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Theory of a semiconductor laser with phase-conjugate optical feedback
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~Received 25 October 1995; revised manuscript received 6 November 1996!

The effects of phase-conjugate feedback on semiconductor laser mode structure and dynamics are studied,
beginning with a derivation of the system’s coherent optical rate equation. For fast-responding phase-
conjugating mirror~PCM! a multimode external cavity longitudinal mode spectrum arises that is in many ways
similar to that of conventional external feedback lasers, except that the spacing of the external resonator modes
equals half that of a conventional external cavity of equal length. A linearized stability analysis based on rate
equations for longitudinal modes shows that the external cavity modes alternate in stability as function of
increasing frequency shift from the pump. These modes also appear as spikes in the random intensity noise and
phase noise spectra. It is shown that the locked phase of the field must be controlled to achieve stable
operation, and may be used to maximize the fraction of energy in the central ‘‘spike’’ of the laser spectrum.
Finally, the effects of pump noise on laser linewidth, and the finite PCM response time, are described.
@S1050-2947~97!03905-X#

PACS number~s!: 42.55.Px, 42.60.Da, 42.65.Hw
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I. INTRODUCTION

Conventional optical feedback in semiconductor lasers@1#
has been studied extensively over the past 15 years, p
because feedback may catastrophically affect the stab
and noise properties of the field, and also because u
controlled conditions it may be used to enhance per
mance, for example, to achieve significant narrowing of
line shape@2#. More recently, phase conjugate feedba
~PCF! has received experimental and theoretical atten
@3–6#. In this, the radiation reflected by the external device
phase-conjugating mirror~PCM!, is wave-front inverted@7#.
Many of the issues that are important in conventional ex
nal feedback are also of interest here.

The physics of PCF is for various reasons inherently m
complex than that of conventional feedback employing
passive mirror, since in the former, the wave-front invers
must be carried out in an active medium. The phase-reve
property of the reflected radiation causes a frequency s
when the frequency of the incident radiation differs sligh
from that of the pump laser~nondegenerate four-wave mix
ing @7#!, reverting back to the original frequency after ea
double pass around the cavity. The PCM possesses a
finite response time or bandwidth, and potential nonlinear
which both tend to limit its performance. For example,
four-wave mixing PCM is subject to trade-off between r
flectivity and bandwidth, and the response time of commo
used conjugating media is much larger than those descri
semiconductor laser dynamics. Still, Kerr-type and photo
fractive PCM’s with faster than nanosecond response tim
have been used in the past, and those should not be inc
patible with bandwidths in the tens’s of gigahertz range.

Any mathematical model of the phase conjugator m
entail the assumption that it is either externally pumped
self-pumped. In this paper, the former is assumed. With
restriction, a large class of phase-conjugating devices wo
fit into the rate equation model assumed here, although, a
previous theoretical treatments@4–6#, an idealized PCM tha
551050-2947/97/55~5!/3891~9!/$10.00
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responds infinitely fast and runs absolutely ‘‘quiet’’ will b
assumed for most of the paper. The effects of pump no
and response lag are discussed later.

We begin with a derivation of an optical rate equation th
retains the full modal structure of the compound etalon. T
method applies to multiple external resonator models an
strongly coupled, high-reflectivity PCM’s. For a single roun
trip, the resulting rate equation reduces to the pha
conjugate equivalent of the single-mode rate equation
conventional feedback@8#. However, the generality of the
approach rests on the property that this method applied
any kind of laser cavity yields solutions that are rigorous
equivalent to those of the complete set of Maxwell equ
tions. In past rate equation treatments, cavity loss effects
the modal structure were approximated, resulting in wro
predictions of the linewidth. An interesting consequence
the present approach is that empirical Petermann-K cor
tions to the theoretical laser linewidth should arise in a lo
cal manner from the theory. The larger issue of the appro
ateness of a local rate equation is not believed to be diffe
than in semiconductor laser modeling, generally. It is c
tainly required that the adiabatic assumption of the medi
is applicable, and that the transverse structure of the fiel
inherently stable, at least throughout the regions of stab
of the longitudinal modes. These conditions are most ea
satisfied in smaller devices@9#.

The remainder of the paper treats the problem of no
and fluctuations. The treatment of fluctuations is along
lines of the Langevin noise analysis of Agrawal and Gr
@6#, but differs significantly in three aspects. First, we expa
to include the derivation and analysis of higher-order pha
conjugate external cavity modal rate equations. Second, t
assumption of phase locking to an apparently imposed va
of the phase@i.e., Eq. ~15! in @6## is here shown to be in
conflict with other steady-state requirements of the rate eq
tion, and therefore it is not adopted in this paper. And fina
their approximation to expand time-delayed quantities to fi
order in the external cavity round-trip time is not made, a
3891 © 1997 The American Physical Society
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3892 55ERIK BOCHOVE
has important consequences for the predicted stability of
system. For example, the stated approximation leads to
prediction that the system isalways dynamically unstable
when the product of the injection frequency of feedback a
the external cavity round-trip time~denoted byh! equals or
exceeds unity. Instead, we find that stability may persist
h.1, under certain conditions, provided that the respo
time of the PCM is small compared to other time constan

