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We consider general time-dependent quadratic Hamiltonian systems which are connected by canonical
transformations and give the same classical equations of motion. In those systems, we demonstrate that
canonical transformations in classical mechanics correspond to unitary transformations in quantum mechanics.
The wave functions and the propagators are evaluated using the invariant operator method. However, the
values of some functions of the canonical varialjesnd p are not equal to the values of the same functions
of the other canonical variabl€¥ andP, but the values of the functions gfand the kinetic momentuip, are
equal to those of the oth&€p and P, in classical mechanics. We prove that these also hold in the quantum
treatment. The uncertainty relations of momentum and position are evaluated for the two Hamiltonians.
[S1050-294{@7)01206-1

PACS numbds): 03.65.Ge

I. INTRODUCTION tonian and how are the rest interpreted quantum mechani-

The nonconservative behavior of physical phenomena a%ally? . : L
What are the relations for the canonical transformation in

contrasted with the conservative nature is an important sci- : ) . o
: S . classical mechanics and the unitary transformation in quan-
ence with a fascinating and apparently enduring proljlemn ; . :
. ) . ; .. tum mechanics? In this paper we choose a general time-
In particular, the time evolution of dynamical systems with . o ; )
ST L2 dependent quadratic Hamiltonian which gives the same
an explicitly time-dependent Hamiltonian has attracted con- . . : .
. : : equations of motion as the linear nonhomogeneous time-
siderable attentiorj2—6]. A general time-dependent qua- . X . L2
. . ; dependent differential equation. The Hamiltonian systems
dratic Hamiltonian system has often been considered because . ; .

. : T . ; which we shall develop are applicable to many physical sys-
of its various applications in quantum optigg]. The most ; X ;
famous examples are the degenerate parametric amp@tier tems such as a damped harmonic oscillator and a time-

: . e ndent harmoni ill -15. Th r f thi
and Pauli trap[9]. The general form of this Hamiltonian, dependent harmonic oscillatft3—19. The purpose of this

hich d ib lassical f q i ith ' paper is to address these issues by treating those Hamilto-
which describes a classical forced oscillator with a time-pang |y gec, II, we consider time-dependent quadratic

dependent frequency and velocity-dependent damping, h3§amiltonian systems which are related by canonical transfor-
been shown by Havgd0], and this kind of system has also magions and give the same coordinates but different canoni-
been considered by othels1,12. cal momenta. Though the canonically transformed Hamil-
A quantum-mechanical treatment of a time-dependent Ofpnian is represented by one Hamiltonian, it represents
nonconservative system must be treated carefully. First ohumerous Hamiltonians because it contains an arbitrary
all, classically there are numerous canonical momenta whicime-dependent function. Thus we treat numerous Hamilto-
correspond to one coordinate, but there is only one kinetiqians for one equation of motion. We also find the classical
momentum as a simple product of mass and velocity, iquadratic invariant quantities for each Hamiltonian.
which case the question arises as to which corresponds to the In Sec. Ill, we show that the canonical transformation of
momentum operator in quantum mechanics and what is thine two classical Hamiltonians corresponds to a unitary
interpretation of rest momenta. Second, there are humerodsnsformation in quantum mechanics. The quantum invari-
classical Hamiltonians which give one solution, and in thisant operators which correspond to the classical invariant
case one asks, which one is the quantum-mechanical Hamifjuantities are evaluated in this section for those Hamiltonian
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systems. From these, the Sdliimger solutions are found From Eq.(2.9 we know that the Wronskian determinant of
exactly with the auxiliary conditions as classical solutions.two terms of the homogeneous solutions of Ej6) is not
The propagator is also calculated from these wave functiongero,

In Sec IV, we treat the quantum expectation values of func-

tion of the coordinate and the unitary transformed momen-

W=2i 726="2iAQ #0. (2.10

tum operator, and we compare the expectation values of
these functions and find their relations. We also evaluate th&his provides proof that Eq2.6) is a general solution of Eq.
uncertainty relation of the coordinate and canonical momen¢2.2).

tum operators for two given Hamiltonians. In Sec. V, we

give a summary and conclusion.

