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Theory of a semiconductor laser with phase-conjugate optical feedback
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The effects of phase-conjugate feedback on semiconductor laser mode structure and dynamics are studied,
beginning with a derivation of the system’s coherent optical rate equation. For fast-responding phase-
conjugating mirroPCM) a multimode external cavity longitudinal mode spectrum arises that is in many ways
similar to that of conventional external feedback lasers, except that the spacing of the external resonator modes
equals half that of a conventional external cavity of equal length. A linearized stability analysis based on rate
equations for longitudinal modes shows that the external cavity modes alternate in stability as function of
increasing frequency shift from the pump. These modes also appear as spikes in the random intensity noise and
phase noise spectra. It is shown that the locked phase of the field must be controlled to achieve stable
operation, and may be used to maximize the fraction of energy in the central “spike” of the laser spectrum.
Finally, the effects of pump noise on laser linewidth, and the finite PCM response time, are described.
[S1050-294{@7)03905-X

PACS numbegs): 42.55.Px, 42.60.Da, 42.65.Hw

I. INTRODUCTION responds infinitely fast and runs absolutely “quiet” will be
assumed for most of the paper. The effects of pump noise
Conventional optical feedback in semiconductor laggls and response lag are discussed later.
has been studied extensively over the past 15 years, partly We begin with a derivation of an optical rate equation that
because feedback may catastrophically affect the stabilityetains the full modal structure of the compound etalon. This
and noise properties of the field, and also because undenethod applies to multiple external resonator models and to
controlled conditions it may be used to enhance perforstrongly coupled, high-reflectivity PCM's. For a single round
mance, for example, to achieve significant narrowing of therip, the resulting rate equation reduces to the phase-
line shape[2]. More recently, phase conjugate feedbackconjugate equivalent of the single-mode rate equation of
(PCB has received experimental and theoretical attentiortonventional feedback8]. However, the generality of the
[3-6]. In this, the radiation reflected by the external device, aapproach rests on the property that this method applied to
phase-conjugating mirrqdPCM), is wave-front inverted7]. any kind of laser cavity yields solutions that are rigorously
Many of the issues that are important in conventional exterequivalent to those of the complete set of Maxwell equa-
nal feedback are also of interest here. tions. In past rate equation treatments, cavity loss effects on
The physics of PCF is for various reasons inherently moréhe modal structure were approximated, resulting in wrong
complex than that of conventional feedback employing goredictions of the linewidth. An interesting consequence of
passive mirror, since in the former, the wave-front inversionthe present approach is that empirical Petermann-K correc-
must be carried out in an active medium. The phase-reversébns to the theoretical laser linewidth should arise in a logi-
property of the reflected radiation causes a frequency shiital manner from the theory. The larger issue of the appropri-
when the frequency of the incident radiation differs slightly ateness of a local rate equation is not believed to be different
from that of the pump lasginondegenerate four-wave mix- than in semiconductor laser modeling, generally. It is cer-
ing [7]), reverting back to the original frequency after eachtainly required that the adiabatic assumption of the medium
double pass around the cavity. The PCM possesses alsoisaapplicable, and that the transverse structure of the field is
finite response time or bandwidth, and potential nonlinearityjnherently stable, at least throughout the regions of stability
which both tend to limit its performance. For example, aof the longitudinal modes. These conditions are most easily
four-wave mixing PCM is subject to trade-off between re-satisfied in smaller devicd$].
flectivity and bandwidth, and the response time of commonly The remainder of the paper treats the problem of noise
used conjugating media is much larger than those describingnd fluctuations. The treatment of fluctuations is along the
semiconductor laser dynamics. Still, Kerr-type and photoretines of the Langevin noise analysis of Agrawal and Gray
fractive PCM’s with faster than nanosecond response timefg], but differs significantly in three aspects. First, we expand
have been used in the past, and those should not be incorte include the derivation and analysis of higher-order phase-
patible with bandwidths in the tens’s of gigahertz range.  conjugate external cavity modal rate equations. Second, their
Any mathematical model of the phase conjugator mustissumption of phase locking to an apparently imposed value
entail the assumption that it is either externally pumped oiwof the phasdi.e., Eq.(15) in [6]] is here shown to be in
self-pumped. In this paper, the former is assumed. With thigonflict with other steady-state requirements of the rate equa-
restriction, a large class of phase-conjugating devices woultlon, and therefore it is not adopted in this paper. And finally,
fit into the rate equation model assumed here, although, as heir approximation to expand time-delayed quantities to first
previous theoretical treatmerié—6|, an idealized PCM that order in the external cavity round-trip time is not made, as it
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has important consequences for the predicted stability of the-(—i+a)G(v)/(2c)], in terms ofn(v) andG(v), the refrac-
system. For example, the stated approximation leads to théve index and gain, respectively.
prediction that the system ialways dynamically unstable Application of the boundary conditions at the right end of
when the product of the injection frequency of feedback andhe laser cavity yields
the external cavity round-trip tim@enoted byz) equals or _ _
exceeds unity. Instead, we find that stability may persist for ~ &(v)e *(Wle=r(v) R ek(leg(v)
7n>1, under certain conditions, provided that the response - ~
time of the PCM is small compared to other time constants. +p(—v)VRe K e (— 1), (2)

