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Amplification without inversion: Understanding probability amplitudes, quantum interference,
and Feynman rules in a strongly driven system
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Density-matrix calculations provide the steady-state conditions for probe amplification or lasing between
atomic levels with an uninverted population, but additional insight into the underlying physics is given by a
probability amplitude approach. In this paper we derive the gain coefficient from the Feynman diagrams for a
probe-laser incident on a resonantly pumped,V-type system using time-dependent perturbation theory in a
dressed basis. The connection is made to density-matrix calculations for this model, which have been used
recently to describe experiments in Rb@A. S. Zibrov et al., Laser Phys.5, 553 ~1995!; Phys. Rev. Lett.75,
1499 ~1995!#. In the density-matrix calculation the overall gain is possible because the pump-induced coher-
ence of a strongly driven transition leads to probe amplification, despite the lack of inversion on the probe
transition. In our amplitude approach we associate a specific physical process with each of the scattering
channels for the probe and show how amplification without inversion can be achieved. The amplitude calcu-
lation reveals a distinction between stepwise and two-quantum processes. Interference is shown to result from
the two-quantum processes, constructive for the amplification channels and destructive for the absorption.
Terms appearing in the gain coefficient are traced to different sources in the amplitude and density-matrix
approaches. The physical origin of each term is discussed and compared for both approaches. Terms that arise
from coherences in the density-matrix approach are shown to correspond to noninterfering stepwise contribu-
tions in the amplitude approach. In deriving these results, we find that the Feynman rules that we construct for
forming the probability amplitude for an arbitrary scattering process of the electromagnetic field from the
coupled atom-strong pump system are consistent with Rayleigh-Schro¨dinger perturbation theory in the quan-
tum dressed basis. In addition, the spontaneously emitted photons become entangled with the probe field,
correlating the emission spectrum with specific scattering channels.@S1050-2947~97!06405-6#

PACS number~s!: 42.50.Gy, 42.50.Hz
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I. INTRODUCTION

The recent interest in quantum coherence effects in la
atom systems has prompted some debate on the subje
amplification without inversion~AWI ! @1–4#. We define
AWI as the observation of laser probe amplification in
system which exhibits no population inversion on the pro
transition in any bare or dressed state basis and is a prec
to lasing without inversion~LWI !. The overall gain can be
traced to a quantum coherence between the levels of
system@5#, a fact that is evident in density-matrix calcul
tions. ~By convention, we refer to off-diagonal density
matrix elements ascoherences.! However, additional infor-
mation related to the physical origin of the gain can be fou
in the probability amplitudes associated with the differe
Feynman paths contributing to theS matrix for the process
Lasing without inversion schemes have been reported
two-, three-, and four-level atomic models. The experimen
atoms, alkali-metal vapors for the most part, have more c
plicated level structures and are made to interact with la
fields of various polarizations and static magnetic fie
@1,3,4#.

A simple example of AWI occurs in the weak probe
Mollow spectrum @6# of the two-level atom, pumped of
resonance by a strong laser field. A steady-state den
matrix calculation for this system reveals gain ne
D8'D2G, whereD5V2v and D85V82v8 are the pump
551050-2947/97/55~5!/3900~18!/$10.00
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and probe detunings from the atomic resonances, res
tively, andG is the natural linewidth of the transition.~For
the two-level atom the pump and probe drive the same tr
sition, so thatv5v8.! This small-signal gain feature, ofte
called a ‘‘stimulated Rayleigh resonance,’’ is attributed by
density-matrix analysis to the coherence between the ato
levels in both the bare and dressed bases; no populatio
version exists in the system. However, the density-ma
approach makes it impossible to keep track of possible in
ference terms in the wave function which lead to a reduct
of the absorption cross section and, therefore, AWI.

Several years ago, Grynberg and Cohen-Tannoudji@7#
showed this interference explicitly for the first time by d
riving the gain using a perturbation theory for the quantu
probability amplitudes. Assuming an off-resonant pump a
probe, their calculations were performed in the dressed ba
using the dressed level which adiabatically evolves from
ground state as a proper asymptotic~stable! state of the sys-
tem. The authors showed that an asymmetry occurs, whe
the two absorption channels interfere destructively, while
amplification process has only one diagram. The reduced
sorption allows for overall gain in the absence of a popu
tion inversion. A similar prescription was used recently
Grynberg, Pinard, and Mandel@8# to reveal the quantum in
terference in an off resonant, weak pump AWI scheme
theV-type three-level atom. These authors suggested th
resonant, strong pump field theory, needed for an und
3900 © 1997 The American Physical Society
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55 3901AMPLIFICATION WITHOUT INVERSION: . . .
standing of many experiments but beyond the validity
their perturbation approach, seemed possible in light of
cent density-matrix calculations with two-level atoms
Szymanowski and co-workers@9#.

Intrigued by these results, we have studied AWI in t
strongly pumped, four-levelV-type system that was used b
Zibrov and co-workers@1,10# to explain their AWI and LWI
experiments in rubidium. Because of calculations like tho
in Refs.@7,8#, it was believed that AWI occurs in this four
level atom when a quantum interference cancellation of
sorption in the amplitudes can be associated with the co
ence contribution to the gain in the density-matrix analys
To our knowledge, this paper details the first amplitude c
culation of AWI which is valid for strong, resonant pum
fields and shows that probability amplitudes describe the
cise mechanisms which allow gain to dominate absorpt
We find that both gain and absorption processes are cru
in understanding this system. Our calculations are done u
time-dependent perturbation theory to lowest order in
probe field in a semiclassical dressed state basis@11,12#. This
basis automatically accounts for the strong, coherent pu
ing to all orders. A fourth state in the atom is coupled inc
herently to theV system and acts as both an incoher
pumping reservoir and as a stationary, final state in per
bation theory. Seen as a scattering process, the probe
scatters off of the incoherently pumped, atom–strong-fi
system, leading to different Feynman diagrams for gain
for absorption. In the main body of the paper, we have
quantized the pump and probe fields and note that prev
quantized field calculations by Grynberg and co-work
@7,8# were independent of the quantum statistics of the fie
Our technique automatically includes all multiphoton~non-
linear! pump processes combined with the absorption
emission of a single probe photon and is formally equival
to using time-independent perturbation theory in the fu
quantized dressed basis, as will be demonstrated.

The details of the amplitude approach are spelled out
low. One interesting feature of the calculation is to show
role of the vacuum field in selecting the resonances of
dressed atom-field system. A more striking feature of
amplitude approach is that the various terms contributing
the absorption and amplification involveentangled statesof
the probe and vacuum field. As such, the radiation emi
into various modes of the vacuum field can be correla
with specific contributions to probe amplification or abso
tion. Correlations of this type have been discussed, for
ample, by Dubetsky and Berman in their amplitude appro
to the analysis of recoil- and pressure-induced extra re
nances in four-wave mixing signals@13#.

In Sec. II we present the model system and review
density-matrix results for AWI. In particular, forD5D8, no
population inversion on the probe transition is possible wh
the bare, upper probe level decays faster than the bare, u
pump level@see Fig. 1~a!#. Nevertheless, probe amplificatio
can occur under these conditions. In Sec. III the Ham
tonian, including the necessary couplings to the vacu
field, is transformed into the semiclassical dressed ba
Then, the perturbation diagrams and cross sections for
plification and absorption are developed. Finally, the stea
state conditions are reproduced by the amplitude method
Sec. IV we show how our results match the strong-fi
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density-matrix expressions for the gain coefficient and p
vide the correct conditions for AWI. We then conclude b
discussing the basic physics of AWI, as elucidated by
amplitude calculation. In Appendix A the density-matr
master equations for this system are written out and solve
steady state. In Appendix B we describe the Feynman p
for amplification and absorption in the quantum dressed s
picture.

The main result of this paper is as follows: forD5D8
50, the net probe gain coefficient is proportional to a qua
tity G defined as

G512S g3

g1
D 21S g3

g1
D , ~1!

where g3 and g1 are the state 3 and state 1 decay rat
respectively. In adensity-matrix approachto the calculation,
the term 12(g3 /g1)

2 can be associated with a populatio
difference of dressed or bare states in the absence of
probe field. There is no population inversion in either t
dressed or bare picture ifg3 /g1.1. As a consequence o
this condition, the terms arising from the population diffe
ence can result in probe absorption only. On the other ha
the term (g3 /g1) in G can be associated with a coherence
dressed or bare states in the absence of the probe. This
term is responsible for AWI for 1,g3 /g1,(11A5)/2. The

FIG. 1. ~a! Energy level and pumping scheme for the four-lev
atom, in whichr is the incoherent pumping rate of level 3. Th
coherent pump drives the 1-2 transition strongly with a Rabi f
quencyx. Amplification without inversion occurs for the probe la
ser on the 2-3 transition. State 4 is asymptotically stable.~inset!
Population decay rates.~b! Dressed energy levels of the atom
strong pump field system forD5V2v1250 in the frame rotating
at the pump frequencyV. The probe field at frequencyV8 and the
quantum electromagnetic field~not shown! cause transitions be
tween state 3 and the dressed statesA andB, which are split in
energy by the generalized Rabi frequency\R52\x. Interference
results when a superposition of dressed states are formed a
intermediate state during probe field scattering. The dashed
marks the zero of energy.
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3902 55J. L. COHEN AND P. R. BERMAN
interpretation of AWI differs significantly in theamplitude
approachto the calculation. In the amplitude approach, w
find that the terms (g3 /g1)

2 and (g3 /g1) in G arise from
stepwisecontributions to the probe absorption and ampl
cation, respectively. Forg3 /g1.1, the stepwise absorptio
always dominates the stepwise amplification, so that AW
not possible without an additional contribution. This ad
tional contribution comes from the ‘‘1’’ term in Eq.~1! for
G, which results from atwo-quantumamplification process
involving constructive interference between different dres
state channels to the same final state. A corresponding
tribution to the probe absorption vanishes owing to destr
tive interference between the dressed channels.~The terms,
stepwise and two quantum, are defined in Ref.@14# and will
become clear in the text below.! Thus, while destructive
quantum interference is crucial for overall probe gain in t
system, we do not see its effect directly in the expression
the gain coefficient, viz., Eq.~1! for G. Instead, noninterfer-
ing stepwise contributions to the amplification in the amp
tude approach are associated with the coherence of ba
dressed states in the density-matrix approach, leading to
term (g3 /g1) in G.

