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Decoherence and initial correlations in quantum Brownian motion
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We analyze the evolution of a quantum Brownian particle starting from an initial state that contains corre-
lations between this system and its environment. Using a path-integral approach, we obtain a master equation
for the reduced density matrix of the system finding relatively simple expressions for its time-dependent
coefficients. We examine the evolution of delocalized initial sté&ehralinger catg investigating the effec-
tiveness of the decoherence process. Analytic results are obtained for an Ohmic envir@meas model
at zero temperatur¢S1050-294{@7)05205-0

PACS numbd(s): 03.65.Bz

I. INTRODUCTION
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The study of the decoherence process has received in- "
creasing attention in recent yearbl. In fact, it has been Notice that, for conveniencd,s. contains both the free La-

recognized that decoherence is of fundamental importance if : . . :
grangmn for the environment as well as the interaction term

understanding the nature of the fuzzy boundary between th including a potential frequency renormalizatiorFor the
guantum and the classical domains. The nature of thi gap N y

boundary has been under scrutiny both from the theoretical
and from the experimental point of viej2,3]. The basic

otential we will simply conside¥(q) = wng/z.
This model is such that only a few parameters are impor-

physics of decoherence is very simple: interaction with thetant to describe the effects the environment produces on the

environment tends to prevent the stable existence of the va§YStem' One such “parameter” is the so-called spectral den-

majority of the states of the Hilbert space of macroscopics'ty of the environment, which measures the density of os-

guantum systems. Thus, coherent superpositions of macr((ﬂ"‘?‘torS with any given frequency _and th_e st_rengt_h with
scopically distinct states tend to decay very rapity a which they couple to the system. This function is defined as

short decoherent time scali@to mixtures preventing the ob- 2
servation o_f delocgillzed_Schr(dlnge_r cat states. In some |(w):2 n S S(w—wy). ()
sense, the interaction with the environment enforces the ex- n 2Mpo;,

istence of “environment-induced” superselection rules se-

lecting the very few states in which classical systems ar@he other important ingredient required to determine the ef-
found. To answer specific questions concerning the effecfect of the environment is the initial state. The simplest such
tiveness of the decoherence process for inducing classicatate for the system-environment ensemble is a factorizable
behavior in a particular system one certainly has to analyzetate where the total density matrix is just a product:
detailed models describing the actual physical situationp .= p.® p.. For this type of state, and under a variety of
However, some generic features of decoherence have beagsumptions, the decoherence process has been analyzed for
analyzed for classes of models that appear in a variety a)BM models[4—10]. In this paper we will study the evolu-
physical circumstances. The paradigmatic model for suchion of the reduced density matrix and, in particular, analyze
studies, which we will reanalyze in this paper, has been linthe effectiveness of the decoherence process for a much
ear quantum Brownian motioQBM), which is character- wider class of initial states than the ones analyzed so far in
ized in the following way: A Brownian particlévhose co- the literature. We will allow for initial states for which the
ordinate we denote with) evolves in one dimension while initial density matrix is not factorizablé.e., states contain-
interacting with an environment formed by a collection of ing system-environment correlationsOur work will be
independent harmonic oscillatofwith coordinatest,)). The  based on the use of techniques and results that have been

Lagrangian of the system environment ensemble is elaborated upon and clearly exposed by Gralegrl. in
[21].
L(d,6)=Ls(a) +Lsdq,8), (1) One of the most practical tools for analyzing the evolution

of a quantum open systefi2,13 is the evolution equation
) for the reduced density matrix. This is known as the master
Ls(g)=39%-V(q), 2 equation and its properties for the QBM model have been
extensively analyzed in the literatuf#4,15,5,8. However,
only relatively recently has it been realized that the structure
*Electronic address: L.Davila-Romero@uea.ac.uk of the master equation for linear QBM models akvays
Electronic address: paz@df.uba.ar remarkably simpl¢6] (see alsd8,16]). Thus, for the case of
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55 DECOHERENCE AND INITIAL CORRELATIONS IN ... 4071
factorizable initial states it has been shown that the exact
master equation for linear QBM is alwalacal in time hav- Po=—"= .
ing time-dependent coefficients. A variety of derivations of Tr(Ppp)
this exact master equation, valid for environments with gen- . . . .
eral spectral densities in initial states of arbitrary tempera- It is clear that the above is not a product state since it
ture, have been given so far in the literati6s8,9,17, 18 contains porrelau_ons between the system and the environ-
! 4 e . ment, which are inherited from the ones already present in
This type of equation has been used to analyze a rather wi

; e premeasurement thermal statg. Therefore the usual
variety of problems(see[19-21 for references of use of techniques are not applicable for describing the evolution of

master equation and related techniques in context rangingae(s). In what follows we will present a method enabling
from cosmology to quantum optics us to study the fate of a whole class of states which includes

In this paper we will generalize previous work on mastergq. (5) as a particular case. In general, the initial states we
equation for QBM models allowing for a more general classy|| consider are of the form

of initial states and finding the general form of the exact
master equation. Our equation reduces to the previously ,
known ond 6,8] for the case of vanishing initial correlations. pPo= 2,: AipgAj (6)
As an aside, we present a very simple derivation of the mas-
ter equation and find rather convenient and manageable foyyhere A; and A/ are operatorgnot necessarily projectors
mulas for the time-dependent coefficients. Using them, weycting on the Hilbert space of the system. For E). to
analytically solve a simple, but physically relevant, examplerepresent the state following a perfect measurement on the
where all the coefficients can be comput@tude’s model  system, the above sum must collapse onto a single term and
of_ an Ohmic environment at zero tempgra}ur@f course, A =Al= p/[Tr(PpB)]UZ, whereP is a projector.
this is not the first time the QBM model with nonfactorizable * at this point it is convenient to introduce some notation: it
initial states has been analyzed. As we mentioned above, thgi|l turn out to be useful to describe the initial state of the
method we apply here has been developed and used by ot§ystem in terms of a “preparation functionX'(q,9,9’,9").
ers (see[11,12). However, to our knowledge, neither the This function, which parametrizes the deviation of the initial
structure of the master equation has been investigated in thigduced density matrix of the system from its thermal equi-
case before, nor the effectiveness of decoherence has belrium form, is defined in terms of the matrix elements of
examined(except for the work if22], which we generalize the operatorsy; ,Aj’ as
herg. In some sense, our paper is part of an effort to relax
the usual assumptions behind simple models of decoherence
(further work towards a more complete “deconstruction” of
decoherence is presented elsewhe).