In addition, the results not covered in previous work c
be summarized as follows. We find that at moderately h
feedback levels~for which h'1! almost all~.99%! of the
laser spectrum is included in the sharp central ‘‘spike’’ a
discussed in Ref.@6#. An expression is derived for the widt
of this spike when the spectral linewidth of the laser pum
ing the PCM is taken into account. Assuming athin four-
wave mixing medium for the PCM@7#, it is found that the
minimum linewidth of the spike is identical with the pum
linewidth. Another refinement of the model, the inclusion
finite PCM response time, shows it to diminish the stabil
at higher feedback levels. Lastly, rate equations and ste
state conditions are derived, and a stability analysis p
formed, of modes whose frequencies differ by discrete v
ues from the PCM pump frequency. These modes are
described by the rate equations of Ref.@6#, but are consisten
with previous~Fox-Li-type! treatments, and our prediction
in agreement with already well-known properties@10,11#.

II. COHERENT OPTICAL RATE EQUATION

Although derivations of rate equations exist in the lite
ture @8,12–14#, the generality of the present derivation im
plies that a universal connection can be established betw
the rate equation forany laser cavity and the logarithm of
basic operator, the Fox-Li round-trip propagator@15#. Thus
the rate equation is determined once the round-trip propa
tor is calculated, and its solutions expressible in terms of
eigenfunctions and eigenvalues. The described method
be used to derive rate equations for other types of laser c
ties~e.g., external feedback and injection locking geometr
unstable laser resonators, and broad area semiconduct
sers! @16#. The ‘‘spirit’’ of the approach we used is similar t
that of Lang and Yariv@13#, who obtained an approximat
rate equation using not unsimilar arguments from ours.

The laser cavity is taken to be uniformly filled with a ga
medium, and it is assumed that other conditions are likew
appropriate~e.g., plane mirrors or end facets! for all fields to
be approximated by to the right- and left-propagating pla
waves. Usingv0 to denote the pump frequency of the PC
pump laser, the slowly varying factor of the complex fie
inside the laser cavity~defined by 0,z,Lc), at frequency
componentsv06n, is taken as

E~z,t !5 Ẽ~n!@ARLe
ik~n!z1e2 ik~n!z#e2 int

1 Ẽ~2n!@ARLe
ik~2n!z1e2 ik~2n!z#eint, ~1!

where the notationE(6n),k(6n) refers to the field compo
nents atv06n, andRL is the reflectivity of the left mirror or
facet. The a or line-broadening parameter@17#, a5
2Dnr /Dni , describes the connection between the real
imaginary parts of the active medium’s nonlinear index.
nally, the wave vector is given byk(n)5n(n)@(v01n)/c
e
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1(2i1a)G(n)/(2c)#, in terms ofn(n) andG(n), the refrac-
tive index and gain, respectively.

Application of the boundary conditions at the right end
the laser cavity yields

Ẽ~n!e2 ik~n!Lc5r ~n!ARLe
ik~n!LcẼ~n!

1p~2n!ARLe
2 ik* ~2n!LcẼ* ~2n!, ~2!

where r (n) and p(n) denote conventional and phas
conjugate effective reflectivity functions, respectively. Equ
tion ~2! can be written in matrix form

x̃~n!exp~2 intc!5L̃~n!x̃~n!, ~3!

where x̃(n) is the column vector of components$E(n),
Ẽ(2n)* % and the components of the round-trip transfer m
trix L̃(n) are given by

L̃11~n!5L̃22~2n!*5ARLe
i @d2~1/2!~a1 i !G~n!#tcr ~n!,

L̃12~n!5L̃21~2n!*5ARLe
@2~1/4!iaDG~n!1~1/2!Ḡ~n!#tcp~2n!,

~4!

in which vc52pq/tc (q5 integer) is the cold-cavity mode
frequency,d5v02vc is the detuning of the pump from th
cavity frequency,tc is the cold-cavity round-trip delay, an
the remaining functions of the gain are defined asḠ(n)
5 1

2@G(n)1G(2n)#, DG(n)5G(n)2G(2n). The wave
vectork(n) was expanded inn, in which terms of ordern2

and in the difference between group and phase delays w
omitted.

Equation~3! shows that the matrixL̃(n) determines the
evolution of the field over discrete intervals of timetc . Our
objective is to turn this into an equivalent first-order diffe
ential equation in time. There are other ways of approach
this; here we follow a kind of analytical continuation arg
ment.

During a timeDt, containingN5Dt/tc intervals2tc ,
Eq. ~3! predicts that the field evolves to

E~ t1Dt !
E* ~ t1Dt !J 5

1

2p E
2`

1`

L̃~n!Dt/tg3H Ẽ~n!

Ẽ* ~2n!J 3e2 intdn.

~5!

It is now assumed that this expression is valid also for fr
tional multiples of the cavity round-trip time. The justifica
tion of this procedure is given below. Expanding both sid
to first order inDt, yields then the coherent rate equation
general form:

dx~ t !

dt
5

1

2ptc
E

2`

1`

lnL~n!x̃~n!e2 intdn. ~6!

