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Macroscopic averages in QED in material media
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This article addresses the problem of whether it is possible to describe the effect of the atoms of material
media on the field only in terms of a dielectric constant, in the regime where the field has to be treated quantum
mechanically. Using a simple model of a linear lossless material medium, we start from first principles and
determine the validity of the approximations required to obtain such a quantum analogue of classical macro-
scopic electrodynamics. This theory is derived here from the fundamental microscopic QED description of a
medium, in terms of its constituent atoms in the vacuum, by taking macroscopic averages of the dynamical
variables. The condition of the validity of the macroscopic approximation is obtained as the proviso for
neglecting the contribution of the atoms of the medium to the quantum noise of the field. We show that
macroscopic averaging is compatible with a quantum theory and does not imply any smoothening of the
intrinsic quantum fluctuations of the field. Although this theory is based on a simple one-dimensional model of
a single-mode cavity, it is able to describe the frequency dependence of the dielectric constant.
[S1050-294®@7)00805-9
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[. INTRODUCTION given time will depend on the value of the electric field at all
previous timegd37,49,6Q. Then the effective Lagrangian is

Many physical systems where the quantum nature of eleaonlocal in time and cannot be used in a quantization scheme
tromagnetic radiation is important involve the presence of49]. Huttneret al.[36] argue that the energy of the medium
material media. There have been several examples of the§&l] has to be introduced in any rigorous Lagrangian or
systems in the literature recently, including research orHamiltonian formalism. Nevertheless, some authors have de-
guantum optics in semiconductdrl, semiconductor micro- vised ways of avoiding the problem in certain special cases
lasers[2—4], cavity QED in microsphereb—11], photonic  [46,56,58. We show in Sec. V that, when the condition for a
band material§12—19, the generation of squeezed light in macroscopic description to be a good approximation to the
nonlinear material medig20—-25, and the discovery of non- fundamental microscopic theory is fulfilled, we recover
local dispersion cancellation in single-photon propagatiorMilonni’s results[58].
through material medi§26—2§. Although it is possible to The second question is about whether a macroscopic ap-
use ordinary quantum electrodynamics to describe the phygroach can be used at all in the quantum regime. The atoms
ics of these systen]28—38, it would be convenient if there that form a medium exhibit quantum fluctuations that can
were a quantum version of macroscopic classical electrodyaffect the fields. If a material medium is to be described only
namics. Then instead of accounting for each atom of thdy a dielectric constant, we must be able to neglect the effect
medium in a fundamental way, their effect would be de-of these quantum fluctuations. Usually, it is assumed that this
scribed by a dielectric constant only. There have been mangan be done when the frequencies involved are far from the
attempts to develop such a thedi39-59. This article is resonance frequency of the mediydi7]. Rosewarnd 35],
concerned with the validity of these macroscopic ap-however, has calculated the variance of the electric field in a
proaches. scalar version of the Hopfield modgb2] and has shown

The starting point of macroscopic theories of quantumthat, even far away from the resonance of the medium in the
electrodynamics in material media is usually the classicahondispersive region, there is an atomic contribution to the
macroscopic Maxwell equations, which are then quantizedvariance larger than the medium correction to the dielectric
In this article, we adopt the point of view that there is noconstant of the vacuum. In Sec. Ill, we calculate the variance
need to quantize the macroscopic Maxwell equations beef the field in our microscopic model and find only a negli-
cause ordinary QED already provides a quantum descriptiogible contribution from the atoms of the medium in this re-
of electrodynamics in material media at least in principle. Ifgime. The difference between our result and Rosewarne’s is
a macroscopic description is possible, it should appear as afue to him having assumed a continuous polarization for the
approximation, under certain conditions, to the fundamentaiedium, implying a macroscopic average. That leads us to
microscopic theory. Here, we obtain such a macroscopic aphe third question addressed in this article.
proximation and derive its condition of validity. The third question is about the legitimacy of taking mac-

