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Effect of a finite number of particles in the Bose-Einstein condensation of a trapped gas
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We consider a finite number of noninteracting bosons trapped in an isotropic three-dimensional harmonic
oscillator. Using the grand canonical ensemble, we calculate the heat capacity of the system as a function of
temperature, for several values of the number of particles. We find that a new definition of critical temperature
is necessary for a finite number of trapped particles, and present a definition that is experimentally convenient
and in good agreement with a recent definition given by W. Ketterle and N. J. van Druten@Phys. Rev. A54,
656 ~1996!#. @S1050-2947~97!07305-8#

PACS number~s!: 03.75.Fi, 05.30.Jp, 64.60.2i, 32.80.Pj
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Bose-Einstein condensation is predicted to occur w
the thermal de Broglie wavelength of a sample of bos
becomes comparable to the average interparticle distance@1#.
Experiments on4He @2#, excitons in semiconductors@3#,
and, more recently, on trapped alkali-metal atoms@4–6# have
showed strong evidence for the occurrence of this pu
quantum phase transition. The Bose-Einstein condensat
trapped alkali-metal atoms have been achieved at temp
tures as low as 100 nK, and, unlike in the case of4He, in a
density regime~from 1012 to 1014 atoms/cm3) in which the
average interparticle distance is much larger than the ra
of the interatomic interactions. It is this weakly interactin
characteristic of magnetically trapped alkali-metal atoms t
has currently attracted immense attention. It is hoped tha
dynamics of the Bose-Einstein condensation will be be
understood by studying these weakly-interacting system
prospect that is hardily possible in the context of cond
sates, such as4He, whose dynamics is dominated by stro
interactions. Moreover, the number of particles in the grou
state of the traps ranged from a few thousand@4# to a few
million @6#. Some of the implications of a finite number o
particles in Bose-Einstein condensation have recently b
considered by Ketterle and van Druten@7#. They have stud-
ied an ensemble ofN noninteracting bosons trapped by
harmonic potential. Their main results are a measurable
rection to the transition temperature for low values ofN and
the prediction of occurrence of Bose-Einstein condensa
also in one- and two-dimensional systems, a possibility u
ally ruled out by conventional approaches@8#. In these ap-
proaches the spacing between energy levels is assumed
much smaller than the thermal energy scalekBT, and there-
fore the system is described by a continuum of energy st
plus the discrete ground state. In particular, Ketterle and
Druten @7# have found a transition temperature that is low
than in this continuum limit, implying the necessity of a ne
definition for the critical temperatureTc . A discussion about
the finite-N statistics is presented in Ref.@9#. All the calcu-
lations done in Ref.@7# are based on the grand canonic
ensemble@1#, as a limit of a large number of particles. In th
paper we follow the approach of Ketterle and van Druten@7#
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and complement their analysis by calculating the heat cap
ity of an ensemble of a finite numberN of noninteracting
bosons.

A discontinuous heat capacity is one of the main char
teristics of a phase transition. In the case of the Bo
Einstein condensation, the heat capacity for a fixed fin
number of particles,CN , has not yet been measured. Since
the near future we expectCN to be measured, we feel mot
vated to calculate it. We begin by considering a thre
dimensional isotropic harmonic external potential trapp
bosons of massm, which oscillate in the trap with a fre
quencyv. The energy eigenvaluesEn (n50,1,2, . . . ) are
given by

En5n\v. ~1!

Since the trapping potential is three dimensional, we m
take into account the degeneracygn of the energy levels,
which, given the isotropy of the trap, is easily found to b

gn5
~n11!~n12!

2
. ~2!

The Bose-Einstein distribution gives the average num
h(En) of particles in each of the energy eigenstates@1#:

h~En!5
1

eb~En2m!21
, ~3!

whereb[1/kBT, kB is Boltzmann’s constant,T is the abso-
lute temperature, andm[m(T) is the chemical potential. We
are assuming a fixed numberN of bosons, therefore we ca
calculatem by the constraint

N5 (
n50

1`

gnh~En!. ~4!

In the above summation, it is usual to separate out the p
sibly divergent ground-state contribution@1#. In the con-
tinuum approximation, Eq.~4! yields @1,7#
3954 © 1997 The American Physical Society



55 3955BRIEF REPORTS
FIG. 1. Heat capacity as a function of temperature for several values of the number of noninteracting bosons.
e

-
en

ci-
er
he
s-
N5
z

12z
1g3~z!S kBT\v D 3, ~5!

where the Bose functiong3(z) is defined by@1#

g3~z![(
j51

1`
zj

j 3
, ~6!

and the quantityz is the fugacity given by

z5ebm.

For fixed N, Eq. ~5! shows that the ground state will b
macroscopically populated ifT is lower than a reference
temperatureTc

0 defined as in Ref.@7#, namely,

Tc
0[S N

g3~1! D
1/3\v

kB
, ~7!

where, according to Eq.~6!, g3(1)'1.202057. In Fig. 1 we
have scaled the temperatures toTc

0 @9#. Once we have calcu
latedm(T), we can immediately determine the average
ergyE(N,T) of the system by

E~N,T!5 (
n50

1`

gnh~En!En. ~8!

