t8). Note that as a result of the adiabat

2Note that in the expression fora and in what follows only
exp(k) and the time derivative ofk appear. These are well-define
functions even ifk itself happens to be ill defined.
3In general,k̇ can change sign. In this case, one must divide

time axis into the intervals during whichk̇ has definite sign or is
zero. During the intervals wherek̇50, the adiabatic approximation
yields the exact time-evolution operator. For the intervals dur
which k̇.0 the above results apply directly. For the intervals whe
k̇,0, one can use the results obtained for the time-reversed sys
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unitary transformation and redefinition of time, the two ar
trary functionsm(t) andv(t) have been reduced to a sing
function, namely,d̃(t8).

It is well known that one can transform the generaliz
harmonic oscillator to an ordinary harmonic oscillator by t
time-dependent canonical transformation@7#

x→x, p→p1Fb~ t8!

a~ t8!G x. ~21!

This leads to the Hamiltonian

h8~ t8!5
1

2 H a~ t8!p21Fg~ t8!2
b2~ t8!

a~ t8!
2

d

dt8 S b~ t8!

a~ t8! D Gx2J
5

1

2m8~ t8!
p21

m8~ t8!V82~ t8!

2
x2, ~22!

where

V8~ t8!:5A211
2

sin@2d̃~ t8!#

dd̃~ t8!

dt8
. ~23!

Note thatV8 can be real or imaginary depending on the fo
of d̃(t8). Clearly forV850, the problem reduces to a fre
particle with a variable mass whose solution can be gi
exactly. In terms of the original functions, the conditio
V850 is expressed as

m~ t !5F m0

v~ t !G tan2 E0tv~t!dt, ~24!

wherem0 is a real constant.
Equation~24! determines a new class of exactly solvab

cases that is the analog of the exactly solvable magnetic
pole Hamiltonians obtained in@6#. The only difference is tha
here an additional canonical transformation~21! is also per-
formed. It is not difficult to see that this transformation co
responds to the action of the unitary opera
U8(t8):5exp@ib(t8)x2/2a(t8)# on the Hilbert space. In fact
the Hamiltonianh8 can be obtained fromh by substituting
h for H andU8 for U in Eq. ~10!. Similarly in view of Eq.
~11!, one has the following relation between the evoluti
operators:

u~ t8!5e2 i @b~ t8!/2a~ t8!# x2u8~ t8!ei @b~k0!/2a~k0!# x2, ~25!

whereu(t8) and u8(t8) are the evolution operators for th
Hamiltoniansh(t8) and h8(t8), respectively. A further ap-
plication of Eq.~11! leads to the expression

U~ t !5U0~ t !u„t8~ t !… ~26!

for the time-evolution operator associated with the origi
Hamiltonian~1!. HereU0(t) is the adiabatically approximat
expression for the time-evolution operator given by Eq.~7!.

For the cases where the condition~24! holds,u8(t8) is the
evolution operator for a free particle with a variable ma
m8(t8), i.e.,

u8~ t8!5expF2 i E t8 dt
p2G . ~27!
2 k0 m8~t!
-

n

i-

r

l

s

If V8 does not vanish but satisfiesV8(t8)5V08/m8(t8) for
some constantV08 , then the Schro¨dinger equation forh8 is
still exactly solvable. In fact in this case

u8~ t8!5expF2 i

2 E
k0

t8 dt

m8~t!
~p21V08

2x2!G .
The conditionV8(t8)5V08/m8(t8) is a generalization of
V8(t8)50. It corresponds to a larger class of exactly so
able time-dependent harmonic oscillators. In terms of
original parametersm andv this condition is expressed as

m~ t !5
m0f

1/Az21~ t !

v~ t !g1/Az~ t !
, ~28!

wherem0 andz:511e4k0/V0
2 are constants and

f ~ t !:5
Az2z~ t !2Az21

Az2z~ t !1Az21
, g~ t !:5

Az2z~ t !2Az

Az2z~ t !1Az
,

z~ t !:512
1

z21
sin2S E

0

t

v~t!dt D .
Equation~24! is a special case of Eq.~28! whereV08→0.

Finally I would like to emphasize the following points:
~1! As one can see from the above analysis some of

quantities introduced in this paper may diverge at cert
values of timet. This will in general happen for a discret
set of values oft. The appearance of such discrete singula
ties is an indication of the fact that one cannot proceed us
the same time-dependent unitary transformation and the
definition of time at the singular points. This does not, ho
ever, reduce the effectiveness of the results of this pape
the presence of discrete singularities, one needs to con
the analysis of the problem to the intervals of time separa
by the singular points. The above analysis can be purs
within each such interval. The results are, however, valid
the whole range of time. This is because, being an ini
value first-order differential equation, the Schro¨dinger equa-
tion has no discontinuous solutions. The method of solut
may fail at a certain discrete~measure zero! set of points, but
due to the continuity of the solution of the Schro¨dinger equa-
tion this does not affect the form of the solution, i.e., t
value of the time-evolution operator at a singular point is
same as its right or left limit. Hence, in practice one starts
t50 and integrates the Schro¨dinger equation withU(0)51
until one hits a singular point, say,t1 . Then, one sets
U(t1)5 limt→t

1
2U(t) and continues integrating the Schr¨-

dinger equation fort.t1 . Clearly, the same can be done f
the next singular point and so on. This argument will on
fail if the set of singular points become dense in an op
time interval. This is a highly special case to which t
analysis of this paper does not apply.