II. AMPLIFICATION WITHOUT INVERSION
IN A FOUR-LEVEL ATOM

A. The system

An energy-level diagram and pumping scheme for
four-level atom are displayed in Fig. 1. Figure 1~a! shows the
bare energy-level separations,\v12 and \v32, and laser
field frequencies,V andV8, for the pump and probe trans
tions, respectively. The strong pump transition betwe
states 1 and 2 has an associated Rabi frequencyx. In the bare
picture these levels are ac Stark split by the laser. Howe
the system is most elegantly understood in a dressed b
taking into account the strong laser-atom interaction. Afte
unitary transformation of levels 1 and 2 into the referen
frame rotating at the field frequencyV, the Hamiltonian is
transformed again to form the dressed states,A andB. The
resulting basis, shown schematically in Fig. 1~b!, has been
called the semiclassical dressed representation becau
takes into account the coupling between the atom and
classical pump field nonperturbatively@11,12#.

Though the off-resonant AWI analyses of Refs.@7# and
@8# employed a quantized field approach, assuming the pu
and probe lasers were in theN- andN8-photon states, respec
tively, the resulting probe gain turned out to be independ
of the field statistics forN,N8@0. Quantum dressed state
are useful because the fundamental scattering processe
be well defined within theN-photon manifold. While our
states,A andB, could be thought of as theN-photon pair of
states in the dressed ladder, we prefer to invoke the co
spondence between a classical cw field with no photon
the vacuum and a single mode coherent state of the quan
field @15#. In this way we can develop a semiclassical pert
bation theory which reproduces the exact quantum res
while allowing for arbitrary detunings, field strengths, a
decay rates. For completeness, we will define the pr
emission and absorption processes for AWI in terms of
quantum dressed states in Appendix B.
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The probe field on the 2-3 transition is assumed to
weak and, therefore, treated to lowest order in its Rabi
quencyx8. In the dressed basis, as seen in Fig. 1~b!, the
probe simultaneously interacts with both dressed statesA
andB, which are split in frequency units by the generaliz
pump Rabi frequency,

R5~D214x2!1/2. ~2!

When uDu,uD8u!2x, the probe is seen to be detuned fro
both dressed states. In addition, an incoherent source pu
population from the auxiliary, ground state 4 into state 3
the rater . State 4 is a stable state of the system and
therefore serve as an initial and final state in amplitude p
turbation theory.

The inset of Fig. 1~a! shows the radiative decay schem
required to understand the physics of AWI in this syste
The population decay rates areg1 for the 1→4 transition
andg3 for the 3→2 transition. Note that there is no cohere
excitation into or out of level 4, justifying its use as a
asymptotic state in perturbation theory whenr is made arbi-
trarily small. A steady-state density-matrix calculation c
also include spontaneous emission from state 3 to 4 and f
state 1 to 2. However, these decay terms turn out to have
influence on the basic physical processes by which AWI
curs and make amplitude calculations all but impossib
This is a subtle point. Decay from state 1 to 2 during coh
ent, resonant excitation will cause transitions between
semiclassical dressed states, corresponding to cascade
tween pairs of quantum dressed states from theN-photon
manifold to the (N21)-photon manifold and so on. This i
the two-level resonance fluorescence problem, which has
to be solved by probability amplitude methods@12#. While
the spontaneous emission between the quantum dre
states has been essential in understanding previous
mechanisms, it plays no role in AWI in this scheme, as s
in the Feynman-type diagrams for amplification and abso
tion in Figs. 2 and 3.

B. The Hamiltonian and density-matrix results for the gain

The rotating-wave Hamiltonian in the dipole approxim
tion, including the atom-vacuum interaction, is

H5(
i51

4

\v is i i1(
k,l

\Vkak,l
† ak,l1\(

k,l
@~g41s41

1

1g23s23
1 !ak,l1H.c.#1\x~s21

1e2 iVt1s21
2eiVt!

1\@x8s23
1e2 iV8t1~x8!*s23

2eiV8t#. ~3!

The energy of the atomic statei is given by\v i , and the
frequency difference between statesi and j is v i j5v i
2v j . The atomic state projection operators are represen
by s i i5u i &^ i u, and the atomic raising~lowering! operator,
causing a transition between statesi and j , is s i j

15u j &^ i u
(s i j

25u i &^ j u). The second term in Eq.~3! is the free-field
Hamiltonian, whereak,l (ak,l

† ) annihilates~creates! a photon
of polarization êl and frequencyVk with wave vectoruku
5cVk . The third term accounts for spontaneous emiss
by the atom-vacuum interaction with coupling
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55 3903AMPLIFICATION WITHOUT INVERSION: . . .
gi j52 i ^ j ud•êlu i &S Vk

2e0\V
D 1/2, ~4!

where ^ j ud•êlu i & is the dipole moment alongêl of the i - j
transition, andV is the box quantization volume of the ele
tromagnetic field. The remaining terms of Eq.~3! show the
semiclassical, dipole interactions between the applied la
fields and the atom, where the coherent pump acts only
the 1-2 transition and the probe only on the 2-3 transiti
We take the pump Rabi frequencyx to be real and positive
Assuming the pump field is strong, the secular limit is d
fined as

x@g3 ,g1 . ~5!

The equations of motion for the reduced density ma
are derived by tracing over the vacuum field and adding
the incoherent pumping term. These equations and t
steady-state solutions are shown in Appendix A. The con
sions drawn from them, whether in a bare or dressed re
sentation, are the same. In the bare basis the presenc
AWI results from a coherence between levels 1 and 2 w
dressed by a strong, resonant pump. This coherence lea
a contribution to the probe amplification on the 2-3 tran
tion. The density-matrix solution shows that AWI can occ
most easily if the pump and probe are both tuned to
atomic resonances. In the dressed basis, this implies tha
probe is tuned directly between the dressed statesA andB
@see Fig. 1~b!#. Probe gain occurs on the transitions betwe
state 3 and each of the dressed states. The overall ga
AWI is then interpreted as arising from a coherence betw
dressed statesA andB.

The gain coefficient in the secular approximation f
D5D850 and weak incoherent pumping is

G5
k8nd2

2e0\

r

g3

g1

x2 F12S g3

g1
D 21 g3

g1
G ~6!

from Eq.~A12! in Appendix A, wherek85V8/c is the probe
wave vector,d is the 2-3 dipole matrix element, andn is the
atomic density. The square bracket is the quantity define
G in Eq. ~1!. We set

g3.g1 , ~7!

so that no population inversion exists in either the dresse
bare basis. Still, amplification occurs forG.0. Again, the
density-matrix approach does not show explicitly how qu
tum scattering processes lead to this AWI. That is the
tended purpose of this paper. In Sec. III the amplitude eq
tions for arbitrary parameters in the weak incoherent pu
limit are developed. By then specializing to the resonant~co-
herent! pump case in the secular limit, the physics of t
AWI becomes clear in perturbation theory for the probe.

III. DRESSED STATE PERTURBATION THEORY

A. Equations of motion for the amplitudes, incoherent
pumping, and cross sections

We write the state vector in a mixed interaction repres
tation of the bare basis,
er
n
.

-

x
n
ir
-
e-
of
n
to

-
r
e
the

n
in
n

as

or

-
-
a-
p

-

uc~ t !&5~a1,$k%e
2 iVtu1&1a2,$k%u2&1a3,$k%e

2 iv32tu3&

1a4,$k%e
iv24tu4&)^e2 iV$k%tu$k%&. ~8!

For each probability amplitude,ai ,$k% , the indexi labels the
atomic stateu i &. The symbol$k% labels a product ofj single
photon states,uk1 ,l1 ;k2 ,l2 ;...;k j ,l j&[u$k%&, created from
the vacuum stateu0&, which is denoted by$0%. The energy of
state$k% is written as\V$k%5\( jVk j

. The normal interac-
tion representation is used for states 3 and 4 in Eq.~8!, while
a field interaction representation is used for the stron
driven 1-2 transition. Without loss of generality, the zero
energy is assumed to beu2,$0%&, implying v250. Forming
the Schro¨dinger equation, we perform a Weisskopf-Wign
derivation of the amplitude decay rates by formally integr
ing the equations forȧ4,$k0%,k8 andȧ2,$k0%,k8 , substituting into

the equations forȧ1,$k0% and ȧ3,$k0% , respectively, and sum
ming over thek8 mode of the vacuum. The resulting equ
tions of motion, which can be written in the Schro¨dinger
form i\ȧ5H̃a for the state vectora and Hamiltonian matrix
H̃, are

i ȧ1,$k0%52S D1 i
g1

2 Da1,$k0%1xa2,$k0% , ~9a!

i ȧ2,$k0%5xa1,$k0%1~x8!* eiD8ta3,$k0% , ~9b!

i ȧ2,$k0%,k5xa1,$k0%,k1g23* e
i ~Vk2v32!ta3,$k0% , ~9c!

i ȧ3,$k0%5x8e2 iD8ta2,$k0%2 i
g3

2
a3,$k0% , ~9d!

i ȧ4,$k0%,k5g41* e
i ~Vk2v242V!ta1,$k0% , ~9e!

where D5V2v12 and D85V82v32 are the pump and
probe detunings, respectively. The quantum field is initia
in the vacuum state, and emitted photons cannot act bac
the system, so we have dropped interaction terms relate
the absorption of photons out of states 2 and 4 into state
and 1, respectively. The in terms for states 2 and 4,
spontaneous emission, will be treated perturbatively us
Eqs. ~9c! and ~9e! in the calculation of specific transition
amplitudes below. The distinction is clear in these equati
between the quantum field transitions, which change the fi
state fromu$k0%& to u$k0%,k&, and the classical laser trans
tions, which do not change the state of the vacuum field

Semiclassical dressed states for the 1-2 transition are
troduced via the transformation

ad5~ ãB,$k0% ãA,$k0% a3,$k0% a4,$k0%!
T5TIa, Hd5TIH̃TI †,

~10!

using the unitary matrix

TI5S c
2s
0
0

s
c
0
0

0
0
1
0

0
0
0
1
D , ~11!

where
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c[cosu5F12 S 12
D

RD G1/2, ~12a!

s[sinu5F12 S 11
D

RD G1/2, ~12b!

for the mixing angle 0<u<p/2, andãB,$k0% and ãA,$k0% are
dressed state probability amplitudes. This transformatio
discussed in more detail in Ref.@12#, where the semiclassica
dressed states were used to find the pump-probe and
nance fluorescence spectrum of a two-level atom. For
purposes the dressed states,

uB&5ce2 iVtu1&1su2&5cu 1̃&1su 2̃&, ~13a!

uA&52se2 iVtu1&1cu2&52su 1̃&1cu 2̃&, ~13b!

are time dependent in the laboratory frame but look l
stationary eigenstates in the rotating frame of the pump,
noted by the tildes.