This expression is the exact rate equation satisfied by
field, and it is fully equivalent to the integral equation form
Eq. ~3!. Note that it represents the rate equation forany laser
cavity satisfying an integral equation in whichL̃(n) plays
the role of round-trip propagator, because the explicit fo
of L̃(n) need not be specified for Eq.~6! to be valid. The
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55 3893THEORY OF A SEMICONDUCTOR LASER WITH PHASE- . . .
extension to inclusion of transverse spatial dimensions
straightforward, since consideringL̃(n) an operator in the
transverse plane does not affect the formal form of Eq.~6!.

Equation ~6! applies also to the case of strong pha
conjugate interaction, say, for whichp(n)>1, although then
a more practical rate equation would be based on dou
round trips. For experimental reasons the motivation
studying that case appears to be minimal, however, s
highly nonlinear media with response times faster than
of the laser are currently not available.

Fourier transforming Eqs.~3! and ~6!, we note that both
equations yield the following characteristic equation for t
modal frequencies of the resonator in the presence of
phase-conjugating mirror:

det@e2 intc1̂2L̃~n!#50. ~7!

Since Eqs.~3! and~6! have identical solutions, they must b
regarded as equivalent descriptions of the cavity field,
the solutions of Eq.~6! are rigorous solutions of Maxwell’s
equations in the same sense as the solutions of Eq.~3!. This
result is the justification for the above ‘‘analytical continu
tion’’ procedure.

Using Eq.~4!, Eq. ~7! yields the characteristic equation o
the cavity under study:

D~n!512ARLr * ~2n!e22iL ck* ~2n!2ARLr ~n!e2iL ck~n!

2e2iL c@k~n!2k* ~2n!#ARL@p~2n!p* ~n!

2r ~n!r * ~2n!#50. ~8!

By taking the complex conjugate of this equation an equi
lent expression is obtained, and since either transforms
the other by the substitutionn→2n* , it follows that the
cavity modes come in pairs arranged symmetrically ab
the pump frequency, having identical loss constant.

Limiting now the number of external resonator rou
trips to one, then r (n)'ARR, and p(2n)'(1
2RR)rPC(2n)e2inL/c, whereRR is the right facet reflectiv-
ity, L is the external cavity length, andrPC(n) the complex
PCM reflectivity. The logarithm of the matrix in Eq.~6! may
be calculated using Cauchy’s theorem. Expanding to fi
order in rPC, and suppressing the dispersion ofG and
rPC, yields the following simplification of Eq.~6!:

Ė~ t !5 iDvE~ t !1 1
2 ~12 ia!@G~N!21/tp#E~ t !

1keifPCE* ~ t2t!, ~9!

wherek is the PCF coupling parameter,fPC5arg(rPC), tp is
the cavity lifetime of the solitary laser,t52L/c is the exter-
nal cavity round-trip time,Dv is the detuning of the pump
from the solitary laser frequency, and their defining relatio
are

Dv5d2 1
2atp

21, tp52tc / ln~RLRR! ,

k5~12RR!jurPCu/~ARRtcsinj!, j5~2d2aG!tc .
~10!
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In steady-state operation,j is of the order of magnitude o
ktc!1, so it is justified to leth[j/sinj→1 in the definition
of k. The fluctuations ofh are likewise negligible, sinceh
'11j2/6'11Gn

2tc
2DN2/6, whereGn is the derivative of

the gain with respect to carrier numberN andDN the fluc-
tuation in carriers. UsingDN'N, for strong oscillations,
yields Dh[h̄21'tc

2/6tp
2'0.08, for typical values,tp be-

ing the cavity lifetime, while for fluctuations in normal op
eration it would be orders of magnitude smaller still.

Equation~9! has the form of the rate equation used in t
previous work on PCF@4–6,13#, and differs from that of
conventional feedback@14# by the presence of the comple
conjugate of the field on the right-hand side of the equati
and the conjugator phase,fPC. In the limit j→0 this equa-
tion is identical to van Tartwijk’s@8#, whose derivation is
based on the standard approximation@14# E(t1tc)'E(t)
1tcĖ(t). In the present approach, a weak PCM reflectiv
approximation was applied to the exact expressions, Eq.~6!.
That these results still differ by the factorh, even in the limit
tc→0, is due to the fact thatk approaches infinity in the
same limit, so that the assumption of slowly varying fie
required for van Tartwijk’s expansion is not guaranteed.

We would like to express the range of validity of Eq.~8!
in terms of an inequality, and it would seem thatktc!1
represents a natural condition. This condition may not
sufficiently stringent, since, by analogy with convention
feedback, the injection rate of PCF may be expected to
necessarily smaller than the cavity loss rate of the solit
laser. This leads to the stronger requirement

2ktp,1, ~11!

as will be justified below@viz., Eq. ~16!#.
It will be shown that the above approximate rate equat

yields external cavity sidebands to the solitary laser-mo
frequencies, as in the conventional external cavity laser@14#,
but with the expected difference that the spacing of th
additional modes is approximately half that in the conve
tional resonator having equal external cavity length. Ho
ever, the well-known transverse modal degeneracy
aberration-correction properties@10# of phase-conjugate
cavities having near-unity reflectivity of the PCM, do n
follow from Eq. ~8!. To this end, it is possible to derive from
Eq. ~6! a simpler rate equation covering this case.