We discuss in particular three main questions about theoscopic averages in a quantum theory. The idea of a mac-
validity of macroscopic descriptions of QED in material me- roscopic average is implicit in any macroscopic theory of
dia. The first one concerns dielectric constants that depenelectrodynamics in material media. It is based on the follow-
on the frequency37,49. This is the case of dispersive me- ing assumption. Electromagnetic fields are rapidly varying
dia. The problem is that, if the fields vary faster than thefunctions of position and time on the scale of the atomic
response time of the medium, the displacement field at aonstituents of a material medium. In many cases, however,
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the particular features of the fields in this fine scale are irrel- x

evant for the physics of the phenomena at hand; for example, w=m/L
macroscopic measuring apparatuses are often insensitive to
detail in the atomic scale. Then it is possible to average over
the fine detail, performing some sort of coarse graining. In
the realm of classical electrodynamics, such averaging yields
the macroscopic Maxwell equations with smoothly varying
fields and continuous charge and current distributions. A key
issue in the development of a macroscopic theory of QED in
material media is whether averaging the fields in this way O — Atom of the medium

will not also average their quantum fluctuations. Is a macro-

scopic version of QED a contradiction of terms? This is a FIG. 1. This is a schematic representation of our one-
very important question connected to the exact nature Ocﬁime_nsion_al moc_:lel of a single-mode cavity fiIIe_d wi_th a material
macroscopic averages that macroscopic theories of QED in medium with an immersed g_u_est atom. The medium is composed of
material medig39-59 have often avoided discussing, but N aoms located at the positiong, ... x;, ... xy and the guest
which we address in this article in Sec. IV. Our results sug 21O Sits ak=x, . As can be seen from this scheme, the frequency
gest that there is no such contradiction for most practicaf"_Of the single mode is related to the length of the cavitby
purposes, as in fact some experiments seem to demonstrate L.

[20,22-23. The most important consequence of macroscopi—also consider, however, a guest two-level atom of resonance
cally averaging the fields is the well-known problem of the ’ a9

local field[63—66 which differs from the macroscopic field. frequencyw, immersed in the material medium and strongly

Nevertheless, because the atoms in a medium are sourcesC&“pled. to the_ field so that_it will not b_e _approximated by a
guantum noise as well, we find that macroscopic fields Cal};larmonlc oscillator(see Fig. 1 A similar model was
exhibit different values for their variances when compared toadopted by_ Knogster f%”d Mukamid4] to stud_y impurity
microscopic fields. Our calculations reproduce Rosewarne’QmI.eCUIeS in-a dielectric host_crystal, but their model does
result for the variance of the electric field in a material me—nOt mvolye a single mpde .caV|ty. o

dium [35]. We show that Rosewarne’s result does not rule The displacement field in the cavity is given B§0,71]

out the possibility of a macroscopic theory of QED in a
material medium because, under certain conditions, a guest D(X) =84 /ﬁ—w(a+a'r)sin(2x) 1)
Sol_ C

x=0 X=X, X=X, x=L

# — Guest Atom

atom immersed in the medium becomes insensitive to the

large atomic medium contribution to the variance of the

field. We use this property in Sec. V to obtain a macroscopi@nd the polarization of the medium by
theory from our microscopic model.

This article is organized as follows. In Sec. Il we intro- oo ~t
duce the microscopic model of a material medium we adopt. P(x)= Z (bj+b})q;6(x—x;), @
. . 2wof=1
Then, in Sec. Ill, we discuss the problem of the extra quan-

tum noise that is introduced by the atoms of th_e medium. 'q/vhereso is the dielectric constant of the vacuufwe are
Sec. IV, we address the problem of macroscopic averages. opting SI units L is the length of the cavity, and

Sec. V, we show that under certain conditions a macroscopic a o aal . .

description, incorporating the frequency dependence of t?léﬁlz“’O(bi“LbJT) is the position operator of an oscillator of

dielectric constant, provides a good approximation to theeffective chargeq;; the productyf/2wa;(b;+b]) is the

physics of the system. In this domain, we recover Milonni'selectric dipole moment operator of the atom of the medium

results[58]. Finally, we summarize the main points of this that is located ak; which we are approximating by a har-

article in Sec. VI. monic oscillator. We notice thai andL for the single-mode
cavity are related by

