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Density-matrix calculations provide the steady-state conditions for probe amplification or lasing between
atomic levels with an uninverted population, but additional insight into the underlying physics is given by a
probability amplitude approach. In this paper we derive the gain coefficient from the Feynman diagrams for a
probe-laser incident on a resonantly pump¥etype system using time-dependent perturbation theory in a
dressed basis. The connection is made to density-matrix calculations for this model, which have been used
recently to describe experiments in Rd. S. Zibrov et al, Laser Phys5, 553 (1995; Phys. Rev. Lett75,
1499(1995]. In the density-matrix calculation the overall gain is possible because the pump-induced coher-
ence of a strongly driven transition leads to probe amplification, despite the lack of inversion on the probe
transition. In our amplitude approach we associate a specific physical process with each of the scattering
channels for the probe and show how amplification without inversion can be achieved. The amplitude calcu-
lation reveals a distinction between stepwise and two-quantum processes. Interference is shown to result from
the two-quantum processes, constructive for the amplification channels and destructive for the absorption.
Terms appearing in the gain coefficient are traced to different sources in the amplitude and density-matrix
approaches. The physical origin of each term is discussed and compared for both approaches. Terms that arise
from coherences in the density-matrix approach are shown to correspond to noninterfering stepwise contribu-
tions in the amplitude approach. In deriving these results, we find that the Feynman rules that we construct for
forming the probability amplitude for an arbitrary scattering process of the electromagnetic field from the
coupled atom-strong pump system are consistent with Rayleigh-@inlgey perturbation theory in the quan-
tum dressed basis. In addition, the spontaneously emitted photons become entangled with the probe field,
correlating the emission spectrum with specific scattering charig650-294{@7)06405-9

PACS numbgs): 42.50.Gy, 42.50.Hz

I. INTRODUCTION and probe detunings from the atomic resonances, respec-
tively, and I is the natural linewidth of the transitioifFor

The recent interest in quantum coherence effects in lasethe two-level atom the pump and probe drive the same tran-
atom systems has prompted some debate on the subject sifion, so thatw=w’.) This small-signal gain feature, often
amplification without inversion(AWI) [1-4]. We define called a “stimulated Rayleigh resonance,” is attributed by a
AWI as the observation of laser probe amplification in adensity-matrix analysis to the coherence between the atomic
system which exhibits no population inversion on the probdevels in both the bare and dressed bases; no population in-
transition in any bare or dressed state basis and is a precursegrsion exists in the system. However, the density-matrix
to lasing without inversioLWI). The overall gain can be approach makes it impossible to keep track of possible inter-
traced to a quantum coherence between the levels of therence terms in the wave function which lead to a reduction
system[5], a fact that is evident in density-matrix calcula- of the absorption cross section and, therefore, AWI.
tions. (By convention, we refer to off-diagonal density-  Several years ago, Grynberg and Cohen-Tannodji
matrix elements asoherence$ However, additional infor- showed this interference explicitly for the first time by de-
mation related to the physical origin of the gain can be foundiving the gain using a perturbation theory for the quantum
in the probability amplitudes associated with the differentprobability amplitudes. Assuming an off-resonant pump and
Feynman paths contributing to ti8matrix for the process. probe, their calculations were performed in the dressed basis,
Lasing without inversion schemes have been reported imsing the dressed level which adiabatically evolves from the
two-, three-, and four-level atomic models. The experimentaground state as a proper asymptdstable state of the sys-
atoms, alkali-metal vapors for the most part, have more comtem. The authors showed that an asymmetry occurs, whereby
plicated level structures and are made to interact with lasethe two absorption channels interfere destructively, while the
fields of various polarizations and static magnetic fieldsamplification process has only one diagram. The reduced ab-
[1,3.4. sorption allows for overall gain in the absence of a popula-

A simple example of AWI occurs in the weak probe or tion inversion. A similar prescription was used recently by
Mollow spectrum[6] of the two-level atom, pumped off Grynberg, Pinard, and Mandg8] to reveal the quantum in-
resonance by a strong laser field. A steady-state densityerference in an off resonant, weak pump AWI scheme for
matrix calculation for this system reveals gain nearthe V-type three-level atom. These authors suggested that a
A'~A-T, where A=Q—w and A'=0Q'—w' are the pump resonant, strong pump field theory, needed for an under-
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standing of many experiments but beyond the validity of — @
their perturbation approach, seemed possible in light of re- Val‘:-:i'
cent density-matrix calculations with two-level atoms by

Szymanowski and co-workef8)]. 3
Intrigued by these results, we have studied AWI in the T : \
r

strongly pumped, four-leveV-type system that was used by
Zibrov and co-worker$1,10] to explain their AWI and LWI
experiments in rubidium. Because of calculations like those
in Refs.[7,8], it was believed that AWI occurs in this four-
level atom when a quantum interference cancellation of ab-
sorption in the amplitudes can be associated with the coher- -
ence contribution to the gain in the density-matrix analysis.
To our knowledge, this paper details the first amplitude cal-
culation of AWI which is valid for strong, resonant pump 03 Q'
fields and shows that probability amplitudes describe the pre- \
cise mechanisms which allow gain to dominate absorption. B SRR Y Y- B
We find that both gain and absorption processes are crucial
in understanding this system. Our calculations are done using 00 =Wy +Q
time-dependent perturbation theory to lowest order in a
probe field in a semiclassical dressed state §adid 2. This
basis automatically accounts for the strong, coherent pump- )
ing to all orders. A fourth state in the atom is coupled inco-_ ;1 (3 Energy level and pumping scheme for the four-level
atom, in whichr is the incoherent pumping rate of level 3. The

herently 1o theV system and acts as both an InCOherentcoherent pump drives the 1-2 transition strongly with a Rabi fre-

p“mp'”g reservoir and as a statl_onary, final state in pertur'uency)(. Amplification without inversion occurs for the probe la-
bation theory. Seen as a scattering process, the prObella r on the 2-3 transition. State 4 is asymptotically stablese)
scatters off of the incoherently pumped, atom-—strong-fieltbopjation decay rategb) Dressed energy levels of the atom-
system, Iee}dlng to dlffere_nt Feynman diagrams for gain a”@trong pump field system fak =0 — w;,=0 in the frame rotating
for absorption. In the main body of the paper, we have no; the pump frequenc. The probe field at frequenc’ and the
quantized the pump and probe fields and note that previouguantum electromagnetic fielthot shown cause transitions be-
quantized field calculations by Grynberg and co-workersween state 3 and the dressed stateand B, which are split in
[7,8] were independent of the quantum statistics of the fieldenergy by the generalized Rabi frequericg =24 y. Interference
Our technique automatically includes all multiphot@ron-  results when a superposition of dressed states are formed as an
linea pump processes combined with the absorption ofntermediate state during probe field scattering. The dashed line
emission of a single probe photon and is formally equivalentnarks the zero of energy.
to using time-independent perturbation theory in the fully
guantized dressed basis, as will be demonstrated. density-matrix expressions for the gain coefficient and pro-
The details of the amplitude approach are spelled out bevide the correct conditions for AWI. We then conclude by
low. One interesting feature of the calculation is to show thediscussing the basic physics of AWI, as elucidated by the
role of the vacuum field in selecting the resonances of th@mplitude calculation. In Appendix A the density-matrix
dressed atom-field system. A more striking feature of themaster equations for this system are written out and solved in
amplitude approach is that the various terms contributing teteady state. In Appendix B we describe the Feynman paths
the absorption and amplification invohemtangled statesf ~ for amplification and absorption in the quantum dressed state
the probe and vacuum field. As such, the radiation emittegpicture.
into various modes of the vacuum field can be correlated The main result of this paper is as follows: far=A’
with specific contributions to probe amplification or absorp-=0, the net probe gain coefficient is proportional to a quan-
tion. Correlations of this type have been discussed, for extity G defined as
ample, by Dubetsky and Berman in their amplitude approach
to the analysis of recoil- and pressure-induced extra reso-
nances in four-wave mixing signal$3].
In Sec. Il we present the model system and review the
density-matrix results for AWI. In particular, fak=A’, no  where y; and y; are the state 3 and state 1 decay rates,
population inversion on the probe transition is possible wheriespectively. In alensity-matrix approacto the calculation,
the bare, upper probe level decays faster than the bare, upgée term 1 (ys/y;)? can be associated with a population
pump level[see Fig. 1a)]. Nevertheless, probe amplification difference of dressed or bare states in the absence of the
can occur under these conditions. In Sec. Ill the Hamil-probe field. There is no population inversion in either the
tonian, including the necessary couplings to the vacuungiressed or bare picture if3/y;>1. As a consequence of
field, is transformed into the semiclassical dressed basighis condition, the terms arising from the population differ-
Then, the perturbation diagrams and cross sections for anence can result in probe absorption only. On the other hand,
plification and absorption are developed. Finally, the steadythe term (y3/7y,) in G can be associated with a coherence of
state conditions are reproduced by the amplitude method. ldressed or bare states in the absence of the probe. This extra
Sec. IV we show how our results match the strong-fieldterm is responsible for AWI for & y3/y;<(1+5)/2. The
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interpretation of AWI differs significantly in thamplitude The probe field on the 2-3 transition is assumed to be
approachto the calculation. In the amplitude approach, weweak and, therefore, treated to lowest order in its Rabi fre-
find that the terms ¥3/7v,)? and (ys/y,) in G arise from quency x’. In the dressed basis, as seen in Figh)1the
stepwisecontributions to the probe absorption and amplifi- probe simultaneously interacts with both dressed states,
cation, respectively. Foys/y,>1, the stepwise absorption andB, which are split in frequency units by the generalized
always dominates the stepwise amplification, so that AWI ifoump Rabi frequency,

not possible without an additional contribution. This addi- _ (A2 12 5
tional contribution comes from the “1” term in Eq1) for R=(A%+4x)™" @
G, which results from awo-quantumamplification process
involving constructive interference between different dressedVhen |A[,]A"|<2, the probe is seen to be detuned from
state channels to the same final state. A corresponding coROth dressed states. In addition, an incoherent source pumps
tribution to the probe absorption vanishes owing to destrucPopulation from the auxiliary, ground state 4 into state 3 at
tive interference between the dressed Channﬁ@he terms, the rater. State 4 is a stable state of the system and can
stepwise and two quantum, are defined in Red] and will ~ therefore serve as an initial and final state in amplitude per-
become clear in the text belowThus, while destructive turbation theory.