III. DEGENERATE MODE PROPERTIES

A. Rate equations and steady-state conditions

The state of operation under which the laser frequenc
locked to the PCM pump frequency (v0) will be referred to
as the fundamental, or degenerate mode. The rate equa
for the frequency-shifted modes will be derived and d
cussed in Sec. IV of this paper.

Writing the normalized field in the form that is appropr
ate for description of the fundamental mode, i.e.,E(t)
5AP(t)eif(t), in which P is the number of photons in th
proper laser cavity andf the phase, then substitution int
Eq. ~8! yields rate equations forP(t) andf(t) @6#:
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3894 55ERIK BOCHOVE
Ṗ~ t !5@G~N!21/tp#P~ t !12kAP~ t !P~ t2t!

3cos@fPC2f~ t !2f~ t2t!#1Rsp1FP~ t !, ~12a!

ḟ~ t !5Dv2 1
2a@G~N!21/tp#1kAP~ t2t!/P~ t !

3sin@fPC2f~ t !2f~ t2t!#1Ff~ t !. ~12b!

A spontaneous emission rate,Rsp5 fG(N), where f is the
product of the internal quantum efficiency and the ‘‘exce
spontaneous emission’’~‘‘PetermannK ’’ ! factor, was added
to the right-hand side of the power equation, and the stoc
tic Langevin forcesFp,f(t) to describe noise processe
These equations are basically those of Ref.@6#, allowing for
the omission of the nonlinear gain dependence here@18#,
which has generally little effect at typical power levels.

These rate equations are similar to those of conventio
feedback, except that there the phase difference,f(t)
2f(t2t), appears in both expressions, while here it is th
sum. In steady-state operation the phases cancel in the for
case~providedDv is then defined as the laser frequency sh
measured from the solitary laser frequency!, so that the phase
is free to assume any value, while an even number of ex
nal cavity mode frequencies, clustered about the cen
mode’s frequency, are obtained as solutions. In the PCF
the laser frequency is fixed~at the pump frequency of th
PCM for the case of the degenerate mode!, and the phase
equation fixes the phase of the field at steady state as
posed to the frequency. Since Eq.~11! depends onf only
through the difference 2f2fPC, it follows thatf must lock
in relation to the PCM phase whenever steady-state op
tion is achieved.

The medium dynamics are described by the fluctuation
the electron carrier numberN(t), as modeled by

Ṅ~ t !5
I

q
2
N~ t !

tc
2G~N!P~ t !1FN~ t !, ~13!

where I is the injection current,q the electron charge. Th
second term describes carrier relaxation, of ratete

21, the
third term describes stimulated emission, and the last term
again, a Langevin force. The dependence of the gain onN is
assumed linear in fluctuations about steady state.

Neglecting the time averages of all higher powers of
small fluctuating quantities, Eqs.~12! yield steady-state
equations for the gain and phase:

G52Rsp/P11/tp22k cosc,

Dv5 1
2a~G21/tp!2k sinc, ~14!

wherec5fPC22f. Combining the two results in

Dv52kA11a2sin~c1b!2 1
2aRsp/P, ~15!

whereb5arctana. Equation~15! defines a locking range fo
Dv @5#, analogous to injection locking@19#. SinceDv is an
experimentally controlled parameter, for givenDv within the
locking bandwidth Eq.~15! narrows the available range off
from (2p,p) for the solitary laser down to just two discre
values, which may be controlled by fixing the values ofDv
s
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and k. Thus whenc is treated as a free parameter in th
paper, it is implied that the detuningDv is allowed to range
freely.

A relation giving the steady-state value ofP in terms of
the solitary laser parameters is readily obtained from E
~12!, which is relatively simple if the spontaneous emissi
term is neglected:

P

P0
5

v r0
2 te12k cosc

v r0
2 te~122ktp cosc!

'11
2k cosc

v r0
2 te

, ~16!

where P0 is the solitary laser value ofP, and v r0

5AGnP0 /tp is the solitary laser relaxation frequency,
which Gn[]G/]N. Note that modulation offPC does not
result in modulation ofP, since, according to Eq.~15!, c
stays constant, so that the laser phasef is modulated instead
Also, the power does not depend on the length of the ex
nal resonator when the laser operates in the degenerate m
as there is no round-trip phase accrual in the external cav
The term in parentheses in the denominator of the first eq
tion in Eq. ~16! was approximated by unity, in view of th
inequality ~11!.