This paper is organized as follows: In Sec. Il we describeUsing this definition, it is easy to show that the total density
the class of initial states we analyze and introduce the commatrix in the coordinate representation is
cept of preparation function. In Sec. Ill we describe the for-
malism following the scheme presented[ii]. In Sec. IV e —
we obtain the n?aster equatiorﬁ)describin[g iJcs properties and po(0,£,9",¢")= | dada’'r(a,0.9".0")pp(9.£,0".¢")
studying the behavior of its coefficients. In particular, we (8)
find analytic expressions for Drude’s model at zero tempera-
ture. In Sec. V we study the evolution of two types of delo-and that the initial reduced density matrix is
calized initial state§Schralinger cat statgsconsisting of a
superposition of Gaussian wave packets. In both cases we
analyze the evolution of the Wigner function analyzing the
efficiency of the decoherence process. Finally, in Sec. VI we

Bo,P
TP (5)

x(qﬁq'm=§<q|Ai|q_><?|Aj’|q'>. (7

p(q,q’)=fd@TMqEq’F)pB(W). 9

summarize our conclusions. App_endices_A, B, and_C contain Ill. EVOLUTION OPERATOR
useful formulas that we do not include in the main text to
prevent overloading it with too many equations. As described by Grabert and oth¢fd], it is possible to

modify the usual Feynman—Vernon methi@#] (which is
only applicable for factorizable initial states, §€¢) to study
II. INITIAL CONDITIONS the evolution of initial states of the forif6). The main re-
sults, whose derivation we will briefly outline below, are the
We are interested in studying the following type of initial following (see[11] for more details

condition: the system and the environment have interacted (i) The reduced density matrix of the system can be ob-

for a very long time so that they reached an equilibrium stateained by “evolving” the preparation function in the follow-

represented by the density matrpg. At the initial time  ing way:

(t=07) we make a measurement on the system only. As

every result of the measurement is associated with a projec- , J— , —

tion operato® acting on the Hilbert space of the system, the r(a.q ’t):f dgidgrdada’d(a,q",t,0;.97.9.9")

state of the system plus environment ensemble after such -

ideal measurement is X\(0;,0,0 ,9"), (10)
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(if) The evolution operatod has a simple representation J(q,q’,t,q;,q/ ,9,q’)
as a triple path integral over trajectories of the system. In this
path-integral representation the effect of the environment is
present through a generalized influence functional, which
provides a nontrivial weight to triplets of system'’s trajecto-
ries (see below. HE o a e &

(i) For general linear modelé.e., an environment of degfdg'dg' Pp(0.£.4",¢")
independent oscillators with an arbitrary spectral denglitg
problem is exactly solvable. Thus, if the action is quadratic xf DngreiSsE[q,ﬂfiSse[q’,f’]_ (15)
in the environmental coordinates, the generalized influence
functional can be easily computed. Moreover, if the theory is This formula is not of the desired form yet: we have a

linear for the system, a closed expression for the evolutioraoume path integral over the system’s trajectories with an

operatorJ can be obFamed. o integrand that is not only a functional of these trajectories
Let us now describe how to demonstrate res(iis(iii) 4 5150 a function off andq’. To overcome this difficulty
quoted above. The validity @f) can be simply seen by writ-yhich comes precisely from the fact that the initial state
ing the full density matrix at time in terms of the initial  ¢onains correlations that are present in the thermal density
density matrix as matrix p ;) we can use the Euclidean path-integral represen-
tation for a thermal equilibrium density matrix. Thus, matrix
p(q,6,9' € ) elements ofp; can be written as

= f Dqu’eiSs[q] —iS4q’]

:f doidagid&idéi po(ai.&i.ai &) p,g(af,?,f’)=f DaD¢ e 1o, (19

XK(q,ét,q;,6)K*(q',&',t,q/ &), (11) Where the integral is over Euclidean paths satisfying the
64,046 R I R boundary conditions:

where K is the evolution operator of the complete wave q(0)=q’, ¢&=¢&', a(B)=q, &pB)=&. 17
function. Equation(10) is obtained by expressing the initial
density matrix in terms of the preparation functi@s in Eq.
(8)] and by tracing over the environment coordinage®o-
ing this we also obtain the explicit form of the evolution
operatorJ:

Using this, we can write the evolution operator as the
following triple path integra[property(ii) above:

J(q,q,,t,Qi vqi, lqlql)

:f DqDq’ Dy e/S49 -89-Sl [, g’ ],

J(qiqlitquQi’quq’) (18)

=f d&dg dé; pp(a.€i,9,€) where the “generalized influence functionaF[q,q’,q] is
defined as
XK(9,¢5,t,0,6)K* (A", & ,6,07 L&), (12)

Flo."a]- | dedgde | DepeDE sl
To find a simple path-integral representation for this evo- (19

lution operatof property(ii) abovg we can first express the » . .
full evolution operatoiK as a sum over histories of the sys- The bounqary _cond|t|ons on the path mtegr.al over the envi-
tem and the environment: ronment histories are such that all these integrals are tied

together: final conditions foé and ¢’ coincide (because of
the final trace over the environménthile their initial con-
. ditions are connected via the Euclidean trajectories. For this
K(g,&.t;0; ,fi)=J DqD¢ e'sla4, (13)  reason, the above integral is denoted as a functional integral
over a “closed time path'{25].

The above considerations are applicable for arbitrary in-
where the integration paths must satisfy the boundary condf€ractions. From now on we will restrict ourselves to discuss
tions: linear QBM models that have the virtue of being explicitly

solvable, allowing an explicit calculation of the propagator

J. To do this, one can first notice that, if the system-

q(0)=q;, q(t)=q, £&0)=¢, &t)=¢. (14) environment interaction is linear in the environmental coor-

dinatesé, the generalized influence functional can be exactly

computed since the path integrdl9) is Gaussian. For the
Replacing this into E¢(12) and expressing the total action as bilinear interaction given by1) the result for the generalized
a sum of free and interaction terms, the evolution operatomfluence action ®[q,q’,q] is (where F[q,q'q]
can be written as a path integral: =exp{i®[q,9'ql})
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P[x,r,q]=i Jtdsjsd ur(s—u)x(s)x(u)— jtds BOur X XY =gt @)+ ag(iri X0 + apr
0 0 0

+ asXr+ agXl +i XX+ agXr

. t . — .
XJsdun(s—u)x(s)r(u)—riJ dsp(s)x(s) +|agxx+|(aloxi2+allxix+a12x2).
0 0
(26)
i (B B - - -
+ Efo dq-fo dok(7—0o)q(7)q' (o) The explicit formulas for the coefficients, . . . a1, are

given in Appendix A. In general, these time-dependent coef-
s ¢ ficients are determined by the spectral density and the initial
+f de dsk* (s—i7)q(7)X(s), (20 temperature. Here, we will just mention a few simple prop-
0 erties of the coefficients.
(i) ag just ensures the normalizatigpreservation of the
where for convenience we used “sum and difference” coor-trace of the density matrixand it is therefore determined by

dinates defined as the other coefficientgexplicitly, aa= a3a,/167°).
(i) Coefficientsa,,a, are time independent. These coef-
q+q’ ficients determine the reduced density matrix in thermal
Xx=q-q', r= 5 (21 equilibrium. Thus, if we denote the position and momentum

dlsperS|on(|n thermal equilibrium, respectively, a$1,3 and

The kernels appearing in the influence act{@f) are deter- pﬁ' Le., if
mined by the spectral density and the initial temperature

