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Effect of a finite number of particles in the Bose-Einstein condensation of a trapped gas
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We consider a finite number of noninteracting bosons trapped in an isotropic three-dimensional harmonic
oscillator. Using the grand canonical ensemble, we calculate the heat capacity of the system as a function of
temperature, for several values of the number of particles. We find that a new definition of critical temperature
is necessary for a finite number of trapped particles, and present a definition that is experimentally convenient
and in good agreement with a recent definition given by W. Ketterle and N. J. van )Rlgs. Rev. A54,

656 (1996]. [S1050-2947@7)07305-9

PACS numbsg(s): 03.75.Fi, 05.30.Jp, 64.60i, 32.80.Pj

Bose-Einstein condensation is predicted to occur whemnd complement their analysis by calculating the heat capac-
the thermal de Broglie wavelength of a sample of bosondty of an ensemble of a finite numbé&t of noninteracting
becomes comparable to the average interparticle disfdfice bosons.

Experiments on“*He [2], excitons in semiconductori3], A discontinuous heat capacity is one of the main charac-
and, more recently, on trapped alkali-metal atgrhs6] have ~ teristics of a phase transition. In the case of the Bose-
showed strong evidence for the occurrence of this purebEinstein condensation, the heat capacity for a fixed finite
quantum phase transition. The Bose-Einstein condensates @g¢mber of particlesCy , has not yet been measured. Since in
trapped alkali-metal atoms have been achieved at tempertl€ near future we expe€ly to be measured, we feel moti-
tures as low as 100 nK, and, unlike in the casé'de, ina vVated to calculate it. We begin by considering a three-
density regimefrom 102 to 10" atoms/cn?) in which the dimensional |sotrop|c_harmon|c ex-ternal potentllal trapping
average interparticle distance is much larger than the ran psons of massn, Wh'Ch_ oscillate in the trap with a fre-
of the interatomic interactions. It is this weakly interacting quency o. The energy eigenvalues, (n=0,12...) are
characteristic of magnetically trapped alkali-metal atoms thaf've" by
has currently attracted immense attention. It is hoped that the E —nk

. L . : n . 1)
dynamics of the Bose-Einstein condensation will be better

understood by studying these weakly-interacting systems, gjnce the trapping potential is three dimensional, we must
prospect that is hardily possible in the context of condenigke into account the degeneragy of the energy levels,

sates, such aSHe, whose dynamics is dominated by stronghich, given the isotropy of the trap, is easily found to be
interactions. Moreover, the number of particles in the ground

state of the traps ranged from a few thous@fito a few (n+1)(n+2)
million [6]. Some of the implications of a finite number of L S 2
particles in Bose-Einstein condensation have recently been

considered by Ketterle and van Drutefi. They have stud- The Bose-Einstein distribution gives the average number
ied an ensemble ol noninteracting bosons trapped by a ,(E ) of particles in each of the energy eigenstdtss
harmonic potential. Their main results are a measurable cor-

rection to the transition temperature for low values\oand

the prediction of occurrence of Bose-Einstein condensation 7(En)= pE w1 ©)

also in one- and two-dimensional systems, a possibility usu-
ally ruled out by conventional approachgd. In these ap-

proaches the spacing between energy levels is assumed to pe. temperature, and= u(T) is the chemical potential. We

much smaller than the thermal energy sdei&, and there- are assuming a fixed numbirof bosons, therefore we can

fore the system is described by a continuum of energy Statecsalculateﬂ by the constraint

plus the discrete ground state. In particular, Ketterle and van

hereB=1/kgT, kg is Boltzmann’s constanf is the abso-

Druten[7] have found a transition temperature that is lower +oo
than in this contlnu.u.m limit, implying the n_ecess[ty of a new N= 2 yon(E,). (4
definition for the critical temperaturg, . A discussion about n=0

the finiteN statistics is presented in Rg¢®]. All the calcu-

lations done in Ref[7] are based on the grand canonical In the above summation, it is usual to separate out the pos-
ensembld1], as a limit of a large number of particles. In this sibly divergent ground-state contributidi]. In the con-
paper we follow the approach of Ketterle and van Drytén  tinuum approximation, Eq4) yields[1,7]
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FIG. 1. Heat capacity as a function of temperature for several values of the number of noninteracting bosons.

