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The study of environmentally induced superselection and of the process of decoherence was originally
motivated by the search for the emergence of classical behavior out of the quantum substrate, in the macro-
scopic limit[W. H. Zurek, Phys. Rev. 24, 1516(1981); 26, 1862(1982]. This limit, and other simplifying
assumptions, have allowed the derivation of several simple results characterizing the onset of environmentally
induced superselection; but these results are increasingly often regarded as a complete phenomenological
characterization of decoherence in any regime. This is not necessarily the case: the examples presented in this
paper counteract this impression by violating several of the simple general rules. This is relevant because
decoherence is now beginning to be tested experimerfi@lyMonroeet al., Science272, 1131(1996; M.

Bruneet al, Phys. Rev. Lett77, 4887(1996], and one may anticipate that, in at least some of the proposed
applications(e.g., quantum computersonly the basic principle of “monitoring by the environment” will
survive. The phenomenology of decoherence may turn out to be significantly different.
[S1050-2947@7)07604-X

PACS numbd(s): 03.65.Bz

I. INTRODUCTION herence in general is certainly naive. Among theorists study-
ing the quantum-to-classical transition from other
According to deconstructionist philosophers, words refeackgrounds, however, decoherence is usually distinguished
only to other words. There is a certain amount of truth in thefrom dissipation and thermalization, by defining it as evolu-
analogous suggestion that papers in theoretical physics reféon of the density matrix towards diagonality in a preferred
only to other papergand quite often, only to other papers in basis, on a much shorter time scale than that of evolution
theoreticalphysicg. Consequently, a term such as “decoher-towards a unique equilibrium state. What is called decoher-
ence” is in real danger of coming to mean, to most physi-ence in this second lexicon is an example of what is called
cists, only the processes that have been most frequently stutibhase damping” in the first; but since relaxation of an en-
ied in the literature. Most of this literature has heretoforesemble of pointer states to thermal equilibrium can also pro-
dealt, naturally enough, with highly idealized models ame-ceed by diffusion in phase, not all phase damping is deco-
nable to exact solution. Moreover, many of these modelherence. We believe that this distinction is worth making,
have been particularly designed to realize a macroscopiand so we adopt the more restricted definition of decoher-
classical limit, in order to attain the original goal of under- ence, but our point is that even this more restricted definition
standing the quantum origins of classicality. Such modelsadmits a much wider range of behavior than one might ex-
have provided a relatively small set of principles, whichpect.
could easily be taken to govern decoherence in general. It is In this paper we will effectively argue that many per-
tempting, for example, to quote a simple formula derivedceived universalities in the phenomenology of decoherence
from a linear mode[1,2] as giving “the” decoherence time are artifacts of studying toy models, and that the single neat
scale[3]. Emblematic of this problem is a well-known car- border checkpoint should be replaced as an image for deco-
toon that appears in introductory discussions of decoherendserence by the picture of a wide and ambiguous “no man’s
[4], depicting a border crossing between the two realms ofand,” filled with pits and mines, which may be crossed on a
classical and quantum physics. While this is a provocativeyreat variety of more or less tortuous routes. Once one has
metaphor, it may prompt the inaccurate impression that thergndeed crossed this region, and traveled some distance away
is exactly one well-defined way of crossing from one realmfrom it, the going becomes easier: we are not casting doubt
to the other. on the ability of the very strong decoherence acting on mac-
The appeal of this inaccurate impression, and thus theoscopic objects to enforce effective classicality. But in the
significance of our effort to correct it, may be concealed bynear future precise experiment®r example,[5—-12]) will
an unfortunate ambiguity in the very term “decoherence” explore regimes in which decoherence should be measurable,
itself. Among quantum opticians, decoherence is often takebut not so strong as to simply enforce classicality. Experi-
to include any nonunitary evolution whatever; under this no-ment is thus beginning to probe the quantum-to-classical
menclature, any expectation of universal properties of deca“no man'’s land” itself, advancing daring patrols along an
impressively broad front. In comparing the results of these
experiments with theoretical predictions, it will be important

*Electronic address: anglin@lanl.gov not to assume that the simple cases examined so far should
"Electronic address: paz@dfuba.df.uba.ar be taken as representative of decoherence in general. By pre-
*Electronic address: whz@lanl.gov senting a number of theoretically tractable examples in
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which various elements of phenomenological lore can be 1 ) M Q2 ) 1 (= s 2o
seen to fail explicitly, we make the point that each experi- H= 57 P*+ ——Q%+ Efo do[(p,+9f,Q)"+wq,],
mental scenario will have to be examined theoretically on its 1)

own merits, and from first principles.

From the bulk of previous theoretical studies of decoherwhereP andQ are the Brownian particle’s canonical vari-
ence, one might be tempted to deduce three significant prirables, andv and() are its mass and natural frequengy;
ciples concerning the rate of decoherence: one can defineaandq, are the canonical variables for the bath oscillator with
simple decoherence time scale that is valid at least for linedirequencyw; g is an overall coupling strength that may be
systems at high temperature; the rate of decoherence of clagsed to define the dissipation rate
sically impossible “Schrdinger’s cat” states is always set
by the fastest time scales present; and the rate of decoherence y= 79"
increases with the square of the distance between the two am’
branches of such cat states. These elements of the standard . . . .
lore are indeed borne out in the results of the first decohe@nd_fw describes the relative coupling str_ength of the various
ence experiment at harj@]; but there is no guarantee that fth|ro|nm$ntal motdelsa Thgtsquare of this strength will play
they will always hold. We therefore show why in the most € role ol a spectral gensity.

general mesoscopic regime one may need to go back to the The |n|t|§ll Wigner funct|onW(Q,P;Q) of the Browr]lan
basic idea that the environment “monitors” an open quan_oscnlator will be that for an equal amplitude superposition of

. two coherent states, whose wave functions are Gaussians dis-
tum system[13], and from there derive phenomenology

placed an equal and opposite amouna from the origin.

afresh for every model. We will consider the three putative.l_hiS Wianer function contains two terms. then: one consist-
principles in successive sections, presenting in each section 9 ’ :

e . i ; ing of a sum of two Gaussians, representing the incoherent
an explicit example in which the property determined for_: ) ; .
! . . . mixture of the two states; and one that is oscillatory, and
simple models previously studied no longer holds. A flnalre resents their quantum interference:
section will then discuss our results collectively, and suggest P q '
some implications of them for the interpretation of experi- W(Q,P;0)=W,ix+ Wint,

ments currently proposed or in progress.

