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Deconstructing decoherence

J. R. Anglin,1,* J. P. Paz,2,† and W. H. Zurek1,‡
1Theoretical Astrophysics, T-6, Mail Stop B288, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

2Departamento de Fisica, FCEN, UBA, Pabellon 1, Ciudad Universitaria, 1428 Buenos Aires, Argentina
~Received 25 November 1996!

The study of environmentally induced superselection and of the process of decoherence was originally
motivated by the search for the emergence of classical behavior out of the quantum substrate, in the macro-
scopic limit @W. H. Zurek, Phys. Rev. D24, 1516~1981!; 26, 1862~1982!#. This limit, and other simplifying
assumptions, have allowed the derivation of several simple results characterizing the onset of environmentally
induced superselection; but these results are increasingly often regarded as a complete phenomenological
characterization of decoherence in any regime. This is not necessarily the case: the examples presented in this
paper counteract this impression by violating several of the simple general rules. This is relevant because
decoherence is now beginning to be tested experimentally@C. Monroeet al., Science272, 1131 ~1996!; M.
Bruneet al., Phys. Rev. Lett.77, 4887~1996!#, and one may anticipate that, in at least some of the proposed
applications~e.g., quantum computers!, only the basic principle of ‘‘monitoring by the environment’’ will
survive. The phenomenology of decoherence may turn out to be significantly different.
@S1050-2947~97!07604-X#

PACS number~s!: 03.65.Bz
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I. INTRODUCTION

According to deconstructionist philosophers, words re
only to other words. There is a certain amount of truth in
analogous suggestion that papers in theoretical physics
only to other papers~and quite often, only to other papers
theoreticalphysics!. Consequently, a term such as ‘‘decohe
ence’’ is in real danger of coming to mean, to most phy
cists, only the processes that have been most frequently s
ied in the literature. Most of this literature has heretofo
dealt, naturally enough, with highly idealized models am
nable to exact solution. Moreover, many of these mod
have been particularly designed to realize a macrosc
classical limit, in order to attain the original goal of unde
standing the quantum origins of classicality. Such mod
have provided a relatively small set of principles, whi
could easily be taken to govern decoherence in general.
tempting, for example, to quote a simple formula deriv
from a linear model@1,2# as giving ‘‘the’’ decoherence time
scale@3#. Emblematic of this problem is a well-known ca
toon that appears in introductory discussions of decohere
@4#, depicting a border crossing between the two realms
classical and quantum physics. While this is a provoca
metaphor, it may prompt the inaccurate impression that th
is exactly one well-defined way of crossing from one rea
to the other.

The appeal of this inaccurate impression, and thus
significance of our effort to correct it, may be concealed
an unfortunate ambiguity in the very term ‘‘decoherenc
itself. Among quantum opticians, decoherence is often ta
to include any nonunitary evolution whatever; under this n
menclature, any expectation of universal properties of de
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herence in general is certainly naive. Among theorists stu
ing the quantum-to-classical transition from oth
backgrounds, however, decoherence is usually distinguis
from dissipation and thermalization, by defining it as evo
tion of the density matrix towards diagonality in a preferr
basis, on a much shorter time scale than that of evolu
towards a unique equilibrium state. What is called decoh
ence in this second lexicon is an example of what is ca
‘‘phase damping’’ in the first; but since relaxation of an e
semble of pointer states to thermal equilibrium can also p
ceed by diffusion in phase, not all phase damping is de
herence. We believe that this distinction is worth makin
and so we adopt the more restricted definition of decoh
ence, but our point is that even this more restricted definit
admits a much wider range of behavior than one might
pect.

In this paper we will effectively argue that many pe
ceived universalities in the phenomenology of decohere
are artifacts of studying toy models, and that the single n
border checkpoint should be replaced as an image for d
herence by the picture of a wide and ambiguous ‘‘no ma
land,’’ filled with pits and mines, which may be crossed on
great variety of more or less tortuous routes. Once one
indeed crossed this region, and traveled some distance a
from it, the going becomes easier: we are not casting do
on the ability of the very strong decoherence acting on m
roscopic objects to enforce effective classicality. But in t
near future precise experiments~for example,@5–12#! will
explore regimes in which decoherence should be measura
but not so strong as to simply enforce classicality. Expe
ment is thus beginning to probe the quantum-to-class
‘‘no man’s land’’ itself, advancing daring patrols along a
impressively broad front. In comparing the results of the
experiments with theoretical predictions, it will be importa
not to assume that the simple cases examined so far sh
be taken as representative of decoherence in general. By
senting a number of theoretically tractable examples
4041 © 1997 The American Physical Society
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which various elements of phenomenological lore can
seen to fail explicitly, we make the point that each expe
mental scenario will have to be examined theoretically on
own merits, and from first principles.

From the bulk of previous theoretical studies of decoh
ence, one might be tempted to deduce three significant p
ciples concerning the rate of decoherence: one can defi
simple decoherence time scale that is valid at least for lin
systems at high temperature; the rate of decoherence of
sically impossible ‘‘Schro¨dinger’s cat’’ states is always se
by the fastest time scales present; and the rate of decohe
increases with the square of the distance between the
branches of such cat states. These elements of the stan
lore are indeed borne out in the results of the first decoh
ence experiment at hand@6#; but there is no guarantee th
they will always hold. We therefore show why in the mo
general mesoscopic regime one may need to go back to
basic idea that the environment ‘‘monitors’’ an open qua
tum system@13#, and from there derive phenomenolog
afresh for every model. We will consider the three putat
principles in successive sections, presenting in each sec
an explicit example in which the property determined
simple models previously studied no longer holds. A fin
section will then discuss our results collectively, and sugg
some implications of them for the interpretation of expe
ments currently proposed or in progress.

II. DECOHERENCE TIME SCALE
IN LINEAR BROWNIAN MOTION

Many studies of decoherence have involved comple
linear models, in which a single Brownian particle is plac
in a quadratic potential, and coupled linearly to a heat b
composed of~often, uncountably many! harmonic oscilla-
tors. It can in fact be argued@14,15# that environments with
nonlinear internal dynamics can often be closely appro
mated, as far as their effects on the observed system
concerned, by such an independent oscillator model.
though there are certainly cases in which it is not realis
the independent oscillator model is therefore not entirel
toy, and represents a simplicity that is actually realized
nature. As simple as it is, even it is not really as simple
special cases and convenient approximations often mak
appear.

The canonical example of decoherence is the evolutio
a Brownian harmonic oscillator from an initial state, which
a superposition of two coherent states localized at dist
positions in space. This initially pure state, assumed to
uncorrelated with the initial thermal state of an independ
oscillator environment, has been found to evolve rapidly i
an incoherent mixture of the two coherent states. Simple
mulas are often applied to quantify ‘‘rapidly.’’ Here, how
ever, we will present an easy derivation of the short-ti
behavior of the Wigner function for an Ohmic Brownia
oscillator, and show that there is in general no natural wa
identify a single time scale for decoherence, even in
high-temperature limit. Our more explicit results are
agreement with the physical conclusions reached on the b
of numerical evidence in Ref.@16#.

