
PHYSICAL REVIEW A MAY 1997VOLUME 55, NUMBER 5
Finite-dimensional coherent-state generation and quantum-optical nonlinear oscillator models

W. Leoński*
Nonlinear Optics Division, Institute of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznan´, Poland

~Received 27 June 1996!

We discuss a system comprising a cavity with a nonlinear medium ofk-order and an external coherent field
excitation. We assume that the cavity field was initially in vacuum state. We show that for the case of weak
external field our system behaves similarly to one described in finite-dimensional Hilbert space. Moreover, we
perform numerical calculations simulating the dynamics of our system and compare the results with those of
analytical attempts.@S1050-2947~97!01905-7#

PACS number~s!: 42.50.Dv, 42.50.Ar, 42.65.2k
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I. INTRODUCTION

The most commonly used states of quantum optics
coherent states defined by Glauber@1# by application of a

displacement operatorD̂ acting on the vacuum stateu0&.
This definition concerns infinite-dimensional Hilbert spac
Recently, we observe great interest in the problem of coh
ent states defined in finite-dimensional Hilbert spa
~FDHS!. For instance, Buz˘ek et al. @2# discussed a coheren
state analogous to that defined by Glauber; however,
state proposed in@2# was defined in (s11)-dimensional
space. The same problem was a subject of Ref.@3#, where the
analytical solutions for the coherent state were found. Mo
over, a Wigner representation of the coherent states in FD
was discussed in@4#, whereas some aspects of the problem
harmonic-oscillator states in FDHS were dealt with in@5#.

In this paper we propose a group of general models t
we believe, can lead to the generation of quantum states
close to the coherent states in FDHS. As we will show,
states correspond to those discussed in@3#. The models com-
bine the evolution of a nonlinear medium in a cavity and
weak external coherent excitation. We show that for a su
ciently weak external field, resonance effects start to pla
significant role, whereas nonresonant couplings become
ligible. The nonlinear quantum evolution of the cavity fie
in the nonlinear medium is crucial for obtaining a state c
responding to the finite-dimensional coherent state in suc
system. The effectiveness of the process is, however, con
erably diminished by the cavity losses. Nevertheless
seems important to us that a cavity with a nonlinear med
~with a field initially in vacuum state! and a sufficiently weak
external excitation can lead with high accuracy to fini
dimensional coherent-state generation. For this situation
will derive analytical formulas for the probabilities corre
sponding to the Fock states we are interested in. Moreo
we will perform numerical calculations in which we simula
the dynamics of our system and compare the results w
those of an analytical attempt.
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II. MODEL AND AN ANALYTICAL SOLUTION

Glauber @1# defined a coherent state in infinite
dimensional Hilbert space~IDHS! by means of a displace
ment operatorD̂(a,a* ) defined as

D̂~a,a* !5eaâ†2a* â. ~1!

Thus the coherent stateua&` in IDHS is defined as

ua&`5D̂~a,a* !u0&. ~2!

A problem arises when we try to define the coherent state
FDHS. There are two ways to determine such a state.
definition concernstruncated coherent statesin FDHS. It
was introduced by Kuang, Wang, and Zhou@6,7# and is
based on the normalized truncation of the Fock expansio
the Glauber infinite-dimensional coherent stateua&` . This
procedure is equivalent to the action of the opera
exp(aâ†) ~with proper normalization! on the vacuum state
u0& @5#. Obviously, the operator exp(aâ†) is truncated. The
alternative attempt discussed by Buz˘ek et al. @2# and Mira-
nowiczet al. @3# concerns (s11)-dimensional Hilbert space
and is based on the action of the operatorD̂ (s) ~analogous to
the Glauber displacement operator! on the vacuum state
This method differs from the commonly used definition
the coherent state for IDHS in that all states and opera
are defined for the FDHS first and then applied to t
Glauber-like definition. The properties of these states w
discussed in Ref.@2# where a numerical analysis was pr
posed. Moreover, Miranowiczet al. @3# found and discussed
analytical results for the coherent states defined
(s11)-dimensional Hilbert space. Thus, in this paper,
shall deal with the kind of definition for the coherent sta
defined in FDHS. Since we are interested in finding physi
models leading to the generation of the coherent states
fined in FDHS rather than in the investigation of the prop
ties of those states, we shall proceed to discuss a partic
group of Hamiltonians. Therefore, we propose a group
quantum-optical models based on the following Hamilton
~in the interaction picture!:

Ĥ5
lk

k
~ â†!kâk1e~ â†1â!, ~3!
3874 © 1997 The American Physical Society
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55 3875FINITE-DIMENSIONAL COHERENT-STATE . . .
where â and â† are the annihilation and creation operato
and lk denotes the constant ofkth-order nonlinearity. The
second term in the Hamiltonian~3! ~proportional toe) cor-
responds to the coherent excitation of the cavity by the
ternal field. We use units of\51. Obviously, one should
keep in mind that our models concern real physical situati
~although they naturally involve certain limitations! and are
defined in IDHS.