B. Fluctuation and dynamical stability analysis
of the degenerate mode

The fluctuations about steady-state values ofP, f, and
N can be studied using linearized field and carrier rate eq
tions with added Langevin forces. According to Henry@20#,
the effect of spontaneous emission on the laser linew
attributed to the Langevin force in the equation forN is
about 0.1% that of the Langevin forces in the other eq
tions, so that neglecting it is justified. The remaining Lang
vin forces are taken to satisfy@21# ^u f̃ P(v)u2&
54P2^u f̃ f(v)u2&52RspP, ^u f̃ P(v) f̃ f* (v)&50, where
f̃ i(v)5F@Fi(t)#, ~whereF denotes the Fourier transform!,
and the angular brackets denote ensemble averages. Th
ser’s three dynamical variables are written as the sum of t
steady-state values and a small fluctuating part, i.e.,P(t)
5P1p(t), f(t)5f1w(t), andN(t)5N1n(t), and Eqs.
~12! and ~13! linearized in the fluctuations. Writing thei
Fourier transformsp̃(v), etc., and after elimination o
ñ(v), the equations for the fluctuating power and phase
given by

iv p̃~v!52FGP1
v r
2

ge2 iv
1~12eivt!k coscG p̃~v!

22P~11eivt!k sincw̃~v!1 f̃ P~v!

24Pk sincw̃p~v!, ~17a!

2 ivw̃~v!5F 2av r
2

ge2 iv
1~12eivt!k sincG p̃~v!

2P

2~11eivt!k coscw̃~v!1 f̃ f~v!

22k coscw̃p~v!, ~17b!

where v r5AGGnP, le5te
211GnP is the damping con-

stant, andGP5Rsp/P, all defined at their steady-state valu
in the presence of feedback andwP(v) represents the fluc
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55 3895THEORY OF A SEMICONDUCTOR LASER WITH PHASE- . . .
tuation in the PCM pump phase. The form of the terms c
tainingwP(v) is based on the property that the PCM refle
tion constant is proportional to the product of the tw
complex pump-field amplitudes. Equations~17! reduce to
those in Ref.@6# under the substitution exp(ivt)→11ivt,
and omitting the pump-noise terms. The pump fluctuatio
will be neglected until Sec. III D, where their effects o
phase and amplitude fluctuations are calculated.

The definitions of the random intensity noise~RIN! and
frequency noise spectra~FNS!, SRIN(v)5^u p̃(v)u2&/P2 and
SFNS(v)5^uvw̃(v)u2&, respectively, are used to characteri
intensity and frequency noise properties. A typical plot of t
former is shown in Fig. 1 for the arbitrarily chosen pha
c50. Note that PCF reduces the level of both types of no
over most of the frequency range. Another feature is
presence of prominent spikes, associated with the excita
of phase conjugate external resonator modes, which were
predicted earlier. For this plot, and others in this paper,
used parameter values from@6# appropriate for a GaAs sem
conductor laser operating at 5 mW:te52 ns, tp51.5 ps,

FIG. 1. RIN spectra for various values ofh5kt. The phase
valuec50 was assumed.
re
s
bl

a
in
-
-

s

e

e
e
on
ot
e

t59 ps, Gn54500 s21, Rsp51.7 G, andP5125 000. The
fixed value L55 cm for the external cavity length wa
adopted, unless otherwise indicated.

From the system determinant of Eqs.~17! ~where s5
2 iv andh5kt!, we have

@~GP1s!~ge1s!1v r
2#st1h@$GP~ge1s!1v r

2%~11e2st!

12s~ge1s!#cosc2av r
2sinc~11e2st!h

1~ge1s!t21~12e22st!h250. ~18!

Some limiting cases are readily obtained from Eq.~18!, be-
ginning with the solution for the solitary laser@22#, s0
521

2(ge01Gp0)1 iAv r0
2 1 1

4(ge02Gp0)
2. In the presence of

PCF, unstable solutions are possible. At low feedback lev
one of the roots is real, and approaches zero ask→0. Using
the notationG52s for the relaxation rate, forh!1 this root
is given by

G5
2k@geGPcosc1v r

2A11a2cos~c1b!#

geGP1v r
2

'2A11a2k cos~c1b!. ~19!

The numerical solution of Eq.~18! shows that for cos(c
1b),0, the root is unstable atall levels of feedback, where
the point defined by the conditionG50 in ~19!, or c1b
'0, is a ‘‘limit point’’ of the system. This instability in the
real root has been referred to as a ‘‘fold instability,’’ whi
that associated with positive real values ofs and nonvanish-
ing imaginary part is called a ‘‘Hopf instability@4#.’’

The effect of weak PCF on the damping rate and osci
tion frequency of the relaxation oscillation is found by sol
ing Eq. ~18! to first order inh5kt about the unperturbed
complex solutions0 , given above. The result is
s085s02
~12e2s0t!s0~ge01s0!cosc2av r0

2 ~11e2s0t!sinc

ts0~ge01Gp012s0!
h. ~20!
f
nal

ble
th-
a

ry-
Equation~20! shows that the magnitudes of both quadratu
of the constants08 may be increased or decreased by adju
ing the phase, making their control with PCF appear feasi

For a short external cavity (t→0), Eq. ~18! reduces to a
cubic polynomial ins:

s31~ge1Gp12k cosc!s2

1@v r
21geGp12~ge1Gp!k cosc#s12k@v r

2A11a2

3cos~c1b!1Gpgecosc#50. ~21!

