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Inverting a time-dependent harmonic oscillator potential by a unitary transformation
and a class of exactly solvable oscillators
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A time-dependent unitarycanonical transformation is found that maps the Hamiltonian for a harmonic
oscillator with time-dependent real mass and real frequency to that of a generalized harmonic oscillator with
time-dependent real mass and imaginary frequency. The latter may be reduced to an ordinary harmonic
oscillator by means of another unitafganonical transformation. A simple analysis of the resulting system
leads to the identification of a previously unknown class of exactly solvable time-dependent oscillators. Fur-
thermore, it is shown how one can apply these results to establish a canonical equivalence between some real
and imaginary frequency oscillators. In particular it is shown that a harmonic oscillator whose frequency is
constant and whose mass grows linearly in time is canonically equivalent with an oscillator whose frequency
changes from being real to imaginary and vice versa repeateil{)50-29477)07205-3

PACS numbg(s): 03.65.Bz, 03.65.Ge, 03.65.Nk

The solution of the Schdinger equationH ,/,:i,'/,, fora  tor is best described in terms of the relation between their
harmonic oscillator with time-dependent massand fre- ~ dynamical groups, namely, SU(2) and SU(1{T).
quencyw, i.e., Let us first concentrate on the real frequency case,
o(t) eR. Then the Hamiltonian(1l) and its eigenvectors

_ 2 m(t) w?(t) 2 In;t) can be expressed in terms of the creatiar)(and
H(t)= 2m(t) p=+ 2 x5 @) annihilation @) operators, namely,
has been the subject of continuous investigation since the H(t)=w(t)[a'(a(t)+1/2], 3)

late 1940’s,[1—-4]. The main reason for the interest in this

problem is its wide range of application in the description of 1

physical systems. Although by now there exist dozens of |n;t>=\/—_' a'(t)[o;t), (4)
articles on the subject, a closed analytic expression for the n:

time-evolution operator is still missing. Recently, Ji and Kim
[4] showed that using the Lewis-Riesenfeld methaHone
can construct an invariant operator in terms of (tveo in-
dependentsolutions of the classical dynamical equations: a(t):= — (eWx+ie «Mp),

where

dt +m(t) w?(1)Xc(1) =0, )

d
m(t) 5 Xe(D)

k(t):=3 InN[m(t)o(t)], (5

and therefore reduce the solution of the Sclimger equation
to that of Eq.(2), for w(t),m(t) e R.? The case where the
frequencyw is imaginary has been considered only in the
time-independent cagé].

The purpose of this paper is to study the implications of H(t)[n;t)=Eq(t)|n;t) (6)
the recently developed method of adiabatic unitary transfor-
mation of the Hilbert spacgg] for this problem. The basic s satisfied forE,(t) =Ep(w(t))=w(t)(n+1/2). Therefore
idea of this method is to use the inverse of the adiabaticallyhe eigenvalues are nondegenerate and the adiabatically ap-

approximate time-evolution operator to transform to a mov-proximate time-evolution operat6] may be expressed as
ing frame. This transformation has proven to lead to some

interesting results for the system consisting of a magnetic _ (O _
dipole in a changing magnetic field. The analogy between Uo(t)-:; e'“nYn;t)(n;0], (7
the dipole system and the time-dependent harmonic oscilla-

where

and |0;t) corresponds to the ground state at titei.e.,
a(t)|0;t>=0.2 Similarly to the time-independent case the ei-
genvalue equation

*Electronic address: alimos@phys.ualberta.ca t

INote that the casen=0 is a singularity of the problem. The an(t):=0,(t) +yn(t), dn(t):= —f En(t")dt’,
results of this article are only valid for the cases where the mass 0
does not vanish. These can, however, be treated in the limiting .
sen.semalo. In other words, | shall only conS|d§r tlme periods Yn(t)3:if Ann(t)dt’, (8)
during which the mass is nonzero but can be arbitrarily small. 0
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d —ik(t . _
Amn(t):=<m;t‘ at n;t>. 9) 2—2( ) [e29Va2(0)—e 29Mal2(0)]
Following the ideas developed in RéB], let us next use _i<(_t) . C2k(0) 2 2x(0)u2
Ugl(t)=U$(t) to perform a unitary transformation of the 2 {sin25(t)](e p7—e™XY)
Hilbert space. Recall that under a general unitary transforma-
tion |(t))— | (1)) =(t)| (1)), the HamiltonianH and +cog248(t)](xp+px)}- (16)
the corresponding time-evolution operator transform accord