In addition, the results not covered in previous work can ]
be summarized as follows. We find that at moderately highwhere r(») and p(») denote conventional and phase-
feedback levelsfor which »~1) almost all(>99%) of the ~ Conjugate effectlv_e reflfactlwty_functlons, respectively. Equa-
laser spectrum is included in the sharp central “spike” alsotion (2) can be written in matrix form
discussed in Ref6]. An expression is derived for the width _ ) -
of this spike when the spectral linewidth of the laser pump- X(vjexp( —ivre) =L(v)X(v), ©)
ing the PCM is taken into account. Assuminghan four- - ]
wave mixing medium for the PCNI7], it is found that the Where x(v) is the column vector of components(v),
minimum linewidth of the spike is identical with the pump &(—)*} and the components of the round-trip transfer ma-
linewidth. Another refinement of the model, the inclusion oftrix L(») are given by
finite PCM response time, shows it to diminish the stability =~ _ _
at higher feedback levels. Lastly, rate equations and steady- L ;(v)= Loy — v)* = VR /[P~ M2(atDHCm)]rer (1)
state conditions are derived, and a stability analysis per-
formed, of modes whose frequencies differ by discrete val-~ RN [~ (1/4)i eAG(») + (LG ()1 7epy( —
ues from the PCM pump frequency. These modes are nolt'lz(v) Lo =v) \/R—,_e P ’}()4)
described by the rate equations of Réf], but are consistent

with previous(Fox-Li-type) treatments, and our predictions jn which w,=2mq/ 7, (q=integer) is the cold-cavity mode

in agreement with already well-known propert[d$,11]. frequency,d= wy— . is the detuning of the pump from the
cavity frequencyr, is the cold-cavity round-trip delay, and
Il. COHERENT OPTICAL RATE EQUATION the remaining functions of the gain are defined Gév)

1 _
Although derivations of rate equations exist in the litera- =20 C(¥) TG(—v)], AG(»)=G(v)~G(—»). The wave
ture [8,12—14, the generality of the present derivation im- VECtork(») was expanded i, in which terms of ordew

plies that a universal connection can be established betwedf!d in the difference between group and phase delays were
the rate equation foany laser cavity and the logarithm of a °mitted.

basic operator, the Fox-Li round-trip propagaf@6]. Thus Equation(3) shows that the matrix. (») determines the
the rate equation is determined once the round-trip propag&volution of the field over discrete intervals of timg. Our

tor is calculated, and its solutions expressible in terms of it®bjective is to turn this into an equivalent first-order differ-
eigenfunctions and eigenvalues. The described method maptial equation in time. There are other ways of approaching
be used to derive rate equations for other types of laser cavihis; here we follow a kind of analytical continuation argu-
ties(e.g., external feedback and injection locking geometriesnent.

unstable laser resonators, and broad area semiconductor la-During a timeAt, containingN= At/ intervals — 7,
serg [16]. The “spirit” of the approach we used is similar to Ed. (3) predicts that the field evolves to

that of Lang and Yari\f13], who obtained an approximate

rate equation using not unsimilar arguments from ours. gt+at) | 1 +°°|~_' Atirgse ~§( v) % oMy
The laser cavity is taken to be uniformly filled with a gain £ (t+At)| 27 J_.. (») E(—v) € v
medium, and it is assumed that other conditions are likewise (5)

appropriatge.g., plane mirrors or end facgfer all fields to

be approximated by to the right- and left-propagating plandt is now assumed that this expression is valid also for frac-
waves. Usingw, to denote the pump frequency of the PCM tional multiples of the cavity round-trip time. The justifica-
pump laser, the slowly varying factor of the complex field tion of this procedure is given below. Expanding both sides
inside the laser cavitydefined by 8<z<L,), at frequency to first order inAt, yields then the coherent rate equation in

componentsoy* v, is taken as general form:
E(z,t)=E&(v)[ VR eKM7+ g ik(1)Z]g-int dx(t 1 [+ _ A
(zD)=EW)VR ] L:_ f InL(»)X(v)e ""'dv. (6)
dt 277 J—w

+E(—v)[ R4 g ik(=mzgint  (q)

where the notatio(+ v),k(* v) refers to the field compo- This expression is the exact rate equation satisfied by the
nents awy* v, andR,_ is the reflectivity of the left mirror or ~ field, and it is fully equivalent to the integral equation form,
facet. The a or line-broadening parametefl7], a= Ed. (3). Note that it represents the rate equationdoy laser
—An,/An;, describes the connection between the real angavity satisfying an integral equation in whiti{(») plays
imaginary parts of the active medium’s nonlinear index. Fi-the role of round-trip propagator, because the explicit form
nally, the wave vector is given bi(v)=n(v)[(wo+v)/cC of L(») need not be specified for E¢) to be valid. The
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extension to inclusion of transverse spatial dimensions isn steady-state operatiod,is of the order of magnitude of
straightforward, since consideririg(») an operator in the «7.<1, so itis justified to leh=¢/siné—1 in the definition
transverse plane does not affect the formal form of @B}. of k. The fluctuations oh are likewise negligible, sinch
Equation (6) applies also to the case of strong phase-~1+ £2/6~1+G372AN?/6, whereG, is the derivative of
conjugate interaction, say, for whig{») =1, although then the gain with respect to carrier numbdrand AN the fluc-
a more practical rate equation would be based on doubleiation in carriers. UsingAN~N, for strong oscillations,
round trips. For experimental reasons the motivation folyjelds AhEh—l%Tg/BTFZJ%O_OB, for typical valuesy, be-
studying that case appears to be minimal, however, sincgg the cavity lifetime, while for fluctuations in normal op-
highly nonlinear media with response times faster than thagration it would be orders of magnitude smaller still.
of the laser are currently not available. Equation(9) has the form of the rate equation used in the
Fourier transforming Eqg3) and (6), we note that both  previous work on PCH4-6,13, and differs from that of
equations yield the following characteristic equation for theconventional feedbacKl4] by the presence of the complex
modal frequencies of the resonator in the presence of thgonjugate of the field on the right-hand side of the equation,

phase-conjugating mirror: and the conjugator phasépc. In the limit £—0 this equa-
o tion is identical to van Tartwijk’qd8], whose derivation is
defe "c1—L(»)]=0. (7)  based on the standard approximatid®] E(t+ 7;)~E(t)

