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Harmonic generation by scattering circularly polarized light of arbitrary intensity
from free electrons of arbitrary initial velocity
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~Received 28 October 1996!

We derive a general analytic expression for the harmonic power generated per unit solid angle as a result of
scattering plane-wave, circularly polarized light of arbitrary intensity from free electrons moving initially with
arbitrary velocity. The relativistic derivation is carried out fully in the laboratory frame.@S1050-
2947~97!04304-7#

PACS number~s!: 42.65.Ky, 52.40.Nk, 42.50.Vk, 52.75.Di
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I. INTRODUCTION

The problem of classical harmonic generation as a re
of the interaction of a plane-wave laser field with a fr
electron that is initially at rest at the origin lends itself to
simple solution when tackled in a frame of reference
which the electron ison average at rest. A complete discus-
sion of this restricted problem was given by Sarachik a
Schappert@1# in an important 1970 paper. Physical quantiti
of interest to a laboratory observer, such as the frequenc
the scattered radiation and the scattered power cross sec
are then obtained using the appropriate Lorentz transfor
tion. The parallel geometry, one in which the electron i
tially moves parallel to the~laser! radiation field direction of
propagation, is only a simple generalization of the situat
just described.

However, in most experiments, a beam of relativistic el
trons is made to cross a beam of super intense light at s
angleu0 relative to its direction of propagation. A Lorent
transformation between the frame in which the electron st
on average at rest, theR frame, and the laboratory, theL
frame, is in general very cumbersome in analytic form.

In a recent publication@2#, we derived analytic classica
expressions for the power cross section of radiation scatt
from relativistic electrons. The parallel geometry and the
ometry corresponding to an electron initially at rest we
studied directly in theL frame, while the perpendicular cas
had to be done in theR frame first.

In this paper, we present a general derivation for thenth
harmonic power cross section, generated by scattering pl
wave, circularly polarized, superintense, laser light from
relativistic electron moving initially at anarbitrary velocity,
directly in theL frame and without using the notion of a
R frame first. We show that our general result reproduces
older ones in the appropriate limits@1,2#.

II. PRELIMINARIES

The plane-wave, circularly polarized radiation field, fr
quency v0, and propagation vectork5(v0 /c) k̂, will be
modeled by the vector potential
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A~h!5
a

A2
~ î cosh1 ĵ sinh!, ~1!

wherea is a constant amplitude,h5v0t2k•r is the phase,
t is the time,r is the position vector of the electron, andc is
the speed of light. The initial velocity vector, scaled by t
speed of light, will be given by

b05b0~ î sinu01 k̂ cosu0!, ~2!

whereu0 is the angleb0 makes withk. We further let the
unit vector n̂5(n1 ,n2 ,n3)5(sinu cosf, sinu sinf, cosu)
point in the direction of observation of the scattered rad
tion, in a spherical polar coordinate system with origin at t
point of intersection of the laser and electron beams. In
far field approximation, the energy scattered per unit so
angledV and per unit frequencydv is given by@3#

d2E

dVdv
5

~ev!2

4p2c3U E2`

`

n̂3S n̂3
dr

dt
D expH ivF t2n̂•r ~ t !

c
G J dtU2

5
~ev!2

4p2c3
$~12n1

2!uKxu21~12n2
2!uKyu2

1~12n3
2!uKzu222@n1n2Re~KxKy* !

1n1n3Re~KxKz* !1n2n3Re~KyKz* !#%, ~3!

where Re stands for the real part of its argument, and

K5E
2`

` dr

dh
expH i v

v0
Fh1

v0

c
@z2n̂•r ~h!#G J dh. ~4!

For the electron trajectory, we use the expression we h
recently derived@2#,
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r ~h!5r01
c

v0
E

h0

h Fg0mcb01~e/c!A~h8!

g0mc~12 k̂•b0!
Gdh81 k̂S c

v0
D E

h0

h F 12 ~eA~h8!/g0mc2!21~eA~h8!/g0mc2!•b0

~12 k̂•b0!
2

Gdh8. ~5!
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Employingh as a parameter, we get from Eq.~5! the fol-
lowing parametric equations for the trajectory:

x~h!5
c

v0
~a1h1b1sinh!, ~6!

y~h!52
c

v0
b2cosh, ~7!

z~h!5
c

v0
~a3h1b3sinh!, ~8!

where

a15
b0sinu0

12b0cosu0
, ~9!

b15b25
~q/g0A2!

12b0cosu0
, ~10!

a35
b0cosu0

12b0cosu0
1

~q/2g0!
2

~12b0cosu0!
2 , ~11!

b35
~q/g0A2!b0sinu0

~12b0cosu0!
2 , ~12!

and where q5ea/mc2, m is the electron mass, an
g05(12b0

2)21/2. Note that, in writing down Eqs.~6!–~8!
from Eq.~5!, h0 andr0 have been dropped, the reason be
that they enter into Eq.~3! for the scattered power onl
through an unimportant phase factor.

