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Harmonic generation by scattering circularly polarized light of arbitrary intensity
from free electrons of arbitrary initial velocity
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We derive a general analytic expression for the harmonic power generated per unit solid angle as a result of
scattering plane-wave, circularly polarized light of arbitrary intensity from free electrons moving initially with
arbitrary velocity. The relativistic derivation is carried out fully in the laboratory frarf®1050-
294797)04304-7

PACS numbses): 42.65.Ky, 52.40.Nk, 42.50.Vk, 52.75.Di

I. INTRODUCTION a
A(n)=—=(i cosp+] siny), (1)
The problem of classical harmonic generation as a result V2
of the interaction of a plane-wave laser field with a free
electron that is initially at rest at the origin lends itself to a
simple solution when tackled in a frame of reference in
which the electron i®n average at restA complete discus-
sion of this restricted problem was given by Sarachik an
Schapperfl] in an important 1970 paper. Physical quantities
of interest to a laboratory observer, such as the frequency of
the scattered radiation and the scattered power cross section,
are then obtained using the appropriate Lorentz transforma-
tion. The parallel geometry, one in which the electron ini-

tially moves parallel to thélase) radiation field direction of |\ here 8, is the angleB, makes withk. We further let the

propagation, is only a simple generalization of the situation . o e L
just described. unit vector n=(ny,Nn,,n3)=(sind cosy, sind sing, coY)

However. in most experiments. a beam of relativistic eleC_point in the direction of observation of the scattered radia-
. ' P ' . . tion, in a spherical polar coordinate system with origin at the
trons is made to cross a beam of super intense light at some

angle 0, relative to its direction of propagation. A Lorentz point of intersection of the laser and electron beams. In the

transformation between the frame in which the electron stayfsar field approximation, the energy scattered per unit solid

on average at rest, the frame, and the laboratory, the angled() and per unit frequencgle is given by[3]
frame, is in general very cumbersome in analytic form.

wherea is a constant amplitude;= wyt—Kk-r is the phase,

t is the time,r is the position vector of the electron, aods
c}he speed of light. The initial velocity vector, scaled by the
speed of light, will be given by

Bo=Bo(i sinfy+k cosdy), 2)

2

In a recent publicatiofi2], we derived analytic classical %6 (ew)?| (= dr A-r(t)
expressions for the power cross section of radiation scattere(;td_:T f nx| nx— exp| i w{t— Hdt
from relativistic electrons. The parallel geometry and the ge-de“’ 4mC| J - dt c
ometry corresponding to an electron initially at rest were (ew)?
studied directly in the. frame, while the perpendicular case =———={(1-n?)|K,|2+ (1—n3)|K,|?
had to be done in thR frame first. 4ar*c’ v 2y

In this paper, we present a general derivation forritte 2 2 *

. ' . . +(1—n3)|K,“—2[nin,Re(K K
harmonic power cross section, generated by scattering plane- ( K4 [n:nzRe(K,Ky)
wave, circularly polarized, superintense, laser light from a +n3nzRe(K,K3) +nonsRe(K K311, (3

relativistic electron moving initially at aarbitrary velocity,
directly in theL frame and without using the notion of an
R frame first. We show that our general result reproduces thehere Re stands for the real part of its argument, and
older ones in the appropriate limit,2].
o dr L w
K= ——exp I —
o

Il. PRELIMINARIES —=d7

wqo ~
n+—lz=nr(p]idy. (4

The plane-wave, circularly polarized radiation field, fre-
quency wo, and propagation vectok=(wy/c)k, will be  For the electron trajectory, we use the expression we have

modeled by the vector potential recently derived 2],
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1
) E(eA(n’)/70m02)2+(eA(77’)/70m62)-Bo

C (7| yomcBot+(elc)A(7n') . ol C ,
r(p)=ro+— = dn'+k| — f = 5 dn'. (5
@oJ |  yome(1—k-By) Wo/ Jng (1-Kk- By)
|
Employing » as a parameter, we get from E@) the fol- V=1-n,a;—(nz—1)ag, (16)
lowing parametric equations for the trajectory:
c _ and
X(n)= w_o(aﬂl"' b;siny), (6) ©
x: n2b2_! (17)
c @o
y(7)=——Db,cosy, (7
wqo w
c Y:[n1b1+(n3_1)b3]w_o- (18
2(m)=—_—(agn+bssiny), (8
0 Thus, in view of the presence of th& function above, it
where follows that the radiation is emitted only at théh harmonic
Bosind, o frequency:
a :—l
1= 1- Bocosto =M= 1o . (19
1-na;—(n3—1)ag
b — b= (9! 70/2) (10
17727 — Bycosty The algebra leading to Eq§13)—(15) involves the follow-
2 ing. First, the trigonometric functions ifr/dt are expressed
as= BoCosfo (@/2y0) . (11)  in exponential form. Second, the generating function of the
1= Bocosty (1~ BoC0Ho) Bessel functions,
(a/ ¥o\/2) Bosindy . ” .
b3— (1—,8000560)2 y (12) eISSIn§:I'1227OG Jn(s)eln§, (20)

and wherg S]:/ea/mcz, m 1S th.e. electron _mass, and is then used in part of the integrand. Third, the integrations
Yo=(1—B3) Y2 Note that, in writing down Eqs(6)—(8) : o : .

