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Decoherence and initial correlations in quantum Brownian motion
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We analyze the evolution of a quantum Brownian particle starting from an initial state that contains corre-
lations between this system and its environment. Using a path-integral approach, we obtain a master equation
for the reduced density matrix of the system finding relatively simple expressions for its time-dependent
coefficients. We examine the evolution of delocalized initial states~Schrödinger cats! investigating the effec-
tiveness of the decoherence process. Analytic results are obtained for an Ohmic environment~Drude’s model!
at zero temperature.@S1050-2947~97!05205-0#
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I. INTRODUCTION

The study of the decoherence process has received
creasing attention in recent years@1#. In fact, it has been
recognized that decoherence is of fundamental importanc
understanding the nature of the fuzzy boundary between
quantum and the classical domains. The nature of
boundary has been under scrutiny both from the theore
and from the experimental point of view@2,3#. The basic
physics of decoherence is very simple: interaction with
environment tends to prevent the stable existence of the
majority of the states of the Hilbert space of macrosco
quantum systems. Thus, coherent superpositions of ma
scopically distinct states tend to decay very rapidly~on a
short decoherent time scale! into mixtures preventing the ob
servation of delocalized~Schrödinger cat! states. In some
sense, the interaction with the environment enforces the
istence of ‘‘environment-induced’’ superselection rules
lecting the very few states in which classical systems
found. To answer specific questions concerning the ef
tiveness of the decoherence process for inducing clas
behavior in a particular system one certainly has to ana
detailed models describing the actual physical situati
However, some generic features of decoherence have
analyzed for classes of models that appear in a variety
physical circumstances. The paradigmatic model for s
studies, which we will reanalyze in this paper, has been
ear quantum Brownian motion~QBM!, which is character-
ized in the following way: A Brownian particle~whose co-
ordinate we denote withq) evolves in one dimension while
interacting with an environment formed by a collection
independent harmonic oscillators~with coordinatesjn). The
Lagrangian of the system environment ensemble is

L~q,j!5Ls~q!1Lse~q,j!, ~1!

Ls~q!5 1
2 q̇

22V~q!, ~2!

*Electronic address: L.Davila-Romero@uea.ac.uk
†Electronic address: paz@df.uba.ar
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2
mnvn

2S jn2
cnq

mnvn
2D 2G . ~3!

Notice that, for convenience,Lse contains both the free La
grangian for the environment as well as the interaction te
~including a potential frequency renormalization!. For the
potential we will simply considerV(q)5v0

2q2/2.
This model is such that only a few parameters are imp

tant to describe the effects the environment produces on
system. One such ‘‘parameter’’ is the so-called spectral d
sity of the environment, which measures the density of
cillators with any given frequency and the strength w
which they couple to the system. This function is defined

I ~v!5(
n

cn
2

2mnvn
2 d~v2vn!. ~4!

The other important ingredient required to determine the
fect of the environment is the initial state. The simplest su
state for the system-environment ensemble is a factoriz
state where the total density matrix is just a produ
rse5rs^ re . For this type of state, and under a variety
assumptions, the decoherence process has been analyz
QBM models@4–10#. In this paper we will study the evolu
tion of the reduced density matrix and, in particular, analy
the effectiveness of the decoherence process for a m
wider class of initial states than the ones analyzed so fa
the literature. We will allow for initial states for which th
initial density matrix is not factorizable~i.e., states contain-
ing system-environment correlations!. Our work will be
based on the use of techniques and results that have
elaborated upon and clearly exposed by Grabertet al. in
@11#.

One of the most practical tools for analyzing the evoluti
of a quantum open system@12,13# is the evolution equation
for the reduced density matrix. This is known as the mas
equation and its properties for the QBM model have be
extensively analyzed in the literature@14,15,5,6#. However,
only relatively recently has it been realized that the struct
of the master equation for linear QBM models isalways
remarkably simple@6# ~see also@8,16#!. Thus, for the case o
4070 © 1997 The American Physical Society
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55 4071DECOHERENCE AND INITIAL CORRELATIONS IN . . .
factorizable initial states it has been shown that the ex
master equation for linear QBM is alwayslocal in time, hav-
ing time-dependent coefficients. A variety of derivations
this exact master equation, valid for environments with g
eral spectral densities in initial states of arbitrary tempe
ture, have been given so far in the literature@6,8,9,17,18#.
This type of equation has been used to analyze a rather
variety of problems~see @19–21# for references of use o
master equation and related techniques in context ran
from cosmology to quantum optics!.

In this paper we will generalize previous work on mas
equation for QBM models allowing for a more general cla
of initial states and finding the general form of the exa
master equation. Our equation reduces to the previo
known one@6,8# for the case of vanishing initial correlation
As an aside, we present a very simple derivation of the m
ter equation and find rather convenient and manageable
mulas for the time-dependent coefficients. Using them,
analytically solve a simple, but physically relevant, exam
where all the coefficients can be computed~Drude’s model
of an Ohmic environment at zero temperature!. Of course,
this is not the first time the QBM model with nonfactorizab
initial states has been analyzed. As we mentioned above
method we apply here has been developed and used by
ers ~see @11,12#!. However, to our knowledge, neither th
structure of the master equation has been investigated in
case before, nor the effectiveness of decoherence has
examined~except for the work in@22#, which we generalize
here!. In some sense, our paper is part of an effort to re
the usual assumptions behind simple models of decoher
~further work towards a more complete ‘‘deconstruction’’
decoherence is presented elsewhere@23#!.

This paper is organized as follows: In Sec. II we descr
the class of initial states we analyze and introduce the c
cept of preparation function. In Sec. III we describe the f
malism following the scheme presented in@11#. In Sec. IV
we obtain the master equation describing its properties
studying the behavior of its coefficients. In particular, w
find analytic expressions for Drude’s model at zero tempe
ture. In Sec. V we study the evolution of two types of de
calized initial states~Schrödinger cat states! consisting of a
superposition of Gaussian wave packets. In both cases
analyze the evolution of the Wigner function analyzing t
efficiency of the decoherence process. Finally, in Sec. VI
summarize our conclusions. Appendices A, B, and C con
useful formulas that we do not include in the main text
prevent overloading it with too many equations.

II. INITIAL CONDITIONS

We are interested in studying the following type of initi
condition: the system and the environment have interac
for a very long time so that they reached an equilibrium st
represented by the density matrixrb . At the initial time
(t502) we make a measurement on the system only.
every result of the measurement is associated with a pro
tion operatorP̂ acting on the Hilbert space of the system, t
state of the system plus environment ensemble after s
ideal measurement is
ct
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r05
P̂rbP̂

Tr~ P̂rb!
. ~5!