1/8 (see Appendix A for the explicit form of these kernels

Here, we would just like to mention that the first two lines of o, a;=1/
Eqg. (20) contain the usual result derived in the absence o
initial correlations. Thus, kernels(s) and 7(s) are, respec-
tively, the noise and dissipation kernels:

95=(s,  P5=(PHs, (27)
205 and a, = p3/2. The explicit form ofq3 and
E)Z , Which are temperature dependent, is given in Appendix

(|||) Some of the coefficientsaz, a4, and as) only de-
pend upon the spectral density of the environment. Explic-

g _
v(s)= Jo ;I(w)coﬂ’(ﬁw/Z)cogws) itly, we have

2 c = (62 G) (28
2 a3=—=, ay=——=, as=—|—=—-G]/,
= |(w) 2w 5COg wS), (22 3G 4 G 5 G

0+,

n=-—w
where the functiorG(t) is a solution of

»dw . d [t
”(S)ZZJO?'“”)CO“"S)’ (23 G<t>+wSG<t>+af dt' 7(t—t)G(t)=0, (29
0

where v, are the Matsubara frequencieg=2=n/B. The satisfying the boundary conditions
initial correlations are responsible for the coupling between

real and Euclidean trajectories in the influence functional. As G(0)=0, G(O)z 1. (30
will be seen below, one of the effects of this coupling isto o
produce an “effective noise kernelR(s,u) (which deter- (iv) The other coefficients g, ... 212 depend on

mines the strength of the diffusive effectdhe effective G(t) and on the noise kernels appearing in the influence
noise kernel is not homogeneous in time and can be writtefunctional. Therefore, they are determined by the spectral
as density and the initial temperature of the environment. In the
absence of initial correlations.e., if we disregard the inter-
e actions between the system and the environment in the Eu-
R(S,U)=¥(S=U)+ Voorl S, ) 24 clidean integralsthe coefficientsyg, . . . a9 are identically
zero and the propagator does not mix the coordinates

where the explicit form of the “correlational noisel.,,, is with the rest.

given in Appendix A.

Computing the propagatar is straightforward if the ac-
tion is quadratic in the system’s coordinates. The final result IV. MASTER EQUATION
of this simple but tedious calculatidisee details if11]) is A. A simple derivation

foll :Th i ian f i . . . ,
as foflows @ propagator is a Gaussian function, Knowing the propagataod, it is possible to find the evo-

- . — lution equation for the reduced density matrix. This is the
JOGEEXG 17X, 1) = arge! X0t X, (25 so-called master equation, which can be easily derived fol-
lowing a simple method outlined by one of us[i8]. First,
where the exponer is a second-degree polynomial of its we explicitly evaluate the time derivative of the evolution
arguments, which reads operator which, taking into account E@®5), is of the form
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J= P,J, whereP, is a second-degree polynomial in the vari- sio_n term(called anomalous diffusion if6]) that has inter-
ablesx,r,x; ,r; .x,r. Next, we multiply this expression by the €sting effects especially at low temperatures. The last two
preparation function and integrate over the coordinate§nes make the master equation nonhomogeneous. In fact,
Xi ,r; ,X,r. The nontrivial task is to rewrite the right-hand these terms are present because of the correlated nature of
side of the resulting formula as an operator acting on thdhe initial state and prevent the right-hand side of the master
reduced density matrix. Part of this task is simple: termsequation from being written entirely in terms of the reduced
involving the “final” coordinates &,r) can be moved out- density matrix. The two density matricgg and p, are ob-
side the integrals generating local terms in the master equaained by propagating the initial states associated with the
tion. The real problem is to manipulate terms involving thepreparation functions.;=rx and\,=x\. Taking into ac-
“initial” coordinates (which are being integrated gufo do  count the definition of the preparation function, these states
this, as explained i8], we can take advantage of the fol- have “density matrices”p;={q,p} and p,=i[q,p]. It is
IOWing identities, which can be Stl’aightforwardly derived worth noticing that the evolution qﬁi can also be studied
from Eqgs.(25): with our formalism sincgapart from not being normalized
1 they belong to the class of initial conditions defined by Eq.
xiJ= —(—id, — azx)J, (31) (6). Therefore, the evolution equation fpr is also Eq.(33),
oz with new inhomogeneous terms; . Thus, a hierarchy of
1 1 ay o e_quations, which_ are _coupled because of the initial (_:orrela-
rid=—adJ— —| asgr+ —(d,—iagX)+ agr +iagx|J. tions, can be derived in this wagee[26] for more details
las as Qs The result we just presented has a remarkable property
(32 that, at first sight, may appear to be rather tantalizing: the
Using these equations we can eliminate the initial vari-master equatiof33) is local in time(disregarding the inho-
ablesx; ,r; in favor of the rest. At this point we may note that mogeneous termss Locality of the exact master equation,
the existence of initial correlatior(seflected in the presence Which in the absence of initial correlations was previously
of nonvanishing Coefficientaglag) prevents us from com- noticed in[6,16], is hard to reconcile with the intuitive idea
pletely accomplishing our goal since the right-hand side ofne has about the effects a generic environment may pro-
Eq. (32 still depends on the integration variables. These duce. In fact, as such a generic environment could produce
terms will generate nontrivial contributions to the masterall sorts of non-Markovian effects, one would expect to find
equation whose form will be described below. Using thenonlocal integral kernels in the master equatitike the

above formulas, after some algebra we obtain the exact ma§hes appearing in Eq29)]. However, as our exact calcula-
ter equation for linear QBM, which reads tion shows, this is not the case for tlieear QBM model we

are considering. Thus, linearity imposes an enormous con-

. 1 . . . . .
N P S BN 2 2 , straint forcing the master equation to be local in time. To
p(a,q" )= 2(‘7q aq') 2% (H(@°=a™) |p(a.9".1) understand this in a simple way we propose the following
) , exercise to the reader: consider the integrodifferential equa-
—y(1)(a—0a")(dg—dq)p(a,0",1) tion

- Dl(t)(q_q,)zp(qu,at)

. d rt
2 . ’ Y 1 —
HiDH(1)(4=q') (dg+ dg)p(Aq" 1) f(t)+w0f(t)+dtJ0dt p(t—t")f(t")=0 (39

+iCy()(a—a")p1(a,q’,t) (which is linear but nonlocal in timeWe will show that this
L~ , , equation can be easily transformed into the following local
~1C(1)(a=a")p2(0.9".1). (33 equation with time-dependent coefficients:
It is important to stress that the above master equation is ; : )
exact and valid for all spectral densities and initial tempera- f+y(t)f+w(t)f=0. (35
tures. The time-dependent coefficients appearing in(&g). o ) )
are functions ofayg, . . . ,a;,. Explicit formulas are given 1he coefficientas(t) andy(t) (which are precisely the same
below. ones appearing in the master equati@an be written in