The amplitude equations become

ia8 B,$k0%5
1
2 ~2D1R!ãB,$k0%2 ic

g1

2
~cãB,$k0%2sãA,$k0%!

1s~x8!* eiD8ta3,$k0% , ~14a!

ia8 B,$k0%,k5
1
2 ~2D1R!ãB,$k0%,k2 ic

g1

2
~cãB,$k0%,k

2sãA,$k0%,k!1sg23* e
i ~Vk2v32!ta3,$k0% , ~14b!

ia8 A,$k0%5
1
2 ~2D2R!ãA,$k0%1 is

g1

2
~cãB,$k0%2sãA,$k0%!

1c~x8!* eiD8ta3,$k0% , ~14c!

ia8 A,$k0%,k5
1
2 ~2D2R!ãA,$k0%,k1 is

g1

2
~cãB,$k0%,k

2sãA,$k0%,k!1cg23* e
i ~Vk2v32!ta3,$k0% , ~14d!

i ȧ3,$k0%5x8e2 iD8t~sãB,$k0%1cãA,$k0%!2 i
g3

2
a3,$k0% ,

~14e!

i ȧ4,$k0%,k5g41* e
i ~Vk2v242V!t~cãB,$k0%2sãA,$k0%!. ~14f!

The vacuum interactions between statesA and B with
strengthicsg1/2 in Eqs.~14a!–~14d! complicate the dresse
representation. These couplings can be dropped in the s
lar limit @see Eq.~5!# of amplitude perturbation theory.

In order to see AWI, we have argued, above and in A
pendix A, that the probe must be tuned near its bare
center,D850, for a strong, resonant pump. In contrast, tu
ing the probe to a dressed state resonance,D8'6x, can
lead only to absorption@see Fig. 1~b!#. These conclusions
will be reproduced rigorously by our perturbation metho
We clarify our understanding of the AWI scattering proce
at the outset by settingD50 in Eqs.~2!, ~12a! and ~12b!,
is

so-
ur

e-

cu-

-
e
-

.
s

and~14a!–~14d!, resulting in the simplifications,R52x and
c5s5A1/2. Under these conditions the dressed statesB
and A are symmetric and antisymmetric superpositions

states 1̃and 2̃, respectively, according to Eqs.~13a! and
~13b!. The amplitude equations reduce to

ia8 B,$k0%5xãB,$k0%2 i
g1

4
~ ãB,$k0%2ãA,$k0%!

1A 1
2 ~x8!* eiD8ta3,$k0% , ~15a!

ia8 B,$k0%,k5xãB,$k0%,k2 i
g1

4
~ ãB,$k0%,k2ãA,$k0%,k!

1A 1
2 g23* e

i ~Vk2v32!ta3,$k0% , ~15b!

ia8 A,$k0%52xãA,$k0%1 i
g1

4
~ ãB,$k0%2ãA,$k0%!

1A 1
2 ~x8!* eiD8ta3 ,$k0%, ~15c!

ia8 A,$k0%,k52xãA,$k0%,k1 i
g1

4
~ ãB,$k0%,k2ãA,$k0%,k!

1A 1
2 g23* e

i ~Vk2v32!ta3 ,$k0%, ~15d!

i ȧ3,$k0%5
A1

2 x8e2 iD8t~ ãB,$k0%1ãA,$k0%!2 i
g3

2
a3,$k0% ,

~15e!

i ȧ4,$k0%,k5
A1

2 g41* e
i ~Vk2v242V!t~ ãB,$k0%2ãA,$k0%!.

~15f!

These amplitude equations can be simplified by remov
the secular interactions, proportional toig1/4, that couple the
dressed states in Eqs.~15a!–~15d!. The eigenvalues of the
stateA andB subspace are

l652 i
g1

4
6
1

2 F4x22S g1

2 D 2G1/2.6x2 i
g1

4
. ~16!

Thus, the couplings contribute nonsecular results in per
bation theory and are dropped for now.~However, these cou-
plings are crucial in forming the density matrix sel
consistently, as will be shown below in Sec. III D, where w
derive the steady-state density-matrix elements with our
plitude formalism.! We see that the dressed state amplitud
decay at the rateg1/4, one-half of the rate of the bare state
In this limit the system again looks like a four-level ato
interacting with a probe and the vacuum simultaneous
where the dressed levels replace levels 1 and 2 of the
formulation. This is seen in Fig. 1~b!, where the dressed
states appear as a split doublet between the upper state
the ground state 48. StatesA andB have the energies\x and
2\x, respectively.

Accordingly, to simplify the notation, we defin
‘‘dressed’’ energies or frequencies, remembering that we
in a frame rotating at the pump frequencyV5v12,
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vB52vA5x, ~17!

v35v32, ~18!

v4852v242V52v14. ~19!

We go to the normal interaction representation of the dres
energy levels by settingãB,$k0%5aB,$k0%e

2 ivBt and ãA, $k0%

5aA,$k0%e
2 ivAt, which is equivalent to writing the state vec

tor of the system as

uc~ t !&5~aB,$k%e
2 ivBtuB&1aA,$k%e

2 ivAtuA&1a3,$k%e
2 iv3tu3&

1a48,$k%e
2 iv48tu48&)^e2 iV$k%tu$k%&. ~20!

Comparing this state vector with Eq.~4!, the atomic state
48 in the rotating frame is written as the ketu48&
5e2 iVtu4& and shown to be at an energy\V below the
energy of the bare state 4 in Fig. 1~b!; the amplitude for this
state remains the same, i.e.,a48,$k%[a4 ,$k% . The amplitude
equations are then

i ȧB,$k0%52 i
g1

4
aB,$k0%1

A1
2 ~x8!* ei ~V82v3B!ta3,$k0% ,

~21a!

i ȧB,$k0%,k52 i
g1

4
aB,$k0%,k1

A1
2 g23* e

i ~Vk2v3B!ta3,$k0% ,

~21b!

i ȧA,$k0%52 i
g1

4
aA,$k0%1

A1
2 ~x8!* ei ~V82v3A!ta3,$k0% ,

~21c!

i ȧA,$k0%,k52 i
g1

4
aA,$k0%,k1

A1
2 g23* e

i ~Vk2v3A!ta3,$k0% ,

~21d!

i ȧ3,$k0%5
A1

2 x8~aB,$k0%e
2 i ~V82v3B!t1aA,$k0%e

2 i ~V82v3A!t!

2 i
g3

2
a3,$k0% , ~21e!

i ȧ48,$k0%,k5
A1

2g41* ~aB,$k0%e
i ~Vk2vB48!t2aA,$k0%e

i ~Vk2vA48!t!.
~21f!

These equations form the foundation of the amplitude an
sis.

We are almost ready to calculate the amplification a
absorption cross sections. First, however, we must inco
rate the incoherent pumping into our formalism. The d
grams for probe emission and absorption in Figs. 2 an
each start by the incoherent pumping of level 3 from leve
The incoherent pumping and spontaneous decay of lev
allow for the steady state from which the probe scatters.
correct Feynman rules, which account for this pumping, w
be apparent later. We start the system at an initial timet0
with some amplitude to be in the atomic state 3 and
vacuum state of the field and examine the system at timt.
In the absence of the probe, the amplitude evolves from
~21e! as
ed

y-

d
o-
-
3
.
3
e
l

e

q.

a3,$0%~ t,t0!5e2~g3/2!~ t2t0!, ~22!

where the differential population which is pumped into sta
3 betweent0 and t01dt0 must equalrdt0 . To calculate any
observable at timet, we must sum over the ensemble
differential populations. In other words, we integrate over
previous histories of the system such that2`,t0<t. As a
check, this procedure leads to the correct steady-state p
lation of level 3,

ua3,$0%~ t !u
25E

2`

t

r dt0ua3,$0%~ t,t0!u
25

r

g3
. ~23!

This method was used by Lamb, for example, in his clas
paper on the theory of the laser@16#.

The cross sections for any process leading to probe
plification or absorption are proportional to the transition ra
into level 4,

s5
1

F (
$k%

d

dt F E
2`

t

r dt0U(
paths

a48,$k%U2G , ~24!

FIG. 2. Scattering channels for probe amplification. Solid
rows indicate probe field transitions to stateA or B from state 3
with an interaction energy\(x8)* /&, while dashed arrows refer to
transitions caused by the quantum field. The arrows are labele
the frequency of the field.~a! Feynman diagram, suggesting th
two-quantum processes. The probe creates a virtual superpositi
statesA andB, which leads to constructive interference for spo
taneous emission at the frequencyVk1

'v3482V86g3/2. This in-
terference is maximized when the probe frequency is tuned to
zero of energy, exactly half-way between the dressed states,
V85v3 . ~b! Stepwise processes. Because state 3 has a finite
ergy width\g3 , we can schematically understand the presence
spontaneous emission at the dressed transition frequencies,Vk1
'vB486g1/4 and Vk1

'vA486g1/4, as the result of a probe
induced transition from the wings of state 3 to statesA andB. No
interference occurs since the photon energy difference, 2\x, is well
resolved.
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where the semiclassical flux factorF @18# is given by

1

F
5S k8d2

2e0\ux8u2D . ~25!