Three independent stability conditions are obtained by me
of the Hurwitz criterion as necessary and sufficient. Denot
cn as the coefficient ofsn in Eq. ~21!, these arecn /c3.0,
andc1c22c0.0, or, for the latter condition,
s
t-
e.

ns
g

k@Gpgecosc1v r
2A11a2cos~c1b!#

,~ge1Gp12k cosc!@v r
21geGp

12~ge1Gp!k cosc#. ~22!

The stability condition is not trivially satisfied in the limit o
vanishing external resonator length, as it is for conventio
feedback. For example, if 2k.ge1Gp , then the laser is
unstable forp/2,c,3p/2.

The short external cavity laser cavity becomes unsta
when one of the above conditions is violated, while the o
ers are satisfied. This allows for the possibility of either
limit point, defined byc050, at which the fold instability
sets in, or at the Hopf bifurcation point, satisfyingc1c2
2c050. The former condition is consistent with Eq.~19!.

In the long external resonator limit, Eq.~18! reduces to
the solution of the uncoupled laser equation for rapidly va
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ing oscillations, and, in addition, has slowly oscillating solu
tions related to external cavity resonances, given by

st56 iqp1 ln U gek

ge~k1Gpcosc!1A11a2v r
2cos~c1b!

U ,
~23!

whereq runs over even integers if the function whose abs
lute value is taken is positive, and it runs over odd intege
otherwise. We note that the fold instability is the only insta
bility in this limit.

The results of numerical solution of Eq.~18! are plotted in
Fig. 2, which shows the primary stable regions in thek-c
plane with respect to the Hopf instability. Only the bound
aries of the stable regions of weakest feedback level are
dicated, since ask increases, alternating stable and unstab
regions are encountered. The valuea53 was assumed, and
the values of the other constants are as before. Curves
three values of the external cavity length are shown. T
boundaries of the fold instability are indicated by dashe
lines. Calculations carried out withL as variable supported
Eq. ~23!, in that at largeL the mode was found to be stable
in every instance.

Another feature is that ‘‘unlimited’’ feedback strength
@subject to Eq.~11!# appears possible for large ranges o
phase values. This is not predicted by the linearized mode
Ref. @6# from which an absolute upper limit ofh51 is ob-
tained for stability if the phase is ranged freely. The larg
magnitudes for the coupling constant assumed in Fig. 2 m
be experimentally achieved by antireflection coating the las
facet, or by using a PCM with gain.

Such apparent ‘‘unlimited’’ dynamical stability could
possibly be interpreted as contradicting Refs.@4#, @5#, where
self-exciting oscillations and chaos at higher feedback lev
are predicted by direct numerical solution of field and carri
rate equations. In Sec. IV of this paper, however, it is show
that half of the nondegenerate higher-order modes are

FIG. 2. Regions of stable operation of the mode locked to t
PCM pump frequency. Plots are for three different values of exte
nal cavity lengthL, ~a! 5 cm,~b! 10 cm, and~c! 15 cm. The region
below each curve is stable against Hopf instability; that between
two dashed lines is stable against the fold instability.a53 is as-
sumed.
-
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for
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stable. The relative stability at high PCF level contrasts w
the sensitivity of conventional external feedback caviti
which become unstable at the critical value of the coupli
given bykc'v r

2/2geA11a2 @23#.

C. Spectral line shape

In the presence of PCF, a portion of the emitted radiat
is locked in phase with the pump, and thus does not fluctu
~assuming a perfectly quiet pump!. This results in a sharp
centrally located spike on the laser spectrum@5,6#. Using the
general expression for the spectral line-shape function@6#, it
may be shown that the fractionf L of the spike in the spec
trum relative to the total integrated intensity is given by t
long-time limit of the variance:

f L5 lim
t→`

^uw~ t !u2&5
1

p E
2`

1`

^uw~v!u2& dv. ~24!

This quantity rapidly approaches unity forh>1, as illus-
trated in Fig. 3 for two values of the phase. In weak PCF,
which the phase variance relaxes exponentially as descr
by a single relaxation rateG @Eq. ~19!#, the following simple
expression is found:

f L5e2G0 /G, ~25!

whereG0 is the relaxation rate of the solitary laser, corr
sponding to a Lorentzian line-shape function of widthDn0
5G0 /p. However, its applicability is restricted to sma
f L . Figure 3 shows that most of the laser radiation becom
phase locked at moderate feedback level.

D. Effects of pump fluctuations

The finite linewidth of the pump laser adds to the RIN a
FNS noise levels of the laser radiation. An example of
results of a small signal analysis based on Eqs.~17! is illus-
trated in Fig. 4. The pump linewidth was taken equal to t
of the free running slave laser, the phasec52b, and all the
other parameters are those of Fig. 2,et seq. The laser line
shape is affected by pump phase fluctuations prima
through broadening of the central ‘‘spike.’’ The width o
the latter is determined using the expressionDn
5(2p)21limv→0^uvw̃(v)u2&, where the spectrum of phas
fluctuations is determined using Eqs.~17!. This leads then to
the relation,̂ uw̃(0)u2&5^uw̃p(0)u2&, between the phase fluc

e
r-

e

FIG. 3. Relative power in the central spike of the spectrum
function of feedback strength for two values of the phase~all other
parameters have the same values as in previous figures!.
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tuations of the laser field and those of the pump laser, so
the linewidth of the spiked part of the laser spectrum j
equals the linewidth of the pump laser@5,6#.