+ 7:E(t). In the present approach, a weak PCM reflectivity
Since Egs(3) and(6) have identical solutions, they must be approximation was applied to the exact expressions(@q.
regarded as equivalent descriptions of the cavity field, and hat these results still differ by the factioy even in the limit
the solutions of Eq(6) are rigorous solutions of Maxwell's 7.—0, is due to the fact thak approaches infinity in the
equations in the same sense as the solutions of3gThis  same limit, so that the assumption of slowly varying field
result is the justification for the above “analytical continua- required for van Tartwijk’s expansion is not guaranteed.

tion” procedure. We would like to express the range of validity of E§)
Using Eq.(4), Eq.(7) yields the characteristic equation of in terms of an inequality, and it would seem that.<1
the cavity under study: represents a natural condition. This condition may not be
sufficiently stringent, since, by analogy with conventional
Al)=1— VR r* (= p)e 2L* (=1 _ /R r(p)e?itk®) feedback3 the injection rate of PCF may be expected to be
() R (=) VRur(») necessarily smaller than the cavity loss rate of the solitary
— 2Lk =K =1 R [p(—v)p* (v) laser. This leads to the stronger requirement
—r(v)r*(=v»)]=0. 8
2kTp<1, (11)

By taking the complex conjugate of this equation an equiva-
lent expression is obtained, and since either transforms into o )
the other by the substitution— —»*, it follows that the @S Will be justified belowviz,, Eq.(16)]. _
cavity modes come in pairs arranged symmetrically about !t Will be shown that the above approximate rate equation
the pump frequency, having identical loss constant. yields ex_ternal cavity S|debaqu to the sohtary laser-mode
Limiting now the number of external resonator roundgeﬁueltr;f'&s’ asin tft\edcténf}/entlonaltﬁxget:]nal cavity Ié];fe}’th

; - oV~ ut wi e expected difference that the spacing of these
tips to one, then r(v)=Rg, and p(-»)=(1 additional modes is approximately half that in the conven-
tional resonator having equal external cavity length. How-
ever, the well-known transverse modal degeneracy and
@berration—correction propertiefl0] of phase-conjugate
cavities having near-unity reflectivity of the PCM, do not
follow from Eq. (8). To this end, it is possible to derive from
Eq. (6) a simpler rate equation covering this case.

—RR)ppd — v)€? "¢ whereRg is the right facet reflectiv-
ity, L is the external cavity length, angh(v) the complex
PCM reflectivity. The logarithm of the matrix in E¢G) may

be calculated using Cauchy’s theorem. Expanding to firs
order in ppc, and suppressing the dispersion Gf and
ppc, Yields the following simplification of Eq(6):

:é'(t)=iAw5(t)+%(1—ia)[G(N)—1/Tp]S(t)
+ kel Ppcex (t—1), (9) IIl. DEGENERATE MODE PROPERTIES

A. Rate equations and steady-state conditions
wherex is the PCF coupling parametebpc=arg(opd), 7, is
the cavity lifetime of the solitary laser,=2L/c is the exter-
nal cavity round-trip timeAw is the detuning of the pump
from the solitary laser frequency, and their defining relation

The state of operation under which the laser frequency is
locked to the PCM pump frequencwg) will be referred to
as the fundamental, or degenerate mode. The rate equations
Yor the frequency-shifted modes will be derived and dis-

are cussed in Sec. IV of this paper.
. 1 Writing the normalized field in the form that is appropri-
Aw=é-zar,”, 7p==7/IN(RRR), ate for description of the fundamental mode, i.&(})
=/P(t)e'*®, in which P is the number of photons in the
k=(1—RR)&|lppd/(VRr7sSINE), £=(26—aG)7s. proper laser cavity and the phase, then substitution into

(10 Eq. (8) yields rate equations fdP(t) and ¢(t) [6]:
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P(t)=[G(N)—1/rp]P(t)+2K P(t)P(t—1) and . Thus wheny is treated as a free parameter in this
paper, it is implied that the detuniniw is allowed to range
Xcod ppc— () — p(t—7)]+ Ryt Fp(t), (128 freely.
_ A relation giving the steady-state value Bfin terms of
d)(t)ZAw—%a[G(N)—l/Tp]‘FKN/P(t—T)/P(t) the solitary laser parameters is readily obtained from Egs.
_ (12), which is relatively simple if the spontaneous emission
Xsin gpc— (1) —p(t—7)J+F4(t). (120 term is neglected:

A spontaneous emission rateg,=fG(N), wheref is the P wr207-9+ 2k COSJp 2k cosp 16
. . . “ E— ~1]1+

product of the mFerpaI ﬂquantum efﬁ?]ency and the “excess Po wrone(l—ZKTp cosy) wlore | (16)

spontaneous emission™PetermannK™ ) factor, was added

to the right-hand side of the power equation, and the stochagyhere P, is the solitary laser value ofP, and wq

tic Langevin forcesF, ,(t) to describe noise processes. /G P,/r, is the solitary laser relaxation frequency, in
These equations are basically those of ReF, allowing for  \which G,=3G/JN. Note that modulation ofppc does not
the omission of the nonlinear gain dependence hégd, result in modulation ofP, since, according to E¢15),
which has generally little effect at typical power levels.  stays constant, so that the laser phase modulated instead.
These rate equations are similar to those pf conventional|so the power does not depend on the length of the exter-
feedback, except that there the phase differeng€l)  nal resonator when the laser operates in the degenerate mode,
— ¢(t— 1), appears in both expressions, while here it is theiras there is no round-trip phase accrual in the external cavity.
sum In steady-state operation the phases cancel in the formethe term in parentheses in the denominator of the first equa-
case(providedAw is then defined as the laser frequency shiftion in Eq. (16) was approximated by unity, in view of the
measured from the solitary laser frequenep that the phase inequality (11).
is free to assume any value, while an even number of exter-
nal cavity mode frequencies, clustered about the central
mode’s frequency, are obtained as solutions. In the PCF case
the laser frequency is fixetht the pump frequency of the
PCM for the case of the degenerate mbcm']d the phase The fluctuations about Steady'state Value§30f¢, and
equation fixes the phase of the field at steady state as ol can be studied using linearized field and carrier rate equa-
posed to the frequency. Since Hq__]_) depends onp only tions with added Langevin forces. According to He{u?jb],
through the difference @— ¢pc, it follows that¢ must lock  the effect of spontaneous emission on the laser linewidth
in relation to the PCM phase whenever steady-state oper&itributed to the Langevin force in the equation feris

B. Fluctuation and dynamical stability analysis
of the degenerate mode

tion is achieved. about 0.1% that of the Langevin forces in the other equa-
The medium dynamics are described by the fluctuations i#ions, so that neglecting it is justified. The remaining Lange-
the electron carrier numbéi(t), as modeled by vin forces are taken to satisfy[21] (|fp(@)|?)
=4P¥[f 4()|?)=2RsP,  (|fp(w)f}(w))=0,  where
- I N(b) Ti(w)=FFi(t)], (whereF denotes the Fourier transfoym
[ — I I 1
N(t) q Te G(N)P(1)+Fn(D), (13 and the angular brackets denote ensemble averages. The la-

ser’s three dynamical variables are written as the sum of their

wherel is the injection currentq the electron charge. The steady-state values and a small fluctuating part, Pét)
second term describes carrier relaxation, of rajé, the =P+p(t), ¢(t)=¢+ ¢(t), andN(t)=N+n(t), and Eqgs.
third term describes stimulated emission, and the last term i€12) and (13) linearized in the fluctuations. Writing their
again, a Langevin force. The dependence of the gaiN @  Fourier transformsp(w), etc., and after elimination of
assumed linear in fluctuations about steady state. N(w), the equations for the fluctuating power and phase are

Neglecting the time averages of all higher powers of thegiven by
small fluctuating quantities, Eq912) yield steady-state

2
equations for the gain and phase: R PR @r _alor =
iwp(w) I'p+ 7/e_inr(l €'“") k cosy|p(w)
G=—-Ry,/P+1/7,— 2k cosy, _ ~
P P —2P(1+€“7)k Siny@( )+ T p(w)
—1 _ _ i ~
Aw= 5(1(G 1/Tp) Kk Siny, (14) — APk Sinlﬂ'(,Dp(w), (17@
where /= ¢pc—2¢. Combining the two results in _ 2 ~
.~ r ; . p(w)
—iwe(w)= —+(1—¢€'“")k sinys >p
Aw=—k\1+ a%sin(y+ B) — s aRy,/ P, (15) Ye~l®

—(1+eo P(w)+T
where 8= arctanr. Equation(15) defines a locking range for (1+e"x cogfe(w) +Ty(w)

Aw [5], analogous to injection lockinpl9]. SinceAw is an — 2k cosfpp(w), (17b
experimentally controlled parameter, for giv&m within the

locking bandwidth Eq(15) narrows the available range ¢f ~ where w,=GG,P, A= 7-;1+ G, P is the damping con-
from (— ar,7) for the solitary laser down to just two discrete stant, and’p=R,/P, all defined at their steady-state values
values, which may be controlled by fixing the values@d  in the presence of feedback ap@(w) represents the fluc-
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=9 ps, G,=4500s ¢, Rep=1.7 G, andP=125 000. The
fixed value L=5cm for the external cavity length was
adopted, unless otherwise indicated.