The sum over the field states$k% in Eq. ~24! includes all
single-photon states created during probe scattering, as
lined below. The sum over paths produces a Dyson-like
ries representation of the amplitude,

(
paths

a48,$k%[a48,$k%~ t,t0!5E
t0

t

dtnE
t0

tn
dtn21•••

3E
t0

t2
dt1U~ t, tn ,...,t1 ;t0!a3,$0%~ t1 ,t0!

for an n-quantum process caused by an evolution oper
U. It is U that is implicitly calculated using the amplitud
equations~21a!–~21f!.

B. Amplification cross section

Amplification follows the diagram in Fig. 2~a!. The probe
stimulates a transition from state 3 to both dressed st
simultaneously, creating an intermediate superposition s
which decays to level 48 via spontaneous emission. The pe
turbation chains for Eqs.~21a!–~21f! are represented by

a3,$0%~ t1 ,t0! ——→
A~1/2!~x8!*

aB,$0%~ t2 ,t0! ——→
A~1/2!g41*

a48,k1
~B!

~ t,t0!,

~26a!

a3,$0%~ t1 ,t0! ——→
A~1/2!~x8!*

aA,$0%~ t2 ,t0! ——→
2A~1/2!g41*

a48,k1
~A!

~ t,t0!,

~26b!
ut-
e-

or

es
te

for a total amplitude

a48,k1~ t,t0!5a48,k1
~B!

~ t,t0!1a48,k1
~A!

~ t,t0!. ~27!

Each arrow represents a transition with the perturbative
teraction energy given above the arrow. The wave vec
k1 labels the single-photon field state created from
vacuum. Now, one might think that we can easily see w
happens schematically whenD8'0 from the perturbation
chains and Fig. 2~a!. The first transition coupling constant

are the same,A1
2 (x8)* , but we arrive in intermediate state

which have the opposite dressed energies,6\x, producing
the virtual superposition state,

uc&;
A1

2 ~x8!*

x
~ uA&2uB&). ~28!

Spontaneous emission, however, causes decay from
dressed state to state 48 with the opposite sign of the cou

pling strength,6A1
2g41* , showing that the total interferenc

is constructive. This kind of basic argument leads directly
the two-quantum contribution to the gain, the first term
Eq. ~6!. However, this argumentcannotreproduce the step
wise amplification, shown schematically in Fig. 2~b! @14#.

The formal calculation commences by substituting E
~22! for a3,$0%(t,t0) into Eqs.~21a! and~21c! and integrating
to find the inhomogeneous solutions. The expression for
upper dressed state amplitude is
q.
aB,$0%~ t2 ,t0!52 i E
t0

t2
dt1e

2~g1/4!~ t22t1!SA1
2 ~x8!* ei ~V82v3B!t1e2~g3/2!~ t12t0!D

5A 1
2 ~x8!*

ei ~V82v3B!t2e2~g3/2!~ t22t0!2e2~g1/4!~ t22t0!ei ~V82v3B!t0

~v3B2V8!1 i S g1

4
2

g3

2 D , ~29!

with aA ,$0%(t2 ,t0) given by the substitutionv3B→v3A .
We now finda48,k1

(B) (t,t0) by direct integration of Eq.~21f! using Eq.~29!,

a48,k1
~B!

~ t,t0!5
1

2
g41* ~x8!*

1

~v3B2V8!1 i S g1

4
2

g3

2 D F ei @Vk1
2~v3482V8!#te2~g3/2!~ t2t0!2ei @Vk1

2~v3482V8!#t0

@~v3482V8!2Vk1
#2 i

g3

2

2ei ~V82v3B!t0
ei ~Vk1

2vB48!te2~g1/4!~ t2t0!2ei ~Vk1
2vB48!t0

~vB482Vk1
!2 i

g1

4
G . ~30!

Several observations at this point will help to simplify the algebra. First, any terms in the state 48 amplitudes which vary as
e2g3(t2t0)/2 or e2g1(t2t0)/4 will not contribute to the cross section after summing and squaring. This is easy to see from E~24!
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s;
d

dt F E
2`

t

r dt0e
2g~ t2t0!G5

d

dt F rgG50. ~31!

We drop these terms to obtain a simpler form for the contributing amplitudes,

a48,k1
~B!

~ t,t0!5
1

2
g41* ~x8!*

ei @Vk1
2~v3482V8!#t0

~v3B2V8!1 i S g1

4
2

g3

2 D F 21

@~v3482V8!2Vk1
#2 i

g3

2

2
21

~vB482Vk1
!2 i

g1

4
G . ~32!
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The two terms in the large square bracket from the in
gration overt2 combine to cancel the denominator from t
first integration. This turns out to be a general feature of a
n-step scattering process derived in this manner: all
quency denominators cancel except for those appearing
the integration overtn . In addition, the common phase fact
for both contributing amplitudes here,ei (Vk1

2(v3482V8))t0, re-
flects the energy conservation of the scattering process a
also a general feature of these calculations. Since it does
depend onx, it is the same fora48,k1

(B) (t,t0) anda48,k1
(A) (t,t0)

and will disappear when the amplitudes are squared; th
fore, we also drop this factor. The contributing amplitude
its final form is then

a48,k1
~B!

~ t,t0!5
1

2
g41* ~x8!* F 1

@Vk1
2~v3482V8!#1 i

g3

2
G

3F 1

~Vk1
2vB48!1 i

g1

4
G , ~33!

with 2a48,k1
(A) (t,t0) given by the substitutionvB48→vA48 .

Thus the two amplitudes contain two resonances ea
corresponding to different spontaneous emission frequen
The first resonance is for the two-quantum process from s
3 to state 48, shown in Fig. 2~a!, with spontaneous emissio
peaked atVk1

5v3482V8 with the full width at half maxi-

mum ~FWHM! g3 . First, the probe field drives a transitio
between state 3 and a virtual state somewhere between s
A and B, which then decays to state 48 via spontaneous
emission. The resonance is common toa48,k1

(B) anda48,k1
(A) and

therefore leads to interference when the amplitudes
summed and squared, a feature which is discussed in d
below. The second resonance is for spontaneous deca
rectly from each dressed state to the final state and is pe
atVk1

5vB48 or Vk1
5vA48 with FWHM g1/2, independent

of the probe frequency. These resonances suggest step
processes that can be seen as an initial, probe-induced
sition from the wings of state 3 to the dressed states,
lowed by decay to state 48 from that dressed state, as in Fi
2~b!. These paths do not interfere in the final state, as t
lead to emission at distinct frequencies that indicate that
decay was from stateA or stateB unambiguously. We see
that both types of processes are automatically included
each of the two amplitudes,a48,k1

(B) anda48,k1
(A) . In fact, these
-
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are precisely the amplitudes of time-independent pertur
tion theory in a quantum dressed basis@19#, as outlined in
Appendix B. This point is emphasized further in the abso
tion calculation below.

To find the amplification cross section, we use the defi
tion of the cross section, Eqs.~24! and ~27!, together with

d

dt F E
2`

t

r dt0G5r

and

(
k
→

V

~2pc!3
E
0

2pE
21

1 E
0

`

Vk
2dVkd~cosuk!dwk .

~34!

Under the Weisskopf-Wigner approximation of spontaneo
emission, theVk1

integration extends from2` to `, and the

function Vk1
2 ug41u2 is evaluated at the complex poles in a

Vk1
contour integration, removing the ultraviolet divergenc

Using the residue theorem by closing the contour in
upper-half plane,

samp5
1

F (
k1 ,l1

d

dt F E
2`

t

r dt0ua48,k1
~B!

~ t,t0!1a48,k1
~A!

~ t,t0!u2G
5

r

4F
ux8u2

g1

2p
2p i

3 (
residuesU 1

@Vk1
2~v3482V8!#1 i

g3

2
U2

3U 1

~Vk1
2vB48!1 i

g1

4

2
1

~Vk1
2vA48!1 i

g1

4
U2.

~35!

The pole atVk1
5(v3482V8)1 ig3/2 maximizes the con-

structive interference between the two, dressed chan
whenD85V82v350. On the other hand, tuning the prob
directly to a dressed resonance,V85v3B or V85v3A , re-
moves the interference and maximizes the amplificat
cross section. We will see in Sec. III C that the tuning,V8
5v3B or V85v3A , also maximizes the absorption cro
section, preventing AWI. Hence, we have the result tha
probe tuned to the bare resonance,D850, produces a ben
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eficial interference for AWI in the strongly dressed syste
In the secular limit it is easy to see the interference by eva
ating the residues of Eq.~35! for D850,

(
residues

•••5
1

ig3
U 1

2vB
2

1

2vA
U21 1

vB
2

2

ig1
1

1

vA
2

2

ig1

5
1

ig3
U 1

2x
2
1

xU
2

1
1

x2

2

ig1
1

1

x2

2

ig1
, ~36!

yielding the amplification cross section,

samp5
ux8u2

F

r

g3

g1

x2 F11
g3

g1
G . ~37!

We clearly identify the first term in the square brackets
the contribution arising from constructive interference of t
two-photon process@Fig. 2~a!# through both dressed chan
nels simultaneously, correlating with spontaneous emiss
at Vk1

5uv48u. In comparison with the density-matrix re
sults, this term corresponds to the emission owing to
steady-state population of level 3. In contrast, the sec
term in the square brackets is the gain arising from
dressed state coherence in the density matrix calculation.
have found the physical origin of this term to be the stepw
process@Fig. 2~b!#, first to each dressed state individual
and then to state 48 via spontaneous emission. As a resu
this term is associated with spontaneous emission at
dressed transition frequencies,Vk1

5vB485uv48u1x and

Vk1
5vA485uv48u2x. This type of stepwise process is on

possible when the initial state has a width, likeg3 , so that a
probe can pick out the detuning from the initial state that w
give a resonance at the dressed state. Notice that our a
to correlate the two amplification processes with disti
spontaneous emission frequencies rests on Eq.~35!, which is
essentially the differential spectrum of the scattered radia
at Vk1

before the residues are evaluated.
For reference the amplification cross section for a pro

tuned to either dressed resonance,V85v3B or V85v3A , is

samp8 5
ux8u2

F

r

g3

4

2g31g1
, ~38!

which can be verified by using Eq.~35!. This cross section
as previously promised, is larger~by a factor of;x2/g2!
than the cross section@Eq. ~37!# for the tuning of interest for
AWI, V85v3 .