E. Effects of finite PCM response time

The steady state excepting, the above conclusions
valid only for an ideal conjugating medium having zero r
sponse time. Fluctuating fields are conjugated by the mi
only if the latter responds quickly enough to form a grati
during a typical fluctuation period. The effect of a finite r
sponse time may be modeled by assuming that the resp
of the PCM is exponential in time, which is taken into a
count, e.g., by substitutingk5k0 /(11stPC) for k in Eqs.
~18!. Using Eq.~19!, the relaxation rateG for weak feedback
is thus obtained from the solution of

G'
2A11a2k0cos~c1b!

12GtPC
. ~26!

This yields two values forG for smallk or shorttPC, but for
8ktPCA11a2cos(c1b).1, a single relaxation rateG
51/(2tPC) accompanied by relaxation oscillations is pr
dicted.

The PCM delay can evidently cause instability in t
presence of strong feedback. In Fig. 5 are plotted the tra
tories traced by a few of the poles of the system respo
function @solutions of Eq.~18!# as the PCM response tim
ranges from 0 to 105t. Initially all poles are located in the

FIG. 4. Contribution to RIN due to finite linewidth of the pum
laser for phasec52arctana521.25.

FIG. 5. Solutions of characteristic equation, Eq.~18!, as func-
tion of PCM response time modeled according tok→k(s)
5k0 /(11stPC). At one extremity of each curve,tPC50, at the
othertPC5105t. The feedback strength isk0t510, phasec50.
at
t

re
-
r

se

c-
se

left half of the complex plane, but some cross the imagin
axis as the response delay increases, showing that the sy
becomes unstable.

IV. RATE EQUATION ANALYSIS
OF HIGHER-ORDER MODES

Higher-order phase conjugate external resonator mo
consisting of mutually phase- and amplitude-locked~by the
PCM medium! pairs of fields at frequenciesv5v06n, are
observable provided thatntPC!1. For the purposes of this
analysis it will be assumed that only one pair of such coup
modes is present, so that we substitute the following stea
state expression for the field into Eq.~9!:

E~ t !5AP1~ t !exp@ i ~v01n!t1 if1~ t !#

1AP2~ t !exp@ i ~v02n!t1 if2~ t !#. ~27!

Neglecting the small difference in gain between the two f
quencies6n, this yields

Ṗ1~ t !

P1~ t !
5G2tp

2112kAP2~ t2t!/P1~ t !

3cos@fPC2f1~ t !2f2~ t2t!1nt#1Rsp/P1~ t !

1FP1~ t !/P1~ t !, ~28a!

Ṗ2~ t !

P2~ t !
5G2tp

2112kAP1~ t2t!/P2~ t !cos@fPC2f2~ t !

2f1~ t2t!2nt#1Rsp/P2~ t !1FP2~ t !/P2~ t !,

~28b!

ḟ1~ t !5Dv1n2 1
2aSG2

1

tp
D1kAP2~ t2t!/P1~ t !

3sin@fPC2f1~ t !2f2~ t2t!1nt#1Ff1~ t !,

~28c!

ḟ2~ t !5Dv2n2 1
2aSG2

1

tp
D1kAP1~ t2t!/P2~ t !

3sin@fPC2f2~ t !2f1~ t2t!2nt#1Ff2~ t !,

~28d!

whereP(t)5P1(t)1P2(t) is the normalized total power.
Solution of the steady-state equations yields the follow

equations forn, c, laser threshold, and power:

n5 1
2k@AP1 /P2sin~c2nt!2AP2 /P1sin~c1nt!#,

~29!

Dv52 1
2aSG2

1

tp
D2 1

2k@AP1 /P2sin~c2nt!

1AP2 /P1sin~c1nt!#. ~30!
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G2
1

tp
52Rsp22kAP1 /P2cos~c2nt!

52Rsp22kAP2 /P1cos~c1nt!, ~31!

P1

P2
5
cos~c1nt!

cos~c2nt!
, ~32!

wherec5fPC22f, f[ 1
2(f11f2). The phase difference

f12f2 remains undetermined. These equations satisfyP1
5 P2 whenn50 or c50, 6p. Note that Eq.~32! predicts
the unphysicalP1P2,0 whenc56 1

2p and nÞ0, and in-
deed, no solution consistent with the other equations, o
thann50, is found at these phase angles.

Equation~29! confirms the known result, that the mod
spacing of the external resonator modes is approximatel
e

e

c
I
a
od

ex

h

er

Dn5nn112nn'
p

t
, ~33!

i.e., half that of the conventional external resonator mo
spectrum.