Next consider the Schdinger equation in the transformed
frame:H'(t)| ' (t))=i|¢'(t)). The presence of a total de-
Ht)—H' () =UOHOU () —iubut(t), (o  rivative k on the right-hand side of Eq16), suggests a
redefinition of the timet—t’:=«(t). Note that for
U(t)— U’ () =Ut)U ) (0). (11  «(t)=0, ie., o(t)=c/m(t) for some constante R, H'(t)
vanishes identically and the adiabatic approximation is exact.
These equations are obtained by demanding that the timeurthermore, fork<<0, one can consider the time-reversed
evolution in the transformed frame is governed by the Schrosystem for whichk>0. The time-evolution operator for the
dinger equation corresponding to the transformed Hamiloriginal system is obtained from that of the time-reversed
tonianH’. Note that unlike other observables that transformsystem by inversion. Therefore, without loss of generality,
linearly, i.e.,O—U(t) Ol (t), the Hamiltonian undergoes an one can assumg(t)>0.2 The latter allows for the above-
affine transformation. In particular, its spectrum generallymentioned redefinition of timg—t’. This leads to the

ing to

changes if the transformation is time dependent. Schralinger equation h(t")|¢'(t"))=i|¢'(t")) for the
SubstitutingU ], for 2/ in (10), one can shoy6] that Hamiltonian
H (t)=—i > e lem®-an®IA_(t)]m;0)(n;0|. (12) h(t"):= 3 {sif25(t')](e”?*op?—e?*ox?)
n#m ~
+cogd25(t")J(xp+px)},
In order to express the transformed Hamiltonidn in a 1 et 120
closed form, one must first computg,,,. This can be done — o, M()e™(t') X2
directly by substituting Eq(4) in (9) or indirectly using the 2m'(t’) 2
identity 1 ,
+3 B(t")(xp+px), 17
o (mtlidn@Eg gy
mn(t) = E.(D—E0) r m#n, where
which is obtained by differentiating both sides of E6). and o(t"):=o(t(t')), xo:=x(0),
making use of the orthonormality ¢fi;t). The latter method »
turns out to be much simpler. It yields m'(t'): = e w’(t')'=isir{2§(t’)] (18)
«(t) - osin26(t)] ' '
K
Ann()=——[Vn(N—=1)Epnn_2— —1)Sm_2nl- ~
(D=5~ [NN(N=1)omn—2= yM(M=1) 2] B(t'):=cog28(t') = V1t @ (1), (19)
(13
) _ Hence, the transformed Hamiltonian is a generalized har-
Here use is made of the well-known relations monic oscillator[ 7];
a(t)[n;ty=n|n—1;t), af(t)|n;ty=Vn+1|n+1;t), h(t')= 1 [a(t')p2+ B(t')(xp+pX) + y(t')x2],

(20
R +
a(t) K(t)a (t) (14) a(t'):=1/m’(t’), y(t’):=m’(t’)w’2(t’)
Note that Eq(13) is also valid form=n since due to the fact
that|n;t) can be chosen to be red\,,,(t)=0. In particular
va(t)=0. Hence,ay(t) = 6,(t) = (n+ 1/2)5(t), where

with a real massm’(t’) and an imaginary frequency
o' (t')=ie?o/m’(t’). Note that as a result of the adiabatic

t
5(t):=—fow(7')d7'. (15

2Note that in the expression faa and in what follows only
exp(x) and the time derivative ok appear. These are well-defined
Substituting the expressions fef, andA,,, in Eq. (12) and  functions even ifx itself happens to be ill defined.

performing the summation oven, one finds 3In general,kx can change sign. In this case, one must divide the
. time axis into the intervals during whick has definite sign or is
H ()= —ik(t) S [Jn(n—1)ed®|n— 2:0)(n:0| zero. During the intervals where= 0, the adiabatic approximation

2 n ' ' yields the exact time-evolution operator. For the intervals during

) which k>0 the above results apply directly. For the intervals where
—J(n+1)(n+2)e"2%W|n+2;0)(n;0|] k<0, one can use the results obtained for the time-reversed system.
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unitary transformation and redefinition of time, the two arbi-If ()’ does not vanish but satisfi€¥’(t') =Qy/m’(t") for
trary functionsm(t) and »(t) have been reduced to a single some constanf);), then the Schidinger equation foh’ is

function, namely5(t’). still exactly solvable. In fact in this case
It is well known that one can transform the generalized
harmonic oscillator to an ordinary harmonic oscillator by the