Il. MODEL mC
0= ()
The simplest and most fundamental case of interaction L
between atoms and radiation is where a single mode of the ) R
field is coupled to a single atomic transiti¢67,6§. We  and that the operato#s, al, b, andbjT satisfy the commu-
think that the essential features of material media can béation relations
described in terms of this basic case. So we adopt what we

believe to be the simplest one-dimensional microscopic [a,aT]=1, (4
model of lossless material medid: two-level atoms having
the same resonance frequengyin a single-mode cavity of [Bj B! 1=6;;, (5)

resonance frequency. Although there is no wave packet
propagation in a single-mode cavity where dispersion can I

act, we are able to describe the frequency dependence of the [b;,b; =0, (6)
dielectric constant with this model. We deal only with linear L

media where, as Fano has shof@9], the two-level atoms anda, a'commute withb; , bj*.

can be described approximately by harmonic oscillators. We The Hamiltonian is given by
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N D(x) ho n
I:|=ﬁwé.Té.+ﬁwon1 Bfﬁj—fdx oo PO Zaaz Gi=\/ 2 9. (15)
= ]"*1

As the operator$; andb] are annihilation and creation op-
where erators obeying the commutation relatidbg and(6), it fol-
lows from the definitiong13) and(14) that the same is true

5 o1 .
e —d /czﬁsm(w ) ® of the B; andB] operators, i.e.,
€0

. . [B;.B].1=0) (16)
is the Rabi frequency of the guest atom located atvhose
electric dipole moment strength ¢ We notice that we are and
neglecting in Eq(7) the terms describing the self-energies of o
the dipole§71], as is usually done in treatments based on the [B;,Bj/]1=0. 17
dipole interaction Hamiltoniah67,68. S o ]
Writing the solution of the integral in Eq7) explicitly, The simplification in the Hamiltonian9), which we are
we obtain about to achieve, is possible only because
N N N N
. ain A A i ATA
=fiwaa+hwy >, bib,+% >, g;(a+a")(b;+b)) 121 b; bj—gl BB (19
=1 =1 - -
haog, o For the case of a “medium” made up of only two atoms,
+ TUZ+ nQa+ah(o+oh, 9 Egs.(13) and(14) are reduced to
e N b, +g,b
whereg; is given by B,= 9101709 2, (19
\/T © V91+92
gj=—q; ZsoLwosm(Exi)' (10 b ok
~ 91D 050
. . _ By=——, (20)
We see that the interaction of the atoms of the material VOi1t+95

medium with the field depends only on the weighted sum of
all the atomic creation and annihilation operators,and a straightforward calculation shows that E) is veri-
sN_,g;(B;+b). In fact, if we define the new operator fied. In order to demonstrate that E48) remains true for a
=19 medium made up of any arbitrary numbirof atoms, we
N will show that if Eq.(18) is valid for n atoms, then it is also
B,= E (11  valid forn+1.
= BecauseB,; depends on the number of atoms of the me-

2
\/ 24 i’ dium, in our demonstration, we will attach a superscript to it

to denote this number; i.eB! is defined by
which is also an annihilation operator satisfying the standard
commutation relation B 12
Bl=G. 2 9 (21)
[B1,BI1=1, (12
. ) Now, we assume that E¢18) holds forn atoms, i.e.,
as can be verified from Eq5), (6), and(11), we find that,
because all the atoms of the medium have the same reso- n n
nance frequency,, the Hamiltonian in the interaction pic- BB+ Z BiB=2>, b/b;. (22)
ture will depend only orB; andB] . This suggests a poten- =t
tial simplification in the Hamiltonian (9). Such a go forn+1 atoms, we can write, using E(2),
simplification is possible if we express the Hamiltonié
in terms of the transformed atomic medium operators ~ ~ ntio R
BT”BTL’_;Z BIB B +1TBn+1+BT+1Bn+1 B?TBT

. 1 "
Bi=— > g;b; (13 n
C':'N j=1 T
+2, bby. (239
and =1
1 k2 From Egs.(14) and(21), we obtain
By = 2b—0xg;b), 14 . .
GG, 2 (97D agby) (14 T

Bn-%—l_

N+l
wherek=2, ... N and VG t+0ni1

(24)
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and where
. Gnbni1—0n+1B] Ho=hwa'a+hw,B'B+4G(a+a")(B+BT), (33
Bn+1: 2 2 (25)
VGt gnia . ho,
_ o Ha=—0,+hQa+a"(o+5"), (34)
A straightforward calculation yields 2
Bl MBI L4 B, B, =BI'BI+ B, 1By, (26 2 le .
1 1 n+1Pn+1 1 P17 ¥n+1Pn+1 (26) 526121 gjbj, (35)

Substituting Eq(26) into Eqg. (23), we find

n+1 and

n+1
BITUBITLL S BIB= b/, 27
k=2 j=1 2
G=1/2 9. (36)
.