fo 0 dreh ,b d 4. th bei over » are carried out giving functions. Fourth, and finally,
rom Eq.(5), 7o andr, have been dropped, the reason beingy, o 4ymmy summation indices are changed in such a way as
that they enter into Eq(3) for the scattered power only . oow for extraction of a common function.

through an unimportant phase factor. Equations(13)—(15) can be simplified further. To accom-
plish this, we let
I1l. HARMONIC GENERATION _
X+iY LY

We now present a systematic derivation of a general ex- u= X—iY:e , {=tan X (21)
pression for the scattered power per unit laboratory solid
angle. Using Eqs(6)—(8) in Eq. (4), we get and employ the Graf addition theord]

K=ZLC§ i“i (=) 3, 2, (Y) S 0 TR
TV LA A b 2 (D) 3,(03 AN =UN (XY, (22

b
+71[J/+1(Y)+J/,1(Y)] 6(w—nﬂ>, (13 Equations(13)—(15) now take on the following simplified

v form, involving only a single infinite sum ovehe harmon-
27TC ” ) ” Ny b2 iCS:
K=y 2 i" 2 (—l)”lamm{?} .
n=—ow [=— 2mcC . . bl —
Ky=—— > i™a;u"d,(n®)+i—[u"1J,_1(nO)
0)0 V n=—oo 2
X[3/41(Y)=3,-1(V)]6| @—=n <7 ), (14)
w
. . —u”“JnH(n@)]}(s(w—n—o), (23)
2mC - Ny \
K==y 21" 2 (=D)73,4(X) 3 AY) i}
" o 2mC P2l g
KyZTni_m | ? {U Jn_l(n®)

b3 wq
+ 13N+, 4] 5(“’_”7)' 19
+u”+1\]n+1(n®)}5(w—n@), (24)

where \Y
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[

2mc bs frequencies in order to get the power scattered per unit labo-
= i”[asu”Jn(n(i))Jri?[u”1Jn_1(n®) ratory solid angle. The result of doing so, and after some
n=-e simplification and hindsight, is
wqo dP (Ew0)2 ” n2
—U””Jn+1(n)]]5(w—nv). (25 10" 7mc ngl A (L= nDIFYP+ (1-nd)|F3?
In the above equations, we have used the relation +(l—n§)|Fg|2—2[nln2Re(F’l‘F2*)
2 2 2 _ 2
= YXHYT_ V(nzby)™+[niby+ (s~ 1)bs] +ninsRE(FIFT) + nnsRe(FIFT T, (29
n 1-na;—(n3—1)ag '
(26) where
whigh holds under the restriction of th& functions, with Fi={a,+ %siné)Jn(n(B)Jri(blcosg)J’n(nG)), (30)
w given by Eqg.(19). Next, we transform the energy expres-

sion, EQ.(3), into one involving the scattered power, which b,
is in turn defined by Fo= @cosz)Jn(n@))—i(bzsiné)J’n(n(@), (31
P=li = 2 b
—IMToe @7 Fi=| ag+ ésing)Jn(n(B)Jri(bgcosg)J’n(nG)), (32)

whereT is a measure of time. To accomplish this, an integral
representation for one of th&functions resulting from sub-

wherelJ’ is the derivative of the Bessel functiahwith re-

stitution of Egs.(23)-(25) in Eq. (3) is used, whereb spect to its argument. In arriving at EqSO)—(32),_the well-
i 4s(23-(29 In Eq. (3 is u W y known recurrence relations of the Bessel functifffilshave
Sw—w')= lim f 72 o 9t been used. Equatiofi29), together with Eqs.(30)—~(32),
Toowd =TI2 2w gives the total average power scattered per unit solid angle.
The termtotal here meansummed over all the harmonics
T from n=1 to n=o. The terms in the sum corresponding to
=— onlyfor w=w'. (28

negative(and zerd values of the index have been dropped,
since frequencies can only be positive. Contribution to the