The interpretation of the terms appearing in the mastefems of aparticular solution of (34) [satisfying boundary
equation is clear. The first line is just Liouville's equation conditions(14)] as
with a renormalized Hamiltonian. Thus, the environment .
renormalizes the Brownian particle that acquires a time- ) GG—G? W
dependent frequency. The form aft) is relatively simple W ()= —m— Y(O=— ¢ (36)
(see below and only depends on the functidga(t). The
second line contains a friction term with a time-dependent
damping coefficienty(t). This coefficient also has a rela-
tively simple form, which is again determined by the func- ) o ) .
tion G(t). The third line corresponds to a diffusion term and Notice thatW is just the Wronskian betwee@ andG.
its presence is of importance for studies of decoherence. The 10 demonstrate this, we should first notice that the space
diffusion coefficient depends both @(t) and on the noise of solutions c_>f Eq.(35 has _dlmen5|on two. Therefore_ the
kernel (its time dependence will be examined below in angeneral solution can be written as a Ilnear_ combination of
illustrative examplg The fourth line contains an extra diffu- two independent solutions. We can uSeandG [satisfying

W=GG- G2 (37)
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initial conditions (14) as a convenient bagisand write B. The time-dependent coefficients

f(t)=a,G(t) +a,f(t) where a;,a, are two independent The expressions defining the diffusive coefficients of the

constants. These constants can be expressed in terms rahster equation are rather complicated at first sight. How-

f f G, andG as ever, we have been able to find the following simple formu-
las:

Gf—Gf —Gf+Gf Dl(t)=[8t2,+y(t)&tr+w2(t)]U(t,t’)Itr:t, (41
MToE e Y eear 8
- - Dz(t)=[0f,+y(t)&t/+w2(t)]U(t,t’)|v:t, (42

Replacing this in the nonlocal term of E@®4) and using the WhereU(t,t") is an auxiliary function defined as

fact thatG and G satisfy the same equation, one can show
that [hdt’ 7(t—t')f(t") = y(t) f(t) + [ w?(t) — w3]f(t). This
ends our proof. What this shows is a rather trivial feature that
is frequently forgotten: the future evolution of a function andU(t,t’) denotes the partial derivative with respecttto
f(t) satisfying a linear integrodifferential equation such asRemember that the “effective noise kerneR(s,u) is de-
Eqg. (34) does notdepend on its entire history. Indeed, its fined asR(s,u)=v(S—U)+ veo(S,u) Where in ve(s,u)
future behavior is uniquely determined by the Cauchy datave incorporate contributions to the noise arising from the
(the value off and its derivativgtogether with the timeé at initial correlations(which are typically relevant only on very
which these data are given. The only non-Markovian featurghort time scalgs The above expression is remarkably
of the evolution is that it remembers the time. One maysimple for the case of uncorrelated initial conditidmehere
argue that Eq(35) is rather useless: Thus, to solve it we R is identical to the standard noise kerndis)]. It can be
must first knoww(t) and y(t), which means that we still shown using our equations that the known expressions for
need to solve the integrodifferential equation. This is certhe diffusion coefficientsfound, for example, in6]) are
tainly correct. However,w(t) and y(t) are “universal”  recovered in this limit. However, Eq&1) and(42) are sub-
functions in the sense that they do not depend upon thetantially simpler than the usual onéand are valid for a
boundary conditions of the problem at hand. Thus, while Eqwider class of initial conditions
(35) is equivalent to Eq(34) it makes evident the fact that  The coefficients appearing in the inhomogeneous part of
the behavior of the solutions is not history dependent. the master equation are also rather complicated but we were
This simple exercise not only shows how to “localize” also able to write them in a simple form as
Eqg. (34) but also makes clear why the master equation for _
linear QBM is local in time. The non-Markovian features we Ci(t)= [atz+ y(1) i+ 0?(t)]Gas. (44)
expect to see are rather restricted by linearity. In the absence 2 !
of initial correlations, the time-dependent coefficients play Before analyzing an explicit example, we should point out
therefore the very important role of providing all the memorythat the diffusive coefficients are entirely determined by the
effects in the evolution of the density matrix. The inhomo-position autocorrelation functiofin thermal equilibriuny,
geneous terms are responsible for carrying the effect of ini-
tial correlations on the evolution of the system. S(t)=3({a(t),q(0)})s. (45)

Finally, we can write down the equation for the Wigner . ) )
function, which is defined in terms of the density matrix as !N fact, using results found in Appendix B, we can show that

t t!
U(t,t')zfodsfo duG(t—s)R(s,u)G(t' —u) (43

. 2
dx . U(tt)l-v=ppG*+2SG— 7+, (46)
W(f,p,t)zfEe_'pXP(X,r,t)- (39 B

AU(t,t")]i— =p3GG+SG+SG— —, (47)
Applying the master equatio(B3), it is easy to obtain the t et p Eg
evolution equation fokV(r,p), which results in )
. L. S
| at&t,U(t,t’)|t:t,=pngvaZGS—q—z+p2, (48
W={Hg, W}pg+ (1) dp(pW) + D (1) 2W+ D (1) 40, W ?
C e L P
2 ’ A2 2
g, U(t,t )|t:t/—pBGG+SG+GS—q—2+Dg, (49
B

— Cy(t) 3pWoy + Col(t) 3pWp, (40)

where the renormalizedtime-dependent Hamiltonian is _ 5

ER: 1p24 %QZ(t)q2 gnd{,}p_B denotgs the standarpl Poisso_n RUt) oy = pngé+Sé+ SG— iy pfe- (50)
racket. This equation, which carries the same information a;

than the master equation, is useful for analyzing some prop-

erties of the solution. In particular, as we wiil show below, it The equilibrium dispersionp3 and g5 are also determined

makes transparent the role of the anomalous diffusion termby S(t) through the reIationsS(O):qzﬁ and S(0)=— p%.



4076 LUCIANA DA VILA ROMERO AND JUAN PABLO PAZ 55

Thus, knowing the position autocorrelation function one

T IT 0.01 [T
could, in principle, compute the diffusive coefficients. It can s E . 1
also be seen that the inhomogeneous terms in the maste : ] 0008t E
equation are also determined Byt) (for example, we have =18 7 5 0006 3
a6=S/qEG—G/G). & 14 H 3 ® 0.004 [ 3
It is useful to examine the behavior of all the coefficients 12 b 3 o002 ]
in a particular example. We will consider the Drude model, . ] T ]
which is characterized by the following Ohmic spectral den- (s S v F e Ol
ity 0 0102030405 0 0.1 0.2 0.3 0.4 05

Sity: time time
|(W): W W(:2 (51) ARRRRNRRRRS R AN RRRRRRRRRNR) T
Yo V—vz_'_—\NCz 0.2 E_ _E 0.2 - _E
. . . 0.15 - 0.15 |- 4
Here,w, is a high-energy cutoff frequency below which the ¢ 1 = F ]
spectral density is approximately linear w The integro- =01h ER g
differential equation(29) can be exactly solved by using c E c .
. . s 0.05 o ] 0.05 - n
standard Laplace transform techniques. In this way, we find C ] : 1
the solutionG(t), which satisfies boundary conditio4), L T : U e PRI
0 0.1 0.2 030405 0 0102030405