2

2

(1_e7MQa2/h)fl MO
WmiX(QiP;O): h COS"(Z h aQ
Il. DECOHERENCE TIME SCALE ™
IN LINEAR BROWNIAN MOTION p2
_ _ xex;{—— —+MQ3(Q%*+a?) ||,
Many studies of decoherence have involved completely AQ\ M

linear models, in which a single Brownian patrticle is placed
in a quadratic potential, and coupled linearly to a heat bath (1— e MQa/hy-1 aP
composed of(often, uncountably manyharmonic oscilla- Win(Q,P;0)= s COS( 25
tors. It can in fact be argugd 4,15 that environments with
nonlinear internal dynamics can often be closely approxi- p? 22
mated, as far as their effects on the observed system are Xexp - 0 V+MQ Il ©®

concerned, by such an independent oscillator model. Al-
though there are certainly cases in which it is not realisticDecoherence in this model appears as a rapid decay in mag-
the independent oscillator model is therefore not entirely anitude ofW,,(Q,P;t), by means of an exponential prefactor
toy, and represents a simplicity that is actually realized ine=P®
nature. As simple as it is, even it is not really as simple as The initial Wigner function for the complete system of
special cases and convenient approximations often make Brownian oscillator plus bath is assumed to be a direct prod-
appear. uct:
The canonical example of decoherence is the evolution of
a Brownian harmonic oscillator from an initial state, which is W(Q,P;{d,,P,};:0)=W(Q,P;0) X W[q,.p.]
a superposition of two coherent states localized at distinct
positions in space. This initially pure state, assumed to be tanh(# fw/2)
uncorrelated with the initial thermal state of an independent We[qw,pw]=l;[ ah
oscillator environment, has been found to evolve rapidly into
an incoherent mixture of the two coherent states. Simple for-
mulas are often applied to quantify “rapidly.” Here, how-
ever, we will present an easy derivation of the short-time
behavior of the Wigner function for an Ohmic Brownian whereB=(kgT) ! is the inverse temperature of the environ-
oscillator, and show that there is in general no natural way tonent.
identify a single time scale for decoherence, even in the It can be shown quite easily that the Wigner function for
high-temperature limit. Our more explicit results are ina totally linear system evolves under the same Liouville
agreement with the physical conclusions reached on the bastgjuation as the classical ensemble density for the same
of numerical evidence in Ref16). model. Consequently, we can evolve the Wigner function by
For our completely linear model, we take the Hamiltoniansimply propagating it along the classical trajectories in phase

1 hBw
_ 2 2.2
X ex;{ _ﬁw(p“’+ ) qw)tanh—2 , (4
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space. The reduced Wigner function for the Brownian par- Actually, neglecting higher-order terms gnwill be inac-

ticle alone, with the environment integrated out, is thereforecurate, even for very early times, if the high-frequency end
of the environmental spectrum is too strong. As one finds by

fully solving such “supra-Ohmic” models, higher-order
W(QF,PF;IF)=f dQdP, D, PP, 8(Qr — Qo(tr)) terms ing can appear multiplied by large frequencies, and
thus be significant. In such cases, backreaction can be so
X 8(Pr—Po(tg)) swift that a counterterm to the “bare” forde,(t) is gener-

. ated rapidly enough to affect decoherence. One can under-
XW(Q, Py ;0)We[ 01 1Pt ] stand this phenomenon roughly as the rapid onset of adia-
aQ,,P)) batic dragging of the high-frequency bath degrees of
:f Dq,1 PP 70: Po) Wel 0ot 1 Poi] freedom; it is discussed in detail in R¢L7].

o These subtleties of backreaction turn out to be insignifi-

XW(Q,,P,;0), (5  cant in the much-studied Ohmic case, whéi@ the cou-
pling scheme we are using,, is constant up to some high

where Q,(t) and Py(t) are given by Hamilton's equations UV cutoff scale. We will therefore assume the Ohmic case,
for the Hamiltonian(1). We have simplified the presentation ¢hoosing for definiteness the Lorentzian cutoff scheme
in Eq. (5) at the expense of precise notation: in the first line,

Q, and P, are dummy variables, and we implicitly assume _— I 8
the initial boundary condition®,(0)=Q,,Po(0)=P,; but o Jo?+ 12’ (8)

in the second line, we intend instead the final boundary con-

ditions Qo(t) = Qr ,Po(t) = Pg, and we us&, ,P, as short-  yjth I'>0Q, and accept Eq(7) as valid. Working to first
hand for the resultin@,(0),Po(0). In theremainder of this  order inQt, we find that the Brownian particle gains negli-

discussion, we will continue the usage of the second linegible energy from the environment at these very early times:
according to which it should be noted th@t and P, are in
fact functions of the final timeég, and linear functions of P|2 ) PE )
Qr P, and initial environmental variablgs),,, ,p,,}. Mt MQ2Qf= M MO?QZ, 9)

We are interested in decoherence that occurs on time
scales much shorter than the Brownian particle’s dynamic
time scaleQ2 !, and when the environment is very weakly
coupled to the system. We will therefore solve the equation
of motion for Qy and P, perturbatively to first order i)t

and at most first order ig, to obtain

avhen we neglecty completely because we assume that
P,fdt'F(t")/M is negligible for the|P,|~MAQ that are
§ignificant inW(Q,,P,;0). Even though the environmental
force is too small to affect the energy of the Brownian par-
ticle at these early times, howevers>VA/MQ will allow

the change iraP to be significant:

Q()=Qr— 7 t, “do .
aP|iaPF+agf Xfw[pw,smthrwqw|(1—coszut)].
0

(10

(6)

t
P|(t)iPF+MQZQFt+J dt'Fy(t"), Performing the Gaussian integrals in Ef) using Eqs.(9)
0 and (10), we find thatW,,(Q,P;t) is negligibly changed

) . - from W,,(Q,P;0), butthat W,,(Q,P;0) has evolved into
whereF(t) is the force exerted by the environment, to first

order ing. Since this force will be a linear function of the Wi(Q,P:t)=e POWw . (Q,P;0), (12)
g, andp,, , and since to form the reduced Wigner function
W(Qg,Pg;tg) we will be integrating over these variables where the decoherence faci(t) is given by
with the Gaussian weighW,, Eq.(6) is effectively a Lange-
vin equation with a Gaussian stochastic force. Note also that 8Mya? (~dw , hpo
Eq. (6) implies that the Jacobian in E¢6) is simply 1, to D)=——7Hr fo - Tucoth——(1—comt). (12
first order inQt.
There are some subtle points to be considered before writ- |, the zero-temperature limit, E4L2) agrees with Egs.