quantum interference is crucial for overall probe gain in this The inset of Fig. (a) shows the radiative decay scheme
system, we do not see its effect directly in the expression fofequired to understand the physics of AWI in this system.
the gain coefficient, viz., Eq1) for G. Instead, noninterfer- The population decay rates asg for the 1—4 transition

ing stepwise contributions to the amplification in the ampli-andys for the 3—2 transition. Note that there is no coherent
tude approach are associated with the coherence of bare @xcitation into or out of level 4, justifying its use as an

dressed states in the density-matrix approach, leading to tfsymptotic state in perturbation theory whes made arbi-
term (y3/vy,) in G. trarily small. A steady-state density-matrix calculation can

also include spontaneous emission from state 3 to 4 and from
state 1 to 2. However, these decay terms turn out to have no

Il. AMPLIFICATION WITHOUT INVERSION influence on the basic physical processes by which AWI oc-
IN A FOUR-LEVEL ATOM curs and make amplitude calculations all but impossible.

This is a subtle point. Decay from state 1 to 2 during coher-

A. The system ent, resonant excitation will cause transitions between the

An energy-level diagram and pumping scheme for thesemiclas;ical dressed states, corresponding to cascades be-
four-level atom are displayed in Fig. 1. Figur@llshows the ~fween pairs of quantum dressed states from Nhphoton
bare energy-level separationkw;, and fiws,, and laser manifold to the N— 1)-photon manifold and so on. This is
field frequenciesQ andQ)’, for the pump and probe transi- the two-level resonance.f_luorescgnce problem, which 'has yet
tions, respectively. The strong pump transition betweer© be solved by probability amplitude methods?]. While
states 1 and 2 has an associated Rabi frequgnicythe bare the spontaneous emission _between the _ quantum dressed
picture these levels are ac Stark split by the laser. Howevegtatés has been essential in understanding previous AWI
the system is most elegantly understood in a dressed basf@€chanisms, it plays no role in AWl in this scheme, as seen
taking into account the strong laser-atom interaction. After dn the Feynman-type diagrams for amplification and absorp-
unitary transformation of levels 1 and 2 into the referencdion in Figs. 2 and 3.
frame rotating at the field frequendy, the Hamiltonian is
transformed again to form the dressed stafeandB. The B. The Hamiltonian and density-matrix results for the gain
resulting basis, shown schematically in Figb)] has been Th tating- Hamiltonian in the dipol .
called the semiclassical dressed representation because,.it € rotating-wave Hamiltonian In the dipole approxima
takes into account the coupling between the atom and thtéon’ including the atom-vacuum interaction, is
classical pump field nonperturbatively1,12. 4

Though the off-resonant AWI analyses of Rgﬁ%] and H:E hwiop+ 2, ﬁQkalmak’}\Jrﬁz [(Ja104
[8] employed a quantized field approach, assuming the pump i=1 K.\ K.\
and probe lasers were in the andN’-photon states, respec-
tively, the resulting probe gain turned out to be independent
of the field statistics folN,N’>0. Quantum dressed states P+ a-i0t Nx = At
are useful because the fundamental scattering processes can ThlX o T (X ) oo ©
be well defined within theN-photon manifold. While our . .
statesA andB, could be thought of as tHe-photon pair of 1€ energy of the atomic stateis given byfiw;, and the
states in the dressed ladder, we prefer to invoke the corrdleduency difference between statesand j is wj;=w;
spondence between a classical cw field with no photons in” @j- The atomic state projection operators are represented
the vacuum and a single mode coherent state of the quantufy @i =|i)(i[, and the atomic raisinglowering operator,
field [15]. In this way we can develop a semiclassical pertur-causing a transition between stafeand j, is o} =|j)(il
bation theory which reproduces the exact quantum resultéoi; =|i){j|). The second term in Eq3) is the free-field
while allowing for arbitrary detunings, field strengths, and Hamiltonian, where, (al’)\) annihilateqcreatega photon
decay rates. For completeness, we will define the probef polarizatione, and frequency(), with wave vector|K|
emission and absorption processes for AWI in terms of the=c(),. The third term accounts for spontaneous emission
quantum dressed states in Appendix B. by the atom-vacuum interaction with coupling

+ 023059\ H.cl+hix(o3e M+ aye' M)
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(1) =(ar g€ "[1) +azq|2) +agqe ™ “33)

Qk 1/2
gy =118 5y @ | |
2e0hV +ay e 2 4)) © e M| {k}). (8)
where(j|d-&[i) is the dipole moment along, of thei-j  For each probability amplitudey 1, the indexi labels the
transition, and is the box quantization volume of the elec- atomic statdi). The symbokk} labels a product of single
tromagnetic field. The remaining terms of H§) show the  Hhoton stategky N 1:Kp,Az;-..ik; A )=|{k}), created from
semiclassical, dipole interactions between the applied lasgpe vacuum statf), which is denoted by0}. The energy of
fields and the atom, where the coherent pump acts only 0&ate(k} is written ashQqq=h=;Q, . The normal interac-
the 1-2 transition and the probe only on the 2-3 transition.. . i . .
We take the pump Rabi frequengyto be real and positive. ’t|o? rlczpr'etsentatt}on is used fcir ts_;tate; 3 ang4f|n(?ﬁ.wht|le |
: o o ‘a field interaction representation is used for the strongly
ﬁ::gnglsng the pump field is strong, the secular limit is de driven 1-2 transition. Without loss of generality, the zero of
energy is assumed to B2/{0}), implying w,=0. Forming
the Schrdinger equation, we perform a Weisskopf-Wigner
derivation of the amplitude decay rates by formally integrat-

The equations of motion for the reduced density matrixing the equations oy i) - andag i k', substituting into
are derived by tracing over the vacuum field and adding irthe equations fOHl,{kO} and ag{k,) » respectively, and sum-
the incoherent pumping term. These equations and thefhing over thek’ mode of the vacuum. The resulting equa-
steady-state solutions are shown in Appendix A. The conclutions of motion, which can be written in the ScHinger

sions drawn from them, whether in a bare or dressed reprgg,m i, 3= Ha for the state vectoa and Hamiltonian matrix
sentation, are the same. In the bare basis the presence ﬁf are

AWI results from a coherence between levels 1 and 2 when

X>7Y3,Y1- 5

dressed by a strong, resonant pump. This coherence leads to _ 1
a contribution to the probe amplification on the 2-3 transi- ialy{k0}= —|A+i > ay (k) T X2k} » (CE)
tion. The density-matrix solution shows that AWI can occur
most easily if the pump and probe are both tuned to the . _ o AT
atomic resonances. In the dressed basis, this implies that the 182kg} = XB14kgy T (X')" €7 A3y » (9b)
probe is tuned directly between the dressed statesmd B ) _
[see Fig. 1b)]. Probe gain occurs on the transitions between 18210 k= X8 {ig kT O3 T Mag ey, (90
state 3 and each of the dressed states. The overall gain in
AWI is then interpreted as arising from a coherence between » s iatt Y3
dressed state& and B. 1o =X'€ " Bappi —1 5 A3k s (9d)
The gain coefficient in the secular approximation for
A=A"=0 and weak incoherent pumping is i<’5‘4,{ko},k:gﬁlemk_wz“_mtal,{ko}- (99
’ 2 2
= K'nd RN P B) +E (6) WhereA=Q—w;y; and A’=Q"— w3z, are the pump and
2eohi v X° 71 71 probe detunings, respectively. The quantum field is initially

) ) ) in the vacuum state, and emitted photons cannot act back on
from Eq.(A12) in Appendix A, wherek’ =Q’/c is the probe  he system, so we have dropped interaction terms related to
wave vectord is the 2-3 dipole matrix element, amdis the  the absorption of photons out of states 2 and 4 into states 3
atomic density. The square bracket is the quantity defined aghq 1 respectively. The in terms for states 2 and 4, via
G in Eq. (1). We set spontaneous emission, will be treated perturbatively using
Egs. (9¢) and (9¢) in the calculation of specific transition