G(t)=Im(g,e” 2" +gze 4! 52 time time

(t) (92 )+0s3 ' (52

wherez; (i=1,2,3) are the three roots of the third-degree FIG. 1. Time-dependent coefficients entering in the homoge-
polynomial P(z) = (z?+ wg)(z+ W) + voW.z. The constants neous terms of the master equation. The environment is described

g; are by Drude’s spectral density and the initial state is of zero tempera-
ture. The time dependeném units of the renormalized frequency
1 ( (We—23)(23—24) of all coefficients show an initial transient for times of the order of
92=— |m(22)\ * |23—74|? ’ the cutoff time scale. Parameters for the plot are
wo=1, w;=100, 7,=0.01.
N (Wc_ 23) 53
9s= |z3—24|?" (53 Using this[and relatingD; andD, to S(t)] we obtained the

plots of the diffusion coefficients shown in Fig. 1.
We will concentrate on the underdamped case in which there The time dependence of the inhomogeneous coefficients
is only a real root £3) and two complex onesz(=z3). C, andC,, can also be computed in this way and the result
Given the input parameters for the probléne., wg, 7o is shown in Fig. 2. The basic feature is that both coefficients
andw.) we obtain the functiorG(t) and from it we easily are exceedingly small and become negligible after a time that
compute the time-dependent frequeneft) and the friction s of the order of the cutoff time scale. After this short initial
coefficienty(t). These functions are plotted in Fig. 1 where transient, the impact of the initial correlations on the future

we see how they vary on the very short time scaile Ithe  evolution of the system can be entirely neglected.
cutoff time scaleé From the above formulas we can find

analytic expressions for the initial and final values of these
functions. The time-dependent frequency is initially equal to
the unrenormalized frequency, i.a)?|0=w(2)+ yoW, and its
final value is equal to the renormalized frequegy On the
other hand, the time-dependent friction initially vanishes and
the asymptotic value is equal tg,.

The diffusion coefficients are temperature dependent. In
the high-temperature regime the results are well known: both

LRI B O O B 1

0.8
Cy(t)
0.6

0.4
coefficients(that start being zejoapproach asymptotic val-
ues given byD ;= yokgT andD,=0. We studied the behav-
ior in the zero-temperature case where it is possible to find 0.2 Co(t)

Inhomogeneous coefficients

exact analytical expressions for both coefficients. The easiest
way to present the results is to notice that the position auto- 0
correlation function can be written in terms of exponential

L L L L
Lo by v b by by

poaa b b b by s 1

o -

. . 0.01 002 0.03 004 005
integral functions as tirme
S(t)= ilm{gz[eZZtEl(zzt)—e’ZZtEi(zzt)]} FIG. 2. Coeffi_cients appearing in_the inhomogen(_eo.u_s terms of
2m the master equation. They carry the influence of the initial correla-
1 tions on the future evolution. They both become negligible after a
+ — [ eBE(Zat) — e~ BtEi( zo1) 1. 54 time of the order of the cutoff time scale. Parameters for the plot are
7794l 1(z3t) (za0)] (54) wo=1, W;=100, andy,=0.01.
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V. DECOHERENCE :
PEKp=05K; , (61)

Here, we will examine the time evolution of delocalized
initial states analyzing the effectiveness of the decoherence
process. We will consider two related initial conditions.

q; P
A=2L§p§—7ﬁxr2—7ﬁf<p2. (62)

Above, N is the normalization constant

1 p( —2L2p? )]1
1+ ———exp —— . (63
Vitagrs | V1+agpg

where E)S is the momentum operator for the system. TheW.The Ifntergreta}tlotr;‘ of Eqs(fS? arg (58). IS cleakr: th%
evolution of this state is particularly simple to analyze.. tlgr;er unc ;on ISThe ‘ng ol two aku33|an pe? s(;:m and
Moreover, in spite of its simplicity, this state still captures Interiérence term. The >aussian peaks are centered aroun

some of the essential features present in a realistic “"Schrothe dissipative classical trajectories determined by [B8)

dinger cat” state. We will show below that the conclusionsWlth |n.|t|al cond_ltlonsrz - Lo,p=_0. The spread_ .Of _each
we obtain for the stat€55) remain qualitatively correct for Gausg'a” peazk Is constant and given b,y th? equmbrlum.val-
more realistic ones. Such a state cannot be prepared by maés ds and p. This means that the individual Gaussian
ing a measurement on the system only and, roughly speaIE’-Gj'akS remain “intact along“the_ evolution of the system. In
ing, it represents a “superposition of two translations”; in thiS Sense, they are perfect “pointer statdselected by the
fact, if p, is a pure coherent state for the systesp,is a predictability sieve criterion d|scusseq ia7]). Indeeq, itis
superposition of two coherent states, with each one displacggSY t© show that if only one translation operator is applied
by +L,. However, asp; is a thermal equilibrium state for N EG- (59, the linearity of the problem implies that the
the correlated system-environment ensemble, the interpret§Ntropy of the reduced density matrix remains constant
tion of Eq. (55) is not so transparent. The evolution of Eq. (-, _for a single Gaussian 7 (t)1=Trpr(0)]

(55 was first studied in[22], where only the zero- =1/\/2q3p3). We remark that these Gaussian peaks are not
temperature case was examined using a completely differefure states of the system since, due to the initial correlations,
formalism. The preparation function for sta&5) is the sum  the entropy of the reduced density matrix is nonzero even at
of four & functions(arising from the matrix elements of dis- zero temperature. To see this it is easier to analyze the weak

A. Superposition of two translations

Let us first analyze the initial state:
N?=2

po(€'-oPst e 1Lobs) p (elloPst g iloPs) (55)

placement operators coupling limit, whereyy<wo<w,. In such case, the roots
are zz~W;— vyg and z,~ yy/2+i \/woz— 702/4 (up to terms of
AN=NpptNo_FAi N, ordery,/w, andwg/w,.). Using this expressions we can find
that
N =N28(x—x;)8(r—r;+Ly), (56)
) w
A — 5~ 24 ﬁln(—c) , (64)
Nez=N6(X—X%;=2Lg) 8(r—r;). 2 7 \wg
Using these equations and the exact form of the evolution 2 1 Y n We 65)
operator we can compute the reduced density matrix at arbi- a5~ 2wq ng o)’

trary times. The simple form of the preparation function
makes most of the integrations trivial. The final answer cari.e., the equilibrium values are such thayzp?%+ 1.
be conveniently expressed in terms of the Wigner function, The interference term in Ed58) is centered around the

which turns out to be origin (the midpoint between the two Gaussian pgalk&e
oscillatory term produces interference fringes in phase space
W=W, , +W__+W,,, (regions where the Wigner function becomes negativae
, initial value of the coefficients is such that the exponential
N L 2m 2 o factor is unity (i.e., A|,=0) and the fringes are oriented
th(r,p)zme (11025 (PPO%2Ps, (57)  along the momentum directiofi.e., #rlo=0,kpl0=2L0).
prp When the system starts evolving the wavelength of the
2 s o fringes becomes largédue to the effect of diffusion There-
Wi (r,p)= e Ae™ 2057 PI2P cog ki f + K pP), fore, the wave vectors, and «, tend to zero, inducing the
mApPp growth of the exponenA(t) and with it, the exponential