It is clear that the above is not a product state since
contains correlations between the system and the envi
ment, which are inherited from the ones already presen
the premeasurement thermal staterb . Therefore the usua
techniques are not applicable for describing the evolution
state~5!. In what follows we will present a method enablin
us to study the fate of a whole class of states which inclu
Eq. ~5! as a particular case. In general, the initial states
will consider are of the form

r05(
j
AjrbAj8 , ~6!

whereAj andAj8 are operators~not necessarily projectors!
acting on the Hilbert space of the system. For Eq.~6! to
represent the state following a perfect measurement on
system, the above sum must collapse onto a single term
Aj5Aj85 P̂/@Tr( P̂rb)#

1/2, whereP̂ is a projector.
At this point it is convenient to introduce some notation:

will turn out to be useful to describe the initial state of th
system in terms of a ‘‘preparation function’’l(q,q̄,q8,q̄8).
This function, which parametrizes the deviation of the init
reduced density matrix of the system from its thermal eq
librium form, is defined in terms of the matrix elements
the operatorsAj ,Aj8 as

l~q,q̄,q8,q̄8!5(
j

^quAj uq̄&^q̄8uAj8uq8&. ~7!

Using this definition, it is easy to show that the total dens
matrix in the coordinate representation is

r0~q,j,q8,j8!5E dq̄dq̄8l~q,q̄,q8,q̄8!rb~ q̄,j,q̄8,j8!

~8!

and that the initial reduced density matrix is

r~q,q8!5E dq̄dq̄8l~q,q̄,q8,q̄8!rb~ q̄,q̄8!. ~9!

III. EVOLUTION OPERATOR

As described by Grabert and others@11#, it is possible to
modify the usual Feynman–Vernon method@24# ~which is
only applicable for factorizable initial states, see@6#! to study
the evolution of initial states of the form~6!. The main re-
sults, whose derivation we will briefly outline below, are th
following ~see@11# for more details!.

~i! The reduced density matrix of the system can be
tained by ‘‘evolving’’ the preparation function in the follow
ing way:

r~q,q8,t !5E dqidqi8dq̄dq̄8J~q,q8,t,qi ,qi8 ,q̄,q̄8!

3l~qi ,q̄,qi8 ,q̄8!, ~10!
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~ii ! The evolution operatorJ has a simple representatio
as a triple path integral over trajectories of the system. In
path-integral representation the effect of the environmen
present through a generalized influence functional, wh
provides a nontrivial weight to triplets of system’s traject
ries ~see below!.

~iii ! For general linear models~i.e., an environment of
independent oscillators with an arbitrary spectral density! the
problem is exactly solvable. Thus, if the action is quadra
in the environmental coordinates, the generalized influe
functional can be easily computed. Moreover, if the theory
linear for the system, a closed expression for the evolu
operatorJ can be obtained.

Let us now describe how to demonstrate results~i!–~iii !
quoted above. The validity of~i! can be simply seen by writ
ing the full density matrix at timet in terms of the initial
density matrix as

r~q,j,q8,j8,t !

5E dqidqi8dj idj i8r0~qi ,j i ,qi8 ,j i8!

3K~q,j ,t,qi ,j i !K* ~q8,j8,t,qi8 ,j i8!, ~11!

where K is the evolution operator of the complete wa
function. Equation~10! is obtained by expressing the initia
density matrix in terms of the preparation function@as in Eq.
~8!# and by tracing over the environment coordinatesj. Do-
ing this we also obtain the explicit form of the evolutio
operatorJ:

J~q,q8,t,qi ,qi8 ,q̄,q̄8!

5E dj idj i8dj f rb~ q̄,j i ,q̄8,j i8!

3K~q,j f ,t,qi ,j i !K* ~q8,j f ,t,qi8 ,j i8!. ~12!

To find a simple path-integral representation for this e
lution operator@property~ii ! above# we can first express th
full evolution operatorK as a sum over histories of the sy
tem and the environment:

K~q,j,t;qi ,j i !5E DqDj eiS[q,j] , ~13!

where the integration paths must satisfy the boundary co
tions:

q~0!5qi , q~ t !5q, j~0!5j i , j~ t !5j. ~14!

Replacing this into Eq.~12! and expressing the total action a
a sum of free and interaction terms, the evolution opera
can be written as a path integral:
is
is
h

c
e
s
n

-

i-

r

J~q,q8,t,qi ,qi8 ,q̄,q̄8!

5E DqDq8eiSs[q]2 iSs[q8]

3E dj fdj idj i8rb~ q̄,j,q̄8,j8!

3E DjDj8eiSse[q,j]2 iSse[q8,j8] . ~15!

This formula is not of the desired form yet: we have
double path integral over the system’s trajectories with
integrand that is not only a functional of these trajector
but also a function ofq̄ and q̄8. To overcome this difficulty
~which comes precisely from the fact that the initial sta
contains correlations that are present in the thermal den
matrix rb) we can use the Euclidean path-integral repres
tation for a thermal equilibrium density matrix. Thus, matr
elements ofrb can be written as

rb~ q̄,j,q̄8,j8!5E Dq̄Dj e2SE[ q̄ , j̄ ] , ~16!

where the integral is over Euclidean paths satisfying
boundary conditions:

q̄~0!5q̄8, j̄5j i8 , q̄~b!5q̄, j̄~b!5j i . ~17!

Using this, we can write the evolution operator as t
following triple path integral@property~ii ! above#:

J~q,q8,t,qi ,qi8 ,q̄,q̄8!

5E DqDq8Dq̄ eiSs[q]2 iSs[q8]2Ss
E[ q̄ ]F@q,q8,q̄#,

~18!

where the ‘‘generalized influence functional’’F@q,q8,q̄# is
defined as

F@q,q8,q̄#5E dj fdj idj i8E DjDj8D j̄ eiSse2 iSse8 2Sse
E
.

~19!

The boundary conditions on the path integral over the en
ronment histories are such that all these integrals are
together: final conditions forj and j8 coincide~because of
the final trace over the environment! while their initial con-
ditions are connected via the Euclidean trajectories. For
reason, the above integral is denoted as a functional inte
over a ‘‘closed time path’’@25#.

The above considerations are applicable for arbitrary
teractions. From now on we will restrict ourselves to discu
linear QBM models that have the virtue of being explicit
solvable, allowing an explicit calculation of the propagat
J. To do this, one can first notice that, if the system
environment interaction is linear in the environmental co
dinatesj, the generalized influence functional can be exac
computed since the path integral~19! is Gaussian. For the
bilinear interaction given by~1! the result for the generalize
influence action F@q,q8,q̄# is ~where F@q,q8q̄#
5exp$iF@q,q8q̄#%)
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F@x,r ,q̄#5 i E
0

t

dsE
0

s

dun~s2u!x~s!x~u!2E
0

t

ds

3E
0

s

duh~s2u!x~s! ṙ ~u!2r iE
0

t

dsh~s!x~s!

1
i

2E0
b

dtE
0

b

dsk~t2s!q̄~t!q̄8~s!

1E
0

b

dtE
0

t

dsk* ~s2 i t!q̄~t!x~s!, ~20!

where for convenience we used ‘‘sum and difference’’ co
dinates defined as

x5q2q8, r5
q1q8

2
. ~21!

The kernels appearing in the influence action~20! are deter-
mined by the spectral density and the initial temperat
1/b ~see Appendix A for the explicit form of these kernels!.
Here, we would just like to mention that the first two lines
Eq. ~20! contain the usual result derived in the absence
initial correlations. Thus, kernelsn(s) andh(s) are, respec-
tively, the noise and dissipation kernels:

n~s!5E
0

`dv

p
I ~v!coth~bv/2!cos~vs!