As we have already shown that E(.8) is valid for two

atoms, we have now demonstrated by induction that E8). We can now deal with the polariton problem diagonaliz-
is valid for an arbitrary numbeX of atoms in the medium.

Written in terms of the new set of atomic operators, the!tcv%HOéi;Oll;wg:gsgggﬂ:Ir?n?hiﬁ’;(t)igidl;rfgzggét}gi doefgritors
Hamiltonian (9) takes a much simpler form. It can be ex- P P

pressed as the sum of two uncoupled Hamiltonians given by
o A _oka kato kA GkRT
A=A, +A,, 29) Ck=xja+yja' +x;B+y,B", (37)
with k=1,2, satisfying the usual commutation relations
where
) - e, [&,601= S, (39)
Hn=hwa'a+hwBIB,+#Gy(a+a") (B, +Bl)+ — 02
[Ck,Cik ]=0, (39
+hQ(a+ah(6+6") (29) , .
and diagonalizingH ,
and . .
" [Cx,Hol=7 QL. (40
Ay=fiwo >, BlBy. (300  Equations(4), (16), (37), (38), and(40) yield
k=2
. XK= (v +uf), (41)
The atomic operator8,, Bl with k=2, ... N have their
free time evolution, given by yi=3(l—u), (42
B (1) =B (0)exp —iwgt), (3)  where
undisturbed by the rest of the system describediby. ke @k
) N ) uy v1, (43
The new set of atomic operatdss (j =1, ... N) is com- Oy
posed of collective bosonic operators that involve all the _
atomic oscillators. TheN—1 operatorsB, (k=2, ... N) uk:Qk_“’ ok (44)
represent collective excitations that cannot be excited by the 2260 Y

single-field modeéi. However, the physical meaning Efl is 2 o
more subtle. This is the only collective excitation that can be k_Qk_ w oK (45)
excited by the field mode with a strength that is dependent on L
the effective coupling constar®gy, Eq. (29). As will be-
come clear in Secs. IV and \B, is related to the macro- K \/ 4G*Qywo
scopic polarization density of the medium a@y, to the V1T (Q2— 0?)?+4wqwG?
effective oscillator strength of the medium.

BecauseB, (k=2, ... N) are left undisturbed by the rest and
of the system, we will discuss onli,, from now on. In 1
order not to make the notation unnecessarily complicated, we 02=-{wi+ w?+(—1)¥A}, (47)
will drop the subscripts 1 fror8,, N from Gy, andm from 2
I:Im. So we will be concerned with the Hamiltonian

(46)

s 16wowG*
- A=(wg=—0)\/1+ —F——. (48)
H=Ho+Ha, (32 (0p— w)
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that in order for{); not to assume imaginary values, we must
satisfy the condition &'?< 3. This does not happen in the
Hopfield model where the polariton frequencies are always
real for all values of the parameters of the system. The ap-
parently extra condition @'?< wﬁ we have here is a conse-
quence of neglecting the self-energies of the dipoles in our
model [71]. The effect of these self-energy terms in the
Hamiltonian is to shift the oscillator frequencieg. Such a
shift can be neglected if it is much smaller thap which is
when 4G'?< w3 is satisfied making our treatment consistent.
We also notice that although we have chosérto be real,
this does not imply any loss of generality.

From the commutation relations satisfied By af, B,

FIG. 2. This is a plot of the frequencies of the polariton modesgt & andél we obtain the following expressions farand

in units of wg as a function ofw/ wy for G’ =0.1w,. The thick line
shows(); and the dotted line showQ,. Our definition of(}; and
), makes them discontinuous at=wg. In the usual definition,
), is the entire upper curve arfd, the entire lower curve.