Y3~ Y1 (7 amplitudes below. The distinction is clear in these equations

. . C between the quantum field transitions, which change the field
so that no population inversion exists in either the dressed q/; from|{ko!) to |{ko}.k), and the classical laser transi-

bare.basis. .Sti"’ amplification occurs f8>0.' Again, the tions, which do not change the state of the vacuum field.
densny—mapnx approach does not shpw explicitly h9W quan- - gemiclassical dressed states for the 1-2 transition are in-
tum scattering processes lead to this AWI. That is the iN%roduced via the transformation

tended purpose of this paper. In Sec. Il the amplitude equa-
tions for arbitrary parameters in the weak incoherent pump 5 — (3 3 a a T—7a H.=THT"
limit are developed. By then specializing to the resorfant 2= (.} Anfk) ikl aiil) =T Ha=THT

heren} pump case in the secular limit, the physics of the (10
AWI becomes clear in perturbation theory for the probe.  ysjng the unitary matrix
Ill. DRESSED STATE PERTURBATION THEORY c s 00
-s ¢c 0 O
A. Equations of motion for the amplitudes, incoherent T= o o 1 ol (11
pumping, and cross sections 0 0 0 1

We write the state vector in a mixed interaction represen-
tation of the bare basis, where
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1 A 1/2
czcoa‘):[i (1— ﬁ” , (123
1/2
S=sinf= > 1+§ , (12b

for the mixing angle 8 < =/2, and’éBy{kO} andEA,{kO} are

dressed state probability amplitudes. This transformation is

discussed in more detail in R¢f.2], where the semiclassical

dressed states were used to find the pump-probe and reso-
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and(149-(14d), resulting in the simplificationsk =2y and
c=s=+1/2. Under these conditions the dressed stdes
and A are symmetric and antisymmetric superpositions of

states 1and 2, respectively, according to Eq§l339 and
(13b). The amplitude equations reduce to

L = Y1~ ~
185 (ko) = X8, (ko) ~1 7 (3B,{kg) ~ A, fko})

nance fluorescence spectrum of a two-level atom. For our

purposes the dressed states,
|BY=ce |1} +5|2)=c|T)+5|2), (139

|AY=—se ' M1)+c[2)=—s|T)+c[2), (13D

are time dependent in the laboratory frame but look like
stationary eigenstates in the rotating frame of the pump, de-

noted by the tildes.
The amplitude equations become

. ~ Y1 ~ _
idg k= 2(— A+ R)ag gy —ic - (Cas (k) ~ S8 (ky)

(143

+ S(X/)-k eiA ta3,{k0} ,

.z ~ .Y~
idg fkopk= 2 (— A+ R)ag (i k—iC > (€8s gk

— S8 (k) T sgse' Pk “2'ag s (14D

idpuy=2(—A- R)aA{k}+|S (CaB{kO} S (k,})

+C(X’)*em,tas,{ko}. (149

.z ~ .Y~
1A (ko) k=2 (—A—=R)an (i} kTS - (Cas k) k

— S8 k) T cghee' (e w32)ta3,{k0} , (1409

—iA’ t(

- Y3
iazky=x'e '" (Sag 1k, +Ca, kot 71 5 A3kg)

(14¢
181 k=018 2 V(R 1, — SBa i) (14

The vacuum interactions between statésand B with
strengthicsy;/2 in Egs.(148—(14d complicate the dressed

+VHx e g (158
s ~ V1~ ~
188 {ko} k= X8B,{ko} k1 7 (88, {koh.k ™ 3 fko} k)
+ \/g 9339i(9k7w32)t33,{k0}, (15b)
A ~ . 71 ~ —~
18 (ko= ~ X8A (ko) H1 7 (3B (ko) ~ A ik}
+ \/g (x')*e'*tay (ko (159

. _ ~ . '}’1 ~ —~
18, {koh k= ~ XA ko) kT T 7 (8 (ko) k™ B fko) k)

+ \/g g5’ Pk wslay {kob (150
\/— —iA't V3
iasgy=Vz x'e ' (@p iyt aa, feoh) TT 5 B}
(158

14k k= \/g g€ M2 DN @g =B i) -

(15f)

These amplitude equations can be simplified by removing
the secular interactions, proportionalitg,/4, that couple the
dressed states in EqEl59—(15d). The eigenvalues of the
stateA andB subspace are

ﬂ)z
2

Thus, the couplings contribute nonsecular results in pertur-
bation theory and are dropped for noiidowever, these cou-
plings are crucial in forming the density matrix self-
consistently, as will be shown below in Sec. Il D, where we
derive the steady-state density-matrix elements with our am-
plitude formalism). We see that the dressed state amplitudes
decay at the ratg,/4, one-half of the rate of the bare state 1.

1/2 v
=*xx—I—.
4

(16)

representation. These couplings can be dropped in the sechm this limit the system again looks like a four-level atom

lar limit [see Eq.(5)] of amplitude perturbation theory.

interacting with a probe and the vacuum simultaneously,

In order to see AWI, we have argued, above and in Ap-where the dressed levels replace levels 1 and 2 of the bare
pendix A, that the probe must be tuned near its bare lindormulation. This is seen in Fig.(&t), where the dressed

center,A’
ing the probe to a dressed state resonadces * y, can
lead only to absorptiofisee Fig. 1b)]. These conclusions

will be reproduced rigorously by our perturbation method.

=0, for a strong, resonant pump. In contrast, tun-

states appear as a split doublet between the upper state 3 and
the ground state’4 StatesA andB have the energiefy and
—fh x, respectively.

Accordingly, to simplify the notation, we define

We clarify our understanding of the AWI scattering process‘dressed” energies or frequencies, remembering that we are

at the outset by setting=0 in Egs.(2), (129 and (12b),

in a frame rotating at the pump frequen@y= w,,,



W=~ WA= X, (17)
wW3= W32, (18)
w4,=—w24—Q=—w14. (19)

We go to the normal interaction representation of the dress
energy levels by settin@B,{ko}zaB,{ko},e"“’Bt and a,, ko)

= aAy{kO}e*“"At, which is equivalent to writing the state vec-
tor of the system as

lp(t))= (aB,{k}e_i“’Bt| B)+ aA,{k}e_i‘”At|A> + ag,{k}e‘i“3t| 3)
Fag e 4 se W (k. 20

Comparing this state vector with E¢4), the atomic state
4’ in the rotating frame is written as the kdt')
=e 4) and shown to be at an energy) below the
energy of the bare state 4 in Fighb]; the amplitude for this
state remains the same, i.ay4: q=a4 gi- The amplitude
equations are then

.- . N1 Ik Ai(Q =

188 (k)= ~1 7 AB,{ko} T \/g (x')*e'® 3B)ta3,{k0} :
(2139

- . N (-

18, {koh k= ~1 7 @B fkohk T \/g g5e' 3B)t33,{k0} )
(21b

iy . N Ik (O —o

18a, (k= =1 7 Aafkoh T \/g (x')*e't 3A)t33,{k0} :
(219

- . N (O —w

1A, (ko) k= 71 7 Aafkohk T \/g gse'(x 3A)taa,{k0} ;

(210
ia?’v{ko}: \/g X,(an{ko}eii(Quw?’B)t*' aA,{ko}e’i(Q"“’aA)t)

.73
=1 > A3k, s

(21

iE-‘4’,{ko},k: \/ggzl(aB,{kO}ei(Qkin“')t— aA,{ko}ei((2k7“A4')t).
(219

These equations form the foundation of the amplitude anal

sis.
We are almost ready to calculate the amplification an
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ago(t,tg) =~ (7210, (22)
where the differential population which is pumped into state
3 betweerty andty+dty must equatdty. To calculate any
observable at timé, we must sum over the ensemble of

e%ifferential populations. In other words, we integrate over all
previous histories of the system such thab<ty<t. As a
check, this procedure leads to the correct steady-state popu-
lation of level 3,

t r
|agoy(1)|*= j7 rdt0|<'913,{0}('[at0)|2:7,_3- (23

This method was used by Lamb, for example, in his classic
paper on the theory of the lasgi6].