III. HARMONIC GENERATION

We now present a systematic derivation of a general
pression for the scattered power per unit laboratory s
angle. Using Eqs.~6!–~8! in Eq. ~4!, we get

Kx5
2pc

V (
n52`

`

i n (
l 52`

`

~2 i ! l Jl 1n~X!Fa1Jl ~Y!

1
b1
2

@Jl 11~Y!1Jl 21~Y!#GdS v2n
v0

V D , ~13!

Ky5
2pc

V (
n52`

`

i n (
l 52`

`

~2 i ! l 11Jl 1n~X!Fb22 G
3@Jl 11~Y!2Jl 21~Y!#dS v2n

v0

V D , ~14!

Kz5
2pc

V (
n52`

`

i n (
l 52`

`

~2 i ! l Jl 1n~X!Fa3Jl ~Y!

1
b3
2

@Jl 11~Y!1Jl 21~Y!#GdS v2n
v0

V D , ~15!

where
g

x-
d

V512n1a12~n321!a3 , ~16!

and

X5n2b2
v

v0
, ~17!

Y5@n1b11~n321!b3#
v

v0
. ~18!

Thus, in view of the presence of thed function above, it
follows that the radiation is emitted only at thenth harmonic
frequency:

v5v~n!5
nv0

12n1a12~n321!a3
. ~19!

The algebra leading to Eqs.~13!–~15! involves the follow-
ing. First, the trigonometric functions indr /dt are expressed
in exponential form. Second, the generating function of
Bessel functions,

eissinj5 (
n52`

`

Jn~s!einj, ~20!

is then used in part of the integrand. Third, the integratio
overh are carried out givingd functions. Fourth, and finally,
the dummy summation indices are changed in such a wa
to allow for extraction of a commond function.

Equations~13!–~15! can be simplified further. To accom
plish this, we let

u5AX1 iY

X2 iY
5ei z, z5tan21

Y

X
, ~21!

and employ the Graf addition theorem@4#

(
l 52`

`

~2 i ! l Jl 1n~X!Jl ~Y!5unJn~AX21Y2!. ~22!

Equations~13!–~15! now take on the following simplified
form, involving only a single infinite sum overthe harmon-
ics:

Kx5
2pc

V (
n52`

`

i nH a1unJn~nQ!1 i
b1
2

@un21Jn21~nQ!

2un11Jn11~nQ!#J dS v2n
v0

V D , ~23!

Ky5
2pc

V (
n52`

`

i nFb22 G$un21Jn21~nQ!

1un11Jn11~nQ!%dS v2n
v0

V D , ~24!
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Kz5
2pc

V (
n52`

`

i nH a3unJn~nQ!1 i
b3
2

@un21Jn21~nQ!

2un11Jn11~nQ!#J dS v2n
v0

V D . ~25!

In the above equations, we have used the relation

Q5
AX21Y2

n
5

A~n2b2!
21@n1b11~n321!b3#

2

12n1a12~n321!a3
,

~26!

which holds under the restriction of thed functions, with
v given by Eq.~19!. Next, we transform the energy expre
sion, Eq.~3!, into one involving the scattered power, whic
is in turn defined by

P5 limT→`

E

T
, ~27!

whereT is a measure of time. To accomplish this, an integ
representation for one of thed functions resulting from sub
stitution of Eqs.~23!-~25! in Eq. ~3! is used, whereby

d~v2v8!5 lim
T→`

E
2T/2

T/2

ei ~v2v8!t
dt

2p

5
T

2p
only for v5v8. ~28!

Making use of the remainingd function, we then integrate
the expression obtained from Eq.~3!, after the operations
implied by Eqs.~27! and~28! have been carried out, over a
p
th
ia

er

re
l

frequencies in order to get the power scattered per unit la
ratory solid angle. The result of doing so, and after so
simplification and hindsight, is

dP

dV
5

~ev0!
2

2pc (
n51

`
n2

V4 $~12n1
2!uF1

nu21~12n2
2!uF2

nu2

1~12n3
2!uF3

nu222@n1n2Re~F1
nF2

n* !

1n1n3Re~F1
nF3

n* !1n2n3Re~F2
nF3

n* !#%, ~29!

where

F1
n5S a11 b1

Q
sinz D Jn~nQ!1 i ~b1cosz!J8n~nQ!, ~30!

F2
n5S b2Q

cosz D Jn~nQ!2 i ~b2sinz!J8n~nQ!, ~31!

F3
n5S a31 b3

Q
sinz D Jn~nQ!1 i ~b3cosz!J8n~nQ!, ~32!

whereJ8 is the derivative of the Bessel functionJ with re-
spect to its argument. In arriving at Eqs.~30!–~32!, the well-
known recurrence relations of the Bessel functions@5# have
been used. Equation~29!, together with Eqs.~30!–~32!,
gives the total average power scattered per unit solid an
The termtotal here meanssummed over all the harmonic
from n51 to n5`. The terms in the sum corresponding
negative~and zero! values of the indexn have been dropped
since frequencies can only be positive. Contribution to
total power of the harmonic of ordern may be read off of
Eq. ~29! simply by dropping the summation sign. General
this contribution may now be cast in the following form:
dP~n!

dV
5

~ev0!
2

2pc

n2

@12a1sinu cosf12a3sin
2~u/2!#4 H Jn2~nQ!F ~12sin2u cos2f!S a11b1

Q
sinz D 21~12sin2u sin2f!