5
2

b (
n52`

1` E
0

`dv

p
I ~v!

v

v21nn
2cos~vs!, ~22!

h~s!52E
0

`dv

p
I ~v!cos~vs!, ~23!

where nn are the Matsubara frequenciesnn52pn/b. The
initial correlations are responsible for the coupling betwe
real and Euclidean trajectories in the influence functional.
will be seen below, one of the effects of this coupling is
produce an ‘‘effective noise kernel’’R(s,u) ~which deter-
mines the strength of the diffusive effects!. The effective
noise kernel is not homogeneous in time and can be wri
as

R~s,u!5n~s2u!1ncorr~s,u!, ~24!

where the explicit form of the ‘‘correlational noise’’ncorr is
given in Appendix A.

Computing the propagatorJ is straightforward if the ac-
tion is quadratic in the system’s coordinates. The final re
of this simple but tedious calculation~see details in@11#! is
as follows: The propagator is a Gaussian function,

J~x,r ,t,xi ,r i ,x̄, r̄ !5a0e
iS~x,r ,t,xi ,r i , x̄ , r̄ !, ~25!

where the exponentS is a second-degree polynomial of i
arguments, which reads
-

e

f

n
s

n

lt

S~x,r ,t,xi ,r i ,x̄, r̄ !5 i ~a1r̄
21a2x̄

2!1a3~xir i1xr !1a4xir

1a5xri1a6xi r̄1 ia7xi x̄1a8xr̄

1 ia9xx̄1 i ~a10xi
21a11xix1a12x

2!.

~26!

The explicit formulas for the coefficientsa0 , . . . ,a12 are
given in Appendix A. In general, these time-dependent co
ficients are determined by the spectral density and the in
temperature. Here, we will just mention a few simple pro
erties of the coefficients.

~i! a0 just ensures the normalization~preservation of the
trace of the density matrix! and it is therefore determined b
the other coefficients~explicitly, a0

25a4
2a1/16p

3).
~ii ! Coefficientsa1 ,a2 are time independent. These coe

ficients determine the reduced density matrix in therm
equilibrium. Thus, if we denote the position and momentu
dispersion~in thermal equilibrium!, respectively, asqb

2 and
pb
2 , i.e., if

qb
25^q2&b , pb

25^p2&b , ~27!

thena151/2qb
2 anda25pb

2/2. The explicit form ofqb
2 and

pb
2 , which are temperature dependent, is given in Appen

A.
~iii ! Some of the coefficients (a3, a4, anda5) only de-

pend upon the spectral density of the environment. Exp
itly, we have

a35
Ġ

G
, a452

1

G
, a552S Ġ2

G
2G̈D , ~28!

where the functionG(t) is a solution of

G̈~ t !1v0
2G~ t !1

d

dtE0
t

dt8h~ t2t8!G~ t8!50, ~29!

satisfying the boundary conditions

G~0!50, Ġ~0!51. ~30!

~iv! The other coefficients (a6 , . . . ,a12) depend on
G(t) and on the noise kernels appearing in the influen
functional. Therefore, they are determined by the spec
density and the initial temperature of the environment. In
absence of initial correlations~i.e., if we disregard the inter-
actions between the system and the environment in the
clidean integrals! the coefficientsa6 , . . . ,a9 are identically
zero and the propagator does not mix the coordinatesx̄, r̄
with the rest.

IV. MASTER EQUATION

A. A simple derivation

Knowing the propagatorJ, it is possible to find the evo-
lution equation for the reduced density matrix. This is t
so-called master equation, which can be easily derived
lowing a simple method outlined by one of us in@8#. First,
we explicitly evaluate the time derivative of the evolutio
operator which, taking into account Eq.~25!, is of the form
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J̇5P2J, whereP2 is a second-degree polynomial in the va
ablesx,r ,xi ,r i ,x̄, r̄ . Next, we multiply this expression by th
preparation function and integrate over the coordina
xi ,r i ,x̄, r̄ . The nontrivial task is to rewrite the right-han
side of the resulting formula as an operator acting on
reduced density matrix. Part of this task is simple: ter
involving the ‘‘final’’ coordinates (x,r ) can be moved out-
side the integrals generating local terms in the master e
tion. The real problem is to manipulate terms involving t
‘‘initial’’ coordinates ~which are being integrated out!. To do
this, as explained in@8#, we can take advantage of the fo
lowing identities, which can be straightforwardly derive
from Eqs.~25!:

xiJ5
1

a4
~2 i ] r2a3x!J, ~31!

r iJ5
1

ia5
]xJ2

1

a5
S a3r1

a11

a4
~] r2 ia3x!1a8r̄1 ia9x̄D J.

~32!

Using these equations we can eliminate the initial va
ablesxi ,r i in favor of the rest. At this point we may note th
the existence of initial correlations~reflected in the presenc
of nonvanishing coefficientsa8 ,a9) prevents us from com
pletely accomplishing our goal since the right-hand side
Eq. ~32! still depends on the integration variablesr̄ ,x̄. These
terms will generate nontrivial contributions to the mas
equation whose form will be described below. Using t
above formulas, after some algebra we obtain the exact m
ter equation for linear QBM, which reads

ṙ~q,q8,t !5 i S 12 ~]q
22]q8

2
!2

1

2
v2~ t !~q22q82! D r~q,q8,t !

2g~ t !~q2q8!~]q2]q8!r~q,q8,t !

2D1~ t !~q2q8!2r~q,q8,t !

1 iD 2~ t !~q2q8!~]q1]q8!r~q,q8,t !

1 iC̃1~ t !~q2q8!r1~q,q8,t !

2 iC̃2~ t !~q2q8!r2~q,q8,t !. ~33!

It is important to stress that the above master equatio
exact and valid for all spectral densities and initial tempe
tures. The time-dependent coefficients appearing in Eq.~33!
are functions ofa0 , . . . ,a12. Explicit formulas are given
below.

The interpretation of the terms appearing in the mas
equation is clear. The first line is just Liouville’s equatio
with a renormalized Hamiltonian. Thus, the environme
renormalizes the Brownian particle that acquires a tim
dependent frequency. The form ofv(t) is relatively simple
~see below! and only depends on the functionG(t). The
second line contains a friction term with a time-depend
damping coefficientg(t). This coefficient also has a rela
tively simple form, which is again determined by the fun
tion G(t). The third line corresponds to a diffusion term a
its presence is of importance for studies of decoherence.
diffusion coefficient depends both onG(t) and on the noise
kernel ~its time dependence will be examined below in
illustrative example!. The fourth line contains an extra diffu
s

e
s

a-

-

f

r

s-

is
-

r

t
-

t

he

sion term~called anomalous diffusion in@5#! that has inter-
esting effects especially at low temperatures. The last
lines make the master equation nonhomogeneous. In
these terms are present because of the correlated natu
the initial state and prevent the right-hand side of the ma
equation from being written entirely in terms of the reduc
density matrix. The two density matricesr1 andr2 are ob-
tained by propagating the initial states associated with
preparation functionsl15 r̄l and l25 x̄l. Taking into ac-
count the definition of the preparation function, these sta
have ‘‘density matrices’’r15$q,r% and r25 i @q,r#. It is
worth noticing that the evolution ofr i can also be studied
with our formalism since~apart from not being normalized!
they belong to the class of initial conditions defined by E
~6!. Therefore, the evolution equation forr i is also Eq.~33!,
with new inhomogeneous termsr i j . Thus, a hierarchy of
equations, which are coupled because of the initial corre
tions, can be derived in this way~see@26# for more details!.

