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We consider general time-dependent quadratic Hamiltonian systems which are connected by canonical
transformations and give the same classical equations of motion. In those systems, we demonstrate that
canonical transformations in classical mechanics correspond to unitary transformations in quantum mechanics.
The wave functions and the propagators are evaluated using the invariant operator method. However, the
values of some functions of the canonical variablesq andp are not equal to the values of the same functions
of the other canonical variablesQ andP, but the values of the functions ofq and the kinetic momentumpk are
equal to those of the otherQ andPk in classical mechanics. We prove that these also hold in the quantum
treatment. The uncertainty relations of momentum and position are evaluated for the two Hamiltonians.
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I. INTRODUCTION

The nonconservative behavior of physical phenomena
contrasted with the conservative nature is an important
ence with a fascinating and apparently enduring problem@1#.
In particular, the time evolution of dynamical systems w
an explicitly time-dependent Hamiltonian has attracted c
siderable attention@2–6#. A general time-dependent qua
dratic Hamiltonian system has often been considered bec
of its various applications in quantum optics@7#. The most
famous examples are the degenerate parametric amplifie@8#
and Pauli trap@9#. The general form of this Hamiltonian
which describes a classical forced oscillator with a tim
dependent frequency and velocity-dependent damping,
been shown by Havas@10#, and this kind of system has als
been considered by others@11,12#.

A quantum-mechanical treatment of a time-dependen
nonconservative system must be treated carefully. Firs
all, classically there are numerous canonical momenta wh
correspond to one coordinate, but there is only one kin
momentum as a simple product of mass and velocity,
which case the question arises as to which corresponds t
momentum operator in quantum mechanics and what is
interpretation of rest momenta. Second, there are nume
classical Hamiltonians which give one solution, and in t
case one asks, which one is the quantum-mechanical Ha
551050-2947/97/55~6!/4023~7!/$10.00
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tonian and how are the rest interpreted quantum mech
cally?

What are the relations for the canonical transformation
classical mechanics and the unitary transformation in qu
tum mechanics? In this paper we choose a general ti
dependent quadratic Hamiltonian which gives the sa
equations of motion as the linear nonhomogeneous ti
dependent differential equation. The Hamiltonian syste
which we shall develop are applicable to many physical s
tems such as a damped harmonic oscillator and a ti
dependent harmonic oscillator@13–15#. The purpose of this
paper is to address these issues by treating those Ham
nians. In Sec. II, we consider time-dependent quadr
Hamiltonian systems which are related by canonical trans
mations and give the same coordinates but different can
cal momenta. Though the canonically transformed Ham
tonian is represented by one Hamiltonian, it represe
numerous Hamiltonians because it contains an arbitr
time-dependent function. Thus we treat numerous Hami
nians for one equation of motion. We also find the classi
quadratic invariant quantities for each Hamiltonian.

In Sec. III, we show that the canonical transformation
the two classical Hamiltonians corresponds to a unit
transformation in quantum mechanics. The quantum inv
ant operators which correspond to the classical invar
quantities are evaluated in this section for those Hamilton
4023 © 1997 The American Physical Society
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systems. From these, the Schro¨dinger solutions are found
exactly with the auxiliary conditions as classical solution
The propagator is also calculated from these wave functio
In Sec IV, we treat the quantum expectation values of fu
tion of the coordinate and the unitary transformed mom
tum operator, and we compare the expectation values
these functions and find their relations. We also evaluate
uncertainty relation of the coordinate and canonical mom
tum operators for two given Hamiltonians. In Sec. V, w
give a summary and conclusion.

II. CLASSICAL TREATMENT OF THE SYSTEM

We consider the classical Hamiltonian of a general tim
dependent quadratic system given as

H~p,q,t !5 1
2 $A~ t !p212B~ t !qp1C~ t !q2%1D~ t !q1E~ t !p

1F~ t !, ~2.1!

whereq andp are the canonical coordinate and momentu
respectively, andA(t)Þ0 andB(t), C(t), D(t), E(t), and
F(t) are real and piecewise continuously differentiable~with
respect tot! functions. From Hamilton’s equations of mo
tion, the Hamiltonian Eq.~2.1! gives the nonhomogeneou
time-dependent differential equation as

q̈1z~ t !q̇1j~ t !q5x~ t !, ~2.2!

wherez, j, andx are given by

z~ t ![2
Ȧ~ t !

A~ t !
, ~2.3!

j~ t ![HA~ t !C~ t !1
Ȧ~ t !B~ t !