(58) suppression of interference. A simple expression for the ex-

where the coefficients appearing in these equations are givﬁpnentA(t) in terms of the position autocorrelation function

by

. (66)

S? S\?
1- %>~ ( —2>
Pls  \Pg
d - This formula is quite useful since it makes evident a few
K’_ZLOa(G+Ga6)’ (60 important points: First, it clearly shows that decoherence is

ro=LoG, Po=To, (59) A=212p2
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oI L L L L manner. Wherh is small, the decoherent exponent turns out

0.6 = 7 to be approximatehA(t)~h(1+h). For very short times we
therefore have

@
IS
I
|

A(t)~ lszwgtzunwcu +OowWitY). 69)
L i TPg

Decoherence
T
.

B. Schradinger cat state

o
)
I
|

- . We will now consider the evolution of a delocalized state
r ] in a less idealized situation than the one analyzed above. The
F initial state is

| Il 11 I 1 1 | Il 1 Il | 1 1 L | 11 \_

0 20 40 60 80 100 ﬁpﬁf:

time P=_———=_» (70)
Tr(pgP)
FIG. 3. The evolution of the exponent that is responsible for
suppressing the interference fringeg- ThisAig)/Lj for the state  where P is a projector onto a pure state of the system
considered in Sec. V A ané\,(t)/L; for the one considered in p= |\P)<\If| and the state\lf> is itself a Schidinger cat state
Sec. V B. Both curves are almost identical, showing a rapid decoy; P ;
ie. rposition of tw ian t
herence for a time scale of the order wf. We also see that (i.e., a superposition of two Gaussian packets

decoherence does not grow monotonically with time but in an os- |\I'>= |q,+>+ |‘P,) (72)
cillatory fashion, with maxima when peaks have position separation '

and minima when the separation is in momentum. Parameters of tr‘ﬁhereﬂu) are such that

plot arey,=0.01,w.=100. -

(97 Lo)?

Tiipoq . (72

produced by the same process responsible for the decay of <x|\P+):Nexp{ -
the correlation functiofiremember thag(t) is the symmet-

ric part of the position autocorrelation functibrSecond, it Thus, the initial state is rather similar to the one considered

also shows that the maximum attainable value Agt) is above in Eq.(55). However, statg70) could be prepared
2L5p5. Third, it shows that the decoherence time scale iSp ough P s ;

0 voeTS _ gh(a rather idealizedmeasurement on the system. The
typically much shorter than any dissipative or dynamicalconyenience of having analyzed the previous example be-
time scale in the problem. Thus, by the time the derivativegomes evident once we notice how tedious the calculations
of the correlatorS decay to half its initial value, the fringes become for the initial statgo)_ In fact, the preparation func-
are suppressed by a factor of order expfp?), which, for  tion one can associate to st4#®) has sixteen terméour for
large separations, can be very small. We can define the deach of the two projection operators onto the Sdhrger cat
coherence time scale as the time that it takes for the exponesptate:
to grow to a number of order unitfghis time scale is clearly
inversely proportional td_g). An analytic expression for .
A(t) can be obtained for Drude’s model in both the high- >\:<Qi|P|Q><Q’|P|q{>:|Zl Ap (73
and low-temperature limits. The resifior zero temperatuje -

is shown in Fig. 3. From the plot we observe a sizablezach one of these sixteen tervghich we do not explicitly

growth of the decoherence factor occurring in a rather shorfite down can be evolved using the exact propagator. The

time scale: for times of the order of the cutoff time scale wejnieqrations are all Gaussian and straightforward. The final

haveA(t=w; *)~0.025. The subsequent growth of deco- result can be conveniently presented in terms of the Wigner
herence is not monotonic, being maximal when the peaks amgnction, which is formed by four Gaussian peaks and six
separated in position and minimal when the separation is ifhterference terms. Indeed, one has an interference term be-
momentum. To estimate the initial behavior A(t) it is tween each pair of Gaussian peakaving in mind that each
useful to obtain an analytic expression f8(t) valid for  interference term is the combination of two contributions, we
short times (< 1/w). In this case we have have twelve terms contributing to the interference and four to
the direct Gaussian terms; this totals sixteen accounting for
1 1 all the terms in the preparation functjorit first sight the
S(t)mqé— Epth”L Eh(wct)’ (67 existence of four Gaussian peaks may seem awkwhrmt
simply wrong but its origin and interpretation will be ex-
plained below. First, we will complete our presentation of

16

h(z)= 5 ycvz[eZEl(z)_e*ZEi(z)+2(ce+|nz)—(g—ce)22 the Wigner function. It can be finally written as
u C
+22|nZ], (68) W= Wa+ Wb+Wc+ Wd+Wab+ Wbc+ ch+ Wbd+ Wad

+Wg.. (79
whereC,, is Euler's constant. The functiohn(t) is initially
zero and grows on a short time scale in a rather smootithe Gaussian peaks are given by the following expressions:
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Wi N
" 2moyoy

o y a much larger than the width of the peaks. Therefore, in such a
e (1) Roce-lp=pi=br=rpl*2ey,  (75)  case there are no intermediate interference fringes being cre-
ated by the initial correlations but only a small distortion of
the packets, which are not exactly Gaussiam., we are
simply writing a deformed Gaussian as the sum of two
slightly displaced Gaussian and an interference YeHow-
— ever, in other situations where this formalism applies
e Aija (r=rip?Rosa~[p—pj—b(r—ri1?205 member that the above formulas would also describe a situ-
MO0 p ation where the environment consists of a single oscillator

this effect could be larger.