For our completely linear model, we take the Hamiltoni
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H5
1

2M
P21

MV2

2
Q21

1

2E0
`

dv@~pv1g fvQ!21v2qv
2 #,

~1!

whereP andQ are the Brownian particle’s canonical var
ables, andM andV are its mass and natural frequency;pv

andqv are the canonical variables for the bath oscillator w
frequencyv; g is an overall coupling strength that may b
used to define the dissipation rate

g[
pg2

4M
, ~2!

and f v describes the relative coupling strength of the vario
environmental modes. The square of this strength will p
the role of a spectral density.

The initial Wigner functionW(Q,P;0) of the Brownian
oscillator will be that for an equal amplitude superposition
two coherent states, whose wave functions are Gaussians
placed an equal and opposite amount6a from the origin.
This Wigner function contains two terms, then: one cons
ing of a sum of two Gaussians, representing the incohe
mixture of the two states; and one that is oscillatory, a
represents their quantum interference:

W~Q,P;0!5Wmix1Wint,

Wmix~Q,P;0!5
~12e2MVa2/\!21

p\
coshS 2MV

\
aQD

3expF2
1

\VS P2

M
1MV2~Q21a2! D G ,

Wint~Q,P;0!5
~12e2MVa2/\!21

p\
cosS 2aP\ D

3expF2
1

\VS P2

M
1MV2Q2D G . ~3!

Decoherence in this model appears as a rapid decay in m
nitude ofWint(Q,P;t), by means of an exponential prefact
e2D(t).

The initial Wigner function for the complete system
Brownian oscillator plus bath is assumed to be a direct pr
uct:

W~Q,P;$qv ,pv%;0!5W~Q,P;0!3We@qv ,pv#,

We@qv ,pv#5)
v

tanh~\bv/2!

p\

3expF2
1

\v
~pv

21v2qv
2 !tanh

\bv

2 G , ~4!

whereb5(kBT)
21 is the inverse temperature of the enviro

ment.
It can be shown quite easily that the Wigner function f

a totally linear system evolves under the same Liouv
equation as the classical ensemble density for the s
model. Consequently, we can evolve the Wigner function
simply propagating it along the classical trajectories in ph
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55 4043DECONSTRUCTING DECOHERENCE
space. The reduced Wigner function for the Brownian p
ticle alone, with the environment integrated out, is theref

W~QF ,PF ;tF!5E dQIdPIDqvIDpvId„QF2Q0~ tF!…

3d„PF2P0~ tF!…

3W~QI ,PI ;0!We@qvI ,pvI #

5E DqvIDpvIU ]~QI ,PI !

]~QF ,PF!
UWe@qvI ,pvI #

3W~QI ,PI ;0!, ~5!

whereQ0(t) and P0(t) are given by Hamilton’s equation
for the Hamiltonian~1!. We have simplified the presentatio
in Eq. ~5! at the expense of precise notation: in the first lin
QI andPI are dummy variables, and we implicitly assum
the initial boundary conditionsQ0(0)5QI ,P0(0)5PI ; but
in the second line, we intend instead the final boundary c
ditionsQ0(t)5QF ,P0(t)5PF , and we useQI ,PI as short-
hand for the resultingQ0(0),P0(0). In theremainder of this
discussion, we will continue the usage of the second l
according to which it should be noted thatQI andPI are in
fact functions of the final timetF , and linear functions of
QF ,PF , and initial environmental variables$qvI ,pvI%.

We are interested in decoherence that occurs on t
scales much shorter than the Brownian particle’s dynam
time scaleV21, and when the environment is very weak
coupled to the system. We will therefore solve the equati
of motion forQ0 andP0 perturbatively to first order inVt
and at most first order ing, to obtain

QI~ t !8QF2
PF

M
t,

~6!

PI~ t !8PF1MV2QFt1E
0

t

dt8F1~ t8!,

whereF1(t) is the force exerted by the environment, to fir
order ing. Since this force will be a linear function of th
qvI andpvI , and since to form the reduced Wigner functio
W(QF ,PF ;tF) we will be integrating over these variable
with the Gaussian weightWe , Eq. ~6! is effectively a Lange-
vin equation with a Gaussian stochastic force. Note also
Eq. ~6! implies that the Jacobian in Eq.~5! is simply 1, to
first order inVt.

There are some subtle points to be considered before w
ing down the expression forF1(t). One might be tempted
simply to writeF1(t)8F1(0)5g*dv f vpvI ; but this would
be forgetting the fact thatF1(t) can contain some frequen
cies much higher thanV, so that some components of th
stochastic force will oscillate significantly even over t
short time interval in which we can expect to see decoh
ence. We therefore write the more accurate expression

F1~ t !5gE
0

`

dv f v@pvIcosvt1vqvIsinvt#. ~7!
r-
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,
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Actually, neglecting higher-order terms ing will be inac-
curate, even for very early times, if the high-frequency e
of the environmental spectrum is too strong. As one finds
fully solving such ‘‘supra-Ohmic’’ models, higher-orde
terms ing can appear multiplied by large frequencies, a
thus be significant. In such cases, backreaction can be
swift that a counterterm to the ‘‘bare’’ forceF1(t) is gener-
ated rapidly enough to affect decoherence. One can un
stand this phenomenon roughly as the rapid onset of a
batic dragging of the high-frequency bath degrees
freedom; it is discussed in detail in Ref.@17#.

These subtleties of backreaction turn out to be insign
cant in the much-studied Ohmic case, where~for the cou-
pling scheme we are using! f v is constant up to some hig
UV cutoff scale. We will therefore assume the Ohmic ca
choosing for definiteness the Lorentzian cutoff scheme

fv5
G

Av21G2
, ~8!

with G@V, and accept Eq.~7! as valid. Working to first
order inVt, we find that the Brownian particle gains neg
gible energy from the environment at these very early tim

PI
2

M
1MV2QI

28
PF
2

M
1MV2QF

2 , ~9!

when we neglectg completely because we assume th
PI*dt8F(t8)/M is negligible for theuPI u;AM\V that are
significant inW(QI ,PI ;0). Even though the environmenta
force is too small to affect the energy of the Brownian p
ticle at these early times, however,a@A\/MV will allow
the change inaP to be significant:

aPI8aPF1agE
0

`dv

v
f v@pvIsinvt1vqvI~12cosvt !#.

~10!

Performing the Gaussian integrals in Eq.~5! using Eqs.~9!
and ~10!, we find thatWmix(Q,P;t) is negligibly changed
fromWmix(Q,P;0), but thatWint(Q,P;0) has evolved into

Wmix~Q,P;t !8e2D~ t !Wmix~Q,P;0!, ~11!

where the decoherence factorD(t) is given by

D~ t !5
8Mga2

p\ E
0

`dv

v
f v
2coth

\bv

2
~12cosvt !. ~12!