Let us express the wave function for our system in a F
basis:

uC~ t !&5(
j50

`

aj~ t !u j &. ~4!

This wave function obeys a Schro¨dinger equation with the
Hamiltonian expressed by Eq.~3!:

i
d

dt
uC~ t !&5S lk

k
~ â†!kâk1e~ â†1â! D uC~ t !&. ~5!

Applying the standard procedure to our wave function~4!
and the Hamiltonian~3! we obtain a set of equations for th
probability amplitudesaj (t). They are of the form

i
d

dt
aj~ t !5

lk

k
@ j ~ j21!•••~ j2k11!#aj~ t !1e@Aja j21~ t !

1Aj11aj11~ t !#, ~6!

where k denotes the order of the nonlinear process anj
corresponds to thej -photon state. Obviously, one shou
keep in mind that forj,0 we haveaj50. We see from Eq.
~6! that the set of equations foraj is infinite. This is obvious,
since we deal with the IDHS. Nevertheless, our aim her
to show that under special conditions our system behave
one defined in FDHS. The first step is to assume that
coupling is weak, i.e.,e!lk . As a consequence, we ca
treat our problem perturbatively. However, the main point
our considerations is the fact that the part of the Hamilton
~3! corresponding to the evolution of the nonlinear mediu

ĤNL5
lk

k
~ â†!kâk, ~7!

produces degenerate states ~corresponding to
j50,1, . . . ,k21). As we take into account not only the fir
part of the Hamiltonian~3! but the second part too, we se
that resonance arises between the interaction describe
the latter and the degenerate states generated byHNL . This
resonance effect and the assumption concerning weak
pling between the external and cavity fields (e!lk) leads to
the closed-form dynamics and cuts some subspace of s
out of all of the Fock states. As a consequence, assuming
the dynamics of the physical process starts from the vacu
u0&, the evolution of the system is restricted to the sta
um&, where (m50,1,2,. . . ,k21). This situation resemble
that for k-degenerate atomic levels coupled by a ze
frequency field, where this resonant interaction selects, f
the whole set of levels, only those that lead to a closed s
tem dynamics. Interaction with the remaining atomic lev
can be treated as a negligible perturbation@8#. Obviously,
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one should note that the resonance discussed in this p
differs in character from the resonances commonly discus
in various papers where the cavity field and the differen
between the energies of the atomic levels~or cavity frequen-
cies! have identical values.

Thus, we write the following equations of motion for th
probability amplitudes:

i
d

dt
a0~ t !5ea1~ t !,

i
d

dt
a1~ t !5e@a0~ t !1A2a2~ t !#,

A

i
d

dt
ak22~ t !5e@Ak22ak23~ t !1Ak21ak21~ t !#,

~8!

i
d

dt
ak21~ t !5e@Ak21ak22~ t !1Akak~ t !#,

i
d

dt
ak~ t !5lk~k21!!ak~ t !1e@Akak21~ t !

1Ak11ak11~ t !#,

A

Since we have assumedlk@e, the last of the above equa
tions indicates that the amplitudeak(t) is rapidly oscillating
in comparison with the amplitudesaj (t), wherej,k. There-
fore, similar to the rotating-wave approximation applied
the atomic systems@8#, we can neglect the influence of th
amplitudesam(t) (m>k) on the dynamics of our system
described by the Eq.~8!. Moreover, these amplitudes for th
time t50 are assumed to be equal to zero. Therefore,
neglect them and our equations of motion become

i
d

dt
a0~ t !5ea1~ t !,

i
d

dt
a1~ t !5e@a0~ t !1A2a2~ t !#,

A ~9!

i
d

dt
ak22~ t !5e@Ak22ak23~ t !1Ak21ak21~ t !#,

i
d

dt
ak21~ t !5eAk21ak22~ t !.

We see that the dynamics of the system is closed withi
finite subspace of the Fock states. As a consequence, we
here with a finite-dimensional space. Of course, one sho
keep in mind that the set of equations~9! gives zero-order
solutions for our perturbative treatment. It is obvious that



o

a
its
n
x-
o

fo

. O
ar
-
s
e
O
r
h
th
w
h
io
ith

e-

r-
e
vity
r

f
dis-
e
de-
S
ur
ath-
in
per

in
This
r

t

er-
ing

ical
se

ind
re

ase

3876 55W. LEOŃSKI
are in a position to find the solution for arbitrary values
the parameterk. For instance, fork52 we get the following
equations of motion:

i
d

dt
a0~ t !5ea1~ t !,

~10!

i
d

dt
a1~ t !5ea0~ t !,

and their solution:

a0~ t !5 icos~et !,

a1~ t !5sin~et !. ~11!