As in conventional optical feedback, a minimum feedba
strength must be present for the first higher-order PC m
to appear. This property is illustrated in Fig. 6. It is notab
that for some values of the phase~i.e., c'6p/2! the only
solution isn50, and at other values~i.e.,c'6p/4! higher-
order mode solutions are found for any nonzeroh value. For
the negative value of the former case it is recalled that
fundamental mode is stable for all values of the feedb
level ~viz, Fig. 2!, and hence it appears that the laser, wh
operated within this narrow phase ranges would be glob
stable. Using Eqs.~33! and~34!, this requires a detuningdv
equal todv5 1

2@k1a(Rsp1tp
21)#.

Dynamical stability is determined by linearizing Eqs.~28!
in the usual way, leading to the system determinant:
detF 2st2m12Cp

m21e2stCm
1
2 ~am12Sp!

1
2 ~am21e2stSm!

m21e2stCp

2st2m12Cm
1
2 ~am21e2stSp!

1
2 ~am12Sm!

2Sp
2e2stSm
2st2Cp

2e2stCm

2e2stSp
2Sm

2e2stCp

2st2Cm

G50, ~34!
as
g
a-
n of

f a
ter-

op-

fun-
ncy

pa-
o

where cp/m5c1/2nt, v r1,2
2 5GGnP1,2, m1,25v r1,2

2 t/
(ge1s), Cp5h(P2 /P1)

1/2coscP , Sp5h(P2 /P1)
1/2sincp ,

Cm5h(P1 /P2)
1/2coscm, andSm5h(P1 /P2)

1/2sincp .
Numerical evaluation of the above determinant show

that, when considered as a function of increasingn, the
modes are alternatively stable and unstable. Labeling th
n50,1,..., wheren50 represents then50 solution, then,
for example, forh55 and c521 rad, then50,2,4,...,
modes are stable and the oddn modes are unstable. Forc
522 the odd-n modes are stable and then50 and even
modes are unstable. However, in experiments it isDv that is
controlled, and the phase will have a different value for ea
external cavity mode. This situation is illustrated in Table
from which it is seen that in this case also the modes
alternatingly stable and unstable, with the higher gain m
in each pair being stable.

TABLE I. Frequencies and other properties of higher-order
ternal cavity modes. Fixed parameter values areh510, Dv50,
a53, and the values of the other parameters the same as elsew
in this paper.

nt/p f ~rad! P1 /P2 (G21/tp)t Gt

0 24.39 1 6.32 6.07
0.968 24.36 0.567 26.55 unstable
2.078 24.26 3.151 7.23 6.07
2.875 24.13 0.224 27.81 unstable
d

m

h
,
re
e

V. CONCLUSION

The main conclusions of this paper are summarized
follows. A method@16# that is a broad generalization of Lan
and Yariv’s approach@13# was used to derive the rate equ
tion for a laser subject to PCF. The weak feedback versio
this equation agreed with an earlier derivation@8# in the ap-
propriate limits, and was used to study the dynamics o
semiconductor laser. The rate equation for the strong in
action limit has been given elsewhere@16#, which predicts
the well-known degeneracy and aberration-correction pr
erties of phase-conjugate cavities~Au Yeunget al. @10#!.

The steady-state mode distribution is described as a
damental mode that is locked to the PCM pump in freque

FIG. 6. Frequency offset from pump frequency vs feedback
rameterh of first two higher-order cavity modes plotted for tw
phase values.
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and in phase, and higher-order laser cavity and clos
spaced external-resonator modes that consist of frequ
and phase-locked pairs of fields having their respective
quencies symmetrically placed on each side of the pu
frequency. The actual presence of each mode, including
fundamental, is subject to conditions that are controllable
tuning the pump frequency relative to the solitary laser f
quency.

The stability of PCF external resonator modes is affec
by the response time of the PCM under higher feedback
els. If the PCM response time is short compared to all ti
constants describing the laser dynamics, by tuning the ph
inside an appropriate range, the system is stable even
high feedback levels, but for longer response times and
ficient feedback strength instability sets in.

The line shape of the laser with PCF consists of a sh
spike located on top of a broad background, as demonstr
previously@6#. For an external cavity a few centimeters lon
the area under the spike approaches 100% of the total ar
h→1, while for a givenh value the phase yielding the max
mum spike is just that assumed by Agrawal and Gray,
f5 1

2(fPC1arctana). It was also shown that the width o
-

ss
,

m

J

ly
cy
e-
p
he
y
-

d
v-
e
se
for
f-

rp
ed

as

.,

this spike is just equal to the linewidth of the PCM’s pum
laser.

The higher-order phase-conjugate longitudinal exter
cavity modes increase the available locking frequency ran
but also reduce the range of feedback strength available
stable operation. An exception is a narrow phase band wi
which the basic mode is stable for all levels of feedback~for
infinitely fast responding PCM!, and where no higher-orde
external cavity modes appear. In addition, these modes
tribute to the RIN and FNS noise. Also importantly, the pre
ence of such modes, as in the conventional external ca
laser, introduces ‘‘ringing’’ effects in the modulation transf
function, so that in practice the modulation bandwidth of t
laser places an upper limit on the length of the external c
ity, which would be half as great as that of the conventio
external cavity.
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