ing down the expression fdf,(t). One might be tempted (36) and (37) of Ref. [18], which present a weak-coupling,

simply to writeF,(t)=F(0)=g[dwf,p,, ; but this would o4y time approximation to an exact solution once it has
be forgetting the fact thaf,(t) can contain some frequen- peen optained. In the high-temperature limit, we can explic-
cies much higher thafi, so that some components of the itly evaluateD(t) as

stochastic force will oscillate significantly even over the

short time interval in which we can expect to see decoher- gkaTaZ/ 1—e It
ence. We therefore write the more accurate expression D(t)— 72 \t— T (13
Fl(t):gf dof [P, CoSwt+ wq,, Sinwt]. (7) F(Er1 times much less thaﬁ but still much greate_r than
0 I'™*, Eq. (13) agrees with previous results that at high tem-
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peratured (t)«ct. This linear behavior oD (t) allows one to  just as in Eq(1) above. We also retain the Ohmic specifica-

specify a single decoherence time scale tion for f, given by Eq.(8). We do make an important
) change in our system, however, even though it does not
h (14) show up inHy: we endow our Brownian oscillator with a

Tdecm M ya’kgT" two-state internal degree of freedom, such as a spin. The
Hamiltonian as written so far does not distinguish between
Even when the high-temperature linkgT>#4I" is valid, the oscillator's two internal states; but we now add to it an
however, this formula is not really universal. For sufficiently external force that does distinguish them, and which will
high T or a2 decoherence will already have occurredthereby be able to create a Sotfimger’s cat state from the
(e PM<1) at times smaller than or on the ordeddf!. We  ground state:
will then have to write .
H,=Hgtaa(t)oP. (18
4M ykgT a2
D(t)= TFtZ, (19  Herea is again a distance scale(t) is a time-dependent
¢ number having dimensions of frequency, wii{0)=0,

from which one must deduce the much longer time scale and the Pauli spin matrix acts in the internal space. We
will then take our initial state to be
f

Thec= — .
% DayMyTkgT

For lower temperatures, or non-Ohmic environments, R
D(t) will generally not be linear, and the time at which Where|eo) is the ground state dflp, ando|*)=o|=x) for
e P(<1 will be a complicated function of temperature and o= *1.
a2 The existence of a single simple formula for the deco- Since the internal state of the oscillator does not evolve in
herence time scale is a special property of the Ohmic indethis model, the two different realizations efthat are present

pendent oscillator model at high, but not ultrahigh, temperam the initial state mere!y label two branches of the_total
tures. guantum state at any time. For nonzex¢t), the spatial

wave functions associated with these two branches will over
Il INITIAL-STATE PREPARATION time becqme quite differenfc. _(;hoosi_mg_[t)=25(t), for ex-
ample, will reproduce the initial Schidinger’s cat state of
Simple or not, all the decoherence time scales that mighRef. [18] (which is very similar to that of Sec. Il aboydn
be identified in models such as that of Sec. Il have the comwhat follows here we will consider the case wher&) is
mon feature of being very short. Warnings have long beemot a delta function.
made, however, that the rapidity of this initial burst of deco- As explained in Ref[18], H, can be diagonalized by
herence might be spurious, in that it might be a special condefining new operatora., ,77/3;
sequence of an initial state in which the system and environ-
ment are negligibly entangled. Since it is the high-frequency 1(~
modes of the environment that are responsible for rapid de- HOZEL do[(75)?+ w?AZ], (20
coherence, the neglect of initial entanglement is particularly
dubious: these fast modes are precisely the ones that willhere
tend to be adiabatically dragged along with the system, if the
system is put into a “Schitinger’s cat” state by a physical o
process instead of by theoretidat. Despite warnings about P= J o dop(w)A,,
this issue, however, there has so far been no actual calcula-
tion to really lay this ghost to rest.

(16) 1
I‘I’i>=ﬁ|¢o>(|+>+|—>), (19

2
In this section we examine a model that is essentially the p(w)= go'T _
same as those of Sec. Il or REI8]. Instead of following the \/W[wz+ﬁ][w2_ (5+ i7)2][ 02— (6_ i7)2]
evolution of an initial superposition of displaced Gaussian (21)

states, however, we will take the ground state of the com- o

plete system as our initial state, and apply an external forc&he barred quantitieE, (), andy are renormalized versions
that drives the Brownian oscillator into a superposition ofof the bare parameters. The bare parameters may be ex-
displaced Gaussians over a finite period of time. We find thapressed simply in terms of the renormalized ofike inverse
decoherence occurs in this scenario, but that it is no longetelation being a complicated cubic formu[d 8], but we will
characterized by the short UV time scale. The strong initialkssume thal’>Q> v, and in this case the differences be-
burst of decoherence, which has been ubiquitous but suspeieen the barred and unbarred quantities are negligible.

in previous studies, is indeed suppressed. Q.q,, andp, may also be expressed in terms of the new
We again take the Hamiltonian operators, but we will only be needing E@1).
b2 MO L Since the wave function for the ground st is the
* familiar harmonic oscillator Gaussian, it is easy to work out
- 2, = +af 0)2+ wqg? _ an,
Ho 2M 2 Q ZL dol(p*91.Q)"+w7q, ] the wave function for the state at tinhén the 7 represen-

(17)  tation:
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t
wﬁ+op(w)f dt’ a(t’)cosw(t—t")
0
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2

+2iap(w)wgftdt’a(t’)sinw(t—t’)) ]
0

(22)

7 denotes time ordering, arf(t) is a normalization constant into which we have absorbed an irrelevant time-dependent phase.
We can then obtain the reduced density matrix for the Brownian particle, i@ tiegpresentation, merely by performing some

Gaussian integrals:

p(w) A

Mw27Tw

W[

p(Q,Q',a,a’;w:f dgf DWAeXF{;—§f:dw

e - |

MQ,
4

0

! I t i
Q_Z{Q_Q —(o—0 )Jodt

—P(@)Q a7 —p(0)Q',0'it]

2

a(t)y(t—t")| +

¢ 2
Q+Q' —(o+ U’)J’Odt’a(t’)r(t—t’)}

—2i(o-+U’)(Q—Q’)fotdt’a(t’)s(t—t’)—2i((r—o-’)(Q+Q’)fotdt’a(t’)z(t—t’)]

(0—0')?
4

xex;{—

Da(t)j|-

(23

Several new functions and quantities have been introterference terms, witlr=—¢', evolve slightly differently,

duced in Eq.(23). N is simply a normalization constant.
There are two new frequencies,
1 [p(w)]?
le Mfo dw o y
o 21-1
QZEM{ Rt (24
0 w

Using these we also define four dimensionless functions

1 (= 2
0L a2

(O]

Coswt,

1 (= [p()]?
S(t):MQZde " Sinwt,
(25

1
YO= 7

J“ [p(w)]?
0

w COSwt,

[p(w)]?