3S b2Q
cosz D 21sin2uS a31 b3

Q
sinz D 222 sin2u sinf cosfS a11 b1

Q
sinz D S b2Q

cosz D22sinu cosu cosfS a11 b1
Q
sinz D

3S a31 b3
Q
sinz D22sinu cosu sinfS b2Q

cosz D S a31 b3
Q
sinz D G1J8n

2~nQ!@~12sin2u cos2f!~b1cosz!21~1

2sin2u sin2f!~b2sinz!21sin2u~b3cosz!212b1b2sin
2u sinf cosf sinzcosz22b1b3sinu cosu cosf cos2z

12b2b3sinu cosu sinf coszsinz#J . ~33!
in-
Equation~33! is the centerpiece of the present paper. It a
plies regardless of what initial conditions are imposed on
magnitude and direction of the electron velocity. Two spec
cases will be taken up shortly, and Eq.~33! will be used to
obtain simplified expressions for the average power scatt
into thenth harmonic per unit solid angle in each case.

Note at this point that an expression for the total scatte
power per unit solid angle may be obtained from Eq.~33!
with the help of@1#
-
e
l

ed

d

(
n51

`

n2Jn
2~nQ!5

Q2~41Q2!

16~12Q2!7/2
, ~34!

(
n51

`

n2J8n
2~nQ!5

~413Q2!

16~12Q2!5/2
. ~35!

Moreover, dividing the scattered power by the incident
tensity I 05(ev0q)

2/8pcr0
2, where r 0 is the classical elec-
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tron radius, gives an expression for the differential scatter
cross section,

1

r 0
2

ds

dV
5

8pc

~ev0q!2
dP

dV
. ~36!

IV. SPECIAL CASES

The special cases we consider now, namely, one in wh
the electron is initially at rest and the parallel geometry, i
one in which the initial velocity vector is along the laser fie
direction of propagation, are related via a simple Lore
boost along thez axis, direction of the laser propagatio
vector. For these situations, Eqs.~9!–~12! yield

a15b350, b15b2[b, a3[a,z5
p

2
2f,

V5112a sin2~u/2!, Q5
b sinu

112a sin2~u/2!
. ~37!

In other words, we distinguish one case from the other by
values taken bya andb. Substituting the parameter value
given by Eq.~37! in Eq. ~33! gives

dP~n!

dV
5

~ev0b!2

4pc

2n2

@112a sin2~u/2!#4

3H @cosu22a sin2~u/2!#2

b2sin2u
Jn
2~nQ!1J8n

2~nQ!J .
~38!

The case of an electron initially at rest follows from Eq.~38!
by settinga5q2/4 andb5q/A2 and simplifying. The result
is

dP~n!

dV
5

~ev0q!2

8pc

2n2

@11 1
2q

2sin2~u/2!#4

3H 2@cosu2 1
2q

2sin2~u/2!#2

q2sin2u
Jn
2~nQ!1J8n

2~nQ!J .
~39!

This case has been considered by Sarachik and Schappe@1#
in the moving frame first and the result was then Lore
g

h
.,

z

e

z

transformed to the laboratory frame. It has also been wor
out by us@2# directly in the laboratory frame with identica
results.

For the parallel geometry, we have

a5
b0

12b0
1
q2

4 F11b0

12b0
G , b5

q

A2
A11b0

12b0
. ~40!

In this case, inserting the parameter values given by Eq.~40!
in Eq. ~33! leads to

dP~n!

dV
5

~ev0q!2

8pc F11b0

12b0
G 2n2

@112a sin2~u/2!#4

3H 2@cosu22a sin2~u/2!#2

q2sin2u F12b0

11b0
G

3Jn
2~nQ!1J8n

2~nQ!J , ~41!

This case has also been considered before@2# and Eq.~41!
agrees exactly with the earlier result. Note here as well t
Eq. ~41! reduces to Eq.~39! in the limit of b0→0, as ex-
pected.

V. CONCLUSION

We have obtained, classically and relativistically, an e
pression for the power generated into the harmonic of or
n due to the scattering of circularly polarized light of arb
trary intensity from an electron initially moving with an a
bitrary velocity. The derivation has been carried out in t
laboratory reference frame and the main result has b
shown to reproduce the earlier results corresponding to
electron initally at rest at the origin and the one in which t
electron initally moves parallel to the radiation field directio
of propagation. In both cases a simplified expression is
tained from Eq.~33!. Doing the same thing forthe perpen-
dicular geometry, the case in which the electron is initiall
moving perpendicular to the laser direction of propagati
does not result in a great simplification. For this and oth
desired initial geometries, the general analytic express
Eq. ~33!, ought to be used.
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