The cross sections for any process leading to probe am-
plification or absorption are proportional to the transition rate
into level 4,

®)

3
.
-
-

-
L4 - ~
Pt Q=g
AZI

~ -
Qk1'”('°B4" R

»

‘4

FIG. 2. Scattering channels for probe amplification. Solid ar-
rows indicate probe field transitions to steteor B from state 3

Ywith an interaction energh (x')*/v2, while dashed arrows refer to

transitions caused by the quantum field. The arrows are labeled by
qhe frequency of the field(a) Feynman diagram, suggesting the

absorption cross sections. First, however, we must incorpyo-quantum processes. The probe creates a virtual superposition of
rate the incoherent pumping into our formalism. The dia-statesA andB, which leads to constructive interference for spon-
grams for probe emission and absorption in Figs. 2 and Zneous emission at the frequery, ~ way — Q' + y3/2. This in-

each start by the incoherent pumping of level 3 from level 44grference is maximized when the probe frequency is tuned to the
The incoherent pumping and spontaneous decay of level Zero of energy, exactly half-way between the dressed states, i.e.,
allow for the steady state from which the probe scatters. The)’' = w,. (b) Stepwise processes. Because state 3 has a finite en-
correct Feynman rules, which account for this pumping, willergy width7 y;, we can schematically understand the presence of
be apparent later. We start the system at an initial tigme spontaneous emission at the dressed transition frequerieigs,
with some amplitude to be in the atomic state 3 and theswg, = y,/4 and Q, ~way+7,/4, as the result of a probe-
vacuum state of the field and examine the system at time induced transition from the wings of state 3 to stateandB. No

In the absence of the probe, the amplitude evolves from Ednterference occurs since the photon energy differentg, & well

(21e as resolved.
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where the semiclassical flux factBr[18] is given by for a total amplitude
1 k'd? ) 25
F o\ 2eoti|x'|?) ag i, (Lto)= a(B)k (t,to)+a, (tto). (27)

The sum over the field statdk} in Eqg. (24) includes all
single-photon states created during probe scattering, as out-
lined below. The sum over paths produces a Dyson-like seEach arrow represents a transition with the perturbative in-

ries representation of the amplitude, teraction energy given above the arrow. The wave vector
ki labels the single-photon field state created from the
! tn vacuum. Now, one might think that we can easily see what
Ay’ =ay t tg) = dt dt te ) ’ . g y .
%1 41k = 3 (Llo) = f n-1 happens schematically whek'~0 from the perturbation

chains and Fig. @). The first transition coupling constants

ty
xj dtU(t, ty, ... tysto)aggoy(ty,to) are the same\/g(x’)*, but we arrive in intermediate states
fo which have the opposite dressed energies,y, producing

for an n-quantum process caused by an evolution operatoin€ Virtual superposition state,
U. It is U that is implicitly calculated using the amplitude
\/— (X )*

equationg21g9—(21f).
B. Amplification cross section — (|A)—1B)). (28

Amplification follows the diagram in Fig.(2). The probe
stimulates a transition from state 3 to both dressed states
simultaneously, creating an intermediate superposition stat8pontaneous emission, however, causes decay from each
which decays to level 4via spontaneous emission. The per- dressed state to staté with the opposite sign of the cou-
turbation chains for Eqe219—(21f) are represented by pling strength,+ \/3g%;, showing that the total interference

is constructive. This kind of basic argument leads directly to

the two-quantum contribution to the gain, the first term of

Eq. (6). However this argumentannotreproduce the step-

(268 wise amplification, shown schematically in Figh®2[14].

X @ The formal calculation commences by substituting Eq.
Va2(x") ' (22) for agygy(t,to) into Egs.(218 and(210) and integrating

agoy(t1,to) — @agop(tz,to) —— a4, (t to), to find the inhomogeneous solutions. The expression for the

(26b) upper dressed state amplitude is

() 263
(B)
ag{o}(tl,to) — a.B {0}(t2, 0) E— a k (t to)

)90

t
ag {0}(t2,t0) =—j zdtle(71/4)(t2t1)( \/g(X')* ei(Q'“’3B)t1e(73/2)(t1t0))
, ,
el (' —03p)tag = (73/2) (1 tg) _ @~ (71/4)(t2~t0) gl (2’ ~w3p)tg
=Vz(x)* , (29
(03— Q) +i| 2= B2
® 4 2
with a, ,{0}(t2,tg) given by the substitutiomsg— waa -
We now fmdag, (t tg) by direct integration of Eq(21f) using Eq.(29),
B) 1 . 1 e[k, — (w34 Q") ]t = (73D (t—tg) _ gilQy, — (w34 —Q")]tg
i (t,to): 5 9a(x")
2 Y1 73 , .73
(wgg— Q")+ 7_7 [(w30 = Q") =y ]-i >

o ei(ﬂkl—wB4r)Ie—(71/4)(t—t0)_ei(!lkl—w34')to
_ i@ ~agpty _ (30)

V1
(wB4’_le)_|Z

Several observations at this point will help to simplify the algebra. First, any terms in the Statepfitudes which vary as
e 73(t710)2 gr @~ 71(t= )4 Wil not contribute to the cross section after summing and squaring. This is easy to see fr(#d)Eq.
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d
o~ —

t
r y(t— '[0)
T J dtoe”

d|r B
Al o

We drop these terms to obtain a simpler form for the contributing amplitudes,

ei[le—(w34',S)/)]t0 _1 _1

1
a4/ (t to)= 2921()(')* v 7

’ ’ . Y3 Y1
(w3p— Q") +i| - 7) (030 Q) =y ]=1 5 (0psr— Q) =1

The two terms in the large square bracket from the inteare precisely the amplitudes of time-independent perturba-
gration overt, combine to cancel the denominator from the tion theory in a quantum dressed baki®], as outlined in
first integration. This turns out to be a general feature of anyAppendix B. This point is emphasized further in the absorp-
n-step scattering process derived in this manner: all fretion calculation below.
guency denominators cancel except for those appearing from To find the amplification cross section, we use the defini-
the integration ovet, . In addition, the common phase factor tion of the cross section, Eq&4) and(27), together with
for both contributing amplitudes here (®,~(@3# =2t ye.
flects the energy conservation of the scattering process and is jt rdtal=r
also a general feature of these calculations. Since it does not w0

depend ony, it is the same foa(B)k (t,tp) and a4, Ky (t,tg) and

and will disappear when the amplltudes are squared theré™
fore, we also drop this factor. The contributing amplitude in

V 27 (1 %
its final f is th —— 2
its final form is then Ek: PESE fo ﬁlJ’O 02dQ,d(cos 6,)dey.
1 (34)

O —( QO]+ E Under the Weisskopf-Wigner approximation of spontaneous
(O, (w30 = Q7)] emission, the),_integration extends from = to =, and the

function Q§1|g41|2 is evaluated at the complex poles in an
v | (33 le contour integration, removing the ultraviolet divergence.
1

(Qk wgar) i T Using the residue theorem by closing the contour in the
upper-half plane,

d
dt

(B) _ 1 * 0 I\k
a4r,kl(t:to)— 5 921(x")

1

with a(A) (t to) given by the substitutiomg, — waa- - 1 d

t
> —“_ r dtolay; )\ (tto) +ag) (tto)|?

Thus the two amplitudes contain two resonances each,”’ @™ F K, dt
corresponding to different spontaneous emission frequencies.

The first resonance is for the two-quantum process from state ~ _ I |2 Rey o

3 to state 4, shown in Fig. 2a), with spontaneous emission 4F 2

peaked a‘ﬂk1=w34r—ﬂ’ with the full width at half maxi- 1 )

mum (FWHM) v5. First, the probe field drives a transition X

between state 3 and a virtual state somewhere between states residues [Q) —(@ay— Q)] +i ﬁ

A and B, which then decays to state 4ia spontaneous ky VT34

emission. The resonance is commoraﬁB)k anda(A)k and 1 1 2
therefore leads to interference when the amplltudes are X - .
summed and squared, a feature which is discussed in deta_il (le_wB4,)+i % (le wpgr) i %
below. The second resonance is for spontaneous decay di-

rectly from each dressed state to the final state and is peaked (35)

at{)y, = wgyr OF )y, = wagr With FWHM v4/2, independent

of the probe frequency. These resonances suggest stepwiseThe pole atl)y = (wsy — ') +iy3/2 maximizes the con-
processes that can be seen as an initial, probe-induced tragtructive interference between the two, dressed channels
sition from the wings of state 3 to the dressed states, folwhenA’=Q’— w;=0. On the other hand, tuning the probe
lowed by decay to state’ 4rom that dressed state, as in Fig. directly to a dressed resonand®, = wyg or Q' = w3, re-

2(b). These paths do not interfere in the final state, as theynoves the interference and maximizes the amplification
lead to emission at distinct frequencies that indicate that theross section. We will see in Sec. Il C that the tunifiy,
decay was from staté or stateB unambiguously. We see =w,5 or ' =wgz,, also maximizes the absorption cross
that both types of processes are automatically included igection, preventing AWI. Hence, we have the result that a
each of the two amplltudea,(B)k and a(A) In fact, these probe tuned to the bare resonandé=0, produces a ben-
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eficial interference for AWI in the strongly dressed system.
In the secular limit it is easy to see the interference by evalu-
ating the residues of Eq35) for A’ =0,

2 &
1 1 1 N 1 2 N 1 2 A0 >
residues i73 —wp T wWp ;giyl ;/{in P ---i
101 12 12 12 Qg oo” e
= |/ — _2_+_2_, (36) ‘v' ’ﬁ‘
lys|=x X X 1y1 X" 7" A & @

yielding the amplification cross section,

go WEr Ml 7
N

. (37)
Y1

We clearly identify the first term in the square brackets as
the contribution arising from constructive interference of the ¢ ~q . .
two-photon proces$Fig. 2(@] through both dressed chan- toLe
nels simultaneously, correlating with spontaneous emission__4A~_ -
at Oy, =|wy|. In comparison with the density-matrix re-

sults, this term corresponds to the emission owing to the
steady-state population of level 3. In contrast, the second
term in the square brackets is the gain arising from the
dressed state coherence in the density matrix calculation. We
have found the physical origin of this term to be the stepwise
process[Fig. 2(b)], first to each dressed state individually
and then to state’4via spontaneous emission. As a result,
this term is associated with spontaneous emission at the
dressed transition frequencie@klzw54,:|w4,|+X and