The result we just presented has a remarkable prop
that, at first sight, may appear to be rather tantalizing:
master equation~33! is local in time~disregarding the inho-
mogeneous terms!. Locality of the exact master equation
which in the absence of initial correlations was previou
noticed in@6,16#, is hard to reconcile with the intuitive ide
one has about the effects a generic environment may
duce. In fact, as such a generic environment could prod
all sorts of non-Markovian effects, one would expect to fi
nonlocal integral kernels in the master equation@like the
ones appearing in Eq.~29!#. However, as our exact calcula
tion shows, this is not the case for thelinearQBM model we
are considering. Thus, linearity imposes an enormous c
straint forcing the master equation to be local in time.
understand this in a simple way we propose the follow
exercise to the reader: consider the integrodifferential eq
tion

f̈ ~ t !1v0
2f ~ t !1

d

dtE0
t

dt8h~ t2t8! f ~ t8!50 ~34!

~which is linear but nonlocal in time!. We will show that this
equation can be easily transformed into the following lo
equation with time-dependent coefficients:

f̈1g~ t ! ḟ1v2~ t ! f50. ~35!

The coefficientsv(t) andg(t) ~which are precisely the sam
ones appearing in the master equation! can be written in
terms of aparticular solution of ~34! @satisfying boundary
conditions~14!# as

v2~ t !5
ĠG̈
˙

2G̈2

W
,g~ t !52

Ẇ

W
, ~36!

W5GG̈2Ġ2. ~37!

Notice thatW is just the Wronskian betweenG andĠ.
To demonstrate this, we should first notice that the sp

of solutions of Eq.~35! has dimension two. Therefore th
general solution can be written as a linear combination

two independent solutions. We can useG andĠ @satisfying
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initial conditions ~14! as a convenient basis# and write

f (t)5a1G(t)1a2 ḟ (t) where a1 ,a2 are two independen
constants. These constants can be expressed in term

f , ḟ , G, andĠ as

a15
G̈f2Ġ ḟ

GG̈2Ġ2
, a25

2Ġf1G ḟ

GG̈2Ġ2
. ~38!

Replacing this in the nonlocal term of Eq.~34! and using the

fact thatG and Ġ satisfy the same equation, one can sh

that *0
t dt8h(t2t8) f (t8)5g(t) ḟ (t)1@v2(t)2v0

2# f (t). This
ends our proof. What this shows is a rather trivial feature t
is frequently forgotten: the future evolution of a functio
f (t) satisfying a linear integrodifferential equation such
Eq. ~34! does notdepend on its entire history. Indeed, i
future behavior is uniquely determined by the Cauchy d
~the value off and its derivative! together with the timet at
which these data are given. The only non-Markovian feat
of the evolution is that it remembers the time. One m
argue that Eq.~35! is rather useless: Thus, to solve it w
must first knowv(t) and g(t), which means that we stil
need to solve the integrodifferential equation. This is c
tainly correct. However,v(t) and g(t) are ‘‘universal’’
functions in the sense that they do not depend upon
boundary conditions of the problem at hand. Thus, while
~35! is equivalent to Eq.~34! it makes evident the fact tha
the behavior of the solutions is not history dependent.

This simple exercise not only shows how to ‘‘localize
Eq. ~34! but also makes clear why the master equation
linear QBM is local in time. The non-Markovian features w
expect to see are rather restricted by linearity. In the abse
of initial correlations, the time-dependent coefficients p
therefore the very important role of providing all the memo
effects in the evolution of the density matrix. The inhom
geneous terms are responsible for carrying the effect of
tial correlations on the evolution of the system.

Finally, we can write down the equation for the Wign
function, which is defined in terms of the density matrix a

W~r ,p,t !5E dx

2p
e2 ipxr~x,r ,t !. ~39!

Applying the master equation~33!, it is easy to obtain the
evolution equation forW(r ,p), which results in

Ẇ5$HR ,W%PB1g~ t !]p~pW!1D1~ t !]p
2W1D2~ t !]p] rW

2C̃1~ t !]pWo11C̃2~ t !]pWo2 , ~40!

where the renormalized~time-dependent! Hamiltonian is
HR5 1

2p
21 1

2v
2(t)q2 and $,%PB denotes the standard Poiss

bracket. This equation, which carries the same informa
than the master equation, is useful for analyzing some p
erties of the solution. In particular, as we will show below,
makes transparent the role of the anomalous diffusion te
of
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B. The time-dependent coefficients

The expressions defining the diffusive coefficients of t
master equation are rather complicated at first sight. Ho
ever, we have been able to find the following simple form
las:

D1~ t !5@] t8
2

1g~ t !] t81v2~ t !#U̇~ t,t8!u t85t , ~41!

D2~ t !5@] t8
2

1g~ t !] t81v2~ t !#U~ t,t8!u t85t , ~42!

whereU(t,t8) is an auxiliary function defined as

U~ t,t8!5E
0

t

dsE
0

t8
duG~ t2s!R~s,u!G~ t82u! ~43!

and U̇(t,t8) denotes the partial derivative with respect tot.
Remember that the ‘‘effective noise kernel’’R(s,u) is de-
fined asR(s,u)5n(s2u)1ncorr(s,u) where in ncorr(s,u)
we incorporate contributions to the noise arising from t
initial correlations~which are typically relevant only on very
short time scales!. The above expression is remarkab
simple for the case of uncorrelated initial conditions@where
R is identical to the standard noise kerneln(s)#. It can be
shown using our equations that the known expressions
the diffusion coefficients~found, for example, in@6#! are
recovered in this limit. However, Eqs.~41! and~42! are sub-
stantially simpler than the usual ones~and are valid for a
wider class of initial conditions!.

The coefficients appearing in the inhomogeneous par
the master equation are also rather complicated but we w
also able to write them in a simple form as

C̃
2
1~ t !5@] t

21g~ t !] t1v2~ t !#Ga
7
6 . ~44!

Before analyzing an explicit example, we should point o
that the diffusive coefficients are entirely determined by
position autocorrelation function~in thermal equilibrium!,

S~ t !5 1
2 ^$q~ t !,q~0!%&b . ~45!

In fact, using results found in Appendix B, we can show th

U~ t,t8!u t5t85pb
2G212ṠG2

S2

qb
2 1qb

2 , ~46!

] tU~ t,t8!u t5t85pb
2GĠ1S̈G1ṠĠ2

ṠS

qb
2 , ~47!

] t] t8U~ t,t8!u t5t85pb
2Ġ212ĠS̈2

Ṡ2

qb
2 1pb

2 , ~48!

] t] t8
2 U~ t,t8!u t5t85pb

2ĠG̈1S̈G̈1ĠS̈
˙
2
Ṡ2

qb
2 1pb

2 , ~49!

] t
2U~ t,t8!u t5t85pb

2GG̈1ṠG̈1S̈
˙
G2

S̈

qb
2 S2pb

2 . ~50!