Equation (47) shows the usual total absence of polariton

modes in the frequency interval betwea4w3—4G'2and
wq, Where

(49

is the effective oscillator strengttin units of wg), which is
held constant. Unlike Hopfiel@62], however, we have cho-
sen the sign ofA in Eq. (47) and (48) so that when
G'—0, O, approaches the field frequeneay and ), ap-
proaches the atomic frequenay,. This way of defining
Q4 andQ, turns both of them into discontinuous functions
of the wave numbew/c at w= wq. Usually,Q), and(}, are
defined as two continuous functions®fc corresponding to

the lower and the upper polariton branches. Figure 2 illus-

trates this point. The reason for definifily and (), in this

B in terms ofg, andé] [72]:

A_ kA LAt 2% A 241
a=xy"C;—yiC; +x1* - yity, (50)

1x A

A 1At | 2% A 24
B=x3*€,—y3¢]+x5* &, —y5e5. (51

Using Eq.(50) in Eq. (34), we can rewrite Eq(32) in
terms of the dressed operatdisand éﬁ:

A Ata ata how, Loa L atu s, At
H=1Q,C,C;+7Q,E;C+ TO'Z+ hQuy(C,+E)(a+a')
+hQUE(E,+ e (a+ ). (52)

The original problem is reduced now to the case of a single
atom coupled to two polariton modes. In the next section, we
use the dressed operator formalism presented here to study
the influence of the atoms of the medium on the quantum
noise of the field.

IIl. QUANTUM NOISE DUE TO THE ATOMS
OF THE MEDIUM

nonstandard way is that we want to have the electric permit-

tivity given by &,=(w/Q,)? but &, must approach 1 when
G’'—0. As we can see in Fig. 3, the plot ef=(w/Q,)? as

a function of the cavity frequenay shows the usual features
of &, for lossless media. Another peculiarity of our model is

16

1.2

]

1.5 2

0.8

0.5 1

wlw,

FIG. 3. This is a plot of the relative permittivity, = 0/, as a
function of w/ wg with G’ =0.2wq. For w<<w, the relative permit-

In the absence of a guest atom and when the total system
is in its ground state defined ki4|g)=0 and¢,|g)=0, we
find the following expression for the variance & a:

([A(a+a")]?)=((a+a"h?—(a+af)?

> (59

The simplest macroscopic theories of electrodynamics in ma-
terial media assume no dispersion. Then the dielectric con-
stant is independent of the frequency and takes its static
value. In our model, this regime correspondst& wg. If we
also consider the case where the atoms of the medium are
only weakly coupled to the field, i.eG’,w<<wg, with G’
given by Eq.(49), we find from Eqs(47), (48), and(53) that

&

0

12 12
([Aa+aN ) ~1+2— —2—
W @

2
: (54)

tivity is independent of the frequenay and takes its static value. UP to second order iﬂ’/w_o andG'/wy. So if_ we neglect the
At w= w,, there is a singularity because the medium is lossless. Fofiigher order term that is second order in basfw, and
0> wg, the relative permittivity approaches ofas in the vacuum G’/ wg, we obtain
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([A(a+a" 1))~ e, (55 ~ Wwhat is meant by macroscopic average. Schf@8]j advo-
cates a quantum mechanical averaging. If this is the case,
whereg, is the relative permittivity defined in terms of the then quantum fluctuations will certainly be absent from the

change in the cavity resonance frequency by macroscopic theory.
The problem of defining exactly what should be the mac-
w roscopic averaging procedure has been the source of much
\/s—r confusion that has plagued, for many years, attempts to de-

rive the classical Maxwell equations for a material medium
and, in this approximation, found to be from the more fundamental microscopic equations for the
fields and charged particles in the vacuum. It was Lorentz

~1+4G_’2 5 [74] who, in the beginning of this century, first tried such a
& wg ' (57) derivation using an averaging procedure. He introduced a

macroscopic average over “physically infinitesimal” vol-

in agreement with the expression feor found in Ref.[35]. ume elements. These elements had to be small enough to be