1 0
Z(t)= Mfo d(y)—wz—smwt.
Note thatr(0)=y(0)=1, ands(0)=2z(0)=0. These func-
tions may all be evaluated explicitly by contour integration.
One finds that (t) ands(t) are(for I'>()> v) very close to
e cod)t and e ”'sinQt, respectively, whiley(t) and

z(t) are similar, but also include some exponential-integral

terms]at first order in ¢/Q)]. We can therefore see that Eq.

but are also suppressed by the decoherence prefactor
—D,(t)
e "l

This prefactor is given by

t t
fdt'f dt"a(t’) a(t”)y(t' —t")
0 0

t 2
—Udt'a(t')y(t—t')) }
0

t 2
—MQZ( fodt'a(t')z(t—t')) .

D, (t)=MQ,

(26)

In the case where(t) =245(t), decoherence is rapid because
the function 1 y?(t) grows on the cutoff time scalE 1.
This occurs because, as one can see by insertin(2Exjinto

Eq. (25), Qqy(t) diverges logarithmically wheh'—« and
t—0. Hence(),y(t) drops precipitously within a few cutoff
times of t=0. But the convolutions appearing in E@6)
clearly cannot vary more rapidly than(t) itself. If one
choosesx(t) = sinAt for someA <T', for example, the loga-
rithmic divergence in(},y(t) for t—0 will be regulated by
the smearing withx(t), and nothing irD ,(t) will evolve on

a time scale set byy. We can therefore see that, if a Schro
dinger cat state is created by some physical pro¢assn
Refs.[5] and[6]), rather than by a theoristfat, the rate of
decoherence will no longer be set by the cutoff scale, but
instead by some combination of the time scales ), (),

and y. In general, an upper bound on the decoherence time
scale is set by the time scale on which a Sdimger cat state

is actually constructed in the laboratory.

IV. SATURATION OF DECOHERENCE AT LONG RANGE

(23) prescribes evolution of Gaussian peaks along classical In both of the examples we have studied to this point, the

trajectories, for the “diagonal” terms witlor=0¢"'. The in-

decoherence exponem(t) scales quadratically with the
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separation scala. In this section, we consider two cases in along a line, each interacting with the particle only when it is

which a single particle that interacts nonlineafiyuasilo-  sufficiently near to them. The Lagrangian for this system is

cally) with a linear environment, and the rate of decoherence N

of two localized states of the particle turns out not to increase M., 1 * sy

indefinitely with the distance between the two particle posi- Lmat:?X ) _ZN fo d“’l(“’)<qn,w

tions. Instead the decoherence rate reaches a plateau at some

distance, which is set by the range of the interaction between )

the particle and the environment. T
This point has been argued persuasively by Gallis and

Fleming[19] and by Gallis[20,21], in several insightful pa- WhereM is the particle massx is its position in spacen

pers. At the level of general principle, the calculations welabels the N+ 1 sites of the pocketed coils, amtlis the

present in this section supplement and support their resultglistance between these sites. Each pocketed coil consists of a

We are able to proceed somewhat further, however, both inumber of linear springs whose displacementsigrg, hav-

solving a simple model exactly, and in deriving results froming natural frequencies, distributed according to the spec-

first principles without phenomenological assumptions. At atral densityl(w). The springs are connected to the particle

more detailed level, our results differ from those of Galliswith a coupling strengtly, modulated by the spatial profile

and Fleming, in that we identify cases where the length scal&(x). By our prescription that the interaction be “quasilo-

at which decoherence saturates is set not by an environmenal,” we mean that we will assume th&fx) vanishes for

tal correlation length, but by an interaction range, or by thegx|— .

time over which the interaction occurs. The evolution of the reduced density matrix of the
The first of our cases is an idealized model that can bd&rownian particle is expressed in path integral language as

solved exactlyin the sense that the evolution of the quantum . ,

state is dete_rmmed _by a non!lnear first-ordedinary d|ffer— . p(X¢ X! ;t):j dx,dx’ p(X; X/ ;0)f fDfof Dx’

ential equation, which can itself be solved analytically in X; x|

some nontrivial casgésThe second is a more realistic model, , )

in which the environment is a quantum field, but we will X eIMESX =S DR X', (28)

only be able to describe certain features of the influence

e . : .
functional that are clearly relevant to decoherence. whe_re FX,x ] IS _the mfluen_ce functional Slnce_ the
environment in this model is merely a collection of

harmonic oscillators, it is easy to compute[x,x'].

If we take I(w) to be a constant up to some
We consider a nonrelativistic quantum particle in one di-irrelevantly large cutoff frequencyl',,, and assume
mension, which is free except for its interaction with an en-that the environment is initially in a high-temperature
vironment. This environment resembles an expensbug  (kgT>#AI',) thermal state, uncorrelated with the
one-dimensionalmattress: it consists of a series of indepen-particle, we obtain for the influence functional the well-

dent “pocketed coil” spring systems, sited at equal intervalsknown form

2
) , (27)

g
In,o—, f(x—nd)

A. The “mattress model”

F[x,x']=exp[ - S—ﬁftdt’ > (I(Z—T[f(x—nd)—f(x' —nd)]2+i8(t)[F3(x—nd)—f4(x’ —nd)]
0 n N