In the zero-temperature limit, Eq.~12! agrees with Eqs.
~36! and ~37! of Ref. @18#, which present a weak-coupling
early-time approximation to an exact solution once it h
been obtained. In the high-temperature limit, we can exp
itly evaluateD(t) as

D~ t !→
8gkBTa

2

\2 S t2 12e2Gt

G D . ~13!

For times much less thanV21 but still much greater than
G21, Eq. ~13! agrees with previous results that at high te
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peraturesD(t)}t. This linear behavior ofD(t) allows one to
specify a single decoherence time scale

tdec5
\2

8Mga2kBT
. ~14!

Even when the high-temperature limitkBT@\G is valid,
however, this formula is not really universal. For sufficien
high T or a2, decoherence will already have occurr
(e2D(t)!1) at times smaller than or on the order ofG21. We
will then have to write

D~ t !.
4MgkBTa

2

\2 Gt2, ~15!

from which one must deduce the much longer time scale

tdec8 5
\

2aAMgGkBT
. ~16!

For lower temperatures, or non-Ohmic environmen
D(t) will generally not be linear, and the time at whic
e2D(t)!1 will be a complicated function of temperature a
a2. The existence of a single simple formula for the dec
herence time scale is a special property of the Ohmic in
pendent oscillator model at high, but not ultrahigh, tempe
tures.

III. INITIAL-STATE PREPARATION

Simple or not, all the decoherence time scales that m
be identified in models such as that of Sec. II have the co
mon feature of being very short. Warnings have long be
made, however, that the rapidity of this initial burst of dec
herence might be spurious, in that it might be a special c
sequence of an initial state in which the system and envir
ment are negligibly entangled. Since it is the high-frequen
modes of the environment that are responsible for rapid
coherence, the neglect of initial entanglement is particula
dubious: these fast modes are precisely the ones that
tend to be adiabatically dragged along with the system, if
system is put into a ‘‘Schro¨dinger’s cat’’ state by a physica
process instead of by theoreticalfiat. Despite warnings abou
this issue, however, there has so far been no actual calc
tion to really lay this ghost to rest.

In this section we examine a model that is essentially
same as those of Sec. II or Ref.@18#. Instead of following the
evolution of an initial superposition of displaced Gauss
states, however, we will take the ground state of the co
plete system as our initial state, and apply an external fo
that drives the Brownian oscillator into a superposition
displaced Gaussians over a finite period of time. We find t
decoherence occurs in this scenario, but that it is no lon
characterized by the short UV time scale. The strong ini
burst of decoherence, which has been ubiquitous but sus
in previous studies, is indeed suppressed.

We again take the Hamiltonian

H05
P2

2M
1
MV2

2
Q21

1

2E0
`

dv@~pv1g fvQ!21v2qv
2 #,

~17!
,
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just as in Eq.~1! above. We also retain the Ohmic specific
tion for f v given by Eq. ~8!. We do make an importan
change in our system, however, even though it does
show up inH0: we endow our Brownian oscillator with a
two-state internal degree of freedom, such as a spin.
Hamiltonian as written so far does not distinguish betwe
the oscillator’s two internal states; but we now add to it
external force that does distinguish them, and which w
thereby be able to create a Schro¨dinger’s cat state from the
ground state:

Ha5H01aa~ t !ŝP. ~18!

Here a is again a distance scale,a(t) is a time-dependen
c number having dimensions of frequency, witha(0)50,
and the Pauli spin matrixŝ acts in the internal space. W
will then take our initial state to be

uC i&5
1

A2
uf0&~ u1&1u2&), ~19!

whereuf0& is the ground state ofH0, andŝu6&5su6& for
s561.

Since the internal state of the oscillator does not evolve
this model, the two different realizations ofs that are presen
in the initial state merely label two branches of the to
quantum state at any time. For nonzeroa(t), the spatial
wave functions associated with these two branches will o
time become quite different. Choosinga(t)52d(t), for ex-
ample, will reproduce the initial Schro¨dinger’s cat state of
Ref. @18# ~which is very similar to that of Sec. II above!. In
what follows here we will consider the case wherea(t) is
not a delta function.

As explained in Ref.@18#, H0 can be diagonalized by
defining new operatorsAv ,pv

A :

H05
1

2E0
`

dv@~pv
A!21v2Av

2 #, ~20!

where

P5E
0

`

dvp~v!Av,

p~v!5
gv2G

Ap@v21Ḡ2#@v22~V̄1 i ḡ !2#@v22~V̄2 i ḡ !2#
.

~21!

The barred quantitiesḠ, V̄, andḡ are renormalized version
of the bare parameters. The bare parameters may be
pressed simply in terms of the renormalized ones~the inverse
relation being a complicated cubic formula! @18#, but we will
assume thatG@V@g, and in this case the differences b
tween the barred and unbarred quantities are negligi
Q,qv , andpv may also be expressed in terms of the n
operators, but we will only be needing Eq.~21!.

Since the wave function for the ground stateuf0& is the
familiar harmonic oscillator Gaussian, it is easy to work o
the wave function for the state at timet in thepv

A represen-
tation:



phase.
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C@pv
A ,s;t#5^su^pv

AuTe2~ i /\!*0
t dt8Ha~ t8!uf0&us&

5Z~ t !expH 2
1

2\E0
`dv

v S Fpv
A1sp~v!E

0

t

dt8a~ t8!cosv~ t2t8!G212isp~v!pv
AE

0

t

dt8a~ t8!sinv~ t2t8! D J .
~22!

T denotes time ordering, andZ(t) is a normalization constant into which we have absorbed an irrelevant time-dependent
We can then obtain the reduced density matrix for the Brownian particle, in theQ representation, merely by performing som
Gaussian integrals:

r~Q,Q8,s,s8;t !5E djE DpAexpF i\ jE
0

`

dv
p~v!

Mv2 pv
AGC@pv

A2p~v!Q,s;t#C* @pv
A2p~v!Q8,s8;t#

5NexpH 2
MV2

4\ S V1

V2
FQ2Q82~s2s8!E

0

t

dt8a~ t8!y~ t2t8!G21FQ1Q82~s1s8!E
0

t

dt8a~ t8!r ~ t2t8!G2
22i ~s1s8!~Q2Q8!E

0

t

dt8a~ t8!s~ t2t8!22i ~s2s8!~Q1Q8!E
0

t

dt8a~ t8!z~ t2t8!J
3expF2

~s2s8!2

4
Da~ t !G . ~23!
tro
t.

n

ra
q.
ic

ctor

se

f

o
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ime

the
Several new functions and quantities have been in
duced in Eq.~23!. N is simply a normalization constan
There are two new frequencies,

V1[
1

ME
0

`

dv
@p~v!#2

v
,

V2[M F E
0

`

dv
@p~v!#2

v3 G21

. ~24!