From the system determinant of Eq4.7) (where s=
—iw and n= k1), we have

Send) (dB/Hz)

[(Tp+S)(YetS)+ w?]sT+ 7[{Tp(yetS)+ 0} (1+e57)

+25(ye+5)]cosy— aw?sing(1+e 5 g

+(yets)T H(1-e *")7*=0. (18)

log,, f (GHz)

Some limiting cases are readily obtained from ELg), be-
FIG. 1. RIN spectra for various values of=xr. The phase 9inning with the solution for the solitary lasg¢@2], so
value y=0 was assumed. =—3(Yeo+ T po) +i Jo?,+ i(7e0—T'po)?. In the presence of
PCF, unstable solutions are possible. At low feedback levels
tuation in the PCM pump phase. The form of the terms conone of the roots is real, and approaches zere-a$). Using
taining ¢p(w) is based on the property that the PCM reflec-the notationl’ = — s for the relaxation rate, fop<<1 this root
tion constant is proportional to the product of the twois given by
complex pump-field amplitudes. Equatioft7) reduce to

those in Ref.[6] under the substitution exip¢n)—1+iwT, 2k Yol pcosp+ wf 1+ a’cod yr+ B)]

and omitting the pump-noise terms. The pump fluctuations I'= ot o2

will be neglected until Sec. Ill D, where their effects on Yel PT @

phase and amplitude fluctuations are calculated. ~2\1+ a2k cod ¢+ B). (19)

The definitions of the random intensity noi§RIN) and
frequency noise spect@&@NS), Sgin(@) =(|p(®)|?)/P? and  The numerical solution of Eq(18) shows that for cosf
Seng(w) =(Jwp(w)|?), respectively, are used to characterize + 8) <0, the root is unstable ail levels of feedback, where
intensity and frequency noise properties. A typical plot of thethe point defined by the conditioi=0 in (19), or ¢+
former is shown in Fig. 1 for the arbitrarily chosen phase~0, is a “limit point” of the system. This instability in the
=0. Note that PCF reduces the level of both types of nois@eal root has been referred to as a “fold instability,” while
over most of the frequency range. Another feature is thehat associated with positive real valuessadnd nonvanish-
presence of prominent spikes, associated with the excitatiomg imaginary part is called a “Hopf instabilitj4].”
of phase conjugate external resonator modes, which were not The effect of weak PCF on the damping rate and oscilla-
predicted earlier. For this plot, and others in this paper, wdion frequency of the relaxation oscillation is found by solv-
used parameter values frdi®] appropriate for a GaAs semi- ing Eq. (18) to first order in = k7 about the unperturbed
conductor laser operating at 5 mWr,=2ns, 7,=1.5 ps, complex solutions,, given above. The result is

(1—€e7%07)5( Ve + So) COSY— aw’y(1+e~%07)siny

Se=So— ) 20
00 7So( Yeo+ I'pot2S0) g 20
|
Equation(20) sh9ws that the magnitudes of both quadratgres k[T pyecosp+ wrz 1+ a?cod y+ B)]
of the constans) may be increased or decreased by adjust-
ing the phase, making their control with PCF appear feasible. <(ye+Tp+2k cosp)[w?+ yel'p
For a short external cavityr(~0), Eq.(18) reduces to a
cubic polynomial ins: +2(yetTp)x cosp. (22

The stability condition is not trivially satisfied in the limit of
vanishing external resonator length, as it is for conventional

3 2
$'+ (vet T+ 2x cosp)s feedback. For example, if @>y.+T,, then the laser is

+[wr2+ ¥l p+2( v+ T )k cospls+ 2K[wr2 1+ a2 unstable formr/2< (//<37T/2.. .
The short external cavity laser cavity becomes unstable
X cog ¢+ )+ Iy ye.cos/]=0. (21)  when one of the above conditions is violated, while the oth-

ers are satisfied. This allows for the possibility of either a
limit point, defined bycy=0, at which the fold instability
Three independent stability conditions are obtained by mearsets in, or at the Hopf bifurcation point, satisfyirggc,
of the Hurwitz criterion as necessary and sufficient. Denoting—cy=0. The former condition is consistent with Ed.9).
c, as the coefficient 08" in Eq. (21), these arec,,/c3>0, In the long external resonator limit, E¢L8) reduces to
andc,c,—cy>0, or, for the latter condition, the solution of the uncoupled laser equation for rapidly vary-
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-3 2 -t 0 t Z : FIG. 3. Relative power in the central spike of the spectrum as

lIJ (rad) function of feedback strength for two values of the ph@skother
parameters have the same values as in previous figures

stable. The relative stability at high PCF level contrasts with
FIG. 2. Regions of stable operation of the mode locked to theghe sensitivity of conventional external feedback cavities,
PﬁM Pl_JmIO freqh_uer(lc)yéPIOtS(b?rigor threeddi)ﬁfée”t V?rl'rl]’es of exteryyhich become unstable at the critical value of the coupling,
nal cavity lengthL, (a) 5 cm, cm, andc cm. The region . 2 . 2
below eaych cgrve is stable against Hopf instability; that betvgeen thglven by ke~ wi/2ye 1+ a® [23]
two dashed lines is stable against the fold instability= 3 is as- ]
sumed. C. Spectral line shape
In the presence of PCF, a portion of the emitted radiation
ing oscillations, and, in addition, has slowly oscillating solu-is locked in phase with the pump, and thus does not fluctuate
tions related to external cavity resonances, given by (assuming a perfectly quiet pumprThis results in a sharp
centrally located spike on the laser spectiii®]. Using the
‘ general expression for the spectral line-shape fundénit
, may be shown that the fractioip of the spike in the spec-
Ye(k+T'pcosp) + V1i+ azwfcos( Y+ ,8)‘ trum relative to the total integrated intensity is given by the
(23 long-time limit of the variance:

YeK

st=*iqm+In

whereq runs over even integers if the function whose abso- =i )2y = i fﬂo 2y ¢ 24

lute value is taken is positive, and it runs over odd integers - tmd@( % T ) {le(@)]%) do. 24
otherwise. We note that the fold instability is the only insta-

bility in this limit. This quantity rapidly approaches unity foy=1, as illus-

The results of numerical solution of E(.8) are plotted in  trated in Fig. 3 for two values of the phase. In weak PCF, for
Fig. 2, which shows the primary stable regions in the¢y  which the phase variance relaxes exponentially as described
plane with respect to the Hopf instability. Only the bound- by a single relaxation rate [Eq. (19)], the following simple
aries of the stable regions of weakest feedback level are irexpression is found:
dicated, since ag increases, alternating stable and unstable .
regions are encountered. The valwe 3 was assumed, and fi=e 707, (25
the values of the other constants are as before. Curves for, . . .