A~ t !
2B~ t !22Ḃ~ t !J , ~2.4!

x~ t ![2A~ t !D~ t !1Ė~ t !2
Ȧ~ t !

A~ t !
E~ t !1B~ t !E~ t !. ~2.5!

There are bound and unbound systems in the solution of
~2.2!. However, we do not know whether or not our syste
is bound unless the time-dependent coefficients of
Hamiltonian are known. Here, we only choose the bou
systems in the Hamiltonian Eq.~2.1!. Without loss of gener-
ality, if the particular solution isqpa , the general solution o
Eq. ~2.2! can be written as

q~ t !5C1h~ t !exp$ iu~ t !%1C2h~ t !exp$2 iu~ t !%1qpa .
~2.6!

Substituting Eq.~2.6! into Eq. ~2.2!, we obtain the two dif-
ferential equations

hü12ḣu̇1jhu̇50, ~2.7!

ḧ2hu̇21zḣ1jh50. ~2.8!

From Eq.~2.7!, we can find the first integral as

V5
h2u̇

A
5const. ~2.9!
.
s.
-
-
of
e
-

-

,

q.

e
d

From Eq.~2.9! we know that the Wronskian determinant
two terms of the homogeneous solutions of Eq.~2.6! is not
zero,

W52ih2u̇52iAVÞ0. ~2.10!

This provides proof that Eq.~2.6! is a general solution of Eq
~2.2!.

We would like to find a classical invariant quantityI
which depends on independent variables: canonical coo
nate, momentum, and time. Since functions ofI are also
invariant, the invariant quantities are numerous. We are
terested in the quadratic invariants form of canonical coo
nateq and momentump. From the Hamiltonian~2.1! we can
readily find the invariant quantity as@4#

I ~p,q,t !5
1

2 FV2

h2 ~q2q0!
21H SBA h2

ḣ

AD ~q2q0!

1h~p2p0!J 2G , ~2.11!

whereq0 andp0 are the time-dependent form of the classic
canonical coordinate and momentum. Since Eq.~2.11! is an
ellipse inq andp space if the coefficients are fixed, we kno
that the system is bound.

We are also interested in the other Hamiltonian wh
gives the same classical solution Eq.~2.2!. We try a canoni-
cal transformation from the variables (q,p) to new canonical
variables (P,Q)

Q5q, ~2.12!

P5p2G~ t !q, ~2.13!

whereG(t) is an arbitrary real differentiable function. Thu
there are numerous canonical momenta of the form of
~2.13!. To find the Hamiltonian of the variables (Q,P), we
introduce the time-dependent generating function

F~P,Q,t !52 1
2G~ t !Q2. ~2.14!

The new Hamiltonian, which gives the same equation of m
tion, becomes@16#

H8~P,Q,t !5H~p,q,t !2p
]q

]t
2

]F~P,Q,t !

]t
. ~2.15!

Substituting Eqs.~2.1! and ~2.14! into Eq. ~2.15!, we find

H8~Q,P,t !5 1
2A~ t !P21 1

2 $A~ t !G~ t !21C~ t !12B~ t !G~ t !

1Ġ~ t !%Q21$A~ t !G~ t !1B~ t !%QP

1@D~ t !1E~ t !G~ t !#Q1E~ t !P1F~ t !.

~2.16!

SinceQ5q, Eq. ~2.16! gives the same form of the solutio
of the Hamiltonian Eq.~2.1!. Thus we know that only one
classical solution can be found from numerous differe
Hamiltonians.
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With the same method, we can also easily find the q
dratic invariant quantity of the new Hamiltonian Eq.~2.16!
as

I 8~P,Q,t !5
1

2 FV2

h2 ~Q2Q0!
21H SBA h1Gh2

ḣ

AD ~Q2Q0!

1h~P2P0!J 2G . ~2.17!

Since Q5q, the Hamiltonian of Eq.~2.16! represents a
bound system, which can be deduced from Eq.~2.17!.

III. SCHRÖ DINGER SOLUTIONS AND PROPAGATORS

A. Schrödinger solutions

We define the quantum Hamiltonian of the system by
placing the classical canonical coordinatesq and p by the
operatorsq̂ and p̂ as

Ĥ~ p̂,q̂,t !5 1
2 @A~ t ! p̂21B~ t !~ p̂q̂1q̂p̂!1C~ t !q̂2#1D~ t !q̂

1E~ t ! p̂1F~ t !. ~3.1!