Il. CLASSICAL TREATMENT OF THE SYSTEM

We would like to find a classical invariant quantity
which depends on independent variables: canonical coordi-
nate, momentum, and time. Since functionsloére also
invariant, the invariant quantities are numerous. We are in-
terested in the quadratic invariants form of canonical coordi-

dependent quadratic system given as

H(p,q,t)=3{A(t)p?+2B(t)gp+C(t)g?} + D(t)q+E(t)p
+F(1), (2.1

whereq andp are the canonical coordinate and momentum,

respectively, and\(t) #0 andB(t), C(t), D(t), E(t), and
F(t) are real and piecewise continuously differentiatokéh

readily find the invariant quantity d4|

QZ

1 B '
P (q—qo>2+{<z 7= g)(q—qo)

I(plqat): E

2
+n(p—po)} } (2.1

respect tot) functions. From Hamilton's equations of mo- whereq, andp, are the time-dependent form of the classical
tion, the Hamiltonian Eq(2.1) gives the nonhomogeneous canonical coordinate and momentum. Since @gl1) is an

time-dependent differential equation as

q+(1)g+&g=x(1), (2.2
where(, & andy are given by
AWM
=T A0 (2.3
AB() -
&)= A(t)C(t)+W—B(t) -B(t);, (2.9
: A(t)
X(t)E—A(t)D(t)+E(t)—m E(t)+B(t)E(t). (2.5

ellipse inq andp space if the coefficients are fixed, we know
that the system is bound.

We are also interested in the other Hamiltonian which
gives the same classical solution Eg.2). We try a canoni-
cal transformation from the variableg,p) to new canonical
variables P,Q)

Q=aq, (212

P=p-G(t)a, (213
whereG(t) is an arbitrary real differentiable function. Thus
there are numerous canonical momenta of the form of Eq.
(2.13. To find the Hamiltonian of the variable€(P), we
introduce the time-dependent generating function

There are bound and unbound systems in the solution of Eq.
(2.2). However, we do not know whether or not our system
is bound unless the time-dependent coefficients of the o ] ) )
Hamiltonian are known. Here, we only choose the boundThe new Hamiltonian, which gives the same equation of mo-
systems in the Hamiltonian E€.1). Without loss of gener- tion, become$16]

ality, if the particular solution ig|,,, the general solution of
Eqg. (2.2 can be written as

q(t)=Cyn(t)expfi (1)} + Com(t)exp{ —i6(t)} + Qpa(-z 9

F(P,Q,)=—3G(1)Q% (2.14

99 IF(P.Q.1)

Ty pr . (219

H'(P,Q,t)=H(p,q,t)—p

Substituting Egs(2.1) and(2.14) into Eq. (2.195, we find

Substituting Eq(2.6) into Eq. (2.2), we obtain the two dif-

: : H'(Q,P,t)=3A(t)P?+ 3{A() G(1)*+ C(t) + 2B(1) G(t)
ferential equations

+G(1)}Q2+{A(1)G(t) +B(1)}QP
+[D(t)+E(1)G(1)]Q+E(t)P+F(1).
(2.19

SinceQ=q, Eq.(2.16 gives the same form of the solution
> of the Hamiltonian Eq(2.1). Thus we know that only one
o classical solution can be found from numerous different
()= ——=const. (2.9 o
A Hamiltonians.

70+270+Eno=0, (2.7)

7= 6%+ {9+ En=0. 2.9

From Eq.(2.7), we can find the first integral as
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With the same method, we can also easily find the qua- [a,aT]=1. (3.7
dratic invariant quantity of the new Hamiltonian E®.16

as In Sec. I, we showed that classically there are numerous

B . Hamiltonians which give only one classical equation but nu-
— 9+ Gy— z)(Q_Qo) merous canonical momenta. To find them, we introduce the
A A unitary operator whose characters are equal to the canonical

11Q
I"(P,Q,t)= [_Z'(Q Qo)*+

2 transformation in classical mechanics,
+1;(P—PO)] . (2.1
. i
A — o N2
Since Q=q, the Hamiltonian of Eq.(2.16 represents a Uip.a.t) exp{ 2h G(Ha ] 3.8
bound system, which can be deduced from &q17).

. neaa [ .

lll. SCHRO DINGER SOLUTIONS AND PROPAGATORS UT(p,q,t):eXP[ﬁ G(t)qz] : (3.9

A. Schrodinger solutions

We define the quantum Hamiltonian of the system by rewhere G(t) is the same as in the generating function Eq.
placing the classical canonical coordinatpsnd p by the  (2.14). Using Egs.(3.8) and(3.9), the new operator® and

operatorsy andp as P are defined from the operatogsand p as
H(B,d,H)=3[AM)P?+B(1)(pG+GP) + C(DG]+D(1)§ O=0tg0=4, (3.10
E(t)p+F(t). (3.2
P=UpUT=p+G(1)q, (3.12

The Schrdinger equation of the system can be written

L where Egs(3.10 and(3.11) correspond to the classical ca-

i —==H(p.q.0) ¢. (3.2 nonical transformation Eq$2.12 and(2.13. These kinds of
unitary operators acting on the Hilbert sp@&dransform the