R kgT)\?3
N= E'i‘gg(Z) % ) )
where the Bose functiogs(z) is defined by 1]
+ o Zj
0(2)= 2, 13- )

and the quantity is the fugacity given by

z=efx,

For fixed N, Eq. (5) shows that the ground state will be
macroscopically populated i is lower than a reference
temperaturer 2 defined as in Ref.7], namely,

1/3ﬁw
kg’

0_
o=

()

]
gs(1)

where, according to Ed6), g3(1)~1.202057. In Fig. 1 we
have scaled the temperaturesT&)[9]. Once we have calcu-

lated u(T), we can immediately determine the average en-

ergy E(N,T) of the system by

+ oo

E(N,T>=n§0 Yo1(En)Ep. (8)

The heat capacity at fixeN is straightforwardly calculated
by taking the partial derivative oE(N,T) in Eq. (8) with
respect torl:

JE(N,T)

Cy(T)= oT

9

Becauseu is a function ofT, in carrying out the differ-
entiation above, we obtain

te En—n) —
. ')’nEneB( o (En moodu
CN(T)_ﬁg‘o (ePEn-w_1)2\ T o7 10

where use has been made of E(.and(8). By implicitly
differentiating Eq.(4) with respect toT, using Eq.(3), and
isolating du/dT, we get

+

2 gm(Em_M)eﬁ(Emim[n(Em)Jz
o __m=0 11
aT A

+ e
T3y W n(E,)]?
n=0

We have numerically calculategi(T) as a function off for
different values ofN by the following procedure. First, we
take a certain number of levels, say, Then, we evaluate
the quantity

Q

sw,nzgo Ya(En) —N. (12)

For each fixed value of, we treatS as a function ofu
alone, and find its root. Thug(T) is obtained by imposing
S u(T),T]=0. To check for convergence, we incred@e
and repeat the procedure to obtain a new valugr); if
this new value differs from the previous one within a speci-
fied small quantity, then the population of the levels higher
thanQ is small enough not to contribute appreciably to the
sum in Eq.(4), andu(T) is converged. We keep on increas-
ing Q until convergence is reached. Ong€T) is found, we
can use Eq(11) to calculatedu/dT, and Eq.(10) to obtain
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Cn(T). Figure 1 shows the results of our numerical calcula-data showingCy as a function ofT. It should be mentioned
tions for different values oN. The first feature to notice in that, strictly speaking, a finite system does not undergo a
Fig. 1 is that there is a discontinuity @y in the thermody- phase transition, but, as Ketterle and van Drd@@remark,
namic limit (N— + ). Usually one would define the critical the behavior of the finite system is very similar to the one
temperature at this discontinuity. However, there is no disexpected in the larghklimit, as we can also see in Fig. 1 for
continuity for finite numbers of particles. AN decreases, N>10°. In conclusion we notice that the numerical proce-
Cy as a function of temperature gets smoother and smootheflure we describe here is straightforwardly generalized to the
One would be tempted to define a critical temperafiye@t  case of an anisotropic harmonic oscillator, that is, a harmonic
the maximum of the curve ot for finite N, that is, potential whose frequencies of oscillations along xhey,
andz axes are not the same, or to the case of one- or two-
(69CN(T)>
T=T

dimensional oscillators. Again we can use ELp) to define
oT the critical temperature with results analogous to those for
the isotropic three-dimensional case detailed here. It is im-
Such a definition coincides with the temperature at whichPOrtant to point out that, from a purely experimental point of
Cy becomes quasidiscontinuous in the laNydimit. The — VIEW, the S|gna_ture o.f a phase transition is ‘more naturally
maxima of the curves in Fig. 1 are Tﬁg/T2=0.813, 0.898, depicted as a discontinuity in the heat capacity curve, hence

0.946. 0.974. and 0.984 fdi=100. 1000. 16 1F. and the convenience of adopting E{.3) as the new definition of

10°, respectively. These maxima are the second feature t(c‘)ritical temperature. Variations in the heat capacity with the
! ' number of particles is an important issue to be understood to

notice in Fig. 1: adN decreasesl is shifted to values lower . . ; L . .
0 ) . o avoid confusion with variations due to interactions.
thanT¢, in agreement with the behavior of the critical tem- oo ;
Notice in Fig. 1 that the heat capacity saturates to

KvD -
peratureT;™, defined by Ketterle and van Drutéi], ap- 3Nkg, as it should be for the ergodic dynamics of a three-

proximately given by dimensional harmonic oscillator. At low temperature, the
TKvD 0.7275 quantum formulas display the usuatezingof the degrees
CO ~1— —15- (14) of freedom, and at intermediate temperatures one gets the
Te N signature of the phase transition. Some recent results of

. . . . many-dimensional Hamiltonian dynamics offer interestin
This lowering of the critical temperature for decreasing num- Y y g

ber of particles is due to the fact that I tem h insights when contrasted to the quantum formulas: it is
er ot particies Is due 1o the fact that a smalier system nas g, for several models that lack of ergodicity at low en-
larger available effective volumg8]. Even the numerical

. ..~ ~%" ergies can produce transitions where the time to equipartition
values of Eq(14) are not too different from the definition in b e : :
ecomes infinite and the dynamics restricted to the lowest
Eq.(13): TK"?/T9=0.843, 0.927, 0.966, 0.984, and 0.993 for y

N=100, 1000, 16, 1, and 16, respectively. Therefore our frequency vibration modgL0, 11

definition of the critical temperatur€;, Eq. (13), incorpo- R.N. and J.D. acknowledge financial support from CNPq.
rates all the important features of E@.4), and the conve- This work has received financial support from FAPESP. The
nience of being easily obtained from eventual experimentaauthors also thank Dr. Y. Levin for fruitful discussions.
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