The Schro¨dinger equation of the system can be written

i\
]f

]t
5Ĥ~p,q,t !f. ~3.2!

Since this equation has the arbitrary coefficients in
Hamiltonian Eq.~3.1!, it cannot be solved directly. To solv
the Schro¨dinger equation with auxiliary conditions, we ca
readily find the quantum invariant operatorI which has a
quadratic form with operatorsp̂ and q̂ as

I ~ p̂,q̂,t !5
1

2 H V2

h2 ~ q̂2q0!
21F SBA h2

ḣ

AD ~ q̂2q0!

1h~ p̂2p0!G2J . ~3.3!

Here we show that this result has the same form as the c
sical invariant quantity whose canonical variables are d
placed by the quantum operators. The invariant quantity
~3.3! can be replaced by creation and annihilation opera
â and â† as

Î5\V~ â†â1 1
2 !, ~3.4!

where

â5S A

2\u̇ D 1/2F 1A H u̇1 i SB2
ḣ

h D J ~ q̂2q0!1 i ~ p̂2p0!G ,
~3.5!

and

â†5S A

2\u̇ D 1/2F 1A H u̇2 i SB2
ḣ

h D J ~ q̂2q0!2 i ~ p̂2p0!G .
~3.6!

If @ q̂,p̂#5 i\, then
-

-

e

s-
-
q.
rs

@ â,â†#51. ~3.7!

In Sec. II, we showed that classically there are numer
Hamiltonians which give only one classical equation but n
merous canonical momenta. To find them, we introduce
unitary operator whose characters are equal to the cano
transformation in classical mechanics,

Û~ p̂,q̂,t !5expH 2
i

2\
G~ t !q̂2J , ~3.8!

Û†~ p̂,q̂,t !5expH i

2\
G~ t !q̂2J , ~3.9!

whereG(t) is the same as in the generating function E
~2.14!. Using Eqs.~3.8! and ~3.9!, the new operatorsQ̂ and
P̂ are defined from the operatorsq̂ and p̂ as

Q̂5Û†q̂Û5q̂, ~3.10!

P̂5Û p̂Û†5 p̂1G~ t !q̂, ~3.11!

where Eqs.~3.10! and ~3.11! correspond to the classical ca
nonical transformation Eqs.~2.12! and~2.13!. These kinds of
unitary operators acting on the Hilbert spaceR transform the
Schrödinger operator

Ŝ0[Ĥ2 i
]

]t
~3.12!

of the first Hamiltonian system into the Schro¨dinger operator

S1[H8~Q,P,t !2 i
]

]t
, ~3.13!

namely,

Ŝ1[Û†Ŝ0Û ~3.14!

through Eqs.~3.11! and ~3.12!. We obtain the new quantum
Hamiltonian as

H8~Q̂,P̂,t !5 1
2A~ t !P̂21 1

2 $A~ t !G~ t !21C~ t !12B~ t !G~ t !

1Ġ~ t !%Q̂21 1
2 $A~ t !G~ t !1B~ t !%~ P̂Q̂1Q̂P̂!

1@D~ t !1E~ t !G~ t !#Q̂1E~ t !P̂1F~ t !.

~3.15!

This result is the same form as the classical Hamiltonian,
~2.16!, whose canonical variables are displaced by quan
operators. Here we know that there are numerous quan
Hamiltonians and Schro¨dinger equations for one system.

We can obtain the new quantum invariant operatorÎ 8,
which is the quadratic form ofQ̂ and P̂, as
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Î 8~ P̂,Q̂,t !5
1

2 FV2

h2 ~Q̂2Q0!
21H SBA h1G~ t !h2

ḣ

AD
3~Q̂2Q0!1h~ P̂2P0!J 2G . ~3.16!

This Eq.~3.16! is also simplified by new creation and ann
hilation operator (b̂,b̂†) as

Î 85\V~ b̂1b̂1 1
2 !, ~3.17!

where

b̂5S A

2\u̇ D 1/2F 1A H u̇1 i SAG1B2
ḣ

h D J ~Q̂2Q0!

1 i ~ P̂2P0!G , ~3.18!

b̂†5S A

2\u̇ D 1/2F 1A H u̇2 i SAG1B2
ḣ

h D J ~Q̂2Q0!

2 i ~ P̂2P0!G . ~3.19!

The spectra and eigenfunctions of invariant operatorsÎ 8
and Î are found as

Î Un~q,t !5lUn~q,t !, ~3.20!

where

l5\V~n1 1
2 !, n50,1,2,..., ~3.21!