Since this equation has the arbitrary coefficients in theSchralinger operator

Hamiltonian Eq.(3.1), it cannot be solved directly. To solve

the Schrdinger equation with auxiliary conditions, we can A~ o~ 0

readily find the quantum invariant operatbrwhich has a Sp=H-1I at 312

quadratic form with operatorg andq as

2 of the first Hamiltonian system into the Schinger operator

. 1 . , |(B 7\ .
I(p,q,t)=§ ?(q—%) a7 % (9—0o)
2’ S,=H'(Q,P,t)—i i (3.13

+ 7(P—Po) (3.3

namely,
Here we show that this result has the same form as the clas- y

sical invariant quantity whose canonical variables are dis- na o~

placed by the quantum operators. The invariant quantity Eq. S,=U'sU (3.19
(3.3 can be replaced by creation and annihilation operators
a anda' as through Eqs(3.11) and(3.12). We obtain the new quantum
. L Hamiltonian as
I=rQ(a"a+3), (3.4
where H'(Q,P,)=2A()P?+ 2{A(1)G(t)?+ C(t) + 2B(1) G(1)
A VUL [ +G(D}Q%+ H{AMG(D) +B(D)}(PQ+QP)
a:<%) Z[K 6+i\B- _)](q Qo) +i(P— po)} D) +EMGH]Q+EM)P+E(1).
35 (3.15
and

This result is the same form as the classical Hamiltonian, Eq.

At ANYT1 (. 7 (2.16, whose canonical variables are displaced by quantum
a=\o |alf! B~ (@—90)—i(P—Po) |- operators. Here we know that there are numerous quantum
3.6 Hamiltonians and Schdinger equations for one system.

We can obtain the new quantum invariant operdtor
If [,p]=i%, then which is the quadratic form of andP, as



— p+G(t)

E

(3.16

A A oa 1 -
I,(P,Q,t): E [7 (Q_QO)2+

2
X(Q—=Qo)+ U(P_Po)] :
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A F 1 ([
dat % 2aA || %o

X

n .
> do+ 6o

(3.26

. :
- — 6 —
Qo p do %)

This Eq.(3.16 is also simplified by new creation and anni- ysing the same method as above, we obtain the wave func-

hilation operator ,b") as

1"=1Q(b+Db+1), (3.17)
where
R A 1/2] 1 (. .
= %) {K 0+i AG+B——)}(Q QO)
+i(|5—PO)} (3.18
"T A 1/2 1 .
b:(%) [K[” AG+B——)](Q Qo)
—i(P=Py)|. (3.19

The spectra and eigenfunctions of invariant operaEOrs

andl are found as

1U(9,)=AUp(q,1), (3.20
where
A=AQ(n+1), n=01,2..., (3.21)
1/4 n : 2
(=1) 6 q
Un(a,t)= m) We —mqg—6?+eq
X Ho(V8,(a—0p)), (3.22
- i .
52% o0+ B—;)]=5r+|5i, (3.23

Using the eigenstates of the invariant operatorB®2), the
solution of the Schidinger equation is obtained as

1 0 4 0 €

el fent]

X Ho(\/8,(q—qo)),

_+1
II”IZ

(3.29

where

tion of the Schrdinger equation, which comes from the new
Hamiltonian Eq.(3.15, as

1 0 1/4 0 62
b —
lp”(Q’t)_‘/_n!zn(ﬁATr) eXp{ 2iA 25, 1o

( 1 5b( iPo|?
=i n+§ exp[—7 Q_Qo_éb_h) ]

XH(v/8,(Q—Qo)), (3.27)

0

where

- .
5b:m‘9+i GA+B—%>]=5r+i5iba (3.28

- Po
Eb=6bQ0+| 7, (329)

dA\, F 1 ([ n .

WZ‘%‘M[(Q‘ﬁ”Qo)
X(Q—%Qo—bQo)—Ez]- (330

Having found the Schidinger solutions of a different
type for the Schrdinger equations for one system, we raise a
question: What is the meaning of the numerous kinds of
quantum states for one system? We will discuss this in Sec.
V.

B. Propagators

The propagator is defined for the bound system as

K(q,t;q',t'>=n§O bn(a,t) % (g’ ,t).