The equilibrium dispersionspb
2 andqb

2 are also determined
by S(t) through the relationsS(0)5qb

2 and S̈(0)52pb
2 .
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Thus, knowing the position autocorrelation function o
could, in principle, compute the diffusive coefficients. It c
also be seen that the inhomogeneous terms in the m
equation are also determined byS(t) ~for example, we have

a65S/qb
2G2Ġ/G).

It is useful to examine the behavior of all the coefficien
in a particular example. We will consider the Drude mod
which is characterized by the following Ohmic spectral de
sity:

I ~w!5g0w
wc

2

w21wc
2 . ~51!

Here,wc is a high-energy cutoff frequency below which th
spectral density is approximately linear inw. The integro-
differential equation~29! can be exactly solved by usin
standard Laplace transform techniques. In this way, we
the solutionG(t), which satisfies boundary conditions~14!,

G~ t !5Im~g2e
2z2t!1g3e

2z3t, ~52!

where zi ( i51,2,3) are the three roots of the third-degr
polynomialP(z)5(z21v0

2)(z1wc)1g0wcz. The constants
gi are

g252
1

Im~z2!
S 11

~wc2z3!~z32z1!

uz32z1u2
D ,

g35
~wc2z3!

uz32z1u2
. ~53!

We will concentrate on the underdamped case in which th
is only a real root (z3) and two complex ones (z15z2* ).

Given the input parameters for the problem~i.e., v0 ,g0
andwc) we obtain the functionG(t) and from it we easily
compute the time-dependent frequencyv(t) and the friction
coefficientg(t). These functions are plotted in Fig. 1 whe
we see how they vary on the very short time scale 1/wc ~the
cutoff time scale!. From the above formulas we can fin
analytic expressions for the initial and final values of the
functions. The time-dependent frequency is initially equa
the unrenormalized frequency, i.e.,v2u05v0

21g0wc and its
final value is equal to the renormalized frequencyv0. On the
other hand, the time-dependent friction initially vanishes a
the asymptotic value is equal tog0.

The diffusion coefficients are temperature dependent
the high-temperature regime the results are well known: b
coefficients~that start being zero! approach asymptotic val
ues given byD15g0kBT andD250. We studied the behav
ior in the zero-temperature case where it is possible to
exact analytical expressions for both coefficients. The eas
way to present the results is to notice that the position a
correlation function can be written in terms of exponent
integral functions as

S~ t !5
1

2p
Im$g2@e

z2tE1~z2t !2e2z2tEi~z2t !#%

1
1

2p
g3@e

z3tE1~z3t !2e2z3tEi~z3t !#. ~54!
ter
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Using this@and relatingD1 andD2 to S(t)# we obtained the
plots of the diffusion coefficients shown in Fig. 1.

The time dependence of the inhomogeneous coefficie
C̃1 andC̃2, can also be computed in this way and the res
is shown in Fig. 2. The basic feature is that both coefficie
are exceedingly small and become negligible after a time
is of the order of the cutoff time scale. After this short initi
transient, the impact of the initial correlations on the futu
evolution of the system can be entirely neglected.

FIG. 1. Time-dependent coefficients entering in the homo
neous terms of the master equation. The environment is descr
by Drude’s spectral density and the initial state is of zero tempe
ture. The time dependence~in units of the renormalized frequency!
of all coefficients show an initial transient for times of the order
the cutoff time scale. Parameters for the plot a
v051, wc5100, g050.01.

FIG. 2. Coefficients appearing in the inhomogeneous terms
the master equation. They carry the influence of the initial corre
tions on the future evolution. They both become negligible afte
time of the order of the cutoff time scale. Parameters for the plot
v051, wc5100, andg050.01.
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V. DECOHERENCE

Here, we will examine the time evolution of delocalize
initial states analyzing the effectiveness of the decohere
process. We will consider two related initial conditions.

A. Superposition of two translations

Let us first analyze the initial state:

r0}~eiL0p̂s1e2 iL0p̂s!rb~eiL0p̂s1e2 iL0p̂s!, ~55!

where p̂s is the momentum operator for the system. T
evolution of this state is particularly simple to analyz
Moreover, in spite of its simplicity, this state still captur
some of the essential features present in a realistic ‘‘Sc¨-
dinger cat’’ state. We will show below that the conclusio
we obtain for the state~55! remain qualitatively correct for
more realistic ones. Such a state cannot be prepared by
ing a measurement on the system only and, roughly sp
ing, it represents a ‘‘superposition of two translations’’:
fact, if rb is a pure coherent state for the system,r0 is a
superposition of two coherent states, with each one displa
by 6L0. However, asrb is a thermal equilibrium state fo
the correlated system-environment ensemble, the interp
tion of Eq. ~55! is not so transparent. The evolution of E
~55! was first studied in @22#, where only the zero-
temperature case was examined using a completely diffe
formalism. The preparation function for state~55! is the sum
of four d functions~arising from the matrix elements of dis
placement operators!:

l5l111l221l121l21 ,

l665N2d~ x̄2xi !d~ r̄2r i6L0!, ~56!

l675N2d~ x̄2xi62L0!d~ r̄2r i !.

Using these equations and the exact form of the evolu
operator we can compute the reduced density matrix at a
trary times. The simple form of the preparation functi
makes most of the integrations trivial. The final answer c
be conveniently expressed in terms of the Wigner functi
which turns out to be

W5W111W221Wint ,

W66~r ,p!5
N2

2pqbpb
e2~r7r0!2/2qb

2
2~p7p0!2/2pb

2
, ~57!

Wint~r ,p!5
N2

pqbpb
e2Ae2r2/2qb

2
2p2/2pb

2
cos~k r r1kpp!,

~58!

where the coefficients appearing in these equations are g
by

r 05L0Ġ, p05 ṙ o , ~59!

k r52L0
d

dt
~Ġ1Ga6!, ~60!
ce

.

o
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,
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pb
2kp5qb

2 k̇ r , ~61!

A52L0
2pb

22
qb
2

2
k r

22
pb
2

2
kp

2. ~62!

Above,N is the normalization constant

N252F 11
1

A11qb
2pb

2
expS 22L0

2pb
2

A11qb
2pb

2 D G21

. ~63!