2

Making use of the remaining function, we then integrate total power of the harmonic of order may be read off of
the expression obtained from E(B), after the operations Eq.(29) simply by dropping the summation sign. Generally,

implied by Eqs.(27) and(28) have been carried out, over all this contribution may now be cast in the following form:

dP(n) . (ew0)2 I’l2 2 X bl . 2 . )
ORI P [1—alsinacos¢+2a35in2(0/2)]4{J”(n®) (1—sirf0cos ¢) a1+§sm§) +(1—sirfdsirt )
b2 2 nz b3 . 2 nz . bl . bZ . bl .
X 60055 +sin6| az+ Esmg —2 sifésing cosp| a; + smg 6005{ — 2sind cos cosp| a;+ 6sm§

bg

®
— it sirt¢) (b,sing)?+ sirf (bgcos) >+ 2b, b,sir? § sing cosp sincos, — 2b,b3siné cos cosp cos ¢

X

b
a3+sin§ +J'2(n®)[(1—sit0 coLe)(b,cos)2+ (1

b
az+ sing) —2sind co sinqb( écosg

+ 2b,b3sind cos sing coisin{]] . (33
|
Equation(33) is the centerpiece of the present paper. It ap- * 02(4+0?)
plies regardless of what initial conditions are imposed on the 2 anﬁ(n(@): 161-09)7 (34
n=1 -

magnitude and direction of the electron velocity. Two special
cases will be taken up shortly, and E§3) will be used to

= ; - (4+302?)
obtain simplified expressions for the average power scattered > N2 2NO)=——— . (35)
into thenth harmonic per unit solid angle in each case. n=1 " 16(1- 0%

Note at this point that an expression for the total scattered
power per unit solid angle may be obtained from E2R) Moreover, dividing the scattered power by the incident in-
with the help of[1] tensity | o= (ewoq)?/8mcr3, wherer, is the classical elec-
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tron radius, gives an expression for the differential scatteringransformed to the laboratory frame. It has also been worked

Cross section, out by us[2] directly in the laboratory frame with identical
results.

1 do 87c dP @9 For the parallel geometry, we have

v Rrrr=uil s Ryl 36

2 2

rg dQ e dQ

0 (ewoq) A Bo +q_2 1+5o b:iw/% (40)

1-Bo 4[1-Bo) V2 V1-8¢

IV. SPECIAL CASES

The special cases we consider now, namely, one in whichn this case, inserting the parameter values given by(4).
the electron is initially at rest and the parallel geometry, i.e.in Eq. (33) leads to
one in which the initial velocity vector is along the laser field

(n) 2 2
direction of propagation, are related via a simple Lorentz dpi" _ (ewoq)?[ 1+ By 2.n
boost along thez axis, direction of the laser propagation dQ 8mc | 1= f,|[ 11 2asi?(612)]"
vector. For these situations, Eq9)—(12) yield oo 28 SB[ 1 i
i o7sirPd 1+ Bo
a-j_:ba:O, bl:b2Eb! aSEaﬂg: E_ ¢1
XJﬁ(ﬂ@)-FJ’ﬁ(n@)}, (41)

b sing
~ 1+2asir(612)° (37) This case has also been considered befgteand Eq.(41)
agrees exactly with the earlier result. Note here as well that
In other words, we distinguish one case from the other by th&d. (41) reduces to Eq(39) in the limit of 5,—0, as ex-
values taken bya andb. Substituting the parameter values pected.
given by Eq.(37) in Eq. (33) gives

V=1+2asir?(6/2), ©

V. CONCLUSION

dp” _ (ewgh)? 2n? We have obtained, classically and relativistically, an ex-
dQ 4mwc [1+2asir(6/2)]* pression for the power generated into the harmonic of order
n due to the scattering of circularly polarized light of arbi-

[cosd—2asir?(0/2)]?

- Jﬁ(n®)+J’ﬁ(n®) . trary intensity from an electron initially moving with an ar-

bitrary velocity. The derivation has been carried out in the
(39) laboratory reference frame gnd the main result has been

shown to reproduce the earlier results corresponding to an
electron initally at rest at the origin and the one in which the
electron initally moves parallel to the radiation field direction
of propagation. In both cases a simplified expression is ob-

The case of an electron initially at rest follows from E88)
by settinga=q?/4 andb=q/+2 and simplifying. The result

'S tained from Eq.(33). Doing the same thing fathe perpen-
dP™  (ewyq)? 2n2 dicular geometrd)(thtle casehin \Ilvhichdt_he glectr?n is initially
= - moving perpendicular to the laser direction of propagation,
da 8mC  [1+3q%si(0/2)]* does not result in a great simplification. For this and other

L o 2sir? ) desired initial geometries, the general analytic expression,
2[cosf—3q7sim(6/2)] Eq. (33), ought to be used.

site J32(n®)+J3'2(nO) .
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