. whereI'; is the relaxation rate of the solitary laser, corre-
three values of the external cavity length are shown. The ding t L tzian line-shape function of widkhr
boundaries of the fold instability are indicated by dasheos_p;’”/'”g H° a Ore”.t } b'I'tp < resioted o Sl
lines. Calculations carried out with as variable supported f_ OFin.Jre gvéf]\(/;:’s eratararc))ls(t;i)fl tlhi, Ilzsreersrzr;giztionob:giwes
Eqg. (23), in that at largel the mode was found to be stable |F1.aseglocked at moderate feedback level
in every instance. P :

Another feature is that “unlimited” feedback strength
[subject to Eq.(11)] appears possible for large ranges of
phase values. This is not predicted by the linearized model of The finite linewidth of the pump laser adds to the RIN and
Ref. [6] from which an absolute upper limit aj=1 is ob- FNS noise levels of the laser radiation. An example of the
tained for stability if the phase is ranged freely. The largemesults of a small signal analysis based on E#g) is illus-
magnitudes for the coupling constant assumed in Fig. 2 matrated in Fig. 4. The pump linewidth was taken equal to that
be experimentally achieved by antireflection coating the laseof the free running slave laser, the phase — 8, and all the
facet, or by using a PCM with gain. other parameters are those of Fig.e2,seq The laser line

Such apparent “unlimited” dynamical stability could shape is affected by pump phase fluctuations primarily
possibly be interpreted as contradicting R¢f, [5], where  through broadening of the central “spike.” The width of
self-exciting oscillations and chaos at higher feedback levelthe latter is determined using the expressiahy
are predicted by direct numerical solution of field and carrier=(2) ~tlim,,_ o{|wg(w)|?), where the spectrum of phase
rate equations. In Sec. IV of this paper, however, it is showrfluctuations is determined using Eq&7). This leads then to
that half of the nondegenerate higher-order modes are unhe relation(|¢(0)|%)=(|¢,(0)|%), between the phase fluc-

D. Effects of pump fluctuations
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left half of the complex plane, but some cross the imaginary
axis as the response delay increases, showing that the system
becomes unstable.

IV. RATE EQUATION ANALYSIS
OF HIGHER-ORDER MODES

pump contribution—

lOgIOSFNS(f)
N W e 0oy ] ®© W

Higher-order phase conjugate external resonator modes,

-1 -0.5 0 0.5 1 1.5 2 consisting of mutually phase- and amplitude-locKbg the
log,, f (GHz) PCM medium pairs of fields at frequencies= wy* v, are

observable provided thatrpc<<1. For the purposes of this

analysis it will be assumed that only one pair of such coupled

modes is present, so that we substitute the following steady-

state expression for the field into E®):

tuations of the laser field and those of the pump laser, so that

the linewidth of the spiked part of the laser spectrum just = i i

equals the linewidth of the pump lagés,6]. EN=VPaWexii(wot v)t+16:(1)]

+Py(exdi(wo— )t+igy(D)]. (2D

FIG. 4. Contribution to RIN due to finite linewidth of the pump
laser for phase/= —arctamy=—1.25.

E. Effects of finite PCM response time

The steady state excepting, the above conclusions a,lgeglegting the gmall difference in gain between the two fre-
valid only for an ideal conjugating medium having zero re-Auenciest v, this yields
sponse time. Fluctuating fields are conjugated by the mirror
only if the latter responds quickly enough to form a grating P4(t) 1
during a typical fluctuation period. The effect of a finite re- m:G_Tp +2k\Po(t—7)/Py(1)
sponse time may be modeled by assuming that the response
of the PCM is exponential in time, which is taken into ac- X 0§ ppc— P1(1) — ho(t—7)+ 7]+ R,/ P4(1)
count, e.g., by substituting=xy/(1+s7po) for « in Egs.

(18). Using Eq.(19), the relaxation rat& for weak feedback +Fp1(t)/Py(1), (283
is thus obtained from the solution of _
Pa(t) _
F% 2\/1+0[ KOCOE{1//+,8) (26) Pz(t) :G_Tp1+2K\ Pl(t_T)/Pz(t)Coq(ﬁpc_ ¢2(t)

1-T
e — (1= 7) = v7]+ Rsp/ Pa(t) + Fpa(t)/Po(1),

o 2
This yields two values foF for small x or shortrpc, but for (28

8x7pcy1l+ a’cos@+p)>1, a single relaxation ratel’ 1
gll(grpc) accompanied by relaxation oscillations is pre- ¢1(t)=Aw+v—%a<G—— + k[P, (t— 1)/ P4(1)
icted. Tp
The PCM delay can evidently cause instability in the : . _ _

presence of strong feedback. In Fig. 5 are plotted the trajec- X SIN ppe Ga(0) = po(t=7) + 7]+ F (D),
tories traced by a few of the poles of the system response (280
function [solutions of Eq.(18)] as the PCM response time
ranges from 0 to 10 Initially all poles are located in the