We conclude the calculation of the amplification cro
section with an interesting and unexpected observation.
cently, some authors have suggested that if the physical
gin of AWI in this system was revealed, the coherence c
tribution to the gain in the density-matrix approach would
shown to result from a quantum interference cancellation
absorption in the amplitude calculation@1#. We expected to
find this result. On the contrary our analysis has proved
constructive quantum interference plays an important role
the gain but does not correspond to the coherence term in
density-matrix calculation. Rather, the noninterfering, st
wise amplification corresponds to the coherence feature
.
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we shall see below, these amplification processes occu
the presence of absorption suppression by destructive q
tum interference.

C. Absorption cross section

The basic absorption process is diagrammed schem
cally in Fig. 3~a!. We write the four possible Feynman path
for the amplitude equations using Eqs.~21a!–~21f!. The first
two steps are spontaneous emission at frequencyVk2

from

state 3 to either stateA or B, followed by immediate absorp
tion of a probe photon back to state 3. Subsequent de

FIG. 3. Feynman diagrams for probe absorption. Solid arro
indicate probe field transitions to state 3 from stateA or B with an
interaction energy\x8/&, while dashed arrows refer to transition
caused by the quantum field. The arrows are labeled by the
quency of the field.~a! Possible scattering channel, suggesting
initial, spontaneous emission atVk2

'V8. After then absorbing a
probe photon, destructive interference at state 3 between the
channels, statesA and B, causes this contribution to vanish.~b!

Feynman diagram for the amplitudea48,k2 ,k3 ,k4
(BB) , where the probe

field undergoes Rayleigh scattering from stateB after an initial
emission atVk2

'v3B . ~c! Feynman diagram fora48,k2 ,k3 ,k4
(BA) ,

where the probe field undergoes anti-Stokes Raman scattering
stateB to stateA. ~d! Feynman diagram fora48,k2 ,k3 ,k4

(AB) , where the

probe field undergoes Stokes Raman scattering from stateA to state
B. ~e! Feynman diagram fora48,k2 ,k3 ,k4

(AA) , where the probe field

undergoes Rayleigh scattering from stateA.



-

o
-

r
h
tim

this
is-
,
ess
an

en-
sible
-
ur
nd

pro-

t the

gh

us

nta-

ance

us

ing

e

h
ter-
in

e

q.

55 3909AMPLIFICATION WITHOUT INVERSION: . . .
through the dressed states to state 48 occurs by the sponta
neous emission of two more photons,Vk3

andVk4
. The four

perturbation chains are

a3,$0%~ t1 ,t0! ——→
A1/2g23*

aB,k2~ t2 ,t0! ——→
A1/2x8

a3,k2
~B! ~ t3 ,t0!

——→
A1/2g23*

aB,k2 ,k3
~B! ~ t4 ,t0!

——→
A1/2g41*

a48,k2 ,k3 ,k4
~BB! (t,t0), ~39a!

a3,$0%~ t1 ,t0! ——→
A1/2g23*

aB,k2~ t2 ,t0! ——→
A1/2x8

a3,k2
~B! ~ t3 ,t0!

——→
A1/2g23*

aA,k2 ,k3
~B! ~ t4 ,t0!

——→
2A1/2g41*

a48,k2 ,k3 ,k4
~BA!

~ t,t0!, ~39b!

a3,$0%~ t1 ,t0! ——→
A1/2g23*

aA,k2~ t2 ,t0! ——→
A1/2x8

a3,k2
~A! ~ t3 ,t0!

——→
A1/2g23*

aB,k2 ,k3
~A! ~ t4 ,t0!

——→
A1/2g41*

a48,k2 ,k3 ,k4
~AB!

~ t,t0!, ~39c!

a3,$0%~ t1 ,t0! ——→
A1/2g23*

aA,k2~ t2 ,t0! ——→
A1/2x8

a3,k2
~A! ~ t3 ,t0!

——→
A1/2g23*

aA,k2 ,k3
~A! ~ t4 ,t0!

——→
2A1/2g41*

a48,k2 ,k3 ,k4
~AA!

~ t,t0!, ~39d!

where

a48,k2 ,k3 ,k45a48,k2 ,k3 ,k4
~BB!

1a48,k2 ,k3 ,k4
~BA!

1a48,k2 ,k3 ,k4
~AB!

1a48,k2 ,k3 ,k4
~AA! ~40!

is the total amplitude, and the dependence ont and t0 is
implicit.

Before we perform the calculation, we can get a picture
what is happening forD8'0. First, consider an initial emis
sion atVk2

'V8, as suggested by Fig. 3~a!. The source of
interference is then evident: we have started in and then
visited the atomic state 3 through two different channels. T
vacuum appears to create a virtual superposition state at
t2 which is antisymmetric,
f

e-
e
e

uc&;
A1/2g23*

x
~ uA&2uB&), ~41!

and, therefore, looks like a dark state for absorption. But,
is only true for the two-quantum process of an initial em
sion atVk2

'V8 followed by absorption of a probe photon
just as constructive interference for the amplification proc
only occurred when a downward transition followed from
antisymmetric superposition of statesA andB.

The vacuum field can also pick out the dressed frequ
cies of the system, so that spontaneous emission is pos
atVk2

'v3B andVk2
'v3A , allowing for a detuned absorp

tion of the probe back to level 3. This leads to the fo
distinct absorption paths from the initial state 3 to the grou
state 48, as shown in Figs. 3~b!–3~e!. The physical meaning
of each path is clear, suggesting stepwise absorption
cesses. The paths of Eqs.~39a! and ~39b!, Figs. 3~b! and
3~c!, respectively, each start by spontaneous emission a
32B resonance frequency,Vk2

'v3B , in making the tran-

sition to levelB. The first path then corresponds to Raylei
scattering of the probe off of stateB through state 3, leading
to Vk3

'V8, while the second path indicates spontaneo

anti-Stokes Raman scattering from stateB to stateA through
state 3 by absorbing a probe photon and emitting a spo
neous photon atVk3

'V81vBA . The final emission to state

48 from these paths can only occur at the dressed reson
frequencies,Vk4

'vB48 andVk4
'vA48 , respectively. Simi-

larly, we can consider the paths of Eqs.~39c! and ~39d!,
Figs. 3~d! and 3~e!, respectively, which start by spontaneo
emission at the 32A resonance frequency,Vk2

'v3A . The
path of Fig. 3~d! corresponds to Stokes Raman scatter
from stateA to stateB through state 3 withVk3

'V8

2vBA and decay to state 48 with Vk4
'vB48 . Finally, the

path of Fig. 3~e! considers the Rayleigh scattering of th
probe from stateA through state 3 withVk3

'V8, followed

by decay to state 48 with Vk4
'vA48 . These processes, eac

creating a distinct set of spontaneous photons, do not in
fere and give us a clear picture of how absorption occurs
this system.

Consider the diagram of Fig. 3~b! and Eq.~39a!, which
defines the amplitudea48,k2 ,k3 ,k4

(BB) . We integrate the ampli-

tude equation~21b! for aB,k2(t2 ,t0) using the initial condi-

tion of Eq. ~22! for a3,$0%(t,t0), creating a photon in state
uk2&:

aB,k2~ t2 ,t0!52 i E
t0

t2
dt1e

2~g1/4!~ t22t1!

3SA1
2g23,k2
* ei ~Vk2

2v3B!t1e2~g3/2!~ t12t0!D .
~42!

This amplitude, in turn, provides the driving term for th
a3,k2
(B) (t3 ,t0) equation of motion, Eq.~21e!, describing the ab-

sorption of a probe photon. Thus, formally integrating E
~21e!,



e
im
an
e
q
s
,

se
f
th

,
i-

ed

is
ry
o
a

iv

n-
dia-
er
tial
each
ton

ized

pli-
oss

al
des,
i-

an
li-
ree

the

3910 55J. L. COHEN AND P. R. BERMAN
a3,k2
~B! ~ t3 ,t0!52 iA1

2x8E
t0

t3
dt2e

2~g3/2!~ t32t2!

3aB,k2~ t2 ,t0!e
2 i ~V82v3B!t, ~43!

whereaB,k2(t2 ,t0) is given by Eq.~42!. And so on for the

final two vacuum interactions to derivea48,k2 ,k3 ,k4
(BB) .

The explicit form of this amplitude is lengthy before w
make the same algebraic simplifications which led to a s
pler form for the amplification amplitudes. In general for
n-step process, there are 2n different terms in each amplitud
after n time integrations when derived this way, as in E
~30! for the amplification calculation. But, half of the term
are always proportional toe2g(t2t0), so we throw them out
as we did for the amplification calculation to form Eq.~32!.
This leaves 2n21 different terms, each with a common pha
reflecting energy conservation. For example, the phase
the absorption calculation which is common to each of
four amplitudes, including the eight terms ofa48,k2 ,k3 ,k4

(BB) , is

ei (Vk2
1Vk3

1Vk4
2V82v348)t0. Dropping this common phase

the 2n21 terms of each amplitude always combine to elim
nate all of the denominators produced by the firstn21 time
integrations and form a single term withn denominators.
These are then multiphoton resonances that can be form
by the energy differences between thefinal stateand the
initial and each intermediate state, including a negative
imaginary energy referring to the width of a state. This
exactly the result of time-independent perturbation theo
where thenth-order amplitude to be in some final state is
this form for a system with a single initial state, such
u3,$0%& @20#.

For example, the eight terms combine in our case to g
four frequency denominators in the amplitude,

a48,k2 ,k3 ,k4
~BB!

