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Finite-dimensional coherent-state generation and quantum-optical nonlinear oscillator models
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We discuss a system comprising a cavity with a nonlinear mediukaoséler and an external coherent field
excitation. We assume that the cavity field was initially in vacuum state. We show that for the case of weak
external field our system behaves similarly to one described in finite-dimensional Hilbert space. Moreover, we
perform numerical calculations simulating the dynamics of our system and compare the results with those of
analytical attemptd.S1050-294{@7)01905-1

PACS numbds): 42.50.Dv, 42.50.Ar, 42.65.k

I. INTRODUCTION IIl. MODEL AND AN ANALYTICAL SOLUTION

Glauber [1] defined a coherent state in infinite-
The most commonly used states of quantum optics ardimensional Hilbert spacdDHS) by means of a displace-
coherent states defined by Glauljét by application of a ment operatoD(a,a*) defined as

displacement operatdﬁ acting on the vacuum stat®). .
This definition concerns infinite-dimensional Hilbert space. f)(a,a*)=e“a
Recently, we observe great interest in the problem of coher-
ent states defined in finite-dimensional Hilbert spaceThus the coherent state).. in IDHS is defined as
(FDHS). For instance, Blk et al. [2] discussed a coherent
state analogous to that defined by Glauber; however, the |a).=D(a,a*)|0). (2
state proposed 2] was defined in $+1)-dimensional
space. The same problem was a subject of RB¢fwhere the A problem arises when we try to define the coherent state for
analytical solutions for the coherent state were found. MoreFDHS. There are two ways to determine such a state. One
over, a Wigner representation of the coherent states in FDHgefinition concerndruncated coherent stateis FDHS. It
was discussed if4], whereas some aspects of the problem ofwas introduced by Kuang, Wang, and Zhf§7] and is
harmonic-oscillator states in FDHS were dealt with 5. based on the normalized truncation of the Fock expansion of
In this paper we propose a group of genera| models thaf.,he Glauber infinite-dimensional coherent Stmeoo . This
we believe, can lead to the generation of quantum states veRfocedure is equivalent to the action of the operator
close to the coherent states in FDHS. As we will show, ouexp(a’) (with proper normalizationon the vacuum state
states correspond to those discusse@]nThe models com- |0) [5]. Obviously, the operator expd’) is truncated. The
bine the evolution of a nonlinear medium in a cavity and aalternative attempt discussed by Bzt al. [2] and Mira-
weak external coherent excitation. We show that for a suffinowicz et al.[3] concerns ¢+ 1)-dimensional Hilbert space
ciently weak external field, resonance effects start to play and is based on the action of the operddé? (analogous to
significant role, whereas nonresonant couplings become neghe Glauber displacement operatam the vacuum state.
ligible. The nonlinear quantum evolution of the cavity field This method differs from the commonly used definition of
in the nonlinear medium is crucial for obtaining a state cor-the coherent state for IDHS in that all states and operators
responding to the finite-dimensional coherent state in such are defined for the FDHS first and then applied to the
system. The effectiveness of the process is, however, consiGlauber-like definition. The properties of these states were
erably diminished by the cavity losses. Nevertheless, itliscussed in Refl2] where a numerical analysis was pro-
seems important to us that a cavity with a nonlinear mediunposed. Moreover, Miranowicet al.[3] found and discussed
(with a field initially in vacuum stafeand a sufficiently weak —analytical results for the coherent states defined in
external excitation can lead with high accuracy to finite-(S+1)-dimensional Hilbert space. Thus, in this paper, we
dimensional coherent-state generation. For this situation wghall deal with the kind of definition for the coherent state
will derive analytical formulas for the probabilities corre- defined in FDHS. Since we are interested in finding physical
sponding to the Fock states we are interested in. Moreovefodels leading to the generation of the coherent states de-
we will perform numerical calculations in which we simulate fined in FDHS rather than in the investigation of the proper-

the dynamics of our system and compare the results witHes of those states, we shall proceed to discuss a particular
those of an analytical attempt. group of Hamiltonians. Therefore, we propose a group of

quantum-optical models based on the following Hamiltonian
(in the interaction pictune
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wherea anda' are the annihilation and creation operators,one should note that the resonance discussed in this paper
and \, denotes the constant &th-order nonlinearity. The differs in character from the resonances commonly discussed
second term in the Hamiltonia(8) (proportional toe) cor-  in various papers where the cavity field and the difference
responds to the coherent excitation of the cavity by the exPetween the energies of the atomic lev@lscavity frequen-
ternal field. We use units of=1. Obviously, one should CieS have identical values. _ _
keep in mind that our models concern real physical situations Thus, we write the following equations of motion for the
(although they naturally involve certain limitationand are  Probability amplitudes:
defined in IDHS.