Using these we also define four dimensionless functions

r ~ t ![
1

ME
0

`

dv
@p~v!#2

v2 cosvt,

s~ t ![
1

MV2
E
0

`

dv
@p~v!#2

v
sinvt,

~25!

y~ t ![
1

MV1
E
0

`

dv
@p~v!#2

v
cosvt,

z~ t ![
1

ME
0

`

dv
@p~v!#2

v2 sinvt.

Note thatr (0)5y(0)51, ands(0)5z(0)50. These func-
tions may all be evaluated explicitly by contour integratio
One finds thatr (t) ands(t) are~for G@V@g) very close to
e2 ḡ tcosV̄t and e2 ḡ tsinV̄t, respectively, whiley(t) and
z(t) are similar, but also include some exponential-integ
terms@at first order in (g/V)#. We can therefore see that E
~23! prescribes evolution of Gaussian peaks along class
trajectories, for the ‘‘diagonal’’ terms withs5s8. The in-
-

.

l

al

terference terms, withs52s8, evolve slightly differently,
but are also suppressed by the decoherence prefa
e2Da(t).

This prefactor is given by

Da~ t !5MV1F E
0

t

dt8E
0

t

dt9a~ t8!a~ t9!y~ t82t9!

2S E
0

t

dt8a~ t8!y~ t2t8! D 2G
2MV2S E

0

t

dt8a~ t8!z~ t2t8! D 2. ~26!

In the case wherea(t)52d(t), decoherence is rapid becau
the function 12y2(t) grows on the cutoff time scaleG21.
This occurs because, as one can see by inserting Eq.~21! into
Eq. ~25!, V1y(t) diverges logarithmically whenG→` and
t→0. HenceV1y(t) drops precipitously within a few cutof
times of t50. But the convolutions appearing in Eq.~26!
clearly cannot vary more rapidly thana(t) itself. If one
choosesa(t)5sinLt for someL!G, for example, the loga-
rithmic divergence inV1y(t) for t→0 will be regulated by
the smearing witha(t), and nothing inDa(t) will evolve on
a time scale set byG. We can therefore see that, if a Schr¨-
dinger cat state is created by some physical process~as in
Refs.@5# and@6#!, rather than by a theorist’sfiat, the rate of
decoherence will no longer be set by the cutoff scale,
instead by some combination of the time scales ofa(t), V,
andg. In general, an upper bound on the decoherence t
scale is set by the time scale on which a Schro¨dinger cat state
is actually constructed in the laboratory.

IV. SATURATION OF DECOHERENCE AT LONG RANGE

In both of the examples we have studied to this point,
decoherence exponentD(t) scales quadratically with the
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separation scalea. In this section, we consider two cases
which a single particle that interacts nonlinearly~quasilo-
cally! with a linear environment, and the rate of decohere
of two localized states of the particle turns out not to incre
indefinitely with the distance between the two particle po
tions. Instead the decoherence rate reaches a plateau at
distance, which is set by the range of the interaction betw
the particle and the environment.

This point has been argued persuasively by Gallis
Fleming@19# and by Gallis@20,21#, in several insightful pa-
pers. At the level of general principle, the calculations
present in this section supplement and support their res
We are able to proceed somewhat further, however, bot
solving a simple model exactly, and in deriving results fro
first principles without phenomenological assumptions. A
more detailed level, our results differ from those of Gal
and Fleming, in that we identify cases where the length sc
at which decoherence saturates is set not by an environm
tal correlation length, but by an interaction range, or by
time over which the interaction occurs.

The first of our cases is an idealized model that can
solved exactly~in the sense that the evolution of the quantu
state is determined by a nonlinear first-orderordinary differ-
ential equation, which can itself be solved analytically
some nontrivial cases!. The second is a more realistic mode
in which the environment is a quantum field, but we w
only be able to describe certain features of the influe
functional that are clearly relevant to decoherence.

A. The ‘‘mattress model’’

We consider a nonrelativistic quantum particle in one
mension, which is free except for its interaction with an e
vironment. This environment resembles an expensive~but
one-dimensional! mattress: it consists of a series of indepe
dent ‘‘pocketed coil’’ spring systems, sited at equal interv
e
e
-
ome
n

d

ts.
in

a

le
n-
e

e

e

-
-

-
s

along a line, each interacting with the particle only when it
sufficiently near to them. The Lagrangian for this system

Lmat5
M

2
ẋ21

1

2 (
n52N

N E
0

`

dvI ~v!S q̇n,v2

2v2Fqn,v2
g

v
f ~x2nd!G2D , ~27!

whereM is the particle mass,x is its position in space,n
labels the 2N11 sites of the pocketed coils, andd is the
distance between these sites. Each pocketed coil consists
number of linear springs whose displacements areqn,v , hav-
ing natural frequenciesv, distributed according to the spec
tral densityI (v). The springs are connected to the partic
with a coupling strengthg, modulated by the spatial profile
f (x). By our prescription that the interaction be ‘‘quasilo
cal,’’ we mean that we will assume thatf (x) vanishes for
uxu→`.

The evolution of the reduced density matrix of th
Brownian particle is expressed in path integral language

r~xf ,xf8 ;t !5E dxidxi8r~xi ,xi8 ;0!E
xi

xf
DxE

xi8

xf8Dx8

3e~ i /\!~S[x]2S[x8] !F@x,x8#, ~28!

where F@x,x8# is the influence functional. Since the
environment in this model is merely a collection
harmonic oscillators, it is easy to computeF@x,x8#.
If we take I (v) to be a constant up to som
irrelevantly large cutoff frequencyGm , and assume
that the environment is initially in a high-temperatu
(kBT@\Gm) thermal state, uncorrelated with th
particle, we obtain for the influence functional the we
known form
F@x,x8#5expF2
g2

2\E0
t

dt8 (
n52N

N S kBT\
@ f ~x2nd!2 f ~x82nd!#21 id~ t8!@ f 2~x2nd!2 f 2~x82nd!#

1
i

2
@ f ~x2nd!2 f ~x82nd!#@ ẋ f 8~x2nd!1 ẋ8 f 8~x82nd!# D G . ~29!