Equation(55) reproduces the ratio between the variancetreated as infinitesimals in the macroscopic sense but large
of the displacement field in the material medium and in theenough to contain many atoms so that the spatial variations
vacuum calculated by Glauber and Lewenstdis7]. in the microscopic densities and fields would vanish after
Rosewarng35], however, computed the variance of the elec-averaging. There are two main objections to the Lorentz pro-
tric field in a scalar version of the Hopfield model and foundcedure[75,7§. First, the division of a macroscopic system
that, in this regime G’, w<wy), it had a contribution of the into “physically infinitesimal” volume elements will only
order of G'?/(wow). Such a contribution is larger than the lead to uniquely defined macroscopic polarization and mag-
4G’2/w§ medium correction to the relative permittivity of netization densities if these elements are strictly neutral and
the vacuum and is not accounted for when the medium €0 currents leave the elemefi®—78. So the contributions

described only in terms of a dielectric constant. of the bound charges to the charge and current densities have
The electric field is given in terms of the displacementt0 vanish always, which is absurd. Second, in many prob-
field and the polarization by lems there are no such “physically infinitesimal” volumes
that are both macroscopically small and have a large number
D P of atoms, and yet the macroscopic equations seem to hold
E= . (58)  true. This is the case of optics, for example, where the vol-

ume element cannot exceed®183; otherwise, every oscil-

As we have just shown that the varianceDphas no contri- lation at optical frequencies would be averaged to zero. The
bution of orderG’?/(wyw), this contribution can only come addition of a single extra electron to such a volume causes a
from the polarization. Nevertheless, because the microscop@hange in the charge density of about 160 Chwhich is
polarization, given by Eq(2), vanishes whenever we are not e€xtremely high to be regarded as an infinitesimal increment.
at one of the positions occupied by atoms of the medium, For many years, not much progress was made in improv-
except for these positions the variancefwill be of the  ing Lorentz’s original ideasa historical account of the sub-
same order inG'/w, as that ofD whenG’,w<w,. This ject can be found in De Groot's bogk9] or in the review
apparently contradicts the result of RES5]. article by van Kranendonk and Sip80]). The first authors

The reason why Rosewarne finds a different value for thd0 introduce a different macroscopic averaging procedure
variance of the electric field is that he adopts a continuougvere Mazur and Nijboef81]. They have shown that under
distribution of atoms in the medium instead of a more real-certain circumstances the macroscopic Maxwell equations
istic discrete one. This implies that the dynamical variablesan be obtained from a statistical ensemble average of the
he uses are macroscopic averages already. In particular, tReicroscopic equations. Mazur and Nijboer's statistical en-
electric field at a given position in his calculatifs] is not ~ Semble average does not suffer from the two problems men-
the field an atom situated at that position would experiencelioned above about Lorentz's average over “physically in-
but a macroscopically averaged electric field whose variancBnitesimal” volume elements, and it has been adopted by
is rather different from that of the microscopic field. In the other author$79,82. The problem with ensemble averaging
next section, we show this point explicitly taking the macro-is that it can only be used to define quantities independent of
scopic average of the microscopic electric field in our modepetails of the microscopic structure of the system, if the en-
and Ca|cu|ating the variance to demonstrate that we can ré.emble distribution function varies SlOle over distances of

cover the result of Ref35]. the order of the interatomic spacing. This is true for fluids
but not for crystal$75—77 or certain other physical systems
IV. MACROSCOPIC AVERAGES such as some vacuum electronic devices to which, neverthe-

less, the macroscopic Maxwell equations can be applied
Although macroscopic theories of QED in a material me-[75,76].

dia [39-59 have often avoided discussing the macroscopic Robinson75,76 has proposed a different kind of macro-
averaging procedure, the exact nature of these averagesseopic average that keeps the essence of Lorentz’s original
one of the most important issues in any such theory. Thédeas but which is free from the problems mentioned before
answer to the question posed in the Introduction about thand does not involve ensemble averaging. He regards a mac-
possibility of the macroscopic averaging procedure washingoscopic description as a description where spatial Fourier
out quantum fluctuations in the field will clearly depend oncomponents of the field variables above some limiting spatial
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frequencyk, are irrelevant. The value &, is to be deter- <(§T+B)(aT+a)+(éT+é)(éT+é)>
mined only from the sort of problem and calculation in-
volved, not by the physical specification of the system. [0, 2 40°G'?(Q2— 0?) 64
While the use of an ensemble presupposes that our knowl- =\ 7 22 212
edge of the microscopic state of the system is incomplete, the © (=1 [(Qf= @)™+ 407G 710,
use of Robinson’s truncation procedure implies that we dgyq
not wish to make use of this knowledge even though it might
be available to u$75,76. Because in our view Robinson’s o 2 wo (Qﬁ_aﬂ)z
definition of macroscopic average is the most sensible defi-  ([A(B"+B)]?)= > 0. (02— 0?21 202G 72" (65)
nition so far, we adopt it in this article. k=1 i (Qi— o) @

As there can be no atoms of the medium at the positiong,q, up to second order i@’/ w,, we obtain
occupied by the cavity walls, i.e., a=0 and atx=L, we
can express the Dirag functions in Eq(2) as a Fourier sine e 2 G'2 G'2
series inside the cavity: AlaT+a+ (BT+B) ~1-6—5 +4—.