Let us express the wave function for our system in a Fock

d
basis: IaaO(t)_Eal(t)y

°° d
[V ()=2 a0l (@) | graa(t) = efag(t) +2ax(1)],

This wave function obeys a Scliinger equation with the
Hamiltonian expressed by E(B):

d
i%l‘lf(t»: %(é_’f)kék-i-e(éu-é) wt). (5 |aak—z(t)=e[\/k—2ak_3(t)+ vk—1a,_4(t)], .

Applying the standard procedure to our wave functidn
and the Hamiltoniar{3) we obtain a set of equations for the
probability amplitudes;(t). They are of the form

d
| gra-1(D=elVk=1a () +ka(D)],

d
d A i —a,(t)=N(k—21)!a(t)+ ka,_4(t
(0= (= 1) (1= k+ 1)Jay(t)+ e Vfay o(1) eV = Mk Dladt) + el V-0

I+ Laga )], © Pk (0]

where k denotes the order of the nonlinear process and

corresponds to thg-photon state. Obviously, one should Since we have assumeds e, the last of the above equa-

keep in mind that foj <0 we havea;=0. We see from Eq. - i . : o
(6) that the set of equations far, is infinite. This is obvious, tions |nd|c_ates that the ampl_ltu@(t) IS rap|dl_y oscillating
! n comparison with the amplitudeg(t), wherej <k. There-

since we deal with the IDHS. Nevertheless, our aim here i re. similar to the rotatina-wave approximation applied to
to show that under special conditions our system behaves ’ . 9 pp . PP
e atomic systemf3], we can neglect the influence of the

one defined in FDHS. The first step is to assume that thamplitudesam(t) (m=>k) on the dynamics of our system

coupling is weak, i.e.e<<\,. As a consequence, we can : )
treat our problem perturbatively. However, the main point Oerscrlbed by the EdB). Moreover, these amplitudes for the
r{lme t=0 are assumed to be equal to zero. Therefore, we

our considerations is the fact that the part of the Hamiltonia Lealect them and our equations of motion becom
(3) corresponding to the evolution of the nonlinear medium, gie € our equations of motio come

d
HNL:%(éT)kak, (7 'aao(t):fal(t),
produces degenerate states (corresponding to . i = £+ V2a,(t
j=0,1,... k—1). As we take into account not only the first P qpau(t) =elao(t) +v2ax(V)],
part of the Hamiltoniar(3) but the second part too, we see
that resonance arises between the interaction described by : 9)

the latter and the degenerate states generatdd\py This

resonance effect and the assumption concerning weak cou- d

pling between the external and cavity fieldsg{\,) leads to i ag_o(t) = e[ Vk—2a,_3(t) + Vk—Lay_1(1)],

the closed-form dynamics and cuts some subspace of states dt

out of all of the Fock states. As a consequence, assuming that q

the dynamics of the physical process starts from the vacuum .G N vy

|0), the evolution of the system is restricted to the states Idtak‘l(t)_'S k= La2(1).

|m), where n=0,1,2,...,k—1). This situation resembles

that for k-degenerate atomic levels coupled by a zero-We see that the dynamics of the system is closed within a
frequency field, where this resonant interaction selects, frorfinite subspace of the Fock states. As a consequence, we deal
the whole set of levels, only those that lead to a closed sydhere with a finite-dimensional space. Of course, one should
tem dynamics. Interaction with the remaining atomic levelskeep in mind that the set of equatiof® gives zero-order
can be treated as a negligible perturbatj@h Obviously, solutions for our perturbative treatment. It is obvious that we
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are in a position to find the solution for arbitrary values of

the parametek. For instance, fok=2 we get the following as(t)= L[cos{ V3et)—1], (14)
equations of motion: A3\6
d
7 20(t) = €ay(t), a,(t)= f ———[cog\6et) - 1].
(10)
d From Egs.(13) we see that the probability for the sta8 is

i ——a(t)=eay(t), : .
dt 1t ot proportional toe?, whereas that corresponding to the four-