Clearly, this result resembles that for a two-level atom in
external field@8# and the dynamics of our system exhib
well-known oscillatory behavior. Moreover, this solutio
@Eq. ~10!# is identical to that derived for the Fock-state e
pansion of the coherent state defined in FDHS for tw
dimensional Hilbert space@2,3#.

Analogously we can write the appropriate formulas
the casek53. Here, the equations of motion become

i
d

dt
a0~ t !5ea1~ t !,

i
d

dt
a1~ t !5e@a0~ t !1A2a2~ t !#, ~12!

i
d

dt
a2~ t !5eA2a1~ t !,

and the solutions corresponding to these equations are

a0~ t !5 1
3 @21cos~A3et !#,

a1~ t !5
2 i

A3
sin~A3et !, ~13!

a2~ t !5
A2
3

@cos~A3et !21#.

The solutions@Eqs.~12!# are identical to those derived in@3#
defined for the coherent state in three-dimensional FDHS
course, we can write the appropriate formulas for arbitr
values of the parameterk ~corresponding to arbitrary dimen
sion of FDHS!. The only limitation on our consideration
resides in the handling of large sets of equations. As m
tioned earlier, ours are zero-order perturbation solutions.
viously, it is possible to find higher-order formulas that co
respond to the Fock states for numbers of photons hig
than the dimension of the FDHS discussed. To obtain
probability amplitudes corresponding to the higher states
should apply the standard perturbation procedure again. T
we apply the zero-order solutions to the extended equat
of motion including terms corresponding to interaction w
the higher Fock states. For instance, for the casek53 we get
the following formulas for the probability amplitudes corr
sponding to the three-photon and four-photon states:
f
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a3~ t !5
e

l3A6
@cos~A3et !21#, ~14!

a4~ t !5
e2

4A6l3
2 @cos~A6et !21#.

From Eqs.~13! we see that the probability for the stateu3& is
proportional toe2, whereas that corresponding to the fou
photon state is proportional toe4. As a consequence, for th
case discussed in this paper where the external field–ca
field coupling is weak (e!lk), the influence of the highe
Fock state is negligible.

It is visible, as we compare our results@Eq. ~13!# with
those of Miranowiczet al. @3#, that the photon distribution o
the states generated by our system is identical with the
tribution corresponding to the three-dimensional FDHS. W
see that physical systems described by the Hamiltonians
fined in Eq.~3! can exhibit a dynamics that leads to FDH
states’ generation. This is a main result of o
considerations — FDHS states seem to be not only a m
ematical concept. Obviously, one should always keep
mind that the accuracy of the expansion derived in this pa
is limited by the accuracy of the perturbation procedure.

Moreover, at this point we should mention the losses
our system that may destroy the effects discussed here.
problem has already been discussed in the previous pape@9#
where a similar model~with kicked nonlinear oscillator! has
been studied. It was shown that the damping constang
should be much smaller than the nonlinearitylk . We realize
that this is a very strong requirement for experiment. Nev
theless, various experiments, for instance, those involv
the very tiny effect of ‘‘vacuum Rabi splitting’’@10,11# give
us some hope for the practical realization of our models.

III. NUMERICAL APPROACH

The second part of this paper is devoted to numer
calculations and a comparison of their results with tho
based on our formulas. Thus, analogously to@9#, we define
the following unitary evolution operator:

Û5e2 i [ ~lk /k!~ â†!kâk1e~ â†1â!] t. ~15!

This operator acts on the initial vacuum stateu0& giving the
wave functionuC(t)& for arbitrary timet:

uC~ t !&5Û~ t !u0&. ~16!

As we compare Eq.~15! with those for the Glauber definition
of the coherent state@Eq. ~2!#, we see that the operatorÛ
plays the same role as the displacement operatorD̂, albeit for
finite-dimensional space. Of course we should keep in m
that the conditione!lk should be satisfied and we deal he
with the following correspondence:

Ûue!l↔D̂. ~17!

Similar to the previous section we start here from the c
of k52. For this situation our evolution operatorÛ has the
following form:
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55 3877FINITE-DIMENSIONAL COHERENT-STATE . . .
Û5e2 i [ ~l2/2!~ â†!2â21e~ â†1â!] t. ~18!