+ iz[f(x—nd)—f(x’—nd)][kf’(x—nd)+$<’f’(x’—nd)]>}. (29

If we further take the infinite continuum limXl—o,d—0, and also ley— 0 but keep constani=g?/4d, we obtain the
very simple case in which the evolution of the reduced density matrix of the particle is given by the path integral

i . . kgT
P(Xf,xfl;t):fdXidXiIP(Xini,;O)fDA’DSGX[{ ;L—ftdt’ MAE—ZMEU’(A)+4iMﬁB U(A)H, (30
0

with the boundary conditions A(0)=x;—x{, A(t)  As an example to indicate the implications of Eg§1), note
—x;—x!, 3(0)=(x+x/)/2, and S(t)=(x;+x/)/2, and that a Gaussian f(y)xexqf—ay’] implies U(A)
where x(1—exfg —aA?2]). By analogy with the much studied lin-
ear caseslJ(A) may be said to represent environmental
" noise acting on the particle. The fact that its derivative ap-
U(A)EJ dyf(y)[f(y)—f(y—A)]. (31 Pearsin Eq(30) as a dissipative term may be considered a
—w fluctuation-dissipation relation. In the limit whepe— 0 but
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T—o so thatuT remains finite, we obtain the dissipation- behavior of the decoherence term is arguably a generic effect
less model of Gallis and Flemind.9]. One can therefore of locally coupled environments: states of the environment
consider the present section to be an extension of their modétat are deformed differently by interaction with the particle
into a regime in which a fluctuation-dissipation relation ex-at different locations are just as orthogonal if these two lo-
ists. cations are barely out of interaction range with each other, as
Markovian dynamics, and the translation invariance thaif they were infinitely far apart. A miss is as good as a mile.
obtains in the continuum limit, have conspired to make the By establishing the saturation of decoherence with in-
exponent in Eq(30) linear inX(t"). Consequently, the path creasing distance, we have attained the real point of this
integral may be performed trivially, and we obtain the propa-subsection. As an interesting appendix, though, we point out
gator equation that we can actually proceed further in solving the mattress
model, by constructing thek(A) representation of the den-

(X XL 3t = N(t)f dxdx | p(x; X! :0) sity matrix—the “Rengiw function”R(k,A).
A A dk
i K P(E-F E,E—§>=fme('/ﬁ)sz(k,A)- (34)
Xexr{g E(xf+xf’—xi—xi’)

From Eq.(32), we find that

,LLkBT t
xXexg —4 . fdt’U(AO) , (32
0

whereN(t) is a normalization constant that is a relic of the

k
R(K,Aq ;t)=ﬁN(t)ex;{ —4“h—§Tf;dtfu(A)}

path integral measur&K =K (x;—X; ,X;— X/ ,t) and Ay(t") xR(k,A(O);O)‘ w , (35)
are defined by the promised first-order ordinary differential ok
equation:

whereA(t') is determined by ,k, andt through the equa-
: tion of motion
MAG(t")=2uU"(A(t"))=K, (33

with K=K (A{,A, 1) fixed by the two boundary conditions MA(L) —2pU"(A(t) =k, (36)

Ag(t)=xt—x¢ andAq(0)=x;—x; . with the single boundary conditio(t)=A; . [Whether one
We pause here to summarize our results so far. We havgy|is this the same equation as E83) seems to be a matter

considered a model in which, in effect, every point in one-of semantics. However one decides the matter,

dimensional space holds an independent oscillator heat batﬁv(t’):A(k,Af L) and Ag(t')=Ag(Af,A;,t:it)) are
which provides Ohmic dissipation and white noise to a freeclosely relatedA o(A At ) =A(K(A[, A, 1), A tit).]
particle, as long as it is within range. This model thus repre- Evaluating A (0)/dk clearly requires solving Eq(36).
sents a conveniently ideal limit of any scenario in which agi we can learn something about its behavior by differen-

particle interacts locally with its environment, and informa- tiating Eq.(36) with respect tck, keepingt and A, fixed, to
tion transport within this environment is negligible. As with ,i-:0 slinear equation for&A(t”)/ak: '

totally linear models, the path integral for this open quantum

system can be performed analytically; but this model con- 92A J

tains nonlinear dynamics, in the coupling profflex). We M=o =1+ 2uU"(A) —. (37
now proceed to investigate some consequences of this non-

linearity. The constraint that\; be held fixed implies the boundary

From the assumption thd(x) vanishes for largex|, we  condition thatdA/dk|,, _,=0. This equation may then easily
can easily derive certain properties of the important overlage solved to obtain

functionU(A). By examining Eq(31) in Fourier space, we

can see tha/(A)>0, except at\ =0. U thus clearly drives gA0) 1 gt - Cu LA a ) @8
decoherence of superpositions of quantum states that are lo- ok M Jo :

calized at different locations. Furthermore, one can easily

show thatU(0)=U’(0)=0, and thatu”(0)>0. For small Equation(38) is easy to evaluate at any fixed point of Eq.

A, then,U looks like a parabola. If we were to takéto be  (36). For example, we know that fde=0 there is fixed point
a parabola exactly, however, we would obtain merely theat A=0. We can therefore use E(8) to fix N(t), because
high-temperature limit of the free-particle Caldeira-Leggettthe requirement thafdx;p(x;,X;;t)=1 is equivalent to de-
model[1].! But we can also see from E(B1) that for large  manding thaR(0,0)= 1. We therefore find that
A, F(A) approaches the positive constafitly f>(y)— )

which may be set equal to 1 by rescalipg This saturating _ 2pU"(0)

N(t)_ n ’
h(l_ef(Z,u./M)U (O)t)

(39

ISince the Caldeira-Leggett model is dynamically classical, it iswhich has the correct dimensions @éngth ~2.
not surprising that the dynamics of the classical mattress model for The fixed point at the origin ofk,A) space isunstable
any f(x) is also only sensitive tdJ”(0), and not toU(A) as a  This is actually a familiar phenomenon, occurring in the
whole. Caldeira-Leggett mode]ll]: the fact that a large range of
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A¢ near the origin is determined by a narrow rangedpfis  F[x,x’]. By assuming that the initial state of the fielt is
precisely what allows the system to “forget” its initial state, gescribed by a thermal density matr,i»&zzgle*ﬁ”‘b un-

and approach equilibrium at late times. Unstable fixed pointgorelated with the initial state of the system, we can write
of Eq. (36) are thus easy to associate with dissipation. Ifine influence functional formally as

U(A) were totally parabolic, as in a linear model, these

would be the only fixed points present; but it is easy to see 1 it e
that if U approaches a constant at laigd, then for small ~ F[x,x']= —Tr[ Texr{ - —J dt'Hin(t',x) lex — BHe] T
enough|k| there will also be fixed points that astable At Zg fiJo

these points, the factdwA(0)/dk| in Eq. (35 will grow it

exponentially with time. Careful consideration shows that Xexp{—f dt'Hin(t',X") ] (42)
the casei?U”>2MKkgTU in which this exponential growth hJo

even overcomes decoherence in Bp) is actually a viola- o
tion of our premise that the thermal frequenkyT/A is  where7 denotes reverse time ordering, and the trace is over
much higher than any other frequency in the problem. Nevihe field sector of Hilbert space.

ertheless, the stable fixed points are places wiigA) Using the definition of the source fiely) from Eq.