(3.3
With the help of Mehler's formula,
Zn
E Ha(X)HA(Y) —
, 2XYZ-X?=Y?
=\1—27° ex T—’_X +Y<q,
(3.32

and Eq.(3.25, the propagator is given by
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1/2

expli(A—A")}

'01/29, 12

2imh Sln( 9— 01)771/27711/2
xex;{i((B—z

n
Xexp[ 57 A (A=)

WAL
Xexp{—g(m> (d—do)(q" —qg)/sin(6—6") ¢,

K(g,t;q',t")=

93+ Podo— (B ——)qo péaé]—pé—péz}

2
(@-do)~
pO d—do 2% 5]

6 cot( 6— 6’ —B+
it ) 7l

12
, 7' P
2 6 cot(6—6')-B'+ — Py + po(q — Qo) Zﬁé‘*)

(3.33

where the prime means the quantities at tirsa’. With the same method and Ed8.27) and(3.32), the propagator for the
new Hamiltonian becomes

'01/2'0, 1/2

2imh sin(0— 0') pt?y' 2

xex;{i

i1 2(- , U
Xex % ﬁ(Q_QO) HCOKG_G)—B_AG-F;

1/2 2 12
rogr 2 12 PO P
K(Q,t;Q',t")= exp —P5—P§ T 2he, 2ﬁ5* exp{Ap— AL}

B'+A'G'— Z—) 0~ P(’)Q(’)H

B+AG— 7
7

Q5+ PoQo—

—Po(Q—Qo)”

i 1 ’ 2| ’ ’ ret ;,’,
X ex % W(Q —Qp)“| # cot(6—0')—B —AG+7

. 1/2
xexp[——Po@' Q@—'—(m) <Q—Qo>(Q'—Q5>/sin<e—0'>}. (3.34

which is quite different from the commutation relation of the

operators corresponding to the canonical coordinate and mo-
We know that propagators for different types of Hamilto- mentum.

nians for one system do not have the same form. To calculate the expectation value and uncertainty, it is
convenient to represem, ,d,p in the form of lowering and
IV. QUANTUM AVERAGE raising operators for the first Hamiltonian system as

AND UNCERTAINTY RELATIONS
Aﬁ
20

A. Expectation of the momentum operators

n 5 77
and kinetic momentum Pk=0g=

——|0
n

Y
7

a+

Since the momentum operators of the quantum system
correspond to the canonical momenta in the classical system, +Apy+Bao+E, 4.9
there are numerous momentum operators and Hamiltonians

for a quantum treatment of the system. We would like to find N
their quantum averages, i.e., expectation values. To do this, d=|—| (a+ah+q, (4.4)
we take two different Hamiltonians and their corresponding 20
operatorsg,p and Q,P. We define the kinetic momentum
operator, which corresponds to the classical kinetic momen- WPINEL . 0\ 172
A I A ) n\|. i [RA
tum as p=——|— o—ilB——=|;a+—|—
- R R A\ 26 i A\ 26
P=g=A(t)p+B(t)q+E(t). 4.1
. 714
From this definition, we can find the commutation relation Xy 0+i| B— ; ]a*+ Po. (4.5

betweenq andp, as

[0,pc]=iRA(L), (4.2  and for the second Hamiltonian system as
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1/2 . .
~ . | AR a A n+1/ApAqg|n
P=0=|=| {|Z-i6|o+|Z+ip|b"}+AP, (n+1lapagin)
20 7 Vi % 1 7] 2\ 1/4
=—(n+1){ 1+ — | B——
+(B+AG)Qu+E, (4.9 ) 6, 7
1/2 . 2\ 1/4
Py (b+b")+Qo, (4.7 56 n+1 0 N
[ 29 1/2 200 ]1/2 w1a
. 112 : . S\ 12 Xl — -1; , 4.1
- i . ~ i [RA N
P=—— 22| {o+i|AG+B— 2| b+ — | —= hA n+1
A 7 A\ 26
- U Apaginy="2
><| 6—i| AG+B— | [bt+Py. 4.8 (n+2|ApAg[n)= = V(n+2)(n+1)
n
1 7] 1/2
Let us define the quantum eigenstates of the two Hamilto- x|t 9, B~ ;) , (419
nians asn) and|n,). From the form of Eqs(4.4), (4.5,
(4.7), and(4.8), we can readily show that 1 1 27112
<nb|AQAP|nb>: nb+ E)h 1+E AG+B_2) y
’ ’ n
(n|f(q,p,t)|n"y#{ny|f(Q,P,t)|ny), 4.9 (4.16
and from Eqs(4.3), (4.4), (4.6), and(4.7) we show that (n,+1|APAQ|ny)
: / h 1 A
(n|f(q,pc,IN")=(np|f(Q,P,,D[ng).  (4.10 =5 (ny+ 1)‘ 1+ (EG+B- 7m)?
Although there are numerous classical Hamiltonians and 2A\Y2 2P, 1 s 17 v
corresponding canonical momenta for the system, there is  X{1+||-— ——+=|AG+B——
only one classical solution. Thugq,py,t) is fixed regard- ho e+l 6 g
less of the selection of the Hamiltonian, g, p,t) is dif- 29 \12 2Q 12
ferent depending on the Hamiltonian. Like the classical re- X4 | — ) 0 —1] , (4.17
sults, although there are numerous Scimger equations hA Vnp+1
and their solutions, the quantum avergdéq,py,t)) is the
same for all states of each different Hamiltonian, but  (n +2|APAQ|n,)
(f(q,p,t)) depends on the states of the selected Hamiltonian. 12
f 1 '
=2 Jnp+2)(np+1)| 1+ = | AG+B— 2) ,
B. Uncertainty relations 2 0 Ui