The interpretation of Eqs.~57! and ~58! is clear: the
Wigner function is the sum of two Gaussian peaks and
interference term. The Gaussian peaks are centered ar
the dissipative classical trajectories determined by Eq.~35!
with initial conditions r56L0 ,p50. The spread of each
Gaussian peak is constant and given by the equilibrium
ues qb

2 and pb
2 . This means that the individual Gaussia

peaks remain ‘‘intact’’ along the evolution of the system.
this sense, they are perfect ‘‘pointer states’’~selected by the
predictability sieve criterion discussed in@27#!. Indeed, it is
easy to show that if only one translation operator is appl
in Eq. ~55!, the linearity of the problem implies that th
entropy of the reduced density matrix remains const
„i.e., for a single Gaussian Tr@r r

2(t)#5Tr@r r(0)#
51/A2qb

2pb
2
…. We remark that these Gaussian peaks are

pure states of the system since, due to the initial correlatio
the entropy of the reduced density matrix is nonzero eve
zero temperature. To see this it is easier to analyze the w
coupling limit, whereg0!v0!wc . In such case, the root
arez3'wc2g0 andz2'g0/21 iAv0

22g0
2/4 ~up to terms of

orderg0 /wc andv0 /wc). Using this expressions we can fin
that

pb
2'

v0

2
1

g0

p
lnSwc

v0
D , ~64!

qb
2'

1

2v0
2

g0

pwc
2 lnSwc

v0
D , ~65!

i.e., the equilibrium values are such that 2qb
2pb

2Þ1.
The interference term in Eq.~58! is centered around the

origin ~the midpoint between the two Gaussian peaks!. The
oscillatory term produces interference fringes in phase sp
~regions where the Wigner function becomes negative!. The
initial value of the coefficients is such that the exponen
factor is unity ~i.e., Au050) and the fringes are oriente
along the momentum direction~i.e., k r u050,kpu052L0).
When the system starts evolving the wavelength of
fringes becomes larger~due to the effect of diffusion!. There-
fore, the wave vectorskp andk r tend to zero, inducing the
growth of the exponentA(t) and with it, the exponentia
suppression of interference. A simple expression for the
ponentA(t) in terms of the position autocorrelation functio
is

A52L0
2pb

2F12
Ṡ2

pb
2qb

2 2S S̈

pb
2 D 2G . ~66!

This formula is quite useful since it makes evident a fe
important points: First, it clearly shows that decoherence
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produced by the same process responsible for the dec
the correlation function@remember thatS(t) is the symmet-
ric part of the position autocorrelation function#. Second, it
also shows that the maximum attainable value forA(t) is
2L0

2pb
2 . Third, it shows that the decoherence time scale

typically much shorter than any dissipative or dynami
time scale in the problem. Thus, by the time the derivati
of the correlatorS̈ decay to half its initial value, the fringe
are suppressed by a factor of order exp(2L0

2pb
2), which, for

large separations, can be very small. We can define the
coherence time scale as the time that it takes for the expo
to grow to a number of order unity~this time scale is clearly
inversely proportional toL0

2). An analytic expression for
A(t) can be obtained for Drude’s model in both the hig
and low-temperature limits. The result~for zero temperature!
is shown in Fig. 3. From the plot we observe a siza
growth of the decoherence factor occurring in a rather sh
time scale: for times of the order of the cutoff time scale
haveA(t5wc

21)'0.02L0
2 . The subsequent growth of deco

herence is not monotonic, being maximal when the peaks
separated in position and minimal when the separation i
momentum. To estimate the initial behavior ofA(t) it is
useful to obtain an analytic expression forS(t) valid for
short times (t!1/v0). In this case we have

S~ t !'qb
22

1

2
pb
2 t21

1

2
h~wct !, ~67!

h~z!5
g0

2pwc
2@e

zE1~z!2e2zEi~z!12~Ce1 lnz!2~ 3
22Ce!z

2

1z2lnz#, ~68!

whereCe is Euler’s constant. The functionh(t) is initially
zero and grows on a short time scale in a rather smo

FIG. 3. The evolution of the exponent that is responsible
suppressing the interference fringes. This isA(t)/L0

2 for the state
considered in Sec. V A andAac(t)/L0

2 for the one considered in
Sec. V B. Both curves are almost identical, showing a rapid de
herence for a time scale of the order ofwc . We also see tha
decoherence does not grow monotonically with time but in an
cillatory fashion, with maxima when peaks have position separa
and minima when the separation is in momentum. Parameters o
plot areg050.01,wc5100.
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manner. Whenh is small, the decoherent exponent turns o
to be approximatelyA(t)'ḧ(11ḧ). For very short times we
therefore have

A~ t !'
g0

ppb
2 wc

2t2u lnwctu1O~wc
4t4!. ~69!

B. Schrödinger cat state

We will now consider the evolution of a delocalized sta
in a less idealized situation than the one analyzed above.
initial state is

r5
P̂rbP̂

Tr~rbP̂!
, ~70!

where P̂ is a projector onto a pure state of the syste
P̂5uC&^Cu and the stateuC& is itself a Schro¨dinger cat state
~i.e., a superposition of two Gaussian packets!:

uC&5uC1&1uC2&, ~71!

whereuC6& are such that

^xuC6&5NexpF2
~q7L0!

2

2d2
6 iP0qG . ~72!

Thus, the initial state is rather similar to the one conside
above in Eq.~55!. However, state~70! could be prepared
through~a rather idealized! measurement on the system. Th
convenience of having analyzed the previous example
comes evident once we notice how tedious the calculati
become for the initial state~70!. In fact, the preparation func
tion one can associate to state~70! has sixteen terms~four for
each of the two projection operators onto the Schro¨dinger cat
state!:

l5^qi uP̂uq̄&^q̄8uP̂uqi8&5(
l51

16

l l . ~73!

Each one of these sixteen terms~which we do not explicitly
write down! can be evolved using the exact propagator. T
integrations are all Gaussian and straightforward. The fi
result can be conveniently presented in terms of the Wig
function, which is formed by four Gaussian peaks and
interference terms. Indeed, one has an interference term
tween each pair of Gaussian peaks~having in mind that each
interference term is the combination of two contributions,
have twelve terms contributing to the interference and fou
the direct Gaussian terms; this totals sixteen accounting
all the terms in the preparation function!. At first sight the
existence of four Gaussian peaks may seem awkward~if not
simply wrong! but its origin and interpretation will be ex
plained below. First, we will complete our presentation
the Wigner function. It can be finally written as

W5Wa1Wb1Wc1Wd1Wab1Wbc1Wcd1Wbd1Wad

1Wac . ~74!

The Gaussian peaks are given by the following expressio
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Wi5
N̄

2psxsp
e2~r2r i !

2/2sx
2
e2[ ~p2pi2b~r2r i !]

2/2sp
2
, ~75!

where the indexi labels the peak~i.e., i5a,b,c,d). On the
other hand, the interference termsWij are

Wij5
N̄

psxsp
e2Ai j e2~r2r i j !

2/2sx
2
e2[p2pi j2b~r2r i j !]

2/2sp
2

3cos@~k ri j 2bkpi j !~r2r i j !1kpi j~p2pi j !#. ~76!

Each interference peak is centered about the midpoint
tween the corresponding Gaussian peaks, i.e.,

r i j5
r i1r j
2

, pi j5
pi1pj
2

. ~77!

Before giving any details about the many coefficients
tering in these equations let us analyze and justify the e
tence of the four Gaussian peaks and their correspon
interferences. First, let us mention that the trajectories
lowed by the peaks are determined by two functions (r 0 and
r 1) in the following way:

r
b
a5r 06r 1 , r

d
c52r

b
a . ~78!

The location of the peaks in momentum is simply obtain
from the velocities, i.e.,pi5 ṙ i . The functionsr 0 andr 1 are
given by

r 0~ t !5L0Ġ, r 1~ t !5
L0

11d2/2qb
2 Ga6 . ~79!