Un~q,t !5S u̇

\Ap
D 1/4 ~21!n

An!
expH 2

u̇

2\A
q0
22d

q2

2
1eqJ

3Hn„Ad r~q2q0!…, ~3.22!

d5
1

\A H u̇1 i SB2
ḣ

h D J 5d r1 id i , ~3.23!

e5dq01 i
p0
\
. ~3.24!

Using the eigenstates of the invariant operator Eq.~3.22!, the
solution of the Schro¨dinger equation is obtained as

cn~q,t !5
1

An!2n
S u̇

\Ap
D 1/4expH 2

u̇

2\A
q0
22

e2

2d
1 iD

2 i S n1
1

2D uJ expH 2
d

2 S q2q02
ip0
d\ D 2J

3Hn„Ad r~q2q0!…, ~3.25!

where
dD

dt
52

F

\
2

1

2\A H S q̇02 ḣ

h
q01 u̇q0D

3S q̇02 ḣ

h
q02 u̇q0D2E2J . ~3.26!

Using the same method as above, we obtain the wave fu
tion of the Schro¨dinger equation, which comes from the ne
Hamiltonian Eq.~3.15!, as

cn
b~Q,t !5

1

An!2n
S u̇

\Ap
D 1/4expH 2

u̇

2\A
Q0
22

eb
2

2db
1 iDb

2 i S n1
1

2D uJ expH 2
db
2 SQ2Q02

iP0

db\
D 2J

3Hn„Ad r~Q2Q0!…, ~3.27!

where

db5
1

\A H u̇1 i SGA1B2
ḣ

h D J 5d r1 id i
b , ~3.28!

eb5dbQ01 i
P0

\
, ~3.29!

dDb

dt
52

F

\
2

1

2\A H S Q̇2
ḣ

hQ0
1 u̇Q0D

3S Q̇2
ḣ

h
Q02 u̇Q0D2E2J . ~3.30!

Having found the Schro¨dinger solutions of a differen
type for the Schro¨dinger equations for one system, we raise
question: What is the meaning of the numerous kinds
quantum states for one system? We will discuss this in S
IV.

B. Propagators

The propagator is defined for the bound system as

K~q,t;q8,t8!5 (
n50

`

fn~q,t !fn* ~q8,t8!. ~3.31!

With the help of Mehler’s formula,

(
n50

`

Hn~X!Hn~Y!
Zn

n!2n

5A12Z2 expH 2XYZ2X22Y2

12Z2
1X21Y2J ,

~3.32!

and Eq.~3.25!, the propagator is given by
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K~q,t;q8,t8!5S u̇1/2u̇81/2

2ip\ sin~u2u8!h1/2h81/2
D 1/2exp$ i ~D2D8!%

3expF i H SB2
ḣ

h Dq021p0q02SB82
ḣ8

ḣ8Dq0822p08q08J 2p0
22p08

2G
3expH i

2\A
~q2q0!

2F u̇ cot~u2u8!2B1
ḣ

h G2
i

\
p0~q2q0!2

p0
2

2\dJ
3expH 2 i

2\A8
~q82q0!

2F u̇8 cot~u2u8!2B81
ḣ8

h8G1
i

\
p08~q82q08!2

p08
2

2\d* J
3expH 2

i

\
S u̇ u̇8

AA8
D 1/2~q2q0!~q82q08!/sin~u2u8!J , ~3.33!

where the prime means the quantities at timet5t8. With the same method and Eqs.~3.27! and~3.32!, the propagator for the
new Hamiltonian becomes

K~Q,t;Q8,t8!5S u̇1/2u̇81/2

2ip\ sin~u2u8!h1/2h81/2
D 1/2expH 2P0

22P08
22

P0
2

2\db
2

P08
2

2\db*
J exp$Db2Db8%

3expF i H SB1AG2
ḣ

h DQ0
21P0Q02SB81A8G82

ḣ8

h8DQ08
22P08Q08J G

3expF i\ H 1

2A
~Q2Q0!

2S u̇ cot~u2u8!2B2AG1
ḣ

h D2P0~Q2Q0!J G
3expH 2

i

\ F 1

2A8
~Q82Q0!

2S u̇ cot~u2u8!2B82A8G81
ḣ8

h8D G J
3expH 2

i

\
P08~Q82Q08!2

i

\
S u̇ u̇8

AA8
D 1/2~Q2Q0!~Q82Q08!/sin~u2u8!J . ~3.34!
o-

te
te
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n
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e

on

e
mo-

t is
.