. . photon state is proportional . As a consequence, for the
and their solution: case discussed in this paper where the external field—cavity
s field coupling is weak é<\ ), the influence of the higher
Ao(t) =icoget), Fock state is negligible.
a,(t)=sin( et). (12) It is visible, as we compare our resultgq. (13)] with
those of Miranowiczt al.[3], that the photon distribution of
Clearly, this result resembles that for a two-level atom in arthe states generated by our system is identical with the dis-
external field[8] and the dynamics of our system exhibits tribution corresponding to the three-dimensional FDHS. We
well-known oscillatory behavior. Moreover, this solution see that physical systems described by the Hamiltonians de-
[Eq. (10)] is identical to that derived for the Fock-state ex- fined in Eq.(3) can exhibit a dynamics that leads to FDHS
pansion of the coherent state defined in FDHS for two-States’ generation. This is a main result of our

dimensional Hilbert spack2,3]. considerations — FDHS states seem to be not only a math-
Analogously we can write the appropriate formulas forematical concept. Obviously, one should always keep in
the casek=3. Here, the equations of motion become mind that the accuracy of the expansion derived in this paper

is limited by the accuracy of the perturbation procedure.
Moreover, at this point we should mention the losses in
l&ao(t) = eay(t), our system that may destroy the effects discussed here. This
problem has already been discussed in the previous p@per
d where a similar modelwith kicked nonlinear oscillatgrhas
P graa(t) = elao(t) + V2a,(1)], (120 peen studied. It was shown that the damping constant
should be much smaller than the nonlineakity. We realize
d that this is a very strong requirement for experiment. Never-
i&az(t)ze\/ial(t), theless, various experiments, for instance, those involving
the very tiny effect of “vacuum Rabi splittingT10,11 give

and the solutions corresponding to these equations are us some hope for the practical realization of our models.

ao(t) = i[2+cog3et)], Iil. NUMERICAL APPROACH
i The second part of this paper is devoted to numerical
a.(t)= —sin( /3et 13 calculations and a comparison of their results with those
1t J3 n(\3et) a3 based on our formulas. Thus, analogously 3§ we define
the following unitary evolution operator:
2
az(t)=%_[cos(ﬁet)—1]- 0 =e lln/@) A +e@+alt, (15)

This operator acts on the initial vacuum st giving the

The solution§Egs.(12)] are identical to those derived 8] gpave function| W (1)) for arbitrary timet:

defined for the coherent state in three-dimensional FDHS.
course, we can write the appropriate formulas for arbitrary
values of the parametér(corresponding to arbitrary dimen-

sion of FDH3. The only limitation on our considerations As we compare Eq15) with those for the Glauber definition
resides in the handling of large sets of equations. As men-

tioned earlier, ours are zero-order perturbation solutions. Op2f the coherent statgEq. (2)], we see that the operatt
viously, it is possible to find higher-order formulas that cor- plays the same role as the displacement ope@jaibeit for
respond to the Fock states for numbers of photons highdinite-dimensional space. Of course we should keep in mind
than the dimension of the FDHS discussed. To obtain théhat the conditiore<<\, should be satisfied and we deal here
probability amplitudes corresponding to the higher states wavith the following correspondence:

should apply the standard perturbation procedure again. Thus
we apply the zero-order solutions to the extended equations 17)

of motion including terms corresponding to interaction with

the higher Fock states. For instance, for the ¢as8 we get Similar to the previous section we start here from the case
the following formulas for the probability amplitudes corre- of k=2. For this situation our evolution operator has the
sponding to the three-photon and four-photon states: following form:

[P (t))=U(1)|0). (16)
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FIG. 2. The same as in Fig. 1, but for=3. Analytical solutions
for the probabilities corresponding to the successive one-photon
state(dashed lingand two-photon statédotted ling are compared
to the results of our numerical attemfgircles.

FIG. 1. Analytical solutions for the probabilities for the vacuum
(solid line) and two-photon(dashed ling states in the case of
k=2. The parametet= /50 (all parameters are measured in units
of A=1). Circle marks correspond to the probabilities found in our

numerical calculations. . .
cantly smaller values than its counterparts corresponding to

the lower Fock states. Its maximum value-sl.2x 10 3.
Moreover, similarly to Fig. 2, we observe good agreement
between the numerical calculations based on the unitary op-

Moreover, we assume that for the tirre O the field was in  €ratorU (19) and the analytical formulél4).