The heat capacity at fixedN is straightforwardly calculated
by taking the partial derivative ofE(N,T) in Eq. ~8! with
respect toT:

CN~T![
]E~N,T!

]T
. ~9!
-

Becausem is a function ofT, in carrying out the differ-
entiation above, we obtain

CN~T!5b (
n50

1`
gnEne

b~En2m!

~eb~En2m!21!2
SEn2m

T
1

]m

]T D , ~10!

where use has been made of Eqs.~3! and ~8!. By implicitly
differentiating Eq.~4! with respect toT, using Eq.~3!, and
isolating]m/]T, we get

]m

]T
52

(
m50

1`

gm~Em2m!eb~Em2m!@h~Em!#2

T (
n50

1`

gne
b~En2m!@h~En!#

2
. ~11!

We have numerically calculatedCN(T) as a function ofT for
different values ofN by the following procedure. First, we
take a certain number of levels, say,Q. Then, we evaluate
the quantity

S~m,T![ (
n50

Q

gnh~En!2N. ~12!

For each fixed value ofT, we treatS as a function ofm
alone, and find its root. Thus,m(T) is obtained by imposing
S@m(T),T#50. To check for convergence, we increaseQ
and repeat the procedure to obtain a new value ofm(T); if
this new value differs from the previous one within a spe
fied small quantity, then the population of the levels high
thanQ is small enough not to contribute appreciably to t
sum in Eq.~4!, andm(T) is converged. We keep on increa
ingQ until convergence is reached. Oncem(T) is found, we
can use Eq.~11! to calculate]m/]T, and Eq.~10! to obtain
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CN(T). Figure 1 shows the results of our numerical calcu
tions for different values ofN. The first feature to notice in
Fig. 1 is that there is a discontinuity inCN in the thermody-
namic limit (N→1`). Usually one would define the critica
temperature at this discontinuity. However, there is no d
continuity for finite numbers of particles. AsN decreases
CN as a function of temperature gets smoother and smoo
One would be tempted to define a critical temperatureTc at
the maximum of the curve ofCN for finite N, that is,

S ]CN~T!

]T D
T5Tc

50. ~13!

Such a definition coincides with the temperature at wh
CN becomes quasidiscontinuous in the large-N limit. The
maxima of the curves in Fig. 1 are atTc /Tc

050.813, 0.898,
0.946, 0.974, and 0.984 forN5100, 1000, 104, 105, and
106, respectively. These maxima are the second featur
notice in Fig. 1: asN decreases,Tc is shifted to values lower
thanTc

0 , in agreement with the behavior of the critical tem
peratureTc

KvD , defined by Ketterle and van Druten@7#, ap-
proximately given by

Tc
KvD

Tc
0 '12

0.7275

N1/3 . ~14!

This lowering of the critical temperature for decreasing nu
ber of particles is due to the fact that a smaller system h
larger available effective volume@8#. Even the numerica
values of Eq.~14! are not too different from the definition in
Eq. ~13!: Tc

KvD/Tc
050.843, 0.927, 0.966, 0.984, and 0.993 f

N5100, 1000, 104, 105, and 106, respectively. Therefore ou
definition of the critical temperatureTc , Eq. ~13!, incorpo-
rates all the important features of Eq.~14!, and the conve-
nience of being easily obtained from eventual experime
B
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data showingCN as a function ofT. It should be mentioned
that, strictly speaking, a finite system does not underg
phase transition, but, as Ketterle and van Druten@7# remark,
the behavior of the finite system is very similar to the o
expected in the large-N limit, as we can also see in Fig. 1 fo
N.103. In conclusion we notice that the numerical proc
dure we describe here is straightforwardly generalized to
case of an anisotropic harmonic oscillator, that is, a harmo
potential whose frequencies of oscillations along thex, y,
andz axes are not the same, or to the case of one- or t
dimensional oscillators. Again we can use Eq.~13! to define
the critical temperature with results analogous to those
the isotropic three-dimensional case detailed here. It is
portant to point out that, from a purely experimental point
view, the signature of a phase transition is more natura
depicted as a discontinuity in the heat capacity curve, he
the convenience of adopting Eq.~13! as the new definition of
critical temperature. Variations in the heat capacity with t
number of particles is an important issue to be understoo
avoid confusion with variations due to interactions.

Notice in Fig. 1 that the heat capacity saturates
3NkB , as it should be for the ergodic dynamics of a thre
dimensional harmonic oscillator. At low temperature, t
quantum formulas display the usualfreezingof the degrees
of freedom, and at intermediate temperatures one gets
signature of the phase transition. Some recent results
many-dimensional Hamiltonian dynamics offer interesti
insights when contrasted to the quantum formulas: it
known for several models that lack of ergodicity at low e
ergies can produce transitions where the time to equiparti
becomes infinite and the dynamics restricted to the low
frequency vibration mode@10,11#.
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