If we further take the infinite continuum limitN→`,d→0, and also letg→0 but keep constantm[g2/4d, we obtain the
very simple case in which the evolution of the reduced density matrix of the particle is given by the path integral

r~xf ,xf8 ;t !5E dxidxi8r~xi ,xi8 ;0!E DDDSexpH i

\E0
t

dt8FM ḊṠ22mṠU8~D!14i
mkBT

\
U~D!G J , ~30!
-
tal
p-
a

with the boundary conditions D(0)5xi2xi8 , D(t)
5xf2xf8 , S(0)5(xi1xi8)/2, and S(t)5(xf1xf8)/2, and
where

U~D![E
2`

`

dy f~y!@ f ~y!2 f ~y2D!#. ~31!
As an example to indicate the implications of Eq.~31!, note
that a Gaussian f (y)}exp@2ay2# implies U(D)
}(12exp@2aD2/2#). By analogy with the much studied lin
ear cases,U(D) may be said to represent environmen
noise acting on the particle. The fact that its derivative a
pears in Eq.~30! as a dissipative term may be considered
fluctuation-dissipation relation. In the limit wherem→0 but
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T→` so thatmT remains finite, we obtain the dissipation
less model of Gallis and Fleming@19#. One can therefore
consider the present section to be an extension of their m
into a regime in which a fluctuation-dissipation relation e
ists.

Markovian dynamics, and the translation invariance t
obtains in the continuum limit, have conspired to make
exponent in Eq.~30! linear inS(t8). Consequently, the pat
integral may be performed trivially, and we obtain the prop
gator equation

r~xf ,xf8 ;t !5N~ t !E dxidxi8S r~xi ,xi8 ;0!

3expF i\ K

2
~xf1xf82xi2xi8!G

3expF24
mkBT

\2 E
0

t

dt8U~D0!G D , ~32!

whereN(t) is a normalization constant that is a relic of th
path integral measure.K5K(xf2xf8 ,xi2xi8 ,t) and D0(t8)
are defined by the promised first-order ordinary differen
equation:

M Ḋ0~ t8!22mU8„D0~ t8!…5K, ~33!

with K5K(D f ,D i ,t) fixed by the two boundary condition
D0(t)5xf2xf8 andD0(0)5xi2xi8 .

We pause here to summarize our results so far. We h
considered a model in which, in effect, every point in on
dimensional space holds an independent oscillator heat b
which provides Ohmic dissipation and white noise to a f
particle, as long as it is within range. This model thus rep
sents a conveniently ideal limit of any scenario in which
particle interacts locally with its environment, and inform
tion transport within this environment is negligible. As wi
totally linear models, the path integral for this open quant
system can be performed analytically; but this model c
tains nonlinear dynamics, in the coupling profilef (x). We
now proceed to investigate some consequences of this
linearity.

From the assumption thatf (x) vanishes for largeuxu, we
can easily derive certain properties of the important over
functionU(D). By examining Eq.~31! in Fourier space, we
can see thatU(D).0, except atD50.U thus clearly drives
decoherence of superpositions of quantum states that ar
calized at different locations. Furthermore, one can ea
show thatU(0)5U8(0)50, and thatU9(0).0. For small
D, then,U looks like a parabola. If we were to takeU to be
a parabola exactly, however, we would obtain merely
high-temperature limit of the free-particle Caldeira-Legg
model@1#.1 But we can also see from Eq.~31! that for large
D, F(D) approaches the positive constant*dy f2(y)—
which may be set equal to 1 by rescalingm. This saturating

1Since the Caldeira-Leggett model is dynamically classical, i
not surprising that the dynamics of the classical mattress mode
any f (x) is also only sensitive toU9(0), and not toU(D) as a
whole.
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behavior of the decoherence term is arguably a generic e
of locally coupled environments: states of the environm
that are deformed differently by interaction with the partic
at different locations are just as orthogonal if these two
cations are barely out of interaction range with each other
if they were infinitely far apart. A miss is as good as a mi

By establishing the saturation of decoherence with
creasing distance, we have attained the real point of
subsection. As an interesting appendix, though, we point
that we can actually proceed further in solving the mattr
model, by constructing the (k,D) representation of the den
sity matrix—the ‘‘Rengiw function’’R(k,D).

rS S1
D

2
,S2

D

2 D5E dk

2p\
e~ i /\!kSR~k,D!. ~34!

From Eq.~32!, we find that

R~k,D f ;t !5\N~ t !expF24
mkBT

\2 E
0

t

dt8U~D!G
3R„k,D~0!;0…U ]D~0!

]k U, ~35!

whereD(t8) is determined byD f ,k, andt through the equa-
tion of motion

M Ḋ~ t8!22mU8„D~ t8!…5k, ~36!

with the single boundary conditionD(t)5D f . @Whether one
calls this the same equation as Eq.~33! seems to be a matte
of semantics. However one decides the mat
D(t8)5D(k,D f ,t;t8) and D0(t8)5D0(D f ,D i ,t;t8) are
closely related:D0(D f ,D i ,t;t8)5D„K(D f ,D i ,t),D f ,t;t8….#

Evaluating ]D(0)/]k clearly requires solving Eq.~36!.
But we can learn something about its behavior by differe
tiating Eq.~36! with respect tok, keepingt andD f fixed, to
obtain alinear equation for]D(t8)/]k:

M
]2D

]k]t8
5112mU9~D!

]D

]k
. ~37!

The constraint thatD f be held fixed implies the boundar
condition that]D/]ku t85t50. This equation may then easil
be solved to obtain

]D~0!

]k
52

1

ME
0

t

dt8e2~2m/M !*0
t8dt9U9„D~ t9!…. ~38!

Equation~38! is easy to evaluate at any fixed point of E
~36!. For example, we know that fork50 there is fixed point
at D50. We can therefore use Eq.~38! to fix N(t), because
the requirement that*dxfr(xf ,xf ;t)51 is equivalent to de-
manding thatR(0,0)51. We therefore find that

N~ t !5
2mU9~0!

\~12e2~2m/M !U9~0!t!
, ~39!

which has the correct dimensions of~length! 22.
The fixed point at the origin of (k,D) space isunstable.

This is actually a familiar phenomenon, occurring in t
Caldeira-Leggett model@1#: the fact that a large range o

s
or
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D f near the origin is determined by a narrow range ofD i is
precisely what allows the system to ‘‘forget’’ its initial stat
and approach equilibrium at late times. Unstable fixed po
of Eq. ~36! are thus easy to associate with dissipation.
U(D) were totally parabolic, as in a linear model, the
would be the only fixed points present; but it is easy to
that if U approaches a constant at largeuDu, then for small
enoughuku there will also be fixed points that arestable. At
these points, the factoru]D(0)/]ku in Eq. ~35! will grow
exponentially with time. Careful consideration shows th
the case\2U9.2MkBTU in which this exponential growth
even overcomes decoherence in Eq.~35! is actually a viola-
tion of our premise that the thermal frequencykBT/\ is
much higher than any other frequency in the problem. N
ertheless, the stable fixed points are places whereR(k,D)
does not decay as rapidly with time as one might naiv
expect. Their existence is a novel, nonlinear phenomen
whose interpretation and significance is under investigat

B. Field models

We now consider a more realistic case in which a non
ear interaction between a Brownian particle and its envir
ment causes the decoherence rate to saturate at large
tances. Here the environment will be a quantum field inn
spatial dimensions. Because this case is not as simple a
mattress model, we will only be able to derive certain pro
erties of the influence functional, but from these we will
able to draw significant conclusions about the distance
pendence of decoherence.