QO =waq =|wy|— x. This type of stepwise process is only
! FIG. 3. Feynman diagrams for probe absorption. Solid arrows

ossible when the initial state has a width, likg, sothata . . X 2 .
Erobe can pick out the detuning from the initilzlgstate that Wi”!ndlcate probe field transitions to state 3 from stater B with an

. . ..interaction energyi x'/v2, while dashed arrows refer to transitions
give a resonance at the drg_ssed state. Notice thgt ou!' e.lb'“t\éused by the quantum field. The arrows are labeled by the fre-
to correlate the _tW_O ampllflcatl_on processes W'th d',St'nthuency of the field(a) Possible scattering channel, suggesting an
Spontapeous ermssmn frequenCIes rests or(&, which 'S . initial, spontaneous emission &, ~()'. After then absorbing a
essentially the differential spectrum of the scattered radiatio g

-

&l (AR)

4 A @

. r[3robe photon, destructive interference at state 3 between the two
at (), before the residues are evaluated. channels, state and B, causes this contribution to vanistb)

For reference the amplification cross section for a pr0b¢:eynman diagram for the amp”tudé‘?i)z’ks’k‘l’ where the probe

tuned to either dressed resonan@é= wyg Or 1’ = w3y, IS

2
, X't 4
am F o yz 2yt ]

(38)

which can be verified by using E¢35). This cross section,
as previously promised, is largéby a factor of ~ x?/y?)
than the cross sectidiq. (37)] for the tuning of interest for

field undergoes Rayleigh scattering from st&eafter an initial
emission atkamwgB. (c) Feynman diagram fo'afﬁ)z,k3,k4'
where the probe field undergoes anti-Stokes Raman scattering from
stateB to stateA. (d) Feynman diagram foafl’fi)z‘kavk‘l, where the
probe field undergoes Stokes Raman scattering from At&destate

B. (¢) Feynman diagram foa&’fﬁ'ka'k‘l, where the probe field

undergoes Rayleigh scattering from stéAte

AWI, Q' =w;. N .
We conclude the calculation of the amplification crosse shall see below, these amplification processes occur in

section with an interesting and unexpected observation, R4 Presence of absorption suppression by destructive quan-

cently, some authors have suggested that if the physical orfd™ interference.

gin of AWI in this system was revealed, the coherence con-
tribution to the gain in the density-matrix approach would be
shown to result from a quantum interference cancellation of ) ] o ]
absorption in the amplitude calculatiph]. We expected to The basic absorption process is diagrammed schemati-
find this result. On the contrary our analysis has proved thag@lly in Fig. 3a). We write the four possible Feynman paths
constructive quantum interference plays an important role fofor the amplitude equations using E¢81a—(21f). The first

the gain but does not correspond to the coherence term in tH¥/0 Steps are spontaneous emission at frequéhgyfrom
density-matrix calculation. Rather, the noninterfering, step-state 3 to either staté or B, followed by immediate absorp-
wise amplification corresponds to the coherence feature. Agon of a probe photon back to state 3. Subsequent decay

C. Absorption cross section
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through the dressed states to stateodcurs by the sponta-
The four

neous emission of two more photomsk3 ankoA.
perturbation chains are

\’ﬂ?gza V“m/\/'
ago)(t1,to) —— agk,(t2,t)) —— ag?()z(ts,to)

172934
B
—— ag, ,(tasto)

V17297,
BB)
—— Ay (bt (393
V12935, 72y ]
agoy(t1,t)) —— apk,(t2,t)) —— a(s,k)z(tsato)
V17293,
B
— af’-\,l)<2,k3(t4at0)
— 29y,
BA
—— ek k(L0 (39b)
\%23 VIR2y'
agoy(t1,to)) —— aak,(t2,t)) —— ay) (ts to)
VI2g5,
A
S ag,l)(Z,k3(t4ato)
gy,
AB
- aiu k) kg k4(t1t0)7 (39C)
V172934 V2!
A
agoy(t1,to)) —— aak,(t2,to)) —— aé,k)z(ts,to)
V1295,
A
— a, k,(tasto)
_\““ﬂ_zgj{l
AA
—— A ki (Bto), (399
where
(BB) (BA) (AB)
847 Ky kg kg = A4 Ky kg kT A7 kg kg kT 847 Ky kg kg
+ay, (40)

47 Ky kg.Ky

is the total amplitude, and the dependencetaend t; is
implicit.

3909

\/_923

)~ (1A =1B)), (42)

and, therefore, looks like a dark state for absorption. But, this
is only true for the two-quantum process of an initial emis-
sion atkamQ’ followed by absorption of a probe photon,
just as constructive interference for the amplification process
only occurred when a downward transition followed from an
antisymmetric superposition of statAsandB.

The vacuum field can also pick out the dressed frequen-
cies of the system, so that spontaneous emission is possible
atQk2~w3B anko2~ w3p, allowing for a detuned absorp-

tion of the probe back to level 3. This leads to the four
distinct absorption paths from the initial state 3 to the ground
state 4, as shown in Figs. ®)—3(e). The physical meaning

of each path is clear, suggesting stepwise absorption pro-
cesses. The paths of Eq899 and (39b), Figs. 3b) and
3(c), respectively, each start by spontaneous emission at the
3—B resonance frequencﬂk2~ wsg, iIn making the tran-

sition to levelB. The first path then corresponds to Rayleigh
scattering of the probe off of staRthrough state 3, leading
to kamﬂ’, while the second path indicates spontaneous

anti-Stokes Raman scattering from stBtéo stateA through

state 3 by absorbing a probe photon and emitting a sponta-
neous photon &), ~()'+ wga. The final emission to state

4' from these paths can only occur at the dressed resonance
frequenciesﬂk4~w34, anko4~ waar , respectively. Simi-
larly, we can consider the paths of Eq89¢ and (39d),

Figs. 3d) and 3e), respectively, which start by spontaneous
emission at the 3 A resonance frequenc§)y, ~wsa. The

path of Fig. 3d) corresponds to Stokes Raman scattering
from state A to state B through state 3 withﬂkf

—wga and decay to state’4with Qk4~ wgy - Finally, the

path of Fig. 3e) considers the Rayleigh scattering of the
probe from staté\ through state 3 Witmk3~Q’, followed

by decay to state ‘4with Qkﬁ wpy4r . These processes, each

creating a distinct set of spontaneous photons, do not inter-
fere and give us a clear picture of how absorption occurs in
this system.

Consider the diagram of Fig.(® and Eqg.(39a, which

defines the amplitudafﬁ?zlkykzl. We integrate the ampli-
tude equation(21b) for ag, K, (to,tp) using the initial condi-

tion of Eq. (22) for agg(t, to) creating a photon in state
k2):

ta
aB,kz(tz,'[o):_ift dtye” (/9"
0

X( \/ggizrskzei(ﬂkz— wgzp)t1g (732)(t1—tg) |

Before we perform the calculation, we can get a picture of
what is happening foA’~0. First, consider an initial emis-
sion atQk ~()', as suggested by Fig(8. The source of . _ _ . o
interference is then evident: we have started in and then ré (hB'S amplitude, in turn, provides the driving term for the
visited the atomic state 3 through two different channels. Th@sk (t3,to) equation of motion, Eq.216, describing the ab-
vacuum appears to create a virtual superposition state at timsrption of a probe photon. Thus, formally integrating Eq.
t, which is antisymmetric, (218,

(42
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t3 [ 1
ag?()z(tSatO): —ij \/gX'J dtze*(%/z)(ts*z) X y
t A4
0 - (D, + Oy, wgyr — Q) +i 7
X aB,kz('fz,to)e_'(Q “ess)t, (43 i
[ 1
whereaB,kZ(tz,to) is given by Eq.(42). And so on for the X s
final two vacuum interactions to deri B'i)z:ksuk{ I Qi+ D, w3gg) +i 2
The explicit form of this amplitude is lengthy before we - 1

make the same algebraic simplifications which led to a sim- X ) (44)

pler form for the amplification amplitudes. In general for an (Q, — )+i "1

n-step process, there ar8 different terms in each amplitude | ke @B 4

after n time integrations when derived this way, as in Eq.
(30) for the amplification calculation. But, half of the terms

are always proportional te~ 10, so we throw them out, The first line of vertex factors are simply the interaction en-

as we did for the amplification calculation to form H&2). ergies of each single quantum transition in the Feynman dia-