X cod (werij —brepij) (r =riy) +scpi(p=pij) - (76) Now let us describge the structure of the interference
derms. It turns out that the wave vectors associated with all
the interference terms can also be written using only two
functions «,q, «,1 for position and two for momentum,

where the index labels the peaki.e.,i=a,b,c,d). On the
other hand, the interference termg; are

Wijz

Each interference peak is centered about the midpoint b
tween the corresponding Gaussian peaks, i.e.,

Ftr, pitp; Kpos Kp1- I fact, one can show that the following relations
rij= 2 pij= 5 (77 hold:
- . —_ kri_k|rj I(pi_kpj
Before giving any details about the many coefficients en- Kij ="+ KpijT T 5 (80)

tering in these equations let us analyze and justify the exis-
tence of the fOL_Jr Gaussian pe('_;\ks and their c,jorres_p)ondewrmeKri and ,; are defined as
interferences. First, let us mention that the trajectories fol-

lowed by the peaks are determined by two functionsgnd

- h Ki2= Kot Ke1, K 5= K2
r1) in the following way: b

d b’

a— =+ C= — a
ra=ro*ry, re=-—ra. (78) Kpp = Kpo=Kp1»  Kpg= ~ Kpp-

. . o . Thus, the only relevant functions we need to know to analyze
The location o.f.the .peaks in momentum is simply obtained,, wavelength of the fringes argo, . . . kp1. The explicit
from the velocities, i.e.pj=r;. The functions'o andr; are  formulas for these functions, together with the ones for the
given by dispersionso, ,o, and all the other parameters defining the
Wigner function are listed in Appendix C. The expressions
0 are more complicated than the ones we analyzed in the pre-
——=->Cas. (79 X . . : :
1+ 6%2q5 vious subsections but, again, exact analytic expressions can
be found for Drude’s model at zero temperature. In that case
The functionr, corresponds to the dissipative trajectory sat-we investigated the time dependence of the separation be-
isfying Eq.(35). On the other hand, the terms proportional totween subpeak§.e., the distance between peaksandb, or
r, originate on the initial correlationgemember that for a the one between andd) and we found it to be very small
factorizable state one has;=0). Moreover, we can also compared to the width of the peaks. Therefore no separation
show thatr; vanishes at the initial time, when there are onlycan be seen at all. This is shown in Fig. 4 where we also
two peaks instead of four and a single interference term inplotted the ratio between the width of the peaks and the
stead of six. Thus, the initial correlations seem to be producwavelength of the interference fringes between subpeaks.
ing a rather curious effect: each of the two Gaussian peakghis is also very small, showing that no oscillations are ob-
splits into two pieces generating an “interference” term in servable. This justifies our previous claim that the subpeaks
between. Accordingly, the initial interference term also splitsare only a manifestation of a small distortion in the Gaussian
into four pieces. How can this be possible? To understan#lature of the principal peaks. We also analyzed the decay of
this we should notice that the existence of initial correlationghe interference terms between principal peaks computing
implies that the evolution of each piece of the initial Wigner the ratioAaC/LS, which is plotted in Fig. 3. In that figure we
function is not independent of the existence of the othewsee that the behavior of this quantity is almost identical to the
pieces. Thus, the role of the initial correlations is to producedecoherence factor discussed in the previous subsection
a(very short lived force that kicks the center of each Gauss-(which indeed is much easier to calculat€hus, all the con-
ian away from the trajectory determined by(t). However, clusions regarding the effectiveness of decoherence apply
each piece of the initial state produces a different kick beingqually well to both subsections.
the net effect a splitting of the Gaussian pdtks can also Finally, we also examined the time dependence of both
be thought of as a type of “nonlinearity” induced by the the position and momentum dispersio@s well as the en-
initial correlations, which enable different pieces of the ini- tropy of the Gaussian state, which is related to the product of
tial state to see each otheHowever, for us the relevant such quantities They are plotted in Fig. 5. Contrary to what
point is how big is the separation between peaks and how bifappens with the state discussed in the previous subsection
is the wavelength of the intermediate fringes. Below, we willthe dispersions depend on time and the initially pure state
show that in realistic situation@s in the Drude’s model at gets mixed as it interacts with the environment. After a sud-
zero temperatujethe separation between peaks is muchden burst of entropywhich is nevertheless quite smathe
smaller than their width while the wavelength is alwaysentropy decays towards a final value which is of the order of

ro()=L¢G, ry(t)=



4080 LUCIANA DA VILA ROMERO AND JUAN PABLO PAZ 55

T LE—— T T T T T T w(t)—>wo,D1(t)—>d1, andDz(t)—>d2. Thus, one can show

0.008 I~ E that a Gaussian state is the stable stationary solution pro-
0.006 [ K202 ] vided that the position and momentum dispersions are
; ] o5=di/y and of=(o5+dy)/wj. Thus, the role of the
0.004 - E anomalous diffusion term is to squeeze the final equilibrium

0.002 a E state. Its effect at zero temperature is evident from E&g.
r . ] and (65) where we see that the final state is squeezed in
U =l BAS MRS EAS AIAASAAS RAR NS ARSI T position and spread in momentumith respect to the oscil-
0 20 0% 80 100 lator's ground state The uneven squeezing is responsible
for the nonvanishing entropy of the equilibrium state at zero
e e ; 2 temperature.
0.0004 | =
0.0003 _ r2/ot _ VI. SUMMARY AND CONCLUSION
0.0002 |- 3 In this paper we extended previous analysis of QBM to a
s ] more general class of initial states containing correlations
0.0001 | E between the system and the environment. We derived a mas-
AR AR AR R AR AR A AR A RN AR R E ter equation for the reduced density matrix that is local in
0 20 40 80 80 100 time but has time-dependent coefficients and inhomogeneous
time terms(arising from the initial correlationsA detailed analy-

. . . sis of the coefficients was performed for Drude’s model of an
FIG. 4. Separation between “internal peaks” and characterlstlcohmiC environment. In such a case, the corrections arising

size of the "internal fringes.” This plot shows that the subpeaks g he initial correlations are very short lived, decaying in
never separate and the interference fringes between them are alwa}

S .. R L .
unobservable. The subpeaks form a distorted Gaussian peak, whi ﬁewtlr\?er sdcarlire1 atsr’]S?CIﬁter? tivr\:]lthtrtlhe hl%h_frequﬁ?ﬁg rcui?rff'
moves around as a whole. Parameters of the plotygre0.01, owever, during that sho € they can play a eresting

Lo=5, w,=100. role. A point to notice is that, contrary to previous specula-

' tions [6,8], the diffusive coefficients of the master equation
still exhibit an initial jolt in the cutoff time scale. This jolt is
relevant for decoherence producing the decay of interference
effects: at zero temperatures and for very small damping
)('y0= 0.01), the interference between two wave packets sepa-
rated by a distancel?, is suppressed by a factor of order

_XP(—O.OZLS). Therefore, initial jolts are not associated with

e absence of initial correlations. To the contrary, they are
likely to be related to the instantaneous preparation proce-
dure that is applied here. Models with a nonvanishing prepa-

(the final equilibrium entropy of the subsystdite., of the
order of In(2f3p5)~0.014]. It is worth mentioning here that
the nature of the final equilibrium state can be examined b
analyzing the evolution equation for the Wigner function. In
the long-time limit Eq.(40) has a very simple form since the
inhomogeneous terms vanish and all the time-dependent ¢
efficients approach asymptotic  values:y(t)— vy,