Generally, the uncertainty product of the two observables (4.18
is determined by commutation relations. The commutation
relations for the original ,p) and unitary transformed co- where|n) are the number states for one Hamiltonian system,

ordinate and momentunP(Q) are given as and|n,) are those for the other Hamiltonian system. The
. uncertainty product off and p is different from that ofQ
[a.p]=it, (41D andP for any states. From Eq4.2), we know that the un-

certainty of position and kinetic momentum does not satisfy
[Q,ﬁ’]=ih. (4.12 Heisenberg’s un(.:ertAalptyAprAmmpIe for the case |8{t)|
<1. The uncertaintyg,py,Q,Py can be calculated by Egs.
(4.3, (4.4, (4.6), and Eq.(4.7) as
Thus the uncertainty product ofj(p) and @Q,P) is greater
than#/2. In this section, we evaluate the exact uncertainty of (n|AgApy|ny={npy| AQAP|ny)

(p,d) and (P,Q) using Eqs(4.4), (4.5), (4.7), and(4.9) as

-\ 2711/2
B—EH . (413
7

1
= n+£ AlA|| 1+

. 21172
l) ] . (419
on

(n|AgAp|n)= - .
This is the same for all Hamiltonian systems.

h

1 1
n+—|al 1+ —
2 62
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V. SUMMARY AND CONCLUSIONS are unique for every classical Hamiltonian which gives one
. . . . equation of motion.

.In th_|s section, we summarize and discuss the results ob- We conclude that displacing the classical canonical vari-
tained in the previous sections. Ip Seq. I, we found_that thergpie by a quantum-mechanical operator, we can uniquely
are numerous Hamiltonians which give one classical equaspain the quantum-mechanical Hamiltonian from any clas-
tion of motion. They are related by a canonical transformasijca| Hamiltonian system. That is, there are numerous kinds
tion. Thus we have the same number of canonical momentgs classical Hamiltonians for one classical equation of mo-
and invariant quantities. Although there are numerous kindgion, and any Hamiltonian for them can be selected as a
of canonical momenta for one equation of motion, there isjuantum Hamiltonian substituting canonical variables by
only one coordinatg and kinetic momentunp,, and the quantum operators.
functions of those variables are the same for all those Hamil- Section V dealt with quantum uncertainty. The quantum
tonian systems. uncertainty of the operatoig andp corresponding to clas-

In Sec. lll, we treated the system quantum mechanicallysical canonical variables are not equal to the opera@oasd
where we defined the quantum Hamiltonian derived from thqs However, these Satisfy Heisenberg’s uncertainty prin-
c[agsical Hamiltonian by substituting the quantum operatogiple. The uncertainty ofj and kinetic momentunp, is the
(9,p). The other quantum Hamiltonian, corresponding to thesame for all quantum Hamiltonians which correspond to
canonical transformed classical Hamiltonian, was found bytlassical Hamiltonians giving one classical equation of mo-
unitarily transforming one quantum Hamiltonian. In this tion. However, these can not satisfy Heisenberg’s uncertainty
case, the unitary operator has the classical generating funprinciple.
tion in its exponent. From both Hamiltonians, we obtained In this paper, we treated only quadratic Hamiltonian sys-
quantum quadratic invariant operators, the Sdimger solu-  tems. While it is very difficult to deal with more general
tion, and the propagator. The wave functions and propagd-amiltonian systems, we expect in the future to make
tors corresponding to the Hamiltonians have auxiliary condiprogress along these lines, which will be reported in a later

tions as classical equations of motion. paper.
In Sec. IV, we treated the expectation values, which are
different for the function ofj andp and for that ofQ and ACKNOWLEDGMENTS
P for any system, but the expectation valuegjaindp, are This work was supported in part by a grant to Korea Uni-
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