We know that propagators for different types of Hamilt
nians for one system do not have the same form.

IV. QUANTUM AVERAGE
AND UNCERTAINTY RELATIONS

A. Expectation of the momentum operators
and kinetic momentum

Since the momentum operators of the quantum sys
correspond to the canonical momenta in the classical sys
there are numerous momentum operators and Hamilton
for a quantum treatment of the system. We would like to fi
their quantum averages, i.e., expectation values. To do
we take two different Hamiltonians and their correspond
operators,q̂,p̂ and Q̂,P̂. We define the kinetic momentum
operator, which corresponds to the classical kinetic mom
tum as

p̂k[q65A~ t ! p̂1B~ t !q̂1E~ t !. ~4.1!

From this definition, we can find the commutation relati
betweenq andpk as

@ q̂,p̂k#5 i\A~ t !, ~4.2!
m
m,
ns
d
is,
g

n-

which is quite different from the commutation relation of th
operators corresponding to the canonical coordinate and
mentum.

To calculate the expectation value and uncertainty, i
convenient to representp̂k ,q̂,p̂ in the form of lowering and
raising operators for the first Hamiltonian system as

p̂k5q65S A\

2u̇
D 1/2H F ḣ

h
2 i u̇G â1F ḣ

h
1 i u̇G â†J

1Ap01Bq01E, ~4.3!

q̂5S \Ȧ

2u̇
D 1/2~ â1â†!1q0 , ~4.4!

p̂52
i

A
S \A

2u̇
D 1/2H u̇2 i S B2

ḣ

h
D J â1

i

A
S \Ȧ

2u̇
D 1/2

3H u1 i S B2
ḣ

h
D J â†1p0 , ~4.5!

and for the second Hamiltonian system as
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P̂k5Q6 5S A\

2u̇
D 1/2H F ḣ

h
2 i u̇G b̂1F ḣ

h
1 i u̇G b̂†J 1AP0

1~B1AG!Q01E, ~4.6!

Q̂5S \Ȧ

2u̇
D 1/2~ b̂1b̂†!1Q0 , ~4.7!

P̂52
i

A
S \Ȧ

2u̇
D 1/2H u̇1 i S AG1B2

ḣ

h
D J b̂1

i

A
S \Ȧ

2u̇
D 1/2

3H u̇2 i S AG1B2
ḣ

h
D J b̂†1P0 . ~4.8!

Let us define the quantum eigenstates of the two Ham
nians asun& and unb&. From the form of Eqs.~4.4!, ~4.5!,
~4.7!, and~4.8!, we can readily show that

^nu f ~q,p,t !un8&Þ^nbu f ~Q,P,t !unb8&, ~4.9!

and from Eqs.~4.3!, ~4.4!, ~4.6!, and~4.7! we show that

^nu f ~q,pk ,t !un8&5^nbu f ~Q,Pk ,t !unb8&. ~4.10!

Although there are numerous classical Hamiltonians
corresponding canonical momenta for the system, ther
only one classical solution. Thusf (q,pk ,t) is fixed regard-
less of the selection of the Hamiltonian, butf (q,p,t) is dif-
ferent depending on the Hamiltonian. Like the classical
sults, although there are numerous Schro¨dinger equations
and their solutions, the quantum average^ f (q̂,p̂k ,t)& is the
same for all states of each different Hamiltonian, b
^ f (q̂,p̂,t)& depends on the states of the selected Hamilton

B. Uncertainty relations

Generally, the uncertainty product of the two observab
is determined by commutation relations. The commutat
relations for the original (q̂,p̂) and unitary transformed co
ordinate and momentum (P̂,Q̂) are given as

@ q̂,p̂#5 i\, ~4.11!

@Q̂,P̂#5 i\. ~4.12!

Thus the uncertainty product of (q̂,p̂) and (Q̂,P̂) is greater
than\/2. In this section, we evaluate the exact uncertainty
( p̂,q̂) and (P̂,Q̂) using Eqs~4.4!, ~4.5!, ~4.7!, and~4.8! as

^nuDqDpun&5S n1
1

2
D \F11

1

u̇2
S B2

ḣ

h
D 2G 1/2, ~4.13!
-

d
is

-

t
n.

s
n

f

^n11uDpDqun&

5
\

2
~n11!H 11

1

u̇2
S B2

ḣ

h
D 2J 1/4

3H 11F S 2A
\u̇

D 1/2
2p0

An11
1
1

u̇
S B2

ḣ

h
D G 2J 1/4

3H S 2u̇

\A
D 1/2

2q0

An11
21J 1/2

, ~4.14!