0028 prp T T T T ration time scale are currently under investigatias].
002 [ = Finally, we would like to stress once more the simplicity
F : E of the formula we obtained for the decoherence factor. In
0.015 4 E fact, for the delocalized initial state examined in Sec. V A we
0.01 £ Entropy of a gaussian state E showed that the factor suppressing interference fringes is
0.005 E _ exg —A(t)], where
ok P B RN B R : 2 S 2
0 20 40 60 80 100 A(t)=2L2p2%| 1— _<—Z , (81)
time oFg pﬁqﬁ pﬁ
osafl T osafl T being S(t) the position autocorrelation functiain thermal
3 ] r ] equilibriumy):
05 1 os AN S(t)=3({a(t),a(0)})g. (82
048 |- o3 (t) ] 048 - o3(t) E This equation enables us to obtain very simple qualitative
046 L h 0.46 L ] estimates on the efficiency of decoherence. In fact, it clearly
. M bbb Lo shows that even though decoherence has the same physical
0 20 40 60 80 100 0 20 40 60 80 100 . . .. ?
time time origin as the decay of correlations, the characteristic time

scale of both processes is entirely different. In fact, from the
FIG. 5. The position and momentum spread for a single Gauss2bove equation one can simply estimate the amount by
ian peak are modified on a very short time scale during whichwhich correlations must decay for decoherence to occur.
entropy is produced. Later, they both settle towards the equilibriumThus, at the decoherence time scaiden the above expo-
values which arer;=q5=0.498 ando;=p5=0.512. Parameters nent is of order unity the decay of correlations is still very
of the plot arey,=0.01w,=100. small:
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. . 1 . )\2 ) J‘“dwl( ) 2w qws) (Ad)
S(tged~S(0) /1 At DAV On o 7 (@)oot
where )\rgzi’L/\/Zpﬁ2 is the characteristic de Broglie wave- odw 2v,
length of the system in thermal equilibriutwhich ap- fn(S):fo - (@)= 5sin(ws). (A5)
n

proachedi/\2mkgT at high temperatures and the spread of

the ground state at low temperaturels Sec. V A we used i ) i o

the above formula to obtain an analytic expression for theTh.e Eucll_dean integral brings another contribution to the

decoherence factor in Drude’s model at zero temperaturdiS€, which turns out to be

Moreover we showed that even though this formula was de-

rived under simplifying assumptions concerning the initial

state (obtained from a thermal state by “superposing two

translations’) it is robust when applied to more realistic

casegqas Fig. 3 shows )
As a final remark, we would like to show how simply the _ f"cd_WI () 2v, (A7)

usual result for the decoherence time scale in the high- Xn o w2+ 12

temperature limi{1] arises from Eq(81): at high tempera-

tures the momentum dispersion i§=kgT and the auto- The explicit form of the coefficients that define the evo-

correlation  function decays exponentially —as(t) lution operator is

~S(0)exp(— vot). Thus, Eq.(81) reduces to

+ o0
k(== 2 xnexpivy7), (A6)

|-

n

=[27G(t)(2mq5) Y4 L, A8

exi{ — A(t) )~ exp{ ~ 2L 3p5 1~ exp( ~ 2001} 0= [2rG (e ™ i
~exp(—4yotkgTL2), 84 1 p2

exp(—4vyotkgTLp) (84) al:ﬁg’ a2=7ﬁ, (A9)

which is the usual result obtained in the high-temperature
approximation. We believe our equation will be useful for
estimating the time scale of decoherence in many other sys-
tems where the behavior of position autocorrelation function az=
is well known.

Note added in proofRecently we became aware of Ref. .
[28], in which the same master equati¢83) was derived b= if dsCi(s)v4(S), (A11)
using techniques that are similar to the ones we used here. 7 0 2

G 1 G2 .
IR a4=—6, as=—|—=—-G|, (A10)
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APPENDIX A: COEFFICIENTS DETERMINING Q= f dsf duR(s,U)v1(S)v4(S), (A14)
THE EVOLUTION OPERATOR 0 0

The following kernels appear in the generalized influence )
functional: the ordinary noise kernéxtended to the com- Where the constants; andpj are expressetin terms of the

plex plang »(z) and the kernek,(z) are spectral density and the initial temperatuas
1 = 1 =
s—in=g X gas)eminn, (A1) G=pg 2, Un (A15)
+ o0 1 o
K2(S—I7'):E n;m fo(s)expiv,7), (A2) pg:E n;_w (@03+ Xr)Un (A16)
s—iT)=v(s—iT)+iky(s—iT), A3
K( )= 7)+ ik 7 (A3) U,= (wg-i- Vﬁ-f—)(n)_l. (A17)

where the functiong),,(s) andf,(s) are defined in terms of
the spectral density as{=2mn/B are the Matsubara fre- The auxiliary functions ((s), v(s), C1(s), andCy(s) ap-
guencie$ pearing in the above expressions are
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G(t—s)
G(t)

vi(S)=

G(t—s)G(t)

va(8)=G(t=8) = —g 5

+ oo

1
Ci(9)= 52 2L UnGi(9),

+ o0

Cz(s):l Z Upvnfi(s),

while the effective noise kern@&(s,u) is

R(s,u)=v(S—U)+ vy (S,U), (A18)
1 =
Veor(8,U)= ~G5CL(SICo(S)+ 5 2 UnlGn()gn(W)
—fa(s)fa(uw)]. (A19)

APPENDIX B: AUTOCORRELATION FUNCTION

The following formula (which is proved in[11] using

Laplace transform techniguesnables us to obtain simple

relations between the auxiliary functidh(t,t’) and the po-
sition autocorrelation functiof(t):

U(t,t")=p2G(H)G(t") +S(HG(') +S(t)G(t)

+ &S}th EZ 6(| val)coshy, (t—t)
As B

1 t—t’
- f ds cosh{v,s)[G(t—t' —s)
2B Jo
—G(t'—t+9)], (B1)
whereG is the Laplace transform d&(t).

APPENDIX C: THE WIGNER FUNCTION

The following formulas determine the temporal depen-
dence of the coefficients determining the Wigner function for

a Schralinger cat initial state:
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2 2

207 2t o+ G Ayt 0
x Fd 07 11202+ 1167
i C1l
p5/2+1/48°) €Y
oy
b=—, (C2
Ox
-\ 2
W2 G ol
2 2 2 2 6
27p= 22 ZUX(b | Tt g1
i c3
p5l2+1/48%) €3
Glo -
OxKro=~ ~s7 +G 6Py, (CH
PyGa LaGa
2 0 6 0 7
=— + , (C5
T T 11202 +118% " 28%(p2/2+ 11487 ©9
oy d
a'pfcgg=0_—p &(UXK:E), (Co)
2 Q2 2
ac:[ 22p325 + = 12 L—g-i—PSﬁz}
bd | 2p26%+1  6%/205+1)| &
g 2 2
X
— S (Kpot kp)* = (ko= k1), (CT)
1 1 L2 02K,
Aab: _ +P252 _ pp
cd [52/2qg+1 2p25%+1)| 2 ° } 2
2 2
O,K
_XT”, (C9)
Lé 2w USKSO O')Z(Krzo
Adl=— + P35 o - (C9)
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