The functionr 0 corresponds to the dissipative trajectory s
isfying Eq.~35!. On the other hand, the terms proportional
r 1 originate on the initial correlations~remember that for a
factorizable state one hasa650). Moreover, we can also
show thatr 1 vanishes at the initial time, when there are on
two peaks instead of four and a single interference term
stead of six. Thus, the initial correlations seem to be prod
ing a rather curious effect: each of the two Gaussian pe
splits into two pieces generating an ‘‘interference’’ term
between. Accordingly, the initial interference term also sp
into four pieces. How can this be possible? To underst
this we should notice that the existence of initial correlatio
implies that the evolution of each piece of the initial Wign
function is not independent of the existence of the ot
pieces. Thus, the role of the initial correlations is to produ
a ~very short lived! force that kicks the center of each Gaus
ian away from the trajectory determined byr 0(t). However,
each piece of the initial state produces a different kick be
the net effect a splitting of the Gaussian peak~this can also
be thought of as a type of ‘‘nonlinearity’’ induced by th
initial correlations, which enable different pieces of the in
tial state to see each other!. However, for us the relevan
point is how big is the separation between peaks and how
is the wavelength of the intermediate fringes. Below, we w
show that in realistic situations~as in the Drude’s model a
zero temperature! the separation between peaks is mu
smaller than their width while the wavelength is alwa
e-
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nt
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e
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much larger than the width of the peaks. Therefore, in suc
case there are no intermediate interference fringes being
ated by the initial correlations but only a small distortion
the packets, which are not exactly Gaussian~i.e., we are
simply writing a deformed Gaussian as the sum of t
slightly displaced Gaussian and an interference term!. How-
ever, in other situations where this formalism applies~re-
member that the above formulas would also describe a s
ation where the environment consists of a single oscilla!
this effect could be larger.

Now let us describe the structure of the interferen
terms. It turns out that the wave vectors associated with
the interference terms can also be written using only t
functions k r0, k r1 for position and two for momentum
kp0, kp1. In fact, one can show that the following relation
hold:

k ri j 5
kri2kr j

2
, kpi j5

kpi2kp j
2

, ~80!

wherek ri andkpi are defined as

k r
a
b
5k ro6k r1 , k r

c
d
52k r

a
b
,

kp
a
b
5kpo6kp1 , kp

c
d
52kp

a
b
.

Thus, the only relevant functions we need to know to anal
the wavelength of the fringes arek r0 , . . . ,kp1. The explicit
formulas for these functions, together with the ones for
dispersionssx ,sp and all the other parameters defining t
Wigner function are listed in Appendix C. The expressio
are more complicated than the ones we analyzed in the
vious subsections but, again, exact analytic expressions
be found for Drude’s model at zero temperature. In that c
we investigated the time dependence of the separation
tween subpeaks~i.e., the distance between peaksa andb, or
the one betweenc andd) and we found it to be very smal
compared to the width of the peaks. Therefore no separa
can be seen at all. This is shown in Fig. 4 where we a
plotted the ratio between the width of the peaks and
wavelength of the interference fringes between subpe
This is also very small, showing that no oscillations are o
servable. This justifies our previous claim that the subpe
are only a manifestation of a small distortion in the Gauss
nature of the principal peaks. We also analyzed the deca
the interference terms between principal peaks compu
the ratioAac /L0

2, which is plotted in Fig. 3. In that figure we
see that the behavior of this quantity is almost identical to
decoherence factor discussed in the previous subsec
~which indeed is much easier to calculate!. Thus, all the con-
clusions regarding the effectiveness of decoherence a
equally well to both subsections.

Finally, we also examined the time dependence of b
the position and momentum dispersions~as well as the en-
tropy of the Gaussian state, which is related to the produc
such quantities!. They are plotted in Fig. 5. Contrary to wha
happens with the state discussed in the previous subse
the dispersions depend on time and the initially pure s
gets mixed as it interacts with the environment. After a su
den burst of entropy~which is nevertheless quite small! the
entropy decays towards a final value which is of the orde
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^the final equilibrium entropy of the subsystem@i.e., of the
order of ln(2qb

2pb
2)'0.014]. It is worth mentioning here tha

the nature of the final equilibrium state can be examined
analyzing the evolution equation for the Wigner function.
the long-time limit Eq.~40! has a very simple form since th
inhomogeneous terms vanish and all the time-dependen
efficients approach asymptotic values:g(t)→g0,

FIG. 4. Separation between ‘‘internal peaks’’ and characteri
size of the ‘‘internal fringes.’’ This plot shows that the subpea
never separate and the interference fringes between them are a
unobservable. The subpeaks form a distorted Gaussian peak, w
moves around as a whole. Parameters of the plot areg050.01,
L055, wc5100.

FIG. 5. The position and momentum spread for a single Ga
ian peak are modified on a very short time scale during wh
entropy is produced. Later, they both settle towards the equilibr
values which aresx

25qb
250.498 andsp

25pb
250.512. Parameters

of the plot areg050.01,wc5100.
y

o-

v(t)→v0, D1(t)→d1, andD2(t)→d2. Thus, one can show
that a Gaussian state is the stable stationary solution
vided that the position and momentum dispersions
sp
25d1 /g0 and sx

25(sp
21d2)/v0

2 . Thus, the role of the
anomalous diffusion term is to squeeze the final equilibri
state. Its effect at zero temperature is evident from Eqs.~64!
and ~65! where we see that the final state is squeezed
position and spread in momentum~with respect to the oscil-
lator’s ground state!. The uneven squeezing is responsib
for the nonvanishing entropy of the equilibrium state at ze
temperature.

VI. SUMMARY AND CONCLUSION

In this paper we extended previous analysis of QBM to
more general class of initial states containing correlatio
between the system and the environment. We derived a m
ter equation for the reduced density matrix that is local
time but has time-dependent coefficients and inhomogene
terms~arising from the initial correlations!. A detailed analy-
sis of the coefficients was performed for Drude’s model of
Ohmic environment. In such a case, the corrections aris
from the initial correlations are very short lived, decaying
the time scale associated with the high-frequency cut
However, during that short time they can play an interest
role. A point to notice is that, contrary to previous specu
tions @6,8#, the diffusive coefficients of the master equatio
still exhibit an initial jolt in the cutoff time scale. This jolt is
relevant for decoherence producing the decay of interfere
effects: at zero temperatures and for very small damp
(g050.01), the interference between two wave packets se
rated by a distance 2L0 is suppressed by a factor of orde
exp(20.02L0

2). Therefore, initial jolts are not associated wi
the absence of initial correlations. To the contrary, they
likely to be related to the instantaneous preparation pro
dure that is applied here. Models with a nonvanishing pre
ration time scale are currently under investigation@23#.

Finally, we would like to stress once more the simplici
of the formula we obtained for the decoherence factor.
fact, for the delocalized initial state examined in Sec. V A w
showed that the factor suppressing interference fringe
exp@2A(t)#, where

A~ t !52L0
2pb

2F12
Ṡ2

pb
2qb

2 2S S̈

pb
2 D 2G , ~81!

beingS(t) the position autocorrelation function~in thermal
equilibrium!:

S~ t !5 1
2 ^$q~ t !,q~0!%&b . ~82!