=i (v dr ,
time-dependent canonical transformat[ai u'(t")=exp —- f ) (P?+0053) |.
K0
B(t") iy , . o
X=X, p—p+ | (2)  The conditionQ'(t")=Q\/m’(t’) is a generalization of
Q' (t")=0. It corresponds to a larger class of exactly solv-
This leads to the Hamiltonian able time-dependent harmonic oscillators. In terms of the

original parameters and w this condition is expressed as

e L] ,BAY) d(B()
h (t ):E [a(t )p2+ 7(t )— a(t’) _W (a(t'))}xz] mofl/v‘m(t)
m(t): —1/\“‘2 ’ (28)
1 mr(tI)QrZ(tr) w(t)g (t)

wherem, and{: =1+ e*</2 are constants and

f(p):= 2O oNeT (t)-:—“g_z(twZ
Q’(t’)i=\/—1+ 2 o), (23) Tzt O T e

sif24(t")] dt’

where

t
Note that()’ can be real or imaginary depending on the form zZ(t):=1— Ll sinz( f w(T)dT)_
of §(t'). Clearly for ' =0, the problem reduces to a free 4 0

particle with a variable mass whose solution can be given

exactly. In terms of the original functions, the condition Equation(24) is a special case of E¢28) where();—0.

Q' =0 is expressed as Finally 1 would like to emphasize the following points:

(1) As one can see from the above analysis some of the
quantities introduced in this paper may diverge at certain
values of timet. This will in general happen for a discrete
set of values of. The appearance of such discrete singulari-
wheremy is a real constant. ties is an indication of the fact that one cannot proceed using

Equation(24) determines a new class of exactly solvablethe same time-dependent unitary transformation and the re-
cases that is the analog of the exactly solvable magnetic dAefinition of time at the singular points. This does not, how-
pole Hamiltonians obtained {i6]. The only difference is that €ver, reduce the effectiveness of the results of this paper. In
here an additional canonical transformati@i) is also per- the presence of discrete singularities, one needs to confine
formed. It is not difficult to see that this transformation cor- the analysis of the problem to the intervals of time separated
responds to the action of the unitary operatorby the singular points. The above analysis can be pursued
U (") =exdiBt')x¥2a(t')] on the Hilbert space. In fact, Within each such interval. The results are, however, valid for
the Hamiltonianh’ can be obtained frorh by substituting the whole range of time. This is because, being an initial
h for H and#/’ for ¢/ in Eq. (10). Similarly in view of Eq.  Value first-order differential equation, the Sctiiger equa-
(11), one has the following relation between the evolutiontion has no discontinuous solutions. The method of solution
operators: may fail at a certain discreteneasure zejoset of points, but

due to the continuity of the solution of the Sctoger equa-

u(t/):e—i[ﬁ(t’>/2a(t’)]xzuf(tf)ei[t%(Ko)/Za(Ko)]xz, (25  tion this does not affect the form of the solution, i.e., the

value of the time-evolution operator at a singular point is the
whereu(t’) andu’(t’) are the evolution operators for the same as its right or left limit. Hence, in practice one starts at
Hamiltoniansh(t’) andh’(t’), respectively. A further ap- t=0 and integrates the Schiinger equation withJ(0)=1
plication of Eq.(11) leads to the expression until one hits a singular point, sayt,. Then, one sets
U(t1)=limtﬂtl—U(t) and continues integrating the Schro
dinger equation fot>t,. Clearly, the same can be done for
Ithe next singular point and so on. This argument will only
fail if the set of singular points become dense in an open
time interval. This is a highly special case to which the

Mo

M=o

t
tarf f w(7)d7, (29
0

U(t)=Uo(u(t’(t)) (26)

for the time-evolution operator associated with the origina

Hamiltonian(1). HereU(t) is the adiabatically approximate

expression for the time-evolution operator given by Eg). . .

For the cases where the conditi@#) holds,u’(t') is the analysis of this paper dc3e_5 not apply.
evolution operator for a free particle with a variable mass (2) Eor the case'the(ﬂ s real, one ca’n repeat the above
m'(t'), ie., analyas by replacingd of Eq. (1) by h’ of Eq. (22). In
principle this may lead to yet other exactly solvable cases. If
—i (v dr the iteration of this procedure yields oscillators with real fre-
u’(t’)=ex;{ J ey pz}. (27 quency at each step, then it can be repeated indefinitely. This
Ko