+ K\ Pl(t_ T)/Pz(t)

X sin dppc— ¢o(t) = p1(t—7) —v7]+F4o(1),
(280

) 1
do(t)=Aw— v—%a(G— —
Tp

Im s

whereP(t) =P, (t) + P,(t) is the normalized total power.
Solution of the steady-state equations yields the following
equations for, ¢, laser threshold, and power:

-15 -12.5 -10 -?.5 -5 =-2.5 O

Res

v=3k[VP1/Psin(y—vr) = [P, /Pysin(y+ v7)],
(29

FIG. 5. Solutions of characteristic equation, Efj8), as func- _ 1 B i 1 . .
tion of PCM response time modeled according #e- «(s) Aw=—3a|G T 2 k[ VP1/Pasin(y—vr)
=ko/(1+s7pd). At one extremity of each curverpc=0, at the
other 7pc=10°7. The feedback strength is;7= 10, phasey=0. + Py /Pysin(+vT)]. (30
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1 T
G_T_:—Rsp—zxmcos(dx— vT) AV:Vn+1_Vn~7: (33
P
= — Ry~ 2k\/P2/PycO ¢+ v7), (31 i.e., half that of the conventional external resonator mode
spectrum.
As in conventional optical feedback, a minimum feedback

P, cody+vr) strength must be present for the first higher-order PC mode

—=— (32)  to appear. This property is illustrated in Fig. 6. It is notable

P, cody—v7) that for some values of the phaéee., ¢~ = =/2) the only

solution isy=0, and at other valugs.e., ¢/~ *+ 7/4) higher-

. _ order mode solutions are found for any nonzerealue. For
where = ¢pc—2¢, ¢p=3(¢1+ ¢2). The phase difference e negative value of the former case it is recalled that the

¢1— ¢, remains undetermined. These equations saf5fy  fundamental mode is stable for all values of the feedback
= P, whenv=0 or =0, = . Note that Eq(32) predicts |evel (viz, Fig. 2, and hence it appears that the laser, when
the unphysicalP;P,<0 wheny=*37 andv#0, and in-  operated within this narrow phase ranges would be globally
deed, no solution consistent with the other equations, othestable. Using Eqg(33) and(34), this requires a detuningw
thanv=0, is found at these phase angles. equal todw =3[ k+ a(Reyt 7, 1) 1.

Equation(29) confirms the known result, that the mode  Dynamical stability is determined by linearizing E¢29)
spacing of the external resonator modes is approximately in the usual way, leading to the system determinant:

st =Gy ppte ™Gy 28,  2e7%7S,
/.L2+eisTCm _ST_,LL]__Cm 2e—STSm Zsm
9 Sapi-S)  apete s, -sr-c, —e=C, | O (39
baupte ¥Sy)  Ham—Sy)  ~€ Cm —STCr
|
where yipm=y+/—v7, of;=GGP1,, o= wiy 7l V. CONCLUSION
- 12 - 12qi
(Cyei_ S) b C/:PP_ Z(ZCPZ/F’l) Cdogp'j SE_/’;(PE,Z.Q “singp, The main conclusions of this paper are summarized as
m=71( 1 2) O, andSp,= 7(P1/P2) . ollows. A method 16] that is a broad generalization of Lang
Numerical evaluation of the above determinant showed, | v ariv's approach13] was used to derive the rate equa-

that, when considered as a function of increasingthe
modes are alternatively stable and unstable. Labeling the
n=0,1,...,wheren=0 represents the=0 solution, then,
for example, forp=5 and ¢y=—1rad, then=0,2,4...,
modes are stable and the oddmodes are unstable. Fgr

tion for a laser subject to PCF. The weak feedback version of
"fhis equation agreed with an earlier derivat[@) in the ap-
propriate limits, and was used to study the dynamics of a
semiconductor laser. The rate equation for the strong inter-
action limit has been given elsewhdr&6], which predicts
=—2 the oddn modes are stable and the=0 and even  ho \yell.known degeneracy and aberration-correction prop-
modes are unstable. Howev_er, in experlments Adsthatis  grties of phase-conjugate cavitiésu Yeunget al. [10]).
controlled, and the phase will have a different value for each The steady-state mode distribution is described as a fun-

external cavity mode. This situation is illustrated in Table I, 4o mental mode that is locked to the PCM pump in frequency
from which it is seen that in this case also the modes are

alternatingly stable and unstable, with the higher gain mode
in each pair being stable.