This equation enables us to obtain very simple qualitat
estimates on the efficiency of decoherence. In fact, it clea
shows that even though decoherence has the same phy
origin as the decay of correlations, the characteristic ti
scale of both processes is entirely different. In fact, from
above equation one can simply estimate the amount
which correlations must decay for decoherence to occ
Thus, at the decoherence time scale~when the above expo
nent is of order unity!, the decay of correlations is still ver
small:

c

ays
ich

s-
h
m
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S̈~ tdec!'S̈~0!A12
1

2L0
2pb

2'S̈~0!A12
lb
2

2L0
2, ~83!

where lb5\/A2pb
2 is the characteristic de Broglie wave

length of the system in thermal equilibrium~which ap-
proaches\/A2mkBT at high temperatures and the spread
the ground state at low temperatures!. In Sec. V A we used
the above formula to obtain an analytic expression for
decoherence factor in Drude’s model at zero temperat
Moreover we showed that even though this formula was
rived under simplifying assumptions concerning the init
state ~obtained from a thermal state by ‘‘superposing tw
translations’’! it is robust when applied to more realist
cases~as Fig. 3 shows!.

As a final remark, we would like to show how simply th
usual result for the decoherence time scale in the h
temperature limit@1# arises from Eq.~81!: at high tempera-
tures the momentum dispersion ispb

25kBT and the auto-
correlation function decays exponentially asS̈(t)
'S̈(0)exp(2g0t). Thus, Eq.~81! reduces to

exp@2A~ t !#'exp$22L0
2pb

2@12exp~22g0t !#%

'exp~24g0tkBTL0
2!, ~84!

which is the usual result obtained in the high-temperat
approximation. We believe our equation will be useful f
estimating the time scale of decoherence in many other
tems where the behavior of position autocorrelation funct
is well known.

Note added in proof.Recently we became aware of Re
@28#, in which the same master equation~33! was derived
using techniques that are similar to the ones we used he

ACKNOWLEDGMENTS

J.P.P. would like to acknowledge the hospitality of IT
Santa Barbara where this work was completed. This rese
was supported in part by NSF Grant No. PHY94–07194 a
by Grants from UBACyT, Fundacio´n Antorchas and Conice
~Argentina!.

APPENDIX A: COEFFICIENTS DETERMINING
THE EVOLUTION OPERATOR

The following kernels appear in the generalized influen
functional: the ordinary noise kernel~extended to the com
plex plane! n(z) and the kernelk2(z) are

n~s2 i t!5
1

b (
n52`

1`

gn~s!exp~ innt!, ~A1!

k2~s2 i t!5
1

b (
n52`

1`

f n~s!exp~ innt!, ~A2!

k~s2 i t!5n~s2 i t!1 ik2~s2 i t!, ~A3!

where the functionsgn(s) and f n(s) are defined in terms o
the spectral density as (nn52pn/b are the Matsubara fre
quencies!
f

e
e.
-
l

-

e

s-
n

.

ch
d

e

gn~s!5E
0

`dw

p
I ~v!

2v

v21nn
2cos~vs!, ~A4!

f n~s!5E
0

`dw

p
I ~v!

2nn
v21nn

2sin~vs!. ~A5!

The Euclidean integral brings another contribution to t
noise, which turns out to be

k~t!5
1

b (
n52`

1`

xnexp~ innt!, ~A6!

xn5E
0

`dw

p
I ~v!

2nn
2

v21nn
2 . ~A7!

The explicit form of the coefficients that define the ev
lution operator is

a05@2pG~ t !~2pqb
2 !1/2#21, ~A8!

a15
1

2qb
2 , a25

pb
2

2
, ~A9!

a35
Ġ

G
, a452

1

G
, a552F Ġ2

G
2G̈G , ~A10!

a
7
656E

0

t

dsC
2
1~s!v1~s!, ~A11!

a
9
856E

0

t

dsC
2
1~s!v2~s!, ~A12!

a
12
105

1

2E0
t

dsE
0

t

duR~s,u!v
2
1~s!v

2
1~s!, ~A13!

a115E
0

t

dsE
0

t

duR~s,u!v1~s!v2~s!, ~A14!

where the constantsqb
2 andpb

2 are expressed~in terms of the
spectral density and the initial temperature! as

qb
25

1

b (
n52`

1`

un , ~A15!

pb
25

1

b (
n52`

1`

~v0
21xn!un , ~A16!

un5~v0
21nn

21xn!
21. ~A17!

The auxiliary functionsv1(s), v2(s), C1(s), andC2(s) ap-
pearing in the above expressions are
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4082 55LUCIANA DÁ VILA ROMERO AND JUAN PABLO PAZ
v1~s!5
G~ t2s!

G~ t !
,

v2~s!5Ġ~ t2s!2
G~ t2s!Ġ~ t !

G~ t !
,

C1~s!5
1

bqb
2 (

n52`

1`

ungn~s!,

C2~s!5
1

b (
n52`

1`

unnnf n~s!,

while the effective noise kernelR(s,u) is

R~s,u!5n~s2u!1ncorr~s,u!, ~A18!

ncorr~s,u!52qb
2C1~s!C1~s!1

1

b (
n52`

1`

un@gn~s!gn~u!

2 f n~s! f n~u!#. ~A19!

APPENDIX B: AUTOCORRELATION FUNCTION

The following formula ~which is proved in@11# using
Laplace transform techniques! enables us to obtain simpl
relations between the auxiliary functionU(t,t8) and the po-
sition autocorrelation functionS(t):

U~ t,t8!5pb
2G~ t !G~ t8!1Ṡ~ t !G~ t8!1S~ t8!Ġ~ t !

1
S~ t !S~ t8!

qb
2 1

1

b(
n

G̃~ unnu!coshnn~ t2t8!

2
1

2b(
n
E
0

t2t8
ds cosh~nns!@G~ t2t82s!

2G~ t82t1s!#, ~B1!

whereG̃ is the Laplace transform ofG(t).

APPENDIX C: THE WIGNER FUNCTION

The following formulas determine the temporal depe
dence of the coefficients determining the Wigner function
a Schro¨dinger cat initial state:
et
-
r

2sx
25d2Ġ21

G2

d2
1G2F4a101

a6
2

1/2qb
211/d2

2
a7
2

pb
2/211/4d2G , ~C1!

b5
ṡx

sx
, ~C2!

2sp
25

W2

G2 d222sx
2S b2

Ġ

G
D 21F4a12

2 1
a6
2

1/2qb
211/d2

2
a7
2

pb
2/211/4d2G , ~C3!

sx
2k r052

GL0
d2

1Ġd2P0 , ~C4!

sx
2k r152

P0Ga6

1/2qb
211/d2

1
L0Ga7

2d2~pb
2/211/4d2!

, ~C5!

spkp0
p1

5
sx

sp

d

dt
~sxk r0

r1
!, ~C6!

Aac
bd

5F 2pb
2d2

2pb
2d211

1
1

d2/2qb
211GFL0

2

d2
1P0

2d2G
2

sp
2

2
~kp06kp1!

22
sx
2

2
~k r06k r1!

2, ~C7!

Aab
cd

5F 1

d2/2qb
211

2
1

2pb
2d211GFL0

2

d2
1P0

2d2G2
sp
2kp1

2

2

2
sx
2k r1

2

2
, ~C8!

Aad
cb

5
L0
2

d2
1P0

2d22
sp
2kp0

2

2
2

sx
2k r0

2

2
. ~C9!
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