Suppose that the interaction Hamiltonian coupling o
particle to the field is of the form

H int~ t !5gE dnyF~yW ,t ! f̃ „uyW2xW~ t !u…[E dnyF~yW ,t ! j ~yW ,t !.

~40!

Here xW (t) is the position of our Brownian particle~also in
n dimensions!, and g is a coupling constant. Note tha
F(yW ,t) is the quantum field operator in the interaction p
ture: the field has a time-independent self-HamiltonianHF ,
and we have the interaction picture evolution equation

i\Ḟ5@F,HF#. ~41!

Much as in the mattress model above, the particle couple
the field through a window functionf̃ (uyW u), which has di-
mensions of~length! 2n and vanishes at largeuyW u. ~Our nota-
tion f̃ anticipates the fact that the Fourier transformf k of this
window function will play essentially the same role asf v in
Secs. II and III, as long as we use units in whichc51 so that
the distinction between spatial and temporal frequency
be made implicit.! If f̃ were a delta function, the couplin
would be exactly local; but, to be consistent in neglect
such phenomena as pair production of more Brownian p
ticles, we will assume thatf̃ has support over some finite UV
cutoff length scale.

We again express the evolution of the Brownian particl
reduced density matrix by Eq.~28!, with x→xW for n.1.
Since any decoherence during this evolution is expresse
the influence functional, we will focus our attention o
ts
f
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F@xW ,xW8#. By assuming that the initial state of the fieldF is
described by a thermal density matrixrF5Zb

21e2bHF un-
correlated with the initial state of the system, we can wr
the influence functional formally as

F@xW ,xW8#5
1

Zb
TrH TexpF2

i

\E0
t

dt8H int~ t8,xW !Gexp@2bHF#T̄

3expF i\E0tdt8H int~ t8,xW8!G J , ~42!

whereT̄ denotes reverse time ordering, and the trace is o
the field sector of Hilbert space.

Using the definition of the source fieldj (yW ) from Eq.
~40!, we can define theinfluence phaseV @ j , j 8#, such that

F@xW ,xW8#[exp~ iV @ j , j 8# !. ~43!

We have writtenV @ j , j 8# in terms of the sourcesj instead of
the positionsxW because in this form it is familiar from quan
tum field theory as the generating functional for connec
n-point functions. In evaluatingF perturbatively in the cou-
pling g,V rather thanF itself is the most natural object to
compute directly. It will also be easiest for us to compa
V with the exponential expressions derived in previous s
tions. In order to derive illustrative results without underta
ing any very intricate calculations, we will limit ourselves
discussing the influence phase to second order ing. Assum-
ing that HF has no odd-power terms, so th
Tre2bHFF50, we find that this second order term is give
by

V2@ j , j 8#52
i

2\2E dny1d
ny2E

0

t

dt1E
0

t1
dt2$@ j ~yW 1 ,t1!

2 j 8~yW 1 ,t1!#„@ j ~yW 2 ,t2!1 j 8~yW 2 ,t2!#

3^@F~yW 1 ,t1!,F~yW 2 ,t2!#&b2@ j ~yW 2 ,t2!

2 j 8~yW 2 ,t2!#^$F~yW 1 ,t1!,F~yW 2 ,t2!%&b…%, ~44!

where$A,B%[AB1BA, and^A&b[Zb
21Tr(e2bHFA).

Assuming further thatHF is spatially homogeneous an
isotropic, we can simplify our expressions further by defi
ing the Fourier transforms

^@F~yW 1 ,t1!,F~yW 2 ,t2!#&b5 i\E dnk

~2p!n
eik

W
•~yW12yW2!Gr

3~k,t12t2!

^$F~yW 1 ,t1!,F~yW 2 ,t2!%&b5\E dnk

~2p!n
eik

W
•~yW12yW2!Gh

3~k,t12t2!, ~45!

wherek[ukW u. Employing also the Fourier transformf k of the
window function f̃ (uyW u) from Eq. ~40!, we can write
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V2@ j ~xW !, j 8~x8W !#52
g2

2\E dnk

~2p!n
f k
2E

0

t

dt1E
0

t1
dt2

3~eik
W
•xW~ t1!2eik

W
•xW8~ t1!!„Gh~k,t12t2!

3~e2 ikW•xW~ t2!2e2 ikW•xW8~ t2!!

2 iGr~k,t12t2!~e
2 ikW•xW~ t2!1e2 ikW•xW8~ t2!!….

~46!

For comparison with our results below, note that the
called ‘‘dipole approximation’’ to Eq.~46!, obtained by ex-
panding to leading order inxW2xW0 and xW82xW0 for any con-
stantxW0, is

Vdipole@ j ~xW !, j 8~x8W !#52E
0

t

dt1E
0

t1
dt2

3~xW2xW8! t1•„~x
W2xW8! t2n~ t12t2!

2 i ~xW1xW8! t2h~ t12t2!…, ~47!

where the dissipation and noise kernels are given by

h~ t !5
g2

2n\E dnk

~2p!n
k2f k

2Gr~k,t !,

~48!

n~ t !5
g2

2n\E dnk

~2p!n
k2f k

2Gh~k,t !.

Equation~47! is the familiar form of the influence phase fo
a bath of independent harmonic oscillators coupled linea
to a Brownian particle.

For generalHF , it is of course difficult to obtain the
complete propagatorsGr andGh . Formally, however, con-
straints imposed by unitarity and causality allow one to wr
them as

Gr~k,Dt !5
e2L~k!uDtu

2v
sinv~Dt !,

Gh~k,Dt !5
e2L~k!uDtu

2v~coshbv2cosbL!
@sinhbvcosv~ t12t2!

1sinbLsinvuDtu# ~49!

for somev(k,b) andL(k,b) ~which may in principle be
determined by solving Schwinger-Dyson equations! @22#.
For the purposes of illustration, we will consider only tw
simple limiting cases of the dynamics ofF: the strongly
overdamped case, and the case whereF is free.

The overdamped limit is approached whenF is coupled
to a large number of light fields, which are to be traced o
as well as~and, by a purely presentational choice, befo!
F itself. The result that we assume is thatL(k) is, for all
importantk, by far the highest frequency that is significant
the problem. Under this assumption, the exponential deca
the propagators~49! so dominates their behavior that the
may be approximated by local distributions, proportional
-

ly

r

in

the delta function or its derivatives. Thus, the leading con
butions to Eq.~49! are found by setting

Gr~k,t12t2!→
2

L3~k!
d8~ t12t2!,

Gh~k,t12t2!→
d~ t12t2!

vL~k!

sinhbv

~coshbv2cosbL!
. ~50!