This leaves 2! different terms, each with a common phasegram' The four complex Lorentzians are formed, in order

reflecting energy conservation. For example, the phase fcﬂere’ by the energy difference between th_e final and initial
the absorption calculation which is common to each of theotate of the system and then between the final state and each

f litudes. including the eiaht t ifBB) . of the three intermediate states, including the probe photon
our amplitudes, including the eight terms &1 i, k; k,» 1 energy for each state. We can see this from Fig).3These

el (i, T Qi T2, ~ 0" ~w3)to . Dropping this common phase, transition energies are also easy to see in a fully quantized
the 2"~ terms of each amplitude always combine to elimi- treatment, as in Appendix)BIf we go back to the absorption
nate all of the denominators produced by the firstl time  calculation, the same explanation holds for E28).
integrations and form a single term with denominators. From these considerations, the total, contributing ampli-
These are th@ multiphoton resonances that can be formedtudea,y, is time independent for any process, and the cross
by the energy differences between tfieal stateandthe  section of Eq(24) simplifies to[21]

initial and each intermediate statdncluding a negative

imaginary energy referring to the width of a state. This is ;

exactly the result of t|m.e-|ndepend_ent pertu.rbatlon th_eory, Oap= = E |a4,‘{k}|2_ (45)
where thenth-order amplitude to be in some final state is of F i

this form for a system with a single initial state, such as

|3’{|8}> [20]. o the eidh .y _ The cross section is simply the probability to be in the final
; (;r examp eat € eight terms c;]om |ne|_|ndour case 10 gIVgy stem—quantum-field state, summed over the field modes,
our frequency denominators in the amplitude, multiplied by the pumping rate of the initial state, and di-
vided by the flux.
afi;ks,k“:(\/ggjlk“ \/Eg;&ks \/g)(’> These arguments then lead directly to simpk_a Feynman
rules for the formation of any multiphoton scattering ampli-

o tude and cross section. In particular, we get the other three
X\ V2923k, amplitudes we need by permutigs, andwpay in the sec-

ond and fourth frequency denominators of &) and mul-

1 tiplying by —1 for aff,;’Ak)ZVksyk4 and ag’f,Ak)Z’ksykA. Factoring

—ar— ] the common denominators, the sum of amplitudes for the
(D, + Qi T Oy = Q= wg) H1 5 four absorption pathways can be written

X

— 4(BB) (BA) (AB) (AA) — | +/Lig* 1% 1. 1%
a4’,k2,k3,k4_a4r,k2,k3,k4+a4rk2,k3,k4+a4lk2,k3,k4+a4f,k2,k3,k4_(\/;g4lk4)<\/2923k3)(\/:)( )(\/QQZSKZ)

1 1 1
x Y. Y Y
, . 73 . Y3 , . vl
(Qk2+Qk3+Qk4_Q —w34/)+| ? (Qk3+Qk4—w34,)+| 7 (Qk3+9k4_w34/_9 )+| Z
1 1 1
+ " " 7l (46)
NN . Y1 .71
(Qk3+Qk4_wA4r_Q )+| Z (Qk4_wB4r)+| Z (Qk4_wA4r)+| Z

Forming the cross section and summing okgr\, in the Weisskopf-Wigner approximation,
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r

— 2
Tabs = Ay’
abs F Ky Mg Ko gika Ag | 4 ,k2,k3,k4|
r 1 2 1
— 12 2 2
16F X' k3v>\§<4v>\4 |923k3| |941k4| ~va 2
(Qk3+Qk4—w34/)+l 7 (Qk3+Qk4—wB4/—Q )+| Z
1 2 1 1 2 “
+ — .
N, 7 . Y1 .71
(Qk3+Qk4_wA4r_Q )+| Z (Qk4_a)B4r)+| Z (Qk4_wA4r)+| Z

The single pole fo€) in Eq. (46) defines its peak emission ,,, and wg,: . We now perform the sum oveéd, . explic-
frequency in terms of), and (), itly to see the quantum interference in the absorption.

The first Lorentzian Witmi<3 in Eq. (47) has a pole in the
upper-half plane &k3= W3 —Qk4+ i y3/2. Using Eq.(48),
allowing us to correlate th,, photon with the others even this correlates with(,,~€’, an initial spontaneous emis-
after we have summed over it. The resulting form in &)  sion at the probe frequency. By contour integration over
does not depend directly oﬁks, but only on Qk3+ Qk4_ ka in the Weisskopf-Wigner approximation, this pole con-
This implies that the spectrum associated with spontaneousibution in the secular limit gives
emission ale4 to state 4 will be peaked at the frequencies

kamﬂl'f‘wgm_ﬂks_ﬂkﬂ (48)

v3 2 1 1 2
D i ' v
o (D, + Q= 0pa= Q) +i 7 (Qi+ Oy~ 0= Q) +i -
Qk3:w34/*ﬂk4
1 1 2 2
- + oq%]y (49)
Y1 Y1 A'=0 X

((U3B_Q,)+i Z ((1)3A_QI)+i Z -

where we have pulled out the,_-dependent parts of E¢47). For Q' —w3=A"=0 we have completely destructive inter-

ference in the secular limit. The two terms which cancel here are precisely from the antisymmetric superposition of states
A andB which would form after an initial emission ﬂk2~ﬂ’. In terms of the four amplitudes, as implied by Figa)3and

by Egs.(46) and (47), a&?i’zlkyk‘t interferes destructively withaﬁl/fi)?ks’k4 for a final emission on th&—4' transition at

Oy, = wgyr, and ag?ﬁ,@,m interferes destructively Withaé(,*’Ak)z‘ks’k4 for a final emission on thé\—4' transition at(},,

=wpy4r - Thus, we have discovered the origin of destructive interference in this AWI scheme.
We still have two contributing poles in th@,, contour integration of Eq47),

Qk3=w54/+Q’—Qk4+i)fll4, QkSZwA4’+Q’_Qk4+i71/4' (50)

As in ther2 integration, these poles determine the emission peﬁkkgas a function oﬂk4. The first pole is common to

i (BB) (BA) ; ; AB) (AA) . .
the amplitudes,, \ \ \, @nda,, .’ \ . while the second is common &, anda,’. , . . The firstresonance in

Eq. (47) gives a factor Iy? for the residue of either polg0) in the secular approximation. For simplicity, we first look at the
pole Oy = wgy +Q" =y +iy1/4. The other pole will not interfere in the secular limit, i.e., it gives corrections to the

absorption of the ordelyil)(2 smaller than the leading term. Evaluating the pole contributio;ﬁl@stzw34/+9’—Qk4
+ivy./4 from Eq.(47),

1 v, 2 1 1 2

2 2 i 2

A S - NG

k3,?\§<4,>\4 |923‘k3| |g41‘k4| X°2m Y1 kgm |g41k4| .71 .71
(Qk4—wB4,)+| —4 (QkA_wA4’)+I _4
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where the sum ovekts,\ 3 reduces to the coefficients of the right-hand side. The same expression results from evaluating the
pole contribution aﬂk3=wA4,+Q’ —Qk4+iy1/4, and the two residues add. This gives the total cross section,

1 ys 1 1 2
O'abs 4F |X |2 2 |g4l k4 -

.71 V1
(Q,mwpar )+ 7= (g~ wag) +1
r 1 1 1 2 or 2
== _2)/_ E 941 4|7 2t 2 =|X| _7_; Z). (52)
4F Y1 kg 4 71 .. (™M Foyvsx"\n
(Qy,— wpar)?+ (i, = waa) ™+ | o

The Qk4 resonances do not interfere in the secular limit,

(0) —
hence we have dropped the cross term in the second equality. p zkgz r dtOlankz(t'tO)F' (54D
The sum overk,,\, gives a “2” for each term in square
brackets, showing that each of the four amplitudes contrib-
utes one-fourth of the final value of the absorption cross (AB)E E r dtgaak,(t,to)ag . (t,to). (540
section. Using Eqgs(48), (50), and (52), the spontaneous ka. kg J—e 2 o2
emission frequencies that correlate with each of the four am-
plitudes are those pictured in Figs(b3-3(e). To tie this For the definition ofp{3, we use the full equations of mo-
expression back to the steady-state density-matrix result dfon, Egs.(15b) and(15d), including the previously unimpor-
Eq. (A14), the absorption here is fully accounted for by thetant coupling terms between statésandB. From Eq.(42)
stimulated transition to state 3 from the steady-state populder ag(t,to), we readily verify that p{Q=pQ=r/y,,
tions, pi% and p3, which each contribute half of the ab- where we have summed over the vacuum in the Weisskopf-

sorption. Wigner approximation. Clearly, no inversion exists in the
Finally, we can show from Eqg47) and (48) that by  dressed basis whes}} ,p>p'Y , which again shows that
tuning to the dressed resonanc8s,= wsg or )’ = w3y, ¥3> v, must hold.
On the other hand, to find the steady-state coherence
PP 4 p$2 . we must formally solve the coupled amplitude equa-
TabS T 3 Zyat oy (53 tions, (15b) and (15d), for @, anddg , because the off-

diagonal couplings between the dressed amplitudes are cru-
Iglal to get the correct, off-diagonal density-matrix element in
a secular expansion. To first order j1/y, the probability
amplitudes are
_i7’1)
8x

ei(ﬂkz_wg)tle_('yS/z)(tl_tO>,

Again, this tuning produces an absorption cross sectio
~x?1¥? larger than the cross section far =0, Eq. (52).
Furthermore, forQ)’ = w3z or Q' =wsa, the absorption is
larger than the amplification, E@38), by ys/y;,, showing
by our amplitude method that a lack of inversion leads toy (ttg)=—i 9_23f dt,| e~ (xrM—ty 4
overall absorption. Therefore, AWI is impossible for direct 282" )

tuning of the probe to the dressed resonances.

x elix—r/A(t-ty)

D. Steady-state density-matrix elements from the amplitudes

As a final exercise, we can calculate the steady state es- (553
tablished in the absence of the probe. We know #igt
i
8x

equalsr/y;, as derived in Eq(23) above and corroborated ~ . 033 ftdtl alix—ya)(t—ty) |
to
el (R, @3)t1a = (73/2)(t1—to)

by Eq. (A10) in Appendix A. Now, we need to fing'%, Anky(Llo) =~ 2
p) andp{%. These quantities will confirm that our formal-
ism reproduces all of the relevant, strong-pump results of the X e~ (Xt v 4(t=ty)
density-matrix approach, Eq6A13a and (A13b).