does not decay as rapidly with time as one might naively40), we can define thenfluence phase’[j,j’], such that
expect. Their existence is a novel, nonlinear phenomenon,
whose interpretation and significance is under investigation. F[)Z )?’]=exp(iV[j i) (43

B. Field models . A ..
We have writterV[],j '] in terms of the sourcejsinstead of

We now consider a more realistic case in which a nonliny,e hositionss because in this form it is familiar from quan-
ear interaction between a Brownian particle and its environy,m field theory as the generating functional for connected

ment causes tr:‘e dec_oherence r.ﬁti to saturate a;[_ I?dr]ge dt"?i'}:)oint functions. In evaluating perturbatively in the cou-
tances. Here the environment will be a quantum fieldin ling g,V rather thanF itself is the most natural object to

spatial dimensions. Because this case is not as simple as t Smpute directly. It will also be easiest for us to compare

ma}ttres? rr:\oc'iefll, we W'LI only belagle th derlr\:e certain Fl)lr %p'v with the exponential expressions derived in previous sec-
erties of the influence functional, but from these we wi €tions. In order to derive illustrative results without undertak-

able to draw significant conclusions about the distance d&p 4ny very intricate calculations, we will limit ourselves to

perédence oft(rj]ett:otuere_ntce. tion Hamiltoni i discussing the influence phase to second ordey. iAssum-
uppose that the interaction Hamiltonian coupling ourmg that He has no odd-power terms, so that

particle to the field is of the form Tre PHed =0, we find that this second order term is given
- . L by
Hu(0)=g | dY@.0T(y-X(0)= | dye.0i.0.

(40) o i . an t ty =
Valihi'1== 55z | dyadlyz | dty | dta{[i(ys,t1)
0 0

Here )?(t) is the position of our Brownian particl@lso in

n dimensiony and g is a coupling constant. Note that — 1Yt (Y2:t2) +i ' (Y2,t2)]
(D()Zt) is the quantum field operator in the interaction pic- - - .
ture: the field has a time-independent self-Hamiltortta, X([P(y1,t1), P(Y2,t2) 1) g~ [i (Y2,t2)

and we have the interaction picture evolution equation L, - -
P q 1 (Y2 ) I (Y1), D (Y2 1)} ), (4D

ih®=[D,Hg]. 41
where{A,B}=AB+BA, and(A),=Z;'Tr(e” FHrA).

Much as in the mattress model aboxe, the particle couples to Assuming further that 4, is spatially homogeneous and
the field through a window functior(|y|), which has di- isotropic, we can simplify our expressions further by defin-
mensions oflength ~" and vanishes at lardg|. (Our nota- N9 the Fourier transforms
tion f anticipates the fact that the Fourier transfdrpof this 4K
window function will play essentially the same role fasin v - . iK-(y1—y
Secs. Il and IlI, as long as we use units in which1 s?fhat <[®(yl’tl)’¢(y2’t2)]>ﬁ_'ﬁf (Zw)”e MG,
the distinction between spatial and temporal frequency can
be made implici). If f were a delta function, the coupling
would be exactly local; but, to be consistent in neglecting
such phenomena as pair production of more Brownian par-
ticles, we will assume thdthas support over some finite UV
cutoff length scale.

We again express the evolution of the Brownian particle’s
reduced density matrix by Eq28), with x—x for n>1. R _ .
Since any decoherence during this evolution is expressed ifyherek=|k|. Employing also the Fourier transforf of the
the influence functional, we will focus our attention on window functionf(|y|) from Eq.(40), we can write

X (k,t;—t5)

j j I kv
<{‘D(y1,t1),<b(y2,tz)})ﬁzhf (Zw)ne Y1—Y2 Gy,

X(k,tl_tz), (45)
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. g? [ d'k 5 [ ty the delta function or its derivatives. Thus, the leading contri-
Vol §(x),j"(X")]=— %J Wka’odtlfo dt, butions to Eq.(49) are found by setting
o e 2
X (e Xt — gk X)) (G (k,ty — ty) Gr(k,tl—tz)amﬁ(tl—tz),
X(e—nii(tz)_e—ik'-%'(tz))
- - oty —ty) sinhBw
~iG, (K ty—tp) (e~ 12 4 g KX (12))) Gakti=to) == 0 (costBw—coggn) 20

(46) Applying Eq. (50) to Eq. (46), we obtain

For comparison with our results below, note that the so- .
called “dipole approximation” to Eq(46), obtained by ex-  y,[j(x),j’(xX')]= —j dty[ Vi([x—x") = iV4(Ix—x'])
panding to leading order irn—xg, andx’ —xq for any con- 0

stantx,, is ><(§Z+§?’)-(>Z—>?’)], (52)
. _ t t . .
Viipoid ] (X),]" (X)]=— fodtlfoldtz where the function¥,(r) andVy(r) are defined as
Lo g2 dk fg sinhBw
XXXy (X=Xt = 1) Vi(r)=—i ﬁf 27" A(K) o (coshBw— cosBA)
—i(X+X" ), 7t~ 1)), (47) X (1—cok.-T),
(52

where the dissipation and noise kernels are given by
g2 dk 2
©2hr2) (2m)" A3(K)

k-relkr

g [ dk Vy(r)

10 s | gy akTEGH KD,

(48) It is easy to see that, as—0, V,(r)«r? and V4(r) ap-
proaches a constant quadratically. Fer on the other
hand, oscillatory terms will wash out in the integrals:
V,(r) approaches a constant, aid(r)—0. Once again,
decoherence saturates at large distances.

Equation(47) is the familiar form of the influence phase for ~ Note that, since Eq46) involves a single integral, we can

a bath of independent harmonic oscillators coupled linearlyegard), as part of an effective action, and derive a master

to a Brownian particle. N _ equation forp(x,x’;t) by the same method one uses to ob-
For generalHg, it is of course difficult to obtain the tain the Schrdinger equation from the path integral for a

complete propagator§, andGy, . Formally, however, con- \yaye function[23]. If Hy(p,,x) is the self-Hamiltonian for
straints imposed by unitarity and causality allow one to write;ya Brownian particle, the result is
them as ’

2 n
_9 d  oeo
V(t)_ﬁ (27T)nk fi.lGn(k,t).

o Aat ifip=[H(—i#V,,x)—H(ifiV,,x")]p
Gr(k,At)szmw(At), & Lo ) R
i Va(X=X (X=X (V= Vir)p
e~ AkaY .
Gk AD = 3 (CostBa —cogan) LS MMB@com (1~ o) —iVu(Ix=x"]p. (53)
+ sinBAsinw|At|] (49) This is the same form of master equation as that postulated
by Gallis in Ref.[21].
for somew(k,8) and A(k,B) (which may in principle be We now turn to our second simple limit of E¢49).