2
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leads to a product expansion for the time-evolution operatof)=Q'(t’) is given by Eq. (29, ie., Q%?=-1
which is analogous to what is called an adiabatic product;. ;, (14 2e#t"y~12 This system is particularly interesting
expansion in Ref6]. _ o ~ since the potential V:i=MQ?x%2 changes sign at
(3) The above analysis also indicates that the timey’—, := (1/4)In[(y2—1)/2]. It is positive fort’<«, and
dependent harmonic oscillators whose madsand fre-  pegative fort’ >, . Hence, at’ =k, the energy spectrum

quency() are related according to undergoes a “phase transition.” However, it is not difficult
to see that transforming this system to a real frequency os-
M cillator is not possible. This is because making the necessary
A=\ "1 (29 canonical transformations, one obtains an oscillator with the
M*=Mg massm(t) and frequencyw(t) satisfying
play a universal role. This is because as shown above the iy 1
problem for the most general real frequency harmonic oscil- [MD ()] “#=-1- (30

t
lator (1) can be reduced to this case by means of a series of SiF{ZJ o(7)d7
unitary (canonical transformations. Equatiori29) is ob- 0

tained from Eq(23) by expressing the right-hand side of Eq.
(23) in terms of the mass. The paramekéy is an arbitrary
positive constant corresponding ¢4,

Thus one should seek functionsn:[0>)—R* and
w:[02)—R*, which satisfy Eq.(30) and are positive for

. . S te[0,T] for someT>t, , wheret, is defined according to
(4) It is tempting to seek appllcatlons of the_ known results (t.)=«, . That such functions do not exist can be directly
for the real frequency oscillators to the tlme-dependenf( * * . .
. . . L : inferred from the fact that far— 0 the right hand side of Eq.
'maginary frequency oscnlatprs sat|sfy|ng E@Q)' In view 30) tends to—«, whereas the left-hand side remains posi-
of the above analysis, there is a class of imaginary frequenc, e, A simple ex,am le of a real frequency oscillator. which
oscillators of this form that is canonically equivalent to some. ™ mp np q y '
: is canonically equivalent to an oscillator whose frequency
real frequency oscillators. One must, however, be aware th : . i
b . . . : .~ fluctuates between real and imaginary values, is
y performing the canonical transformation described in this
paper in the reverse order, one might not be able to transform m(t)=mg+ ut, o(t)=o (31)
an arbitrary imaginary frequency oscillator to a real fre- 0 ’ o
quency one, even if it satisfies E(R9). In this case the \herem,, u, andw, are positive constants. Applying the
transformation associated with the adiabatic approximatioganonical transformations introduced in this paper to this os-
would not be the same as the one obtained above. Neverthgilator, one arrives at another canonically equivalent oscil-
less, the above scheme is consistent in the sense that if thgor with massm’(t’) and frequency’ (t') given by
frequency of the oscillator obtained by transforming back an
imaginary frequency oscillator satisfying EQ9) turns out Mowo
to be real then one has the desired result. Otherwise, the m'(t')=— o/ EPCIGeL
method fails to transform the imaginary frequency oscillator sin(2/p) (Mowo—€™ )]
to a real frequency one. A simple example of a case where "
Eq. (29) is satisfied but the transformation to a real frequency 2e
oscillator is not possible is the time-independent oscillator w sin (2/u) (Mowo—e2)]’
with M=const andQ)=i. Another example is the case
where the mass is decaying in timg according to wheret’ = k(t)=In[wy(my+ut)}/2, and use is made of Egs.
M=m'(t")=Mqy(1+e #') with u>1 and the frequency (18) and(23). Figure 1 shows a plot dR’'? as a function of

Q2t)=—-1-

(32
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t’, for my=pu=wy=1. As seen from this plo)’'? changes oscillators, but also they allow for the study of some imagi-
sign repeatedly. However, the original oscillai@l) is a  nary frequency oscillators by mapping them to the canoni-
very simple time-dependent oscillator with positive real massally equivalent real frequency oscillators. Although the en-
and frequency. In fact, one might try to apply the results ofgrgy spectra of these real and imaginary frequency oscillators

Refs.[3, 4] to obtain exact solution of the Scltfinger equa-  5e respectively continuous and discrete, the corresponding

Eel?(gcftoécflhl; fio%sg:‘lI{ar;[grlszfri]clt?nggrufq:Jma{inc;d:‘zci)tretlzele:sdci’l[l(;ttgre dynamical problems are equivalent. Note that a general time-
(32), at least for the periods of time during which’ and dependent canonical transformation does not preserve the
Q' are continuous functions af. This is particularly inter- ~ Structure of the energy spectrum of the quantum system. This

esting since aﬁ’z Changes Sign from positive to negati\/e' is mainly because of the fact that under such a transformation
the spectrum of the corresponding oscillat82) changes the Hamiltonian undergoes an affine transformation, not a
from being discrete to continuous and vice versa, while thdinear one.
spectrum of the canonically equivalent oscilla8t) always
remains discrete.

In conclusion, the time-dependent unitatganonical | would like to thank Dr. M. Razavi and R. Allahverdi for
transformations not only give rise to the identification of ainvaluable discussions and acknowledge the financial sup-
large class of exactly solvable real frequency time-dependemort of the Killam Foundation of Canada.
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