Returning to the amplitude equations fm;,kz(t,to) and (55b)
aB,kZ(t,to), Egs.(21b and (21d), with the initial condition
given by Eq.(22), we conjecture that spontaneous transitiong=ormally, to first order iny, / x, the off-diagonal terms in the
from state 3 to stated andB in the absence of the probe Hamiltonian affect only the eigenvectors of the statand
allow the steady-state dressed populations and coherencesBosubspace, not the dressed eigenvalueg,—ivy,/4, as

form. Therefore, we have seen here. The second term in each square bracket represents
this change in the eigenvector, which mixes in the other
t (0)
pQ= E F dtolan . (tto)]? (549 dressed state. Substituting into H&§4c), we find thatpjg

—w R =ir/2x. This is the correct value for the dressed coherence,



55 AMPLIFICATION WITHOUT INVERSION: . .. 3913

and we have now confirmed that our method produces theyo frequenciesﬂkz ankos, are a distinct pair for each of

steady-state density-matrix elements. the four absorption diagrams, as seen in Figd)-33(e).
Therefore, for each scattered probe photon we can track ex-
IV. DISCUSSION AND CONCLUSION actly which Feynman pathway was taken using photon coin-
Gathering the results of the amplitude calculation, Eqscidence spectroscopy of the fluorescence. The exception is
(37) and (52), we arrive at the overall gain coefficient for the precise path of the two-quantum amplification, where

A=A"=0, guantum interference does not allow us to know which inter-
) ) mediate channel, statd@ or B, was used for emission at
kK'nd™ 1 vy, V3 73 |war].
C=(Tamp™ TapdN= 2eohi 3 X2 [1+(Z oy I What about oura priori omission of spontaneous decay

(56) from state 1 to 2(and therefore between statésand B)?
Considering that the steady state is established by the two
pump fields such that the dressed states have a negligible
population difference in the secular limit far=0, it is rea-

where n is the atomic density. This is identical to the
density-matrix result, Eq6) or (A12). Moreover, our deri-
vation identified the physical origin in an amplitude ap'nsgnable that spontaneous emission framo B and vice

proach of each of the three terms in the square brackets a | ) tant role in defining the phvsical
thereby allowed us to associate different amplitude perturba\fersa plays an unimportant rolé in defining the physica

tion processes with the contributing elements of the densit)meCh""msmS for pro_be ampl|f|cat|on. and a_psqrptm_n. In the
matrix. We see that the condition thag>y, not only as- quantum dressed picture a dynamic equilibrium is estab-

sures that our system is uninverted, but also assures that tfghed where the decay out of thé-photon manifold of
two-quantum contribution, ¥s/vy;), to the amplification dressed states is compensated by decay into this manifold.
process is larger than the stepwise contribution “1.” WhenTherefore, the populations reach the same steady state in
the ratio of decay rates becomes too large, the stepwise aBach manifold foN>1. As for the dressed state coherence,

sorption, (y3/y,)2, will swamp both amplification contribu- which provides the important gain contribution for AWI to

tions. The boundary between these cases is given by take place in the density-matrix approach, it would decay at
a faster rate thany;/2 without changing the basic physics
vs [73\® s 1 J5 [17].
1+ y_l_ y_l ®71_ 2(1+y5)=162. (57 Throughout this paper we have described our subject as

o _ AWI in the secular limit. More precisely, the probe gain
(That the upper limit on the ratio of the decay rates forms the:pefficient(56) specifies the lowest-order amplification in a
golden mean is an interesting side npfEhe range of decay -1 gxpansion for resonant pump and probe fields. To pro-

ratios for which AW! is possible is then duce results which are correct beyond the secular approxi-
mation, but still restricted to a weak probe, we would have to

1<£<%(1+ J5). (58  diagonialize the state 1-2 subspace exactly in E3@—(9¢e).
71 Such a unitary transformation is also restricted to the decay

Our strong, resonant pump results lead to different Con_spheme we have chosen in Figalland is characterized by

clusions than previous analyses of off-resonant, weak pumslgenvectors and eigepvalues which form a true bas'is of the
AWI. In those schemes, interferences betweliferent or-  coupled atom, pump field, and vacuum. A perturbation cal-
ders of perturbation theory led to reduced absorpti@s]. culation in this new basis would be valid for arbitrary decay
Here, interferences occur in trleame orderof perturbation  rates,y; andys. In the secular limit for either a semiclassi-
theory because we probe between two intermediate level§al or quantum pump field, this representation would reduce
the dressed states. These interferences are present for béghthe dressed basis.
amplification and absorption diagrams. With the destructive The assumptions of weak incoherent pumping and no de-
interference eliminating the possibility of two-quantum ab-cay from levels 3 to 4 were necessary to avoid the infinite
sorption, only stepwise absorption directly from the dressechumber of quantum pathways associated with multistep ex-
states is allowed. This stepwise absorption is larger than theitation and saturation of the 3-4 transition by the incoherent
stepwise amplification. The additional, two-quantum ampli-pump. In this context we have constructed a perturbation
fication which arises from constructive interference cantheory which allows for a treatment of strong atom-pump
therefore, be interpreted as the reason behind AWI from afield coupling in the presence of the vacuum and which leads
amplitude approach. to clear Feynman rules for any probe or vacuum scattering
A significant new finding is our ability to correlate the process. The key is to use the dressed basis. We have applied
spontaneous emission spectrum with distinct amplificatiorthat theory to analyze AWI in a system used to model recent
and absorption pathways, owing to the entanglement of thexperimental result§1l] by developing Feynman diagrams
probe and vacuum fields. The two-quantum amplificationwhich clearly define the amplification and absorption of a
process is the only path which accompanies emission at therobe laser. These Feynman diagrams identify the role of
frequency|w,/|. However, both the stepwise amplification quantum interference when transitions are induced simulta-
and absorption processes correlate with emission at the sidaeously to each dressed state. The interferences were shown
bands]|w,/|+ x. In order to distinguish these two processes,to be constructive for amplification and destructive for ab-
the absorption pathways lead to the additional spontaneoworption. In this way we have discovered the physical origin
emission of two photons near the probe frequefi¢yThese  of AWI in such a system.
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2
fezlz el
(0)_ (0)_ Y3 Y1

P33 P27 =
33 22 I{(’le

Y1
X (

(A5)

+A2 2 11

+Bx

and

The master equations for the bare atomic populations and

coherences for the closed system outlined in Sec. Il A can be
written by inspection since we already know the relevant Y1
decay rategsee Fig. 1a)] in the Weisskopf-Wigner approxi-

mation. These equations are

p11=—7v1p1u1— (ixpautc.c), (Ala)

p22=vapaat (ixpzmtc.c)+(ix patc.c), (Alb)
p33= —T(p3z—pas) — vap3s— (ix'paztc.c), (Alo)

P24= v1P11+ T (P33— Paa), (Ald)

521: —ix(pu1—p20—

. Vi~ ok~
'A+7)P21_|(X )* P31,

(Ale)
VI Sy V3~ L~
p23=—1(x")*(p3z—p22) —| 1A "‘? P23~ 1XP13;
(ALf)
f e em o~ . Y1t v~
p13=1(x")*p1o—ixpost '5_T)P13, (Alg)
p14= p34=0, (Alh)

- ix
0) _
P(lz)—

0 0
P(ll)_p(ZZ))
——IiA

2

(A6)

for

1+ 2

. (A7)
Y1

B: 73+2l’

In Eq. (A4), p%% has two distinct parts. The first term in
the first set of square brackets reflects the expected absorp-
tion which results from having more population in state 2
than in state 3, which is always the case o>y, by Eq.

(A5). The second term, however, can be positive real, dem-
onstrating that any overall gain is due to a coherence estab-
lished by the pump. This coherence of the pump transition
]5(1%) is coupled to the probe through the off-diagonal element
P13 [see Eq.(Alg)], demonstrating that coherence between

with the supplementary definitions for coherences in a field"€ bare upper levels 1 and 3 in the presence of the pump is

interaction representation,
P1= P12 M =(020)*, Pa=p3e'? '=(p0)*,
(A2)

—~ _ H Q/_Q _ i~
p31=paie' )t_(P13)*-

The closure condition i§i4:1 pii=1. In Eqg.(Alg) the rela-
tive pump-probe detuning is defined as

S=A-A". (A3)
To first order in the probe field, the off-diagonal element
is
~(0)
~ A XP12
PE= =i | (8- p )+
Y1 73_i5
2
2 -1
V3 . X
X| 5 +IA+ +————| , A4
2 yitvs . ) (A4
5 —id

crucial for AWI [1]. When this gain mechanism overcomes
the population contribution, AWI occurs. In order to maxi-
mize this term, we requiré=0 in Eq. (A4). This vanishing
pump-probe detuning simultaneously maximizes the coher-
ent pump’s saturation of the probe polarization, as seen in
the denominator of EqA4), indicating a strong-pump phe-
nomenon. On the other hand, if the probe is tuned to one of
the Rabi sidebandsA( ~ * x) for A=0, the gain term pro-
portional top{% will be down by ~(y1+ y3)/2x With re-
spect to the population term and will not contribute in the
secular limit.