determined by solving Schwinger-Dyson equatiof22].  When the fieldd is free and massless, the propagators have
For the purposes of illustration, we will consider only two the following trivial form:
simple limiting cases of the dynamics df: the strongly
overdamped case, and the case whrs free. G, (Kity—t,)= isink(t “ty)

The overdamped limit is approached whénis coupled nmt 20 9k o2k
to a large number of light fields, which are to be traced over (54)
as well as(and, by a purely presentational choice, before
& itself. The result that we assume is thia(k) is, for all
importantk, by far the highest frequency that is significant in
the problem. Under this assumption, the exponential decay in
the propagator$49) so dominates their behavior that they In this case, the kernels entering in the influence functional
may be approximated by local distributions, proportional toare truly nonlocal and the behavior is entirely non-

1
Gh(k,tl_t2) = ﬂCOSk(tl—tz)CothBﬁk/Z
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Markovian. Due to the interplay between nonlinearity and The temporal integration is straightforward, and while for

nonlocality (in time), it is not possible to obtain a local mas-

ter equation.

evenn the angular integration produces Bessel functions, for
n=1 andn=3 the results are tractable integrals oker

However, to investigate the behavior of decoherence as a

function of separation distance, we can evaluate the influence n=1292
functional for a pair of simple histories, in which the distance Dy ( J K3 ka|n2

Bhk
coth—2 (1—cokL),

between the two trajectories remains constant for all times:

x—x'=L. In this case the absolute value of the influence g2 dk

functional is

[F[x,x"][=exd =Dy (1)]

d'k f2 h,Bk
—ex detlj Jz)n e

X cok(t;—t,)(1—cok-L)|. (55)
|
h2F3 T—ow
o (1—e-TLy(1—pTt
WDL(U (1 e )(1 e )+

forn=1, and

2ah2T T—oe
9%keT

for n=3.

D (t) is plotted, forn=3 andT—¢e, in Fig. 1. The shape
of the function, being symmetric inandL, vanishing along
the axes, rising with increasinggtL, and having a sort of
“ridge” along the line t=L, is qualitatively similar for
n=1.

At zero temperature— o) it is convenient to define the
functions

k1(2)=3[e’Ei(—2)+e %Ei(z)]— (1+Z%/2)[C+Inz],
(59
k3(z)=C+Inz—3[€’Ei(—z) + e 2Ei(z)].
C is Euler's constanfoften calledy instead, and Ei) is

the exponential-integral functidi24]. In terms of these func-
tions «,,, we have

L(t)|T=O: kn(I't) + e, (I'L)— %Kn(r(t+ L))
—%Kn(r|t—L|), n=1,3. (60)

For bothn=1 andn= 3, the behavior oD (t) is still quali-
tatively similar to that shown in Fig. 1, even @=0. The
only noticeable differences are that the “ridge” alohgL
is sharper, especially for=3, but that along the top of this

D (t) —» —(1-e "™)(1-e™ "

t hk sinkL

(56)

In the convenient case of the Lorentzian window function
f2=T2/(k?+T?), and in the limits of high temperature or
zero temperature, we can evaluate Ex§) by using contour
integration (and, in then=1 case, some integration by
partg. At high temperatureskgT>#AI1") we obtain

3t2
T(L—t/S)—FtJre*“sinth, t<L
32 (57)
t—L/3)—T'L+e IsinhCL, t>L
(

g2kgT [Tt—e Ttsinhlt, t<L

J’_—
27kl |TL—e sinilCL, t>L (58)

Figure 2 shows plots db, vsL in all four cases, at three
successive instants of tiM&=1,2,3. In each case it is clear
that D, grows quadratically withL when L is small, but
slows down significantly at large. For n=1, the largeL
behavior is linear at high temperatures and logarithmic at
zero temperature; but fan=3, D actually approaches a
constant at largé.. In both cases, a turnover from rapid to
slow growth of D, can be seen to occur arouhd=t (al-
though forn=1 at high temperatures this turnover becomes
less and less noticeable at later times

Even though the functions exhibited in Figs. 1 and 2 are
not directly related to the actual behavior of the Brownian
particle(since trajectories of constantare unlikely to domi-
nate the path integral for ani;), they do provide some
indication of the dependence of decoherence on distance, and
give a graphic illustration of the principle that is more firmly
established by all the results of this section in combination:
decoherence does not grow quadratically with distance in
general, but tends to saturate at large distances in a manner
that will depend in detail on the particular nature of the en-
vironment and its interaction with the system under investi-
gation.

V. CONCLUSION

In general, decoherence is indeed more of a minefield

ridge the function rises somewhat more gradually with in-than a checkpoint. At low temperatures, and certainly for

creasingt+L.