Applying Eq. ~50! to Eq. ~46!, we obtain

V2@ j ~xW !, j 8~x8W !#52E
0

t

dt1@Vn~ uxW2xW8u!2 iVd~ uxW2xW8u!

3~xẆ1xẆ8!•~xW2xW8!#, ~51!

where the functionsVn(r ) andVd(r ) are defined as

Vn~r !52 i
g2

2\E dnk

~2p!n
f k
2

L~k!v

sinhbv

~coshbv2cosbL!

3~12coskW•rW !,
~52!

Vd~r !5
g2

2\r 2E dnk

~2p!n
f k
2

L3~k!
kW•rWeik

W
•rW.

It is easy to see that, asr→0, Vn(r )}r
2 and Vd(r ) ap-

proaches a constant quadratically. Forr→` on the other
hand, oscillatory terms will wash out in the integral
Vn(r ) approaches a constant, andVd(r )→0. Once again,
decoherence saturates at large distances.

Note that, since Eq.~46! involves a single integral, we ca
regardV2 as part of an effective action, and derive a mas
equation forr(xW ,xW8;t) by the same method one uses to o
tain the Schro¨dinger equation from the path integral for
wave function@23#. If H0(pW x ,xW ) is the self-Hamiltonian for
the Brownian particle, the result is

i\ṙ5@H~2 i\¹W x ,xW !2H~ i\¹W x8,x
W8!#r

1 i
\

M
Vd~ uxW2xW8u!~xW2xW8!•~¹W x2¹W x8!r

2 iVn~ uxW2xW8u!r. ~53!

This is the same form of master equation as that postula
by Gallis in Ref.@21#.

We now turn to our second simple limit of Eq.~49!.
When the fieldF is free and massless, the propagators h
the following trivial form:

Gr~k,t12t2!5
1

2k
sink~ t12t2!,

~54!

Gh~k,t12t2!5
1

2k
cosk~ t12t2!cothb\k/2.

In this case, the kernels entering in the influence functio
are truly nonlocal and the behavior is entirely no
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Markovian. Due to the interplay between nonlinearity a
nonlocality~in time!, it is not possible to obtain a local mas
ter equation.

However, to investigate the behavior of decoherence
function of separation distance, we can evaluate the influe
functional for a pair of simple histories, in which the distan
between the two trajectories remains constant for all tim
xW2xW85LW . In this case the absolute value of the influen
functional is

uF@x,x8#u[exp@2DL~ t !#

5expF2
g2

4\E0
t

dt1E
0

t

dt2E dnkW

~2p!n
f k
2

k
coth

\bk

2

3cosk~ t12t2!~12coskW•LW !G . ~55!
in
a
ce

s:
e

The temporal integration is straightforward, and while f
evenn the angular integration produces Bessel functions,
n51 andn53 the results are tractable integrals overk:

DL~ t ! 5
n512g2

p\2E
0

`dk

k3
f k
2sin2S kt2 D cothb\k

2
~12coskL!,

DL~ t ! 5
n53 g2

p2\2E
0

`dk

k
f k
2sin2S kt2 D cothb\k

2 S 12
sinkL

kL D .
~56!

In the convenient case of the Lorentzian window functi
f k
25G2/(k21G2), and in the limits of high temperature o
zero temperature, we can evaluate Eq.~56! by using contour
integration ~and, in the n51 case, some integration b
parts!. At high temperatures (kBT@\G) we obtain
\2G3

g2kBT
DL~ t ! →

T→`

~12e2GL!~12e2Gt!1H G3t2

2
~L2t/3!2Gt1e2GLsinhGt, t,L

G3L2

2
~ t2L/3!2GL1e2GtsinhGL, t.L

~57!

for n51, and

2p\2G

g2kBT
DL~ t ! →

T→`

2~12e2GL!~12e2Gt!1
g2kBT

2p\2GH Gt2e2GLsinhGt, t,L

GL2e2GtsinhGL, t.L
~58!
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DL(t) is plotted, forn53 andT→`, in Fig. 1. The shape

of the function, being symmetric int andL, vanishing along
the axes, rising with increasingt1L, and having a sort of
‘‘ridge’’ along the line t5L, is qualitatively similar for
n51.

At zero temperature (b→`) it is convenient to define the
functions

k1~z!5 1
2 @ezEi~2z!1e2zEi~z!#2~11z2/2!@C1 lnz#,

~59!

k3~z!5C1 lnz2 1
2 @ezEi~2z!1e2zEi~z!#.

C is Euler’s constant~often calledg instead!, and Ei(z) is
the exponential-integral function@24#. In terms of these func-
tionskn , we have

DL~ t !uT505kn~Gt !1kn~GL !2 1
2kn„G~ t1L !…

2 1
2kn~Gut2Lu!, n51,3. ~60!

For bothn51 andn53, the behavior ofDL(t) is still quali-
tatively similar to that shown in Fig. 1, even atT50. The
only noticeable differences are that the ‘‘ridge’’ alongt5L
is sharper, especially forn53, but that along the top of this
ridge the function rises somewhat more gradually with
creasingt1L.
-

Figure 2 shows plots ofDL vs L in all four cases, at three
successive instants of timeGt51,2,3. In each case it is clea
that DL grows quadratically withL when L is small, but
slows down significantly at largeL. For n51, the largeL
behavior is linear at high temperatures and logarithmic
zero temperature; but forn53, DL actually approaches a
constant at largeL. In both cases, a turnover from rapid
slow growth ofDL can be seen to occur aroundL5t ~al-
though forn51 at high temperatures this turnover becom
less and less noticeable at later times!.

Even though the functions exhibited in Figs. 1 and 2 a
not directly related to the actual behavior of the Browni
particle~since trajectories of constantx are unlikely to domi-
nate the path integral for anyH0), they do provide some
indication of the dependence of decoherence on distance
give a graphic illustration of the principle that is more firm
established by all the results of this section in combinati
decoherence does not grow quadratically with distance
general, but tends to saturate at large distances in a ma
that will depend in detail on the particular nature of the e
vironment and its interaction with the system under inve
gation.

V. CONCLUSION

In general, decoherence is indeed more of a minefi
than a checkpoint. At low temperatures, and certainly
non-Ohmic environments, decoherence can be quite com
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cated even in linear systems. Noise is colored, dissipa
terms possess memory, backreaction can have dramati
fects even on short time scales, and in general decoher
will be sensitive to all these features. With spatial nonline
ity, even when noise is white and dissipation memoryle
decoherence tends to saturate at long distances, and
novel effects appear. When nonlocality in time and nonl
earity in space are both present, things become still m
complicated, and it is clear that the simple pattern of de
herence found in Ohmic linear systems at high temperat
is drastically changed.