—
7
1.8
/
e 1.6 Y=-1.25rad /
TABLE I. Frequencies and other properties of higher-order ex- ~ \\ lIJ\= 0
ternal cavity modes. Fixed parameter values arel0, Aw=0, S 1.4 \ \
a=3, and the values of the other parameters the same as elsewhere 1.2 \ k
in this paper. \
_ T
vrl ¢ (rad) P,/P, (G—1rp) 7T r'r 0 2 4 6 8 10
0 -439 1 6.32 6.07 n
0.968 —4.36 0.567 —6.55 unstable
2.078 —4.26 3.151 7.23 6.07 FIG. 6. Frequency offset from pump frequency vs feedback pa-
2.875 —4.13 0.224 —-7.81 unstable rameter » of first two higher-order cavity modes plotted for two

phase values.
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and in phase, and higher-order laser cavity and closelthis spike is just equal to the linewidth of the PCM’s pump
spaced external-resonator modes that consist of frequendyser.
and phase-locked pairs of fields having their respective fre- The higher-order phase-conjugate longitudinal external
quencies symmetrically placed on each side of the pumpavity modes increase the available locking frequency range,
frequency. The actual presence of each mode, including thgut also reduce the range of feedback strength available for
fundamental, is subject to conditions that are controllable bytgple operation. An exception is a narrow phase band within
tuning the pump frequency relative to the solitary laser fre\yhich the basic mode is stable for all levels of feedbgok
quency. . infinitely fast responding PCM and where no higher-order
The stability of PCF external resonator modes is affecte@xternal cavity modes appear. In addition, these modes con-
by the response time of the PCM under higher feedback levtribute to the RIN and FNS noise. Also importantly, the pres-
els. If the PCM response time is short compared to all tim&nce of such modes, as in the conventional external cavity
constants describing the laser dynamics, by tuning the phaggser, introduces “ringing” effects in the modulation transfer
inside an appropriate range, the system is stable even f@finction, so that in practice the modulation bandwidth of the
high feedback levels, but for longer response times and sufaser places an upper limit on the length of the external cav-

ficient feedback strength instability sets in. ity, which would be half as great as that of the conventional
The line shape of the laser with PCF consists of a sharpyternal cavity.

spike located on top of a broad background, as demonstrated
previously[6]. For an external cavity a few centimeters long
the area under the spike approaches 100% of the total area as
n— 1, while for a giveny value the phase yielding the maxi-
mum spike is just that assumed by Agrawal and Gray, i.e., The author appreciates useful discussions with G. Gray,
¢=3(ppctarctar). It was also shown that the width of D. Lenstra, and G. van Tartwijk.

ACKNOWLEDGMENTS

[1] A. Dandridge and R. O. Miles, Electron. Lel7, 273(1982); 893(1972; G. P. Agrawal, J. Appl. Phy$6, 3110(1984); D.
F. Favre and D. LeGuenbid. 21, 467 (1985. Marcuse, |IEEE J. Quantum ElectroRE-22, 223(1986.

[2] G. P. Agrawal, IEEE J. Quantum ElectrdpE-20, 468(1984). [13] R. J. Lang and A. Yariv, Phys. Rev. 34, 2038(1986.

[3] K. Vahala, K. Kyuma, and A. Yariv, Appl. Phys. Let9,  [14] R. Lang and K. Kobayashi, IEEE J. Quantum Electr@f-
1563(1986; S. MacCormack and J. Feinberg, Opt. Ldi8, 16, 347(1980).
211(1993.

[4] G. P. Agrawal and J. T. Klaus, Opt. Left6, 1325(1991); G.
R. Gray, D. Huang, and G. P. Agrawal, Phys. RevA3\ 2096
(19949.

[5] G. H. M. van Tartwijk, H. J. C. van der Linden, and D. Len-
stra, Opt. Lett17, 1590(1992.

[6] G. P. Agrawal and G. R. Gray, Phys. Rev48, 5890(1992.

[7] D. M. Pepper and A. YarivQptical Phase Conjugatigredited Bertnessjbid. 52, 4457 (1981
by R. A. Fisher(Academic, New York, 1988 [18] G. P. Agrawal, Electron. LetR2, 696 (1986.

[8] G. H. M. van Tartwijk and D. Lenstra, Quantum Semiclass.[lg] R. Lang, IEEE J. Quantum ElectroQE-18, 976 (1982 I.

[15] The terminology “Fox-Li propagator” was chosen for its de-
scriptiveness, but the propagatfnris more general, e.g., it
could apply to cavities that are entirely closed.

[16] E. J. Bochove, Proc. SPIE693 678 (1996.

[17] J. G. Mendoza-Alvarez, F. D. Nunes, and N. B. Patel, J. Appl.
Phys.51, 4365(1980; C. H. Henry, R. A. Rogan, and K. A.

Opt. 7, 87 (1995; G. H. M. van Tartwijk, Ph.D. dissertation, Petitbon, P. Gallion, G. Debarge., and C. Chabtbaid, 2_4' 148
Vrije Universiteit, Amsterdam, 199@npublisheql (1988; C. E. Moeller, P. S. Durkin, and G. C. Dentbid. 25,
[9] O. Hess, S. W. Koch, and J. V. Moloney, IEEE Quantum 1603(1989.

Electron.31, 35 (1995. [20] C. H. Henry, IEEE J. Quantum ElectroQE-18, 259(1982.
[10] J. AuYeung, D. Fekete, D. M. Pepper, and A. Yariv, IEEE J.[21] G. P. Agrawal and N. K. Duttal.ong-Wavelength Semicon-
Quantum ElectronQE-15, 1180(1979; A. E. Siegman, P. A. ductor LasergVan Nostrand Reinhold, New York, 1986

Belanger, and A. Hardy, i®ptical Phase ConjugatiofiRef. [22] K. Petermannlaser Diode Modulation and Noisé&Kluwer
[7D. Academic Publishers, Dordrecht, 1988
[11] R. C. Lind and D. G. Steel, Opt. Leth, 554 (1981). [23] J. Helms and K. Petermann, IEEE J. Quantum Electgg.

[12] M. B. Spencer and W. E. Lamb, Phys. Rev5/884(1972); 5, 833(1990.