non-Ohmic environments, decoherence can be quite compli-
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cated even in linear systems. Noise is colored, dissipativene can in principle produce a wide range of different inter-
terms possess memory, backreaction can have dramatic efetion Hamiltonians between a harmonically trapped ion and
fects even on short time scales, and in general decoherentee electromagnetic fielfR5]. The future of quantum deco-
will be sensitive to all these features. With spatial nonlinearherence as an experimental study appears to be bright; we
ity, even when noise is white and dissipation memorylesswill conclude this theoretical study with some brief com-
decoherence tends to saturate at long distances, and otlraents on the experimental roles of the issues we have exam-
novel effects appear. When nonlocality in time and nonlin-ined.
earity in space are both present, things become still more The experimental requirement for low temperatures in
complicated, and it is clear that the simple pattern of decoeliciting non-classical behavior is itself evidence supporting
herence found in Ohmic linear systems at high temperaturethe basic validity of the view that decoherence at high tem-
is drastically changed. peratures is what ensures the effective classicality of the
Since beginning work on this paper, we have becomenacroscopic world. At low temperatures, however, decoher-
aware of the remarkable experimental work of Brigteal.  ence becomes an interesting phenomenon in its own right,
[6], in which the increase of the decoherence rate as thand not simply a robust mechanism for obtaining classical
square of the separations scale is brilliantly confirmed, albeibehavior. In addition to the emergence at low temperatures
over a limited range of separations. Thus, there appear to b&f quantum kinematics, one must of course also expect the
sections of the quantum-classical border that are reasonabfjppearance of nontrivial quantum dynamics, as lower-energy
orderly. In this paper, we are paying the highest respect oftates predominate and the correspondence principle be-
theorists to the current crop of experiments: we are rushingomes less powerful.
to keep ahead of them by considering still more complicated Using an internal degree of freedom to enable a classical
cases. And even so, many of the possibilities we have adsource to drive a particle into a Scklinger cat state, as in
dressed in this paper seem likely to be encountered very soaur Sec. lll, is actually very much what is done in the re-
in today’s laboratories. markable recent experimental construction of a “Sehro
A number of fascinating experiments currently under waydinger cat” by Monroeet al.[5]. There are also experiments
are exploring reaches of quantum physics, such as atom ofhat use rather the reverse approach, in which internal de-
tics, that have been part of quantum theory since its earliegrees of freedom in the environment are put into superposi-
days, and have been consistently inferred from observationsipns, with the result that a superposition of two different
but have not hitherto been accessible to direct empirical inforces acts on a single system degree of freefdnl2. It
vestigation. We certainly expect these experiments to tell uss no coincidence that both of these procedures have been
much about how decoherence occurs in the real world. Busuggested for implementing quantum logic, since the ability
almost all such experiments will be performed at low tem-to manipulate catlike states is the basic requirement of quan-
peratures, with non-Ohmic environments and non-linear intum computing. Considering decoherence that occurs during
teractions. We therefore do not expect them to confirm thesuch manipulations, rather than during mere storage of a
simple formulas that have been obtained in the first generaaon-classical state, is therefore an important task. Our analy-
tion of theoretical studies. Rather, we hope to be able to ussis in Sec. Il is a first step in that direction. To make it more
their results to extend our understanding of decoherence intdirectly relevant to the various experiments will require, at
these more complicated regimes. Experiments that have r¢he least, extending it to cases with non-Ohmic environ-
cently been proposed seem to offer yet more scope for in-
vestigating hitherto exotic aspects of decoherence. In pai |
ticular, Poyatos, Cirac, and Zoller have recently shown how

2a: n=1, High T D 2b: n=3, High T

L
2 4 6 8 10L 2 4 6 8 10

FIG. 2. The decoherence suppression factor of Fig. 1 plotted vs
L at three successive instants in tiniy:(mI 1), for m=1,2,3 in

FIG. 1. The decoherence suppression fa@e(t), defined as order from bottom to top, i.e., successively higher curves corre-
the real part of the influence phase for two trajectories in whkich spond to later times. The unit afis the UV cutoffl' ~1. As in Fig.
andx’ are constant in time, and differ Hy. The environmentis a 1, units of D, are arbitrary, because each of the four functions
massless quantum field mdimensions; the plotted function is for plotted has a different prefactor involving particle-field coupling
n=3 and high temperaturé—c. TheL andt axes are in units of constantg? (whose dimensionality depends ol and/orT. Thus
the UV cutoff scald ~1, while the vertical scale is linear but arbi- all four vertical scales are linear, but they are not necessarily com-
trary, since it depends agPkgT. mensurate.
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ments, in which one might expect to see nontrivial depen-
dence of decoherence on the time dependence(df. For
example, one might expect in the case of a supra-Ohmic
environment that ifa(t) slowly grows and then shrinks
again to zero, adiabatic dragging would result in decoherenc: Particle
that likewise rises and then diminishes dramatically. This
possibility of adiabatic recoherence does not arise to any
significant extent in the Ohmic regime.

The current fascinating experiments in atom optics typi-
cally involve local interactions between particles and their
environment$7,8]. One will therefore certainly expectto see  FIG. 3. Sketch of proposed system. The heavy dashed lines
the kinds of saturation effects that we have considered ifndicate two trajectories of the particle over the conducting plate.
Sec. IV. Even particles that are free, or confined in simpleThe large shaded regions represent the disturbance in the electron
enough wells that the dynamics of the particles in isolation igas inside the plate.
exactly solvable, are in these cases interacting nonlinearly

with environmental degrees of freedom. This restricted form Q2pv?
of nonlinearity has not been extensively studied, and seems P= 16m2%" (61

capable of providing some interesting phenomena. It is also
worth noting that, in many experimental setups, one expects

gnvironments to he spatially !nhomogeneo(urﬂ)r examplg, This implies Ohmic damping of the particle’s motion, with a
in the system of Ref9] there is an evanescent wave mirror garming co-efficient proportional fez . Putting a layer of
present only at the bottom of an evacuated cavitiis may somiconductor of thickneds on top of the conductor multi-
be expected to lead to decoherence kernels that are nontrivi ies Eq.(61) by 2b/3z [27].

functions not only of off-diagonal variables such as thef Since the sensitivity ta is strong, and judicious choice of

our Sec. IV, but of mean spatial position as well. the conducting medium permits any from 16 to 108
In this pe(ljpgr yv(te havt(? fOCl.Jt‘;ed our agtentlog on Qecoherﬂ m, it should be possible to construct an apparatus in which
Ence (_:aus? y 'L‘ eratihlo? (\le 6_‘8 lén_o seé;e _envg_orrl]menghe effective strength of the system-environment interaction
Xperiments such as that described in Res], in whic can be varied so as to span the spectrum between the effec-
decoherence is due to deliberate quantum measurements, %(f'ely classical and the purely quantum regimes. While the

nevertheless also likely to prove very |nf9rmat|ve. Ther_e '_Sfull quantum calculation necessary to predict the features of
clearly a world of experimental possibilities now OPENING; yacoherence in this system will involve such complicated

our message is that theory must keep up with the times. V\_/auantities as inner products between states of the conductor’s

theref(_)re E;]f?dh";'th ahtheonsts’h prcl)éa(t))sal ;(_)r antcj)lth_er EXPEMlo|ectron gas that have been disturbed by different trajectories
ment, In which decoherence should be adjustable In strengtfy e particle overhead, the wide variability of the effective

acrl?ssha wu(jje rartl_g?. See Fig. t3.th h i interf coupling strength should in any case allow one to walk back
charged particles are sent through a grating, INterers, ,q t5tn across the guantum-classical “no man’s land,” ex-

ence p_)rar;t'ternﬁ are the SIQnatulrle(sfatt)lﬁ\)hql:jantu&n_cor;)er- E?oring it at leisure. We are currently considering the theo-
ence. This phenomenon 1S well éstablished, and 1S 0DSEIVEgy;q,, guestion; we look forward to being able to compare

conslstently as long as the particle beam IS |solated_ fromy i results with data from an experiment along these lines.
environmental degrees of freedom. If an environment is de-

liberately introduced, however, in the form of a conducting
plate over which the particles must pass before they are de-
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