5SA1
2g41,k4
* D SA1

2g23,k3
* D SA1

2x8 D
3SA1

2g23,k2
* D

3F 1

~Vk2
1Vk3

1Vk4
2V82v348!1 i

g3

2
G

-

.

or
e

,
f
s

e

3F 1

~Vk3
1Vk4

2vB482V8!1 i
g1

4
G

3F 1

~Vk3
1Vk4

2v348!1 i
g3

2
G

3F 1

~Vk4
2vB48!1 i

g1

4
G . ~44!

The first line of vertex factors are simply the interaction e
ergies of each single quantum transition in the Feynman
gram. The four complex Lorentzians are formed, in ord
here, by the energy difference between the final and ini
state of the system and then between the final state and
of the three intermediate states, including the probe pho
energy for each state. We can see this from Fig. 3~b!. ~These
transition energies are also easy to see in a fully quant
treatment, as in Appendix B!. If we go back to the absorption
calculation, the same explanation holds for Eq.~33!.

From these considerations, the total, contributing am
tudea4,$k% is time independent for any process, and the cr
section of Eq.~24! simplifies to@21#

sabs5
r

F (
$k,l%

ua48,$k%u
2. ~45!

The cross section is simply the probability to be in the fin
system–quantum-field state, summed over the field mo
multiplied by the pumping rate of the initial state, and d
vided by the flux.

These arguments then lead directly to simple Feynm
rules for the formation of any multiphoton scattering amp
tude and cross section. In particular, we get the other th
amplitudes we need by permutingvB48 andvA48 in the sec-
ond and fourth frequency denominators of Eq.~44! and mul-
tiplying by 21 for a48,k2 ,k3 ,k4

(BA) and a48,k2 ,k3 ,k4
(AA) . Factoring

the common denominators, the sum of amplitudes for
four absorption pathways can be written
a48,k2 ,k3 ,k45a48,k2 ,k3 ,k4
~BB!

1a48k2 ,k3 ,k4
~BA!

1a48k2 ,k3 ,k4
~AB!

1a48,k2 ,k3 ,k4
~AA!

5SA1
2g41,k4
* D SA1

2g23,k3
* D SA1

2x8 D SA1
2g23,k2
* D

3F 1

~Vk2
1Vk3

1Vk4
2V82v348!1 i

g3

2
GF 1

~Vk3
1Vk4

2v348!1 i
g3

2
GF 1

~Vk3
1Vk4

2vB482V8!1 i
g1

4

1
1

~Vk3
1Vk4

2vA482V8!1 i
g1

4
GF 1

~Vk4
2vB48!1 i

g1

4

2
1

~Vk4
2vA48!1 i

g1

4
G . ~46!

Forming the cross section and summing overk2 ,l2 in the Weisskopf-Wigner approximation,
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sabs5
r

F (
k2 ,l2 ;k3 ,l3 ;k4 ,l4

ua48,k2 ,k3 ,k4u
2

5
r

16F
ux8u2 (

k3 ,l3 ;k4 ,l4
ug23,k3u

2ug41,k4u
2U 1

~Vk3
1Vk4

2v348!1 i
g3

2
U2U 1

~Vk3
1Vk4

2vB482V8!1 i
g1

4

1
1

~Vk3
1Vk4

2vA482V8!1 i
g1

4
U2U 1

~Vk4
2vB48!1 i

g1

4

2
1

~Vk4
2vA48!1 i

g1

4
U2. ~47!
n

n

o
s

-

er
n-
The single pole forVk2
in Eq. ~46! defines its peak emissio

frequency in terms ofVk3
andVk4

,

Vk2
'V81v3482Vk3

2Vk4
, ~48!

allowing us to correlate theVk2
photon with the others eve

after we have summed over it. The resulting form in Eq.~47!
does not depend directly onVk3

, but only onVk3
1Vk4

.
This implies that the spectrum associated with spontane
emission atVk4

to state 48 will be peaked at the frequencie

us

vA48 andvB48 . We now perform the sum overVk3
explic-

itly to see the quantum interference in the absorption.
The first Lorentzian withVk3

in Eq. ~47! has a pole in the

upper-half plane atVk3
5v3482Vk4

1 ig3/2. Using Eq.~48!,

this correlates withVk2
'V8, an initial spontaneous emis

sion at the probe frequency. By contour integration ov
Vk3

in the Weisskopf-Wigner approximation, this pole co

tribution in the secular limit gives
r-
f states

he
the
(
k3 ,l3

ug23,k3u2•••5
g3

2p

2p i

ig3 U 1

~Vk3
1Vk4

2vB42V8!1 i
g1

4

1
1

~Vk3
1Vk4

2vA42V8!1 i
g1

4
U

Vk3
5v3482Vk4

2

5U 1

~v3B2V8!1 i
g1

4

1
1

~v3A2V8!1 i
g1

4
U2 ——→

D850

OS Fg1

x2G2D , ~49!

where we have pulled out theVk3
-dependent parts of Eq.~47!. For V82v35D850 we have completely destructive inte

ference in the secular limit. The two terms which cancel here are precisely from the antisymmetric superposition o
A andB which would form after an initial emission atVk2

'V8. In terms of the four amplitudes, as implied by Fig. 3~a! and

by Eqs. ~46! and ~47!, a48,k2 ,k3 ,k4
(BB) interferes destructively witha48,k2 ,k3 ,k4

(AB) for a final emission on theB248 transition at

Vk4
5vB48 , and a48,k2 ,k3 ,k4

(BA) interferes destructively witha48,k2 ,k3 ,k4
(AA) for a final emission on theA248 transition atVk4

5vA48 . Thus, we have discovered the origin of destructive interference in this AWI scheme.
We still have two contributing poles in theVk3

contour integration of Eq.~47!,

Vk3
5vB481V82Vk4

1 ig1/4, Vk3
5vA481V82Vk4

1 ig1/4. ~50!

As in theVk2
integration, these poles determine the emission peak atVk3

as a function ofVk4
. The first pole is common to

the amplitudesa48,k2 ,k3 ,k4
(BB) anda48,k2 ,k3 ,k4

(BA) , while the second is common toa48,k2 ,k3 ,k4
(AB) anda48,k2 ,k3 ,k4

(AA) . The first resonance in

Eq. ~47! gives a factor 1/x2 for the residue of either pole~50! in the secular approximation. For simplicity, we first look at t
pole Vk3

5vB481V82Vk4
1 ig1/4. The other pole will not interfere in the secular limit, i.e., it gives corrections to

absorption of the orderg1
2/x2 smaller than the leading term. Evaluating the pole contribution atVk3

5vB481V82Vk4
1 ig1/4 from Eq.~47!,

(
k3 ,l3 ;k4 ,l4

ug23,k3u
2ug41,k4u

2•••5
1

x2

g3

2p
2p i

2

ig1
(
k4 ,l4

ug41,k4u
2U 1

~Vk4
2vB48!1 i

g1

4

2
1

~Vk4
2vA48!1 i

g1

4
U2, ~51!
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where the sum overk3 ,l3 reduces to the coefficients of the right-hand side. The same expression results from evalua
pole contribution atVk3

5vA481V82Vk4
1 ig1/4, and the two residues add. This gives the total cross section,

sabs5
r

4F
ux8u2

1

x2

g3

g1
(
k4 ,l4

ug41 ,k4u
2U 1

~Vk4
2vB48!1 i

g1

4

2
1

~Vk4
2vA48!1 i

g1

4
U2

.
r

4F
ux8u2

1

x2

g3

g1
(
k4 ,l4

ug41 ,k4u
2F 1

~Vk4
2vB48!

21S g1

4 D 2 1
1

~Vk4
2vA48!

21S g1

4 D 2G5
ux8u2

F

r

g3

g1

x2 S g3

g1
D 2. ~52!
it
al

rib
s

am

lt
he
ul
-

tio

t
ct

e

d

l-
th

n
e
e

-

opf-
he
t

nce
a-

cru-
in

sents
er

ce,
TheVk4
resonances do not interfere in the secular lim

hence we have dropped the cross term in the second equ
The sum overk4 ,l4 gives a ‘‘2’’ for each term in square
brackets, showing that each of the four amplitudes cont
utes one-fourth of the final value of the absorption cro
section. Using Eqs.~48!, ~50!, and ~52!, the spontaneous
emission frequencies that correlate with each of the four
plitudes are those pictured in Figs. 3~b!–3~e!. To tie this
expression back to the steady-state density-matrix resu
Eq. ~A14!, the absorption here is fully accounted for by t
stimulated transition to state 3 from the steady-state pop
tions, rAA

(0) and rBB
(0) , which each contribute half of the ab

sorption.
Finally, we can show from Eqs.~47! and ~48! that by

tuning to the dressed resonances,V85v3B or V85v3A ,

sabs8 5
ux8u2

F

r

g1

4

2g31g1
. ~53!

Again, this tuning produces an absorption cross sec
;x2/g2 larger than the cross section forD850, Eq. ~52!.
Furthermore, forV85v3B or V85v3A , the absorption is
larger than the amplification, Eq.~38!, by g3 /g1 , showing
by our amplitude method that a lack of inversion leads
overall absorption. Therefore, AWI is impossible for dire
tuning of the probe to the dressed resonances.

D. Steady-state density-matrix elements from the amplitudes

As a final exercise, we can calculate the steady state
tablished in the absence of the probe. We know thatr33

(0)

equalsr /g3 , as derived in Eq.~23! above and corroborate
by Eq. ~A10! in Appendix A. Now, we need to findrAA

(0) ,
rBB
(0) , andrAB

(0) . These quantities will confirm that our forma
ism reproduces all of the relevant, strong-pump results of
density-matrix approach, Eqs.~A13a! and ~A13b!.

Returning to the amplitude equations foraA,k2(t,t0) and

aB,k2(t,t0), Eqs. ~21b! and ~21d!, with the initial condition
given by Eq.~22!, we conjecture that spontaneous transitio
from state 3 to statesA andB in the absence of the prob
allow the steady-state dressed populations and coherenc
form. Therefore, we have

rAA
~0![ (

k2 ,l2
E

2`

t

r dt0uaA,k2~ t,t0!u
2, ~54a!
,
ity.

-
s

-

of

a-

n

o

s-

e

s

s to

rBB
~0![ (

k2 ,l2
E

2`

t

r dt0uaB,k2~ t,t0!u
2, ~54b!

rAB
~0![ (

k2 ,l2
E

2`

t

r dt0ãA,k2~ t,t0!ãB,k2
* ~ t,t0!. ~54c!