~2! For the case thatV8 is real, one can repeat the abov
analysis by replacingH of Eq. ~1! by h8 of Eq. ~22!. In
principle this may lead to yet other exactly solvable cases
the iteration of this procedure yields oscillators with real fr
quency at each step, then it can be repeated indefinitely.
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FIG. 1. Plot ofV82 as a func-
tion of t8 for the oscillator of Eq.
~32! with m05m5v051.
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leads to a product expansion for the time-evolution opera
which is analogous to what is called an adiabatic prod
expansion in Ref.@6#.

~3! The above analysis also indicates that the tim
dependent harmonic oscillators whose massM and fre-
quencyV are related according to

V5A212
Ṁ

AM22M0
2

~29!

play a universal role. This is because as shown above
problem for the most general real frequency harmonic os
lator ~1! can be reduced to this case by means of a serie
unitary ~canonical! transformations. Equation~29! is ob-
tained from Eq.~23! by expressing the right-hand side of E
~23! in terms of the mass. The parameterM0 is an arbitrary
positive constant corresponding toe2k0.

~4! It is tempting to seek applications of the known resu
for the real frequency oscillators to the time-depend
imaginary frequency oscillators satisfying Eq.~29!. In view
of the above analysis, there is a class of imaginary freque
oscillators of this form that is canonically equivalent to som
real frequency oscillators. One must, however, be aware
by performing the canonical transformation described in t
paper in the reverse order, one might not be able to transf
an arbitrary imaginary frequency oscillator to a real fr
quency one, even if it satisfies Eq.~29!. In this case the
transformation associated with the adiabatic approxima
would not be the same as the one obtained above. Neve
less, the above scheme is consistent in the sense that
frequency of the oscillator obtained by transforming back
imaginary frequency oscillator satisfying Eq.~29! turns out
to be real then one has the desired result. Otherwise,
method fails to transform the imaginary frequency oscilla
to a real frequency one. A simple example of a case wh
Eq. ~29! is satisfied but the transformation to a real frequen
oscillator is not possible is the time-independent oscilla
with M5const andV5 i . Another example is the cas
where the mass is decaying in timet8 according to
M5m8(t8)5M0(11e2mt8) with m.1 and the frequency
r,
t

-

he
l-
of

t

cy

at
s
m
-

n
e-
the
n

he
r
re
y
r

V5V8(t8) is given by Eq. ~29!, i.e., V2521
1m(112emt8)21/2. This system is particularly interestin
since the potential V:5MV2x2/2 changes sign a
t85k* :5 (1/m) ln@(g221)/2#. It is positive for t8,k* and
negative fort8.k* . Hence, att85k* the energy spectrum
undergoes a ‘‘phase transition.’’ However, it is not difficu
to see that transforming this system to a real frequency
cillator is not possible. This is because making the neces
canonical transformations, one obtains an oscillator with
massm(t) and frequencyv(t) satisfying

@m~ t !v~ t !#22/m5212
1

sinF2E
0

t

v~t!dtG . ~30!

Thus one should seek functionsm:@0,̀ )→R1 and
v:@0,̀ )→R1, which satisfy Eq.~30! and are positive for
tP@0,T# for someT.t* , wheret* is defined according to
k(t* )5k* . That such functions do not exist can be direc
inferred from the fact that fort→0 the right hand side of Eq
~30! tends to2`, whereas the left-hand side remains po
tive. A simple example of a real frequency oscillator, whi
is canonically equivalent to an oscillator whose frequen
fluctuates between real and imaginary values, is

m~ t !5m01mt, v~ t !5v0 , ~31!

wherem0 , m, andv0 are positive constants. Applying th
canonical transformations introduced in this paper to this
cillator, one arrives at another canonically equivalent os
lator with massm8(t8) and frequencyV8(t8) given by

m8~ t8!5
m0v0

sin@~2/m! ~m0v02e2t8!#
,

V82~ t8!5212
2e2t8

m sin@~2/m! ~m0v02e2t8!#
, ~32!

wheret85k(t)5 ln@v0(m01mt)#/2, and use is made of Eqs
~18! and~23!. Figure 1 shows a plot ofV82 as a function of
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t8, for m05m5v051. As seen from this plot,V82 changes
sign repeatedly. However, the original oscillator~31! is a
very simple time-dependent oscillator with positive real m
and frequency. In fact, one might try to apply the results
Refs.@3, 4# to obtain exact solution of the Schro¨dinger equa-
tion for this oscillator. This would immediately lead to th
exact solution of the Schro¨dinger equation for the oscillato
~32!, at least for the periods of time during whichm8 and
V8 are continuous functions oft8. This is particularly inter-
esting since asV82 changes sign from positive to negativ
the spectrum of the corresponding oscillator~32! changes
from being discrete to continuous and vice versa, while
spectrum of the canonically equivalent oscillator~31! always
remains discrete.

In conclusion, the time-dependent unitary~canonical!
transformations not only give rise to the identification of
large class of exactly solvable real frequency time-depend
.

s
f

e

nt

oscillators, but also they allow for the study of some ima
nary frequency oscillators by mapping them to the cano
cally equivalent real frequency oscillators. Although the e
ergy spectra of these real and imaginary frequency oscilla
are respectively continuous and discrete, the correspon
dynamical problems are equivalent. Note that a general ti
dependent canonical transformation does not preserve
structure of the energy spectrum of the quantum system. T
is mainly because of the fact that under such a transforma
the Hamiltonian undergoes an affine transformation, no
linear one.
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