Moreover, we assume that for the timet50 the field was in
the vacuum stateu0&. Figure 1 shows the probabilities for the
Fock states versus the timet ~we use units ofl251) ob-
tained from the analytical formulas~10! and from our nu-
merical approach. These two results exhibit very good agre
ment. Moreover, one notes that the probabilities for th
vacuum and one-photon states oscillate regularly and t
population flows only between these two states. As a cons
quence, the influence of the two-photon and higher states
the dynamics of our system is negligible. In addition, fo
appropriately chosen timet we get the one-photon state
(t525n, n51,2, . . . for e5p/50), similarly to @9#. Obvi-
ously, for the same time the probability for the vacuum sta
is equal to zero. Hence, we can treat the unitary evolutio
operatorÛ as a switching operator applicable in quantum
computation theory. Of course, one should keep in mind th
conditione!l2.

Figure 2 corresponds to the case ofk53 and shows the
probabilities obtained from the numerical calculations an
from the equations~12!. Obviously, for this situation the
unitary evolution operatorÛ has the following form:

Û5e2 i [ ~l3/3!~ â†!3â31e~ â†1â!] t. ~19!

Again, we see very good agreement between the analyti
and numerical attempts. Moreover, the dynamics of our sy
tem is restricted to the three states: the vacuum and the o
and two-photon states. In addition, contrary to the case
k52, we are not able to generate a puren-photon state.
However, for some values of the timet, we get a mixture of
;90% of the vacuum stateu0& and;10% of u2&.

The time evolution of the probability for the three-photon
stateu3& is shown in Fig. 3, where it is seen to take signifi

FIG. 1. Analytical solutions for the probabilities for the vacuum
~solid line! and two-photon~dashed line! states in the case of
k52. The parametere5p/50 ~all parameters are measured in units
of l51). Circle marks correspond to the probabilities found in ou
numerical calculations.
e-
e
e
e-
on

e
n

e

d

al
s-
e-
of

cantly smaller values than its counterparts corresponding
the lower Fock states. Its maximum value is;1.231023.
Moreover, similarly to Fig. 2, we observe good agreemen
between the numerical calculations based on the unitary o
eratorÛ ~19! and the analytical formula~14!.

As the value of the external-cavity fields interaction in-
creases our analytical model based on the perturbation p
cedure can no longer be correct and differs significantly from
that based on the numerical calculations. Figure 4 shows t
numerical results fork53, but for higher values of the cou-
pling constante5p/5. We see that the influence of higher
Fock states becomes significant~for this case the influence of
u4&). Obviously, ase increases the higher and higher state
start to play a significant role. For this case our model cann
be treated as one corresponding to finite-dimensional spac

r

FIG. 2. The same as in Fig. 1, but fork53. Analytical solutions
for the probabilities corresponding to the successive one-phot
state~dashed line! and two-photon state~dotted line! are compared
to the results of our numerical attempt~circles!.

FIG. 3. Analytical solution~solid line! and numerical results
~circles! for the evolution of the probability corresponding to the
three-photon state. All parameters are the same as in Fig. 2.
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IV. CONCLUSIONS

In this paper we dealt with a group of models of a gene
nature combining the evolution of a nonlinear medium in
cavity and a weak external coherent excitation. We ha
shown that these models can lead to the generation of q
tum states very close to the coherent states in FDHS co
sponding to those discussed in@3#. We have shown that for a
sufficiently weak external–cavity fields interaction, the res
nance effects become significant, and nonresonant coup
become negligible. The nonlinear quantum evolution of
cavity field in the nonlinear medium is crucial for the prep
ration of a state corresponding to the finite-dimensional

FIG. 4. The numerical results fork53 ande5p/5. The prob-
abilities for the states are given byu0& ~solid line!, u1& ~dashed
line!, u2& ~dotted line!, andu3& ~dashed-dotted line!.
,

l

e
n-
e-

-
gs
e
-
-

herent state in such a system. For this situation we deri
analytical formulas for the probabilities corresponding to t
Fock states we are interested in. Moreover, we proposed
performed numerical calculations in which we simulate t
dynamics of our system. A comparison of our numerical
tempt with our analytical results shows very good agreem
Of course, this agreement is visible only for the case of we
field coupling (e!lk), when the perturbation method can b
satisfactorily applied. Moreover, we have shown that for
casek52 we get the one-photon Fock state, whereas
k53 we are able to obtain an almost pure (90%) two-pho
stateu2&. In addition, as the dynamics of the system is clos
within two-dimensional space the unitary evolution opera
Û acts as a switching operator that can be applied in
quantum computer systems theory.

Obviously, we should mention the influence of the loss
in the system on the dynamics of our models. This probl
has already been discussed in Ref.@9# for the case ofk52.
Although the model discussed there concerned pulsed e
tations, the considerations discussed in@9# can be applied to
the model discussed in this paper. Of course, to investig
the effects of the losses we could perform appropriate
merical calculations; however, the problem appears to be
sufficient interest for a separate paper. For instance, s
investigations could be based on the quantum trajecto
method@12#. Alternatively, one might apply the density ma
trix r method as done in Ref.@13#.
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