^n12uDpDqun&5
\

2
A~n12!~n11!

3F11
1

u̇2
S B2

ḣ

h
D 2G 1/2, ~4.15!

^nbuDQDPunb&5S nb1 1

2
D \F11

1

u̇2
S AG1B2

ḣ

h
D 2G 1/2,

~4.16!

^nb11uDPDQunb&

5
\

2
~nb11!H 11

1

u̇2
~EG1B2ḣh!2J 1/4

3H 11F S 2A
\u̇ D 1/2 2P0

Anb11
1
1

uW
SAG1B2

ḣ

h D G 2J 1/4

3H S 2u̇

\A D 1/2 2Q0

Anb11
21J 1/2

, ~4.17!

^nb12uDPDQunb&

5
\

2
A~nb12!~nb11!F11

1

u̇2
S AG1B2

ḣ

h
D 2G 1/2,
~4.18!

whereun& are the number states for one Hamiltonian syste
and unb& are those for the other Hamiltonian system. T
uncertainty product ofq̂ and p̂ is different from that ofQ̂
and P̂ for any states. From Eq.~4.2!, we know that the un-
certainty of position and kinetic momentum does not sati
Heisenberg’s uncertainty principle for the case ofuA(t)u
,1. The uncertaintyq̂,p̂k ,Q̂,P̂k can be calculated by Eqs
~4.3!, ~4.4!, ~4.6!, and Eq.~4.7! as

^nuDqDpkun&5^nbuDQDPkunb&

5S n1
1

2
D \uAuF11S ḣ

u̇h
D 2G 1/2. ~4.19!

This is the same for all Hamiltonian systems.
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V. SUMMARY AND CONCLUSIONS

In this section, we summarize and discuss the results
tained in the previous sections. In Sec. II, we found that th
are numerous Hamiltonians which give one classical eq
tion of motion. They are related by a canonical transform
tion. Thus we have the same number of canonical mome
and invariant quantities. Although there are numerous ki
of canonical momenta for one equation of motion, there
only one coordinateq̂ and kinetic momentump̂k , and the
functions of those variables are the same for all those Ha
tonian systems.

In Sec. III, we treated the system quantum mechanica
where we defined the quantum Hamiltonian derived from
classical Hamiltonian by substituting the quantum opera
(q̂,p̂). The other quantum Hamiltonian, corresponding to
canonical transformed classical Hamiltonian, was found
unitarily transforming one quantum Hamiltonian. In th
case, the unitary operator has the classical generating f
tion in its exponent. From both Hamiltonians, we obtain
quantum quadratic invariant operators, the Schro¨dinger solu-
tion, and the propagator. The wave functions and propa
tors corresponding to the Hamiltonians have auxiliary con
tions as classical equations of motion.

In Sec. IV, we treated the expectation values, which
different for the function ofq̂ and p̂ and for that ofQ̂ and
P̂ for any system, but the expectation values ofq̂ and p̂k are
equal to those ofQ̂ and P̂ for any system. This reflects th
fact that the functions of coordinate and kinetic moment
,

.

al
, e
.

b-
re
a-
-
ta
s
s

il-

y,
e
r
e
y

c-

a-
i-

e

are unique for every classical Hamiltonian which gives o
equation of motion.

We conclude that displacing the classical canonical v
able by a quantum-mechanical operator, we can uniqu
obtain the quantum-mechanical Hamiltonian from any cl
sical Hamiltonian system. That is, there are numerous ki
of classical Hamiltonians for one classical equation of m
tion, and any Hamiltonian for them can be selected a
quantum Hamiltonian substituting canonical variables
quantum operators.

Section V dealt with quantum uncertainty. The quantu
uncertainty of the operatorsq̂ and p̂ corresponding to clas
sical canonical variables are not equal to the operatorsQ̂ and
P̂. However, these satisfy Heisenberg’s uncertainty pr
ciple. The uncertainty ofq̂ and kinetic momentump̂k is the
same for all quantum Hamiltonians which correspond
classical Hamiltonians giving one classical equation of m
tion. However, these can not satisfy Heisenberg’s uncerta
principle.

In this paper, we treated only quadratic Hamiltonian s
tems. While it is very difficult to deal with more genera
Hamiltonian systems, we expect in the future to ma
progress along these lines, which will be reported in a la
paper.
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