Vwow wy wow
2 _(n _(nm
S(X—X))= L& Sm(TXj)Sm(TX)' (59 The first two terms on the right-hand side of E§6) yield

the &, % variance obtained in Glauber and Lewenstein's

In our model, involving only a single mode of the field, macroscopic theor}s7]. The last term on the right-hand side
Fourier components with spatial frequencies abave are of Eq. (66), however, represents some extra noise that comes
irrelevant in a macroscopic description. So following Robin-from the atoms of the medium. This noise is larger than the
son [75’76' we take as the macroscopica”y averaged VarimEdium correction @,2/(1)0 to the relative permltt|V|ty and
ables those where such Fourier components have been didrees with Rosewarne’s res®5].
carded. Then from Eq$2), (3), and(59), we can write the Thus we have shown that the macroscopic and the micro-
fo"owing expression for the macroscopic po|arizati0n: SCOpiC fields exhibit different variances. The variance of the
macroscopic electric field, as Rosewarne demonsti{&efl
N derives a large contribution from the atoms of the medium.
o 1 28 (o nLR @ This seems to suggest that any macroscopic theory will give
P(x)= —\/—sm(—x) > (b-+b-T)q-S|n(—x-). (60) 99 y Dscopic theory witl g
LVawe \c7/& ) 70 e wrong results for the quantum fluctuations of its variables. In
the next section, however, we show that we can still con-
Using the definitions ofy;, Eq. (10), B, Eg. (35, G, Eq.  struct a macroscopic theory of QED in a material medium
(36), andG’, Eq. (49), we obtain that is free from the problems discussed here.

V. RECOVERING MACROSCOPIC DESCRIPTIONS

— 2G’ ho ~, -« 1)

- _ 22 At ™

P()= [wow €0 gOL(B +B)sin C X)’ (62) We have been concerned so far only with the atoms of the
medium and the cavity field. This is the material medium

and the role played by the collective operaAEQrof Sec. || @analogue of the field in the vacuum in the absence of

now becomes explicit. Then, the macroscopic electric field@Urces. Most situations of interest, however, involve guest
operator(58) is given by atoms “immersed” in the medium, the main difference be-

tween an “immersed” atom and an atom of the medium

being that the transition frequency of the former is often

— ho| 26" .. .| o closer to the field frequency than that of the latter. The “im-
EC)= P R W(B +B)sin x| (620 ersed” atoms are usually also coupled more strongly to the
0 field than the atoms of the medium. In such situations, the

Now we can Ca'cu'ate the Variance in the ground state opnly releval’lt f|UCtuati0nS are those that the “immersed” at-
the term enclosed with curly brackets in E§2): oms can experience. So we should extend our criterion of
what is irrelevant to eliminate, in the process of taking the
2 macroscopic average, the part of the microscopic field that

e )
=((a'™+a)?)+

!

has a negligible effect on the “immersed” guest atom. In
this section we show that when the extended criterion is
adopted, the macroscopic description obtained will be a good

o approximation to the microscopic theory if the transition fre-
((BT+ B)(a'+a) quency of the guest atom is far from the resonance of the
Wow medium. Then we derive expressions for the macroscopic

4G'2 fields that agree with those found by Milon&G8].
Aty av /Bt B “abs Bt L B2 The large atomic contribution to the variance of the mac-
T@A)(BHE) w0w<[A(B TB)I). 63 roscopic electric field that we have calculated in the previous
section comes from the variance of its and e; compo-
If we write &, a7, B, andB" in terms of&,, &, &,, andé}  nents. If, however, the resonance frequency of the guest atom
using Eqgs(50) and(51), we find that w, is