For 6=0 the small-signal gain coefficient per unit length
is given by

__Knd m( [ ):k’ndz 2x*yr [yt ys
eoft (x)*]  efi (vity)?| 3
2
Y3 71 73 2 1
(-2 R
71) (ZX 2x  vitvs D,D,
(A8)

where the steady-state density-matrix elements in the alwherek’=('/c is the probe wave vectod, is the 2-3 dipole

sence of the probe are

matrix elementn is the atomic density,
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2 plitude calculation that starts by incoherent pumping out of
+A2?, level 4 into level 3 and ends by decay back into level 4 from
the dressed states. The gain coefficient is discussed in Secs.

Il and IV with respect to our amplitude approach.

V3 2x
2 vty

2
D2: r|: (%) + AZ
APPENDIX B: FEYNMAN DIAGRAMS FOR AWI USING
The gain coefficient is seen to be strongly peaked around the QUANTUM DRESSED STATES
detuningA=A"=0. ) i )

In the limits x> y;,vs and A=A’=0, assuming weak _ 1he Feynman diagrams can be defined in a fully quan-
incoherent pumping; <1y, ,vs, we find tized dressed basis as well. Instead of trying to draw a picture
of transitions between different dressed levels, the perturba-
tion chains that were used in the amplitude calculation above
L provide the same information. From time-independent per-

(A10) turbation theory, we know how to construct the different
amplitudes from these pathwa}%9,20. Assuming a reso-

Y
+8y2 2. (A9)
Y3

r 73) 73)
O _ (0_ (0)_ (0)_ ___ 1—- 2= (0) 1—- 22
P33 ~ P22 = P33 ~ P11 y ( 71 3 vl

~0) 2iy ©_ (0 i nant pump field, the quantum dressed levels of the
P12=" " (p11—p2)="75 X (A11)  N-photon manifold are written as
and IB,N,N' (K} = VE(LN= LN’ {K})+ 2NN’ {k})),
. k,nd2 r Y1 1 ( Y3 2+ V3 (Alz) (Bla)
2eoft v3 X2 Y1 Y1

ANN kD =V3(—|TN=1IN’ {k})+|2N,N" {k})),
for the probe population inversion, the pump coherence, and| tk}) \/:( | kb +] { %I>3)1b)

the gain coefficient, respectively. The gain coefficient clearly

shows that the population difference contributes as 1 .
~(ya/y1), while the (y3/yy) term comes from the coher- Where|;) and |2) are, the upper and lower atomic states,
ence contribution to the amplification. respectivelyN and N’ are the number of pump and probe

The dressed picture is particularly easy to understand ifnotons, respectively, ar{ét} refers to the set of single pho-
this limit. The semiclassical dressed states are split in energ n Stat.esf|kl’)‘1;k2’)‘.2;'">E|{k}>’ created by spontane-
by 24y, each having a FWHM of y,/2. Probe or vacuum ©US €mission, each with an energfd,. The (compley en-
radiation tuned between these states creates an atomic supgfgies of the quantum dressed states in frequency units,
position, which can either enhance or detract from furthetaking w;00;0,=0, are
transitions. The steady-state, dressed density-matrix elements

are
wan =X 1 5 +NOEN'Q'+ S 0, (B2a
r I

P00+ T = -,
Al13
( a) wA,N,N’,{k}:_X_i %‘FNQ"’N’Q""E Qki'
|
~ - ir
Pab=(pBA* = 3 (P57 —pii+ 05 =710 = 5 " (B2b)
(A13b) . : _
Levels 3 and 4 in thé&l-photon manifold have the energies
showing from Eq.(A4) that
. V3 Y
- ) , wS,N,N’,{k}:wS_I —+NQ+N'Q +Z Qki'
P53~ —i(xX')*| 2(p53 = pin) + 2 (P53~ iR 2 '
(B3a)
i XPER X - 0+ S
(A14) w4’N'N,Y{k}—w4+NQ+N Q'+ 4 Qki' (B3b)
Y1t 7’3_i Y1t 73 '
2 2

The Hilbert space, expanded in this dressed basis, leads to a

We now identify absorption with the lack of inversion in the Schralinger equation consistent with the semiclassical am-
dressed picture and amplification owing to a dressed coheplitude equations of motion, Eqs15g—(15f).
ence. The initial state of the system j¢,N,N’,{0}). Incoherent

Above, the gain coefficient has been written in a form inpumping at the timety pumps the system into
Eqg. (A12) that emphasizes its proportionality @) the |3,N,N’,{0}). We stress again that the incoherent pumping
steady-state population of level B|y;, and(ii) the decay process, when accounted for formally, leads to the cross sec-
rate y,. This form suggests a perturbation path for an am-ion,
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o 5 ) B4 V1295,
T=F g el (B4 3N,N',{0}) —— [B,N,N’" k;)
whereF is now the quantum flux factdri8], andn’=N’ IRy
+1 for probe amplification anah’=N’'—1 for probe ab- —— [3N,N"—1ky)
sorption. The perturbation chains for amplification are o
V2g53
\““m()(,)* —>|A1N1N,_1yk2|k3>
3,N,N’,{0 B,N,N"+140
[BN.N',{0}) —— | {0}) i,
\FZQZl E— |4,N_ 1,N, - l,kz,k3,k4>, (BSb)
— S |[AN=1N’+1k,), .
(B5a) 223
I3N,N’,{0}) ——— |A,N,N’ ,ky)
VI2(x')*
|3N,N’,{0}) —— |A,N,N'+1/0}) VIR2y'
—— [3N,N"—1k>)
—T2gy, R
— S |JAN=1N'+1k,), Tzs ,
(Bsb) —_— |B,N,N _1,k2,k3>
where paths(B5a) and (B5b) lead to al® and 2
» AN=LIN'+1k; ——— [4N=1N"—1kj kg k), (B8¢)

B4N- 1N’ + 1k, " respectively. The condition for energy con-

servation of the scattering process is V17293,
|3,N,N’,{0}) —— |A,N,N’ K,)
Ean—1nr+1k,~ Eannr 0y~ Qk H0a— O+ Q" —w3=0,
(B6) IRy
—— [3N,N'—1ky)

implying spontaneous emission thlzﬂ—w4=|w4/| for T
the A’=0, two-quantum amplification process, wheavg: oz ,
was defined for the semiclassical calculation by Ep). —— [ANN"=1kz ks)
(From this, we can identify the semiclassical stdt¢ in the —JT2g%,
rotating frame of the pump with the coupled at_om-fleld ;tate |4AN—1N’—1k,,ks,ks), (BSd)
|4N—1). For example, see Refgl9, 20.) The final transi-

tion energies, ; (BB) (BA)
corresponding 08, \" 1 N 15, gk, BAN-IN' -~ Lky kg kg
- _ (AB) (AA) :
E4,N—1,N’+1,kl_EB,N,N’+1,{O}"’le_|w4’|_X_Ov QAN LN~ Ly kg ky and Q4N LN~ 1y kg kg respectively.

(B7a Energy conservation of the absorption diagrams requires

Ean-1n7+1k,~ Eann+ 140y~ i, — 04|+ x=0, Ean—1N' -1k, kg .k, ~ B3NN (0= @2 = Q= Q"+ Oy + 0y
(B7b)
give the stepwise resonances. Finally, we notice that the full +Qk4 @30,
scattering process, including incoherent pumping, started in
state 4 in theN-photon manifold of the pump and ends in
state 4 in the ll—1)-photon manifold with a spontaneous
photon emitted; both states are asymptotically stable in th
weak incoherent pumping limit,<ys,v;.
The four Feynman diagrams for absorption are

(B9)

just as the semiclassical condition in E¢6). Furthermore,

the three intermediate resonances to the final state are evi-
fent from the three final transitions in each of the four path-
ways.

The final state of the amplification diagrams was shown to
be|4N—1N'+1k,), distinguishing it clearly from that of
the absorption proces$ N—1N’+1k,,ks,k,). As a re-
sult, these two states do not interfere, allowing us to write the
overall quantum cross section for amplification ag,

— oaps The definition of these fully quantized Feynman dia-
grams is satisfying from a fundamental point of view. Yet,

VI72g3;
13N,N’,{0}) — [B,N,N’ k)

VIR2y'
——— |3N,N"—1kj,)

VIr2g3, the physics of AWI and the conclusions drawn from the cal-
—|B,N,N"—1k;,ks) culation remain the same, except in the truly quantum limit,
where the number of probe photoN$ becomes small. The
V17293, ramifications of a probe field in this limit will not be dis-

——— |[4N—1N’'—1k,,ks,ks), (B83  cussed here.
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