Since beginning work on this paper, we have beco
aware of the remarkable experimental work of Bruneet al.
@6#, in which the increase of the decoherence rate as
square of the separations scale is brilliantly confirmed, al
over a limited range of separations. Thus, there appear t
sections of the quantum-classical border that are reason
orderly. In this paper, we are paying the highest respec
theorists to the current crop of experiments: we are rush
to keep ahead of them by considering still more complica
cases. And even so, many of the possibilities we have
dressed in this paper seem likely to be encountered very s
in today’s laboratories.

A number of fascinating experiments currently under w
are exploring reaches of quantum physics, such as atom
tics, that have been part of quantum theory since its ear
days, and have been consistently inferred from observati
but have not hitherto been accessible to direct empirical
vestigation. We certainly expect these experiments to tel
much about how decoherence occurs in the real world.
almost all such experiments will be performed at low te
peratures, with non-Ohmic environments and non-linear
teractions. We therefore do not expect them to confirm
simple formulas that have been obtained in the first gen
tion of theoretical studies. Rather, we hope to be able to
their results to extend our understanding of decoherence
these more complicated regimes. Experiments that have
cently been proposed seem to offer yet more scope for
vestigating hitherto exotic aspects of decoherence. In
ticular, Poyatos, Cirac, and Zoller have recently shown h

FIG. 1. The decoherence suppression factorDL(t), defined as
the real part of the influence phase for two trajectories in whicx
andx8 are constant in time, and differ byL. The environment is a
massless quantum field inn dimensions; the plotted function is fo
n53 and high temperatureT→`. TheL and t axes are in units of
the UV cutoff scaleG21, while the vertical scale is linear but arb
trary, since it depends ong2kBT.
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one can in principle produce a wide range of different inte
action Hamiltonians between a harmonically trapped ion a
the electromagnetic field@25#. The future of quantum deco-
herence as an experimental study appears to be bright;
will conclude this theoretical study with some brief com
ments on the experimental roles of the issues we have ex
ined.

The experimental requirement for low temperatures
eliciting non-classical behavior is itself evidence supportin
the basic validity of the view that decoherence at high tem
peratures is what ensures the effective classicality of t
macroscopic world. At low temperatures, however, decoh
ence becomes an interesting phenomenon in its own rig
and not simply a robust mechanism for obtaining classic
behavior. In addition to the emergence at low temperatu
of quantum kinematics, one must of course also expect
appearance of nontrivial quantum dynamics, as lower-ene
states predominate and the correspondence principle
comes less powerful.

Using an internal degree of freedom to enable a classi
source to drive a particle into a Schro¨dinger cat state, as in
our Sec. III, is actually very much what is done in the re
markable recent experimental construction of a ‘‘Schr¨-
dinger cat’’ by Monroeet al. @5#. There are also experiments
that use rather the reverse approach, in which internal
grees of freedom in the environment are put into superpo
tions, with the result that a superposition of two differen
forces acts on a single system degree of freedom@10,12#. It
is no coincidence that both of these procedures have b
suggested for implementing quantum logic, since the abil
to manipulate catlike states is the basic requirement of qu
tum computing. Considering decoherence that occurs dur
such manipulations, rather than during mere storage o
non-classical state, is therefore an important task. Our ana
sis in Sec. III is a first step in that direction. To make it mor
directly relevant to the various experiments will require,
the least, extending it to cases with non-Ohmic enviro

FIG. 2. The decoherence suppression factor of Fig. 1 plotted
L at three successive instants in time:DL(mG21), for m51,2,3 in
order from bottom to top, i.e., successively higher curves cor
spond to later times. The unit ofL is the UV cutoffG21. As in Fig.
1, units of DL are arbitrary, because each of the four function
plotted has a different prefactor involving particle-field couplin
constantg2 ~whose dimensionality depends onn) and/orT. Thus
all four vertical scales are linear, but they are not necessarily co
mensurate.
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ments, in which one might expect to see nontrivial dep
dence of decoherence on the time dependence ofa(t). For
example, one might expect in the case of a supra-Oh
environment that ifa(t) slowly grows and then shrink
again to zero, adiabatic dragging would result in decohere
that likewise rises and then diminishes dramatically. T
possibility of adiabatic recoherence does not arise to
significant extent in the Ohmic regime.

The current fascinating experiments in atom optics ty
cally involve local interactions between particles and th
environments@7,8#. One will therefore certainly expect to se
the kinds of saturation effects that we have considered
Sec. IV. Even particles that are free, or confined in sim
enough wells that the dynamics of the particles in isolation
exactly solvable, are in these cases interacting nonline
with environmental degrees of freedom. This restricted fo
of nonlinearity has not been extensively studied, and se
capable of providing some interesting phenomena. It is a
worth noting that, in many experimental setups, one exp
environments to be spatially inhomogeneous.~For example,
in the system of Ref.@9# there is an evanescent wave mirr
present only at the bottom of an evacuated cavity.! This may
be expected to lead to decoherence kernels that are nont
functions not only of off-diagonal variables such as theD of
our Sec. IV, but of mean spatial position as well.

In this paper we have focused our attention on decoh
ence caused by interaction with an unobserved environm
Experiments such as that described in Ref.@28#, in which
decoherence is due to deliberate quantum measurement
nevertheless also likely to prove very informative. There
clearly a world of experimental possibilities now openin
our message is that theory must keep up with the times.
therefore end with a theorists’ proposal for another exp
ment, in which decoherence should be adjustable in stre
across a wide range. See Fig. 3.

If charged particles are sent through a grating, interf
ence patterns are the signature of~spatial! quantum coher-
ence. This phenomenon is well established, and is obse
consistently as long as the particle beam is isolated fr
environmental degrees of freedom. If an environment is
liberately introduced, however, in the form of a conducti
plate over which the particles must pass before they are
tected, then decoherence may occur. A calculation in cla
cal electrodynamics@26# shows that a chargeQ moving at
speedv a constant heightz above a plate with resistivityr
dissipates power a rate
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16pz3
. ~61!

This implies Ohmic damping of the particle’s motion, with
damping co-efficient proportional torz23. Putting a layer of
semiconductor of thicknessb on top of the conductor multi-
plies Eq.~61! by 2b/3z @27#.

Since the sensitivity toz is strong, and judicious choice o
the conducting medium permits anyr from 108 to 1028

V m, it should be possible to construct an apparatus in wh
the effective strength of the system-environment interact
can be varied so as to span the spectrum between the e
tively classical and the purely quantum regimes. While
full quantum calculation necessary to predict the features
decoherence in this system will involve such complica
quantities as inner products between states of the conduc
electron gas that have been disturbed by different trajecto
of the particle overhead, the wide variability of the effecti
coupling strength should in any case allow one to walk ba
and forth across the quantum-classical ‘‘no man’s land,’’ e
ploring it at leisure. We are currently considering the the
retical question; we look forward to being able to compa
our results with data from an experiment along these line
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FIG. 3. Sketch of proposed system. The heavy dashed l
indicate two trajectories of the particle over the conducting pla
The large shaded regions represent the disturbance in the ele
gas inside the plate.
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