the vacuum statf0). Figure 1 shows the probabilities for the ~ AS the value of the external-cavity fields interaction in-
Fock states versus the timie(we use units ol ,=1) ob-  Creases our analytical model based on the perturbation pro-

tained from the analytical formula&0) and from our nu- cedure can no longer be correct and _differs §ignificantly from
merical approach_ These two results exhibit very good agreéhat ba-SGd on the numerical CalCUllatlonS. Flgure 4 shows the
ment. Moreover, one notes that the probabilities for thehumerical results fok=3, but for higher values of the cou-
vacuum and one-photon states oscillate regularly and thBling constante= /5. We see that the influence of higher
popu'ation ﬂOWS 0n|y between these two states. As a Conséz_ock states becomeS SlgnIfIC&fIIr th|S case the |nf|uence Of
quence, the influence of the two-photon and higher states di)). Obviously, ase increases the higher and higher states
the dynamics of our system is negligible. In addition, forStart to play a significant role. For this case our model cannot
appropriately chosen timé we get the one-photon state be treated as one corresponding to finite-dimensional space.
(t=25n, n=1,2,... fore==/50), similarly to[9]. Obvi-

ously, for the same time the probability for the vacuum state _x 10
is equal to zero. Hence, we can treat the unitary evolution

operatorU as a switching operator applicable in quantum
computation theory. Of course, one should keep in mind the 25
condition e<€\ 5.

Figure 2 corresponds to the caseksf3 and shows the ol
probabilities obtained from the numerical calculations and
from the equationg12). Obviously, for this situation the

unitary evolution operatod) has the following form:

0 :e-i[<x2/z>(an252+e<5f+5>]t_ (18)

-3

Probabilities
<L

O =e ilg3@hH%3+e@ +ant (19) Bl
Again, we see very good agreement between the analytical
and numerical attempts. Moreover, the dynamics of our sys- ¢5-
tem is restricted to the three states: the vacuum and the one-
and two-photon states. In addition, contrary to the case of

k=2, we are not able to generate a purghoton state. 0
However, for some values of the timiewe get a mixture of
~90% of the vacuum stat®) and ~10% of |2). FIG. 3. Analytical solution(solid line) and numerical results

The time evolution of the probability for the three-photon (circles for the evolution of the probability corresponding to the
state|3) is shown in Fig. 3, where it is seen to take signifi- three-photon state. All parameters are the same as in Fig. 2.
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FIG. 4. The numerical results fd&¢=3 ande= #/5. The prob-
abilities for the states are given H9) (solid line), |1) (dashed
line), |2) (dotted ling, and|3) (dashed-dotted line

IV. CONCLUSIONS
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herent state in such a system. For this situation we derived
analytical formulas for the probabilities corresponding to the
Fock states we are interested in. Moreover, we proposed and
performed numerical calculations in which we simulate the
dynamics of our system. A comparison of our numerical at-
tempt with our analytical results shows very good agreement.
Of course, this agreement is visible only for the case of weak
field coupling €<\ ), when the perturbation method can be
satisfactorily applied. Moreover, we have shown that for the
casek=2 we get the one-photon Fock state, whereas for
k=3 we are able to obtain an almost pure (90%) two-photon
state|2). In addition, as the dynamics of the system is closed
within two-dimensional space the unitary evolution operator

U acts as a switching operator that can be applied in the
guantum computer systems theory.

Obviously, we should mention the influence of the losses
in the system on the dynamics of our models. This problem
has already been discussed in Ré&f. for the case ok=2.
Although the model discussed there concerned pulsed exci-
tations, the considerations discusseddhcan be applied to
the model discussed in this paper. Of course, to investigate
the effects of the losses we could perform appropriate nu-
merical calculations; however, the problem appears to be of

In this paper we dealt with a group of models of a generakfficient interest for a separate paper. For instance, such

nature combining the evolution of a nonlinear medium in ajnvestigations could be based on the quantum trajectories
cavity and a weak external coherent excitation. We havenethod[12]. Alternatively, one might apply the density ma-
shown that these models can lead to the generation of quagix p method as done in Ref13].

tum states very close to the coherent states in FDHS corre-
sponding to those discussed[B]. We have shown that for a
sufficiently weak external—cavity fields interaction, the reso-
nance effects become significant, and nonresonant couplings
become negligible. The nonlinear quantum evolution of the The author wishes to thank Professor Tafascarefully
cavity field in the nonlinear medium is crucial for the prepa-reading this text and for his valuable discussions and sugges-
ration of a state corresponding to the finite-dimensional cotions.
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