For the definition ofrAB
(0) , we use the full equations of mo

tion, Eqs.~15b! and~15d!, including the previously unimpor-
tant coupling terms between statesA andB. From Eq.~42!
for aB,k2(t,t0), we readily verify thatrAA

(0)5rBB
(0)5r /g1 ,

where we have summed over the vacuum in the Weissk
Wigner approximation. Clearly, no inversion exists in t
dressed basis whenrAA

(0) ,rBB
(0).r33

(0) , which again shows tha
g3.g1 must hold.

On the other hand, to find the steady-state cohere
rAB
(0) , we must formally solve the coupled amplitude equ
tions, ~15b! and ~15d!, for ãA,k2 and ãB,k2 because the off-
diagonal couplings between the dressed amplitudes are
cial to get the correct, off-diagonal density-matrix element
a secular expansion. To first order ing1 /x, the probability
amplitudes are

ãB,k2~ t,t0!52 i
g23*

&
E
t0

t

dt1Fe2~ ix1g1/4!~ t2t1!1S 2 ig1

8x D
3e~ ix2g1/4!~ t2t1!Gei ~Vk2

2v3!t1e2~g3/2!~ t12t0!,

~55a!

ãA,k2~ t,t0!52 i
g23*

&
E
t0

t

dt1Fe~ ix2g1/4!~ t2t1!1S ig1

8x D
3e2~ ix1g1/4!~ t2t1!Gei ~Vk2

2v3!t1e2~g3/2!~ t12t0!.

~55b!

Formally, to first order ing1 /x, the off-diagonal terms in the
Hamiltonian affect only the eigenvectors of the stateA and
B subspace, not the dressed eigenvalues,6x2 ig1/4, as
seen here. The second term in each square bracket repre
this change in the eigenvector, which mixes in the oth
dressed state. Substituting into Eq.~54c!, we find thatrAB

(0)

. ir /2x. This is the correct value for the dressed coheren
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and we have now confirmed that our method produces
steady-state density-matrix elements.

IV. DISCUSSION AND CONCLUSION

Gathering the results of the amplitude calculation, E
~37! and ~52!, we arrive at the overall gain coefficient fo
D5D850,

G5~samp2sabs!n5
k8nd2

2e0\

r

g3

g1

x2 F11S g3

g1
D2S g3

g1
D 2G ,

~56!

where n is the atomic density. This is identical to th
density-matrix result, Eq.~6! or ~A12!. Moreover, our deri-
vation identified the physical origin in an amplitude a
proach of each of the three terms in the square brackets
thereby allowed us to associate different amplitude pertu
tion processes with the contributing elements of the den
matrix. We see that the condition thatg3.g1 not only as-
sures that our system is uninverted, but also assures tha
two-quantum contribution, (g3 /g1), to the amplification
process is larger than the stepwise contribution ‘‘1.’’ Wh
the ratio of decay rates becomes too large, the stepwise
sorption, (g3 /g1)

2, will swamp both amplification contribu
tions. The boundary between these cases is given by

11
g3

g1
5S g3

g1
D 2⇔ g3

g1
5 1

2 ~11A5!>1.62. ~57!

~That the upper limit on the ratio of the decay rates forms
golden mean is an interesting side note.! The range of decay
ratios for which AWI is possible is then

1,
g3

g1
, 1

2 ~11A5!. ~58!

Our strong, resonant pump results lead to different c
clusions than previous analyses of off-resonant, weak pu
AWI. In those schemes, interferences betweendifferent or-
dersof perturbation theory led to reduced absorption@7,8#.
Here, interferences occur in thesame orderof perturbation
theory because we probe between two intermediate lev
the dressed states. These interferences are present for
amplification and absorption diagrams. With the destruct
interference eliminating the possibility of two-quantum a
sorption, only stepwise absorption directly from the dres
states is allowed. This stepwise absorption is larger than
stepwise amplification. The additional, two-quantum amp
fication which arises from constructive interference c
therefore, be interpreted as the reason behind AWI from
amplitude approach.

A significant new finding is our ability to correlate th
spontaneous emission spectrum with distinct amplificat
and absorption pathways, owing to the entanglement of
probe and vacuum fields. The two-quantum amplificat
process is the only path which accompanies emission a
frequencyuv48u. However, both the stepwise amplificatio
and absorption processes correlate with emission at the
bands,uv48u6x. In order to distinguish these two process
the absorption pathways lead to the additional spontane
emission of two photons near the probe frequencyV8. These
e

.

nd
a-
ty

the

b-

e

-
p

ls,
oth
e
-
d
he
-
,
n

n
e
n
he

e-
,
us

two frequencies,Vk2
andVk3

, are a distinct pair for each o

the four absorption diagrams, as seen in Figs. 3~b!–3~e!.
Therefore, for each scattered probe photon we can track
actly which Feynman pathway was taken using photon co
cidence spectroscopy of the fluorescence. The exceptio
the precise path of the two-quantum amplification, whe
quantum interference does not allow us to know which int
mediate channel, stateA or B, was used for emission a
uv48u.

What about oura priori omission of spontaneous deca
from state 1 to 2~and therefore between statesA andB!?
Considering that the steady state is established by the
pump fields such that the dressed states have a neglig
population difference in the secular limit forD50, it is rea-
sonable that spontaneous emission fromA to B and vice
versa plays an unimportant role in defining the physi
mechanisms for probe amplification and absorption. In
quantum dressed picture a dynamic equilibrium is est
lished where the decay out of theN-photon manifold of
dressed states is compensated by decay into this mani
Therefore, the populations reach the same steady sta
each manifold forN@1. As for the dressed state coherenc
which provides the important gain contribution for AWI t
take place in the density-matrix approach, it would decay
a faster rate thang1/2 without changing the basic physic
@17#.

Throughout this paper we have described our subjec
AWI in the secular limit. More precisely, the probe ga
coefficient~56! specifies the lowest-order amplification in
x21 expansion for resonant pump and probe fields. To p
duce results which are correct beyond the secular appr
mation, but still restricted to a weak probe, we would have
diagonialize the state 1-2 subspace exactly in Eqs.~9a!–~9e!.
Such a unitary transformation is also restricted to the de
scheme we have chosen in Fig. 1~a! and is characterized by
eigenvectors and eigenvalues which form a true basis of
coupled atom, pump field, and vacuum. A perturbation c
culation in this new basis would be valid for arbitrary dec
rates,g1 andg3 . In the secular limit for either a semiclass
cal or quantum pump field, this representation would red
to the dressed basis.

The assumptions of weak incoherent pumping and no
cay from levels 3 to 4 were necessary to avoid the infin
number of quantum pathways associated with multistep
citation and saturation of the 3-4 transition by the incoher
pump. In this context we have constructed a perturbat
theory which allows for a treatment of strong atom-pum
field coupling in the presence of the vacuum and which le
to clear Feynman rules for any probe or vacuum scatte
process. The key is to use the dressed basis. We have ap
that theory to analyze AWI in a system used to model rec
experimental results@1# by developing Feynman diagram
which clearly define the amplification and absorption of
probe laser. These Feynman diagrams identify the role
quantum interference when transitions are induced simu
neously to each dressed state. The interferences were sh
to be constructive for amplification and destructive for a
sorption. In this way we have discovered the physical ori
of AWI in such a system.
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APPENDIX A: DENSITY-MATRIX MASTER EQUATIONS

The master equations for the bare atomic populations
coherences for the closed system outlined in Sec. II A can
written by inspection since we already know the relev
decay rates@see Fig. 1~a!# in the Weisskopf-Wigner approxi
mation. These equations are

ṙ1152g1r112~ ixr̃211c.c.!, ~A1a!

ṙ225g3r331~ ixr̃211c.c.!1~ ix8r̃231c.c.!, ~A1b!

ṙ3352r ~r332r44!2g3r332~ ix8r̃231c.c.!, ~A1c!

ṙ445g1r111r ~r332r44!, ~A1d!

r8 2152 ix~r112r22!2S iD1
g1

2 D r̃212 i ~x8!* r̃31,

~A1e!

r8 2352 i ~x8!* ~r332r22!2S iD81
g3

2 D r̃232 ixr̃13,

~A1f!

r8 135 i ~x8!* r̃122 ixr̃231S id2
g11g3

2 D r̃13, ~A1g!

r145r3450, ~A1h!

with the supplementary definitions for coherences in a fi
interaction representation,

r̃125r12e
iVt5~ r̃21!* , r̃325r32e

iV8t5~ r̃23!* ,

r̃315r31e
i ~V82V!t5~ r̃13!* . ~A2!

The closure condition is( i51
4 r i i51. In Eq. ~A1g! the rela-

tive pump-probe detuning is defined as

d5D2D8. ~A3!

To first order in the probe field, the off-diagonal eleme
is

r̃23
~1!52 i ~x8!* F ~r33

~0!2r22
~0!!1

ixr̃12
~0!

g11g3

2
2 idG

3F g3

2
1 iD81

x2

S g11g3

2
2 id D G21

, ~A4!

where the steady-state density-matrix elements in the
sence of the probe are
e
.

d
e
t

d

t

b-

r33
~0!2r22

~0!5

r Fx2
g1

g3
S 12

g3

g1
D2S g1

2 D 22D2G
r F S g1

2 D 21D2G1bx2
g1

g3

~A5!

and

r̃12
~0!5

ix

g1

2
2 iD

~r11
~0!2r22

~0!!

5
ix

g1

2
2 iD

S 2r F S g1

2 D 21D2G
r F S g1

2 D 21D2G1bx2
g1

g3

D ~A6!

for

b5g312r S 11
g3

g1
D . ~A7!

In Eq. ~A4!, r̃23
(1) has two distinct parts. The first term i

the first set of square brackets reflects the expected abs
tion which results from having more population in state
than in state 3, which is always the case forg3.g1 by Eq.
~A5!. The second term, however, can be positive real, de
onstrating that any overall gain is due to a coherence es
lished by the pump. This coherence of the pump transit
r̃12
(0) is coupled to the probe through the off-diagonal elem

r̃13
1 @see Eq.~A1g!#, demonstrating that coherence betwe

the bare upper levels 1 and 3 in the presence of the pum
crucial for AWI @1#. When this gain mechanism overcom
the population contribution, AWI occurs. In order to max
mize this term, we required50 in Eq. ~A4!. This vanishing
pump-probe detuning simultaneously maximizes the coh
ent pump’s saturation of the probe polarization, as seen
the denominator of Eq.~A4!, indicating a strong-pump phe
nomenon. On the other hand, if the probe is tuned to one
the Rabi sidebands (D8'6x) for D50, the gain term pro-
portional to r̃12

(0) will be down by;(g11g3)/2x with re-
spect to the population term and will not contribute in t
secular limit.

For d50 the small-signal gain coefficient per unit leng
is given by

G52
k8nd2

e0\
ImS r̃23

~1!

~x8!* D 5
k8nd2

e0\

2x4g1r

~g11g3!
2 Fg11g3

g3

3S 12
g3

g1
D2S g1

2x D 2S g3

2x
1

2

g11g3
D11G 1

D1D2
,

~A8!

wherek85V8/c is the probe wave vector,d is the 2-3 dipole
matrix element,n is the atomic density,
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D15S g3

2
1

2x2

g11g3
D 21D2,

D25r F S g1

2 D 21D2G1bx2
g1

g3
. ~A9!

The gain coefficient is seen to be strongly peaked around
detuningD5D850.

In the limits x@g1 ,g3 and D5D850, assuming weak
incoherent pumping,r!g1 ,g3 , we find

r33
~0!2r22

~0!5r33
~0!2r11

~0!5
r

g3
S 12

g3

g1
D5r33

~0!S 12
g3

g1
D ,
~A10!

r̃12
~0!5

2ix

g1
~r11

~0!2r22
~0!!52

i

2

r

x
, ~A11!

and

G5
k8nd2

2e0\

r

g3

g1

x2 F12S g3

g1
D 21 g3

g1
G ~A12!

for the probe population inversion, the pump coherence,
the gain coefficient, respectively. The gain coefficient clea
shows that the population difference contributes as
2(g3 /g1)

2, while the (g3 /g1) term comes from the coher
ence contribution to the amplification.

The dressed picture is particularly easy to understan
this limit. The semiclassical dressed states are split in ene
by 2\x, each having a FWHM of\g1/2. Probe or vacuum
radiation tuned between these states creates an atomic s
position, which can either enhance or detract from furt
transitions. The steady-state, dressed density-matrix elem
are

rAA
~0!5rBB

~0!5 1
2 ~r11

~0!1r22
~0!2 r̃12

~0!2 r̃21
~0!!5

r

g1
,

~A13a!

rAB
~0!5~rBA

~0!!*5 1
2 ~ r̃21

~0!2r11
~0!1r22

~0!2 r̃12
~0!!5

i

2

r

x
,

~A13b!

showing from Eq.~A4! that

r̃23
~1!;2 i ~x8!* F 1

2 ~r33
~0!2rAA

~0!!1 1
2 ~r33

~0!2rBB
~0!!

1
ixrBA

~0!

g11g3

2
2 idGF x2

S g11g3

2 D G21

. ~A14!

We now identify absorption with the lack of inversion in th
dressed picture and amplification owing to a dressed co
ence.

Above, the gain coefficient has been written in a form
Eq. ~A12! that emphasizes its proportionality to~i! the
steady-state population of level 3,r /g3 , and ~ii ! the decay
rateg1 . This form suggests a perturbation path for an a
he

d
y
1

in
gy

er-
r
nts

r-

-

plitude calculation that starts by incoherent pumping out
level 4 into level 3 and ends by decay back into level 4 fro
the dressed states. The gain coefficient is discussed in S
II and IV with respect to our amplitude approach.

APPENDIX B: FEYNMAN DIAGRAMS FOR AWI USING
QUANTUM DRESSED STATES

The Feynman diagrams can be defined in a fully qu
tized dressed basis as well. Instead of trying to draw a pic
of transitions between different dressed levels, the pertu
tion chains that were used in the amplitude calculation ab
provide the same information. From time-independent p
turbation theory, we know how to construct the differe
amplitudes from these pathways@19,20#. Assuming a reso-
nant pump field, the quantum dressed levels of
N-photon manifold are written as

uB,N,N8,$k%&5A1
2 ~ u1,N21,N8,$k%&1u2,N,N8,$k%&),

~B1a!

uA,N,N8,$k%&5A1
2 ~2u1,N21,N8,$k%&1u2,N,N8,$k%&),

~B1b!

where u1& and u2& are the upper and lower atomic state
respectively,N andN8 are the number of pump and prob
photons, respectively, and$k% refers to the set of single pho
ton states,uk1 ,l1 ;k2 ,l2 ;...&[u$k%&, created by spontane
ous emission, each with an energy\Vki

. The ~complex! en-
ergies of the quantum dressed states in frequency u
takingv2,0,0,$0%50, are

vB,N,N8,$k%5x2 i
g1

4
1NV1N8V81(

i
Vki

, ~B2a!

vA,N,N8,$k%52x2 i
g1

4
1NV1N8V81(

i
Vki

.

~B2b!

Levels 3 and 4 in theN-photon manifold have the energie

v3,N,N8,$k%5v32 i
g3

2
1NV1N8V81(

i
Vki

,

~B3a!

v4,N,N8,$k%5v41NV1N8V81(
i

Vki
. ~B3b!

The Hilbert space, expanded in this dressed basis, leads
Schrödinger equation consistent with the semiclassical a
plitude equations of motion, Eqs.~15a!–~15f!.

The initial state of the system isu4,N,N8,$0%&. Incoherent
pumping at the time t0 pumps the system into
u3,N,N8,$0%&. We stress again that the incoherent pump
process, when accounted for formally, leads to the cross
tion,
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s5
r

F (
$k%

ua4,N21,n8,$k%u
2, ~B4!

whereF is now the quantum flux factor@18#, andn85N8
11 for probe amplification andn85N821 for probe ab-
sorption. The perturbation chains for amplification are

u3,N,N8,$0%& ——→
A1/2~x8!*

uB,N,N811,$0%&

——→
A1/2g41*

u4,N21,N811,k1&,
~B5a!

u3,N,N8,$0%& ——→
A1/2~x8!*

uA,N,N811,$0%&

——→
2A1/2g41*

u4,N21,N811,k1&,
~B5b!

where paths~B5a! and ~B5b! lead to a4,N21,N811,k1

(B) and

a4,N21,N811,k1

(A) , respectively. The condition for energy co

servation of the scattering process is

E4,N21,N811,k1
2E3,N,N8,$0%'Vk1

1v42V1V82v350,
~B6!

implying spontaneous emission atVk1
5V2v45uv48u for

the D850, two-quantum amplification process, wherev48
was defined for the semiclassical calculation by Eq.~19!.
~From this, we can identify the semiclassical stateu48& in the
rotating frame of the pump with the coupled atom-field st
u4,N21&. For example, see Refs.@19, 20#.! The final transi-
tion energies,

E4,N21,N811,k1
2EB,N,N811,$0%'Vk1

2uv48u2x50,
~B7a!

E4,N21,N811,k1
2EA,N,N811,$0%'Vk1

2uv48u1x50,
~B7b!

give the stepwise resonances. Finally, we notice that the
scattering process, including incoherent pumping, starte
state 4 in theN-photon manifold of the pump and ends
state 4 in the (N21)-photon manifold with a spontaneou
photon emitted; both states are asymptotically stable in
weak incoherent pumping limit,r!g3 ,g1 .

The four Feynman diagrams for absorption are

u3,N,N8,$0%& ——→
A1/2g23*

uB,N,N8,k2&

——→
A1/2x8

u3,N,N821,k2&

——→
A1/2g23*

uB,N,N821,k2 ,k3&

——→
A1/2g4*

u4,N21,N821,k2 ,k3 ,k4&, ~B8a!
e

ll
in

e

u3,N,N8,$0%& ——→
A1/2g23*

uB,N,N8,k2&

——→
A1/2x8

u3,N,N821,k2&

——→
A1/2g23*

uA,N,N821,k2 ,k3&

——→
2A1/2g41*

u4,N21,N821,k2 ,k3 ,k4&, ~B8b!

u3,N,N8,$0%& ——→
A1/2g23*

uA,N,N8,k2&

——→
A1/2x8

u3,N,N821,k2&

——→
A1/2g23*

uB,N,N821,k2 ,k3&

——→
A1/2g41*

u4,N21,N821,k2 ,k3 ,k4&, ~B8c!

u3,N,N8,$0%& ——→
A1/2g23*

uA,N,N8,k2&

——→
A1/2x8

u3,N,N821,k2&

——→
A1/2g23*

uA,N,N821,k2 ,k3&

——→
2A1/2g41*

u4,N21,N821,k2 ,k3 ,k4&, ~B8d!

corresponding toa4,N21,N821,k2 ,k3 ,k4

(BB) , a4,N21,N821,k2 ,k3 ,k4

(BA) ,

a4,N21,N821,k2 ,k3 ,k4

(AB) , and a4,N21,N821,k2 ,k3 ,k4

(AA) , respectively.

Energy conservation of the absorption diagrams requires

E4,N21,N821,k2 ,k3 ,k4
2E3,N,N8,$0%'v42V2V81Vk2

1Vk3

1Vk4
2v3'0,

~B9!

just as the semiclassical condition in Eq.~46!. Furthermore,
the three intermediate resonances to the final state are
dent from the three final transitions in each of the four pa
ways.

The final state of the amplification diagrams was shown
be u4,N21,N811,k1&, distinguishing it clearly from that of
the absorption process,u4,N21,N811,k2 ,k3 ,k4&. As a re-
sult, these two states do not interfere, allowing us to write
overall quantum cross section for amplification assamp
2sabs. The definition of these fully quantized Feynman di
grams is satisfying from a fundamental point of view. Ye
the physics of AWI and the conclusions drawn from the c
culation remain the same, except in the truly quantum lim
where the number of probe photonsN8 becomes small. The
ramifications of a probe field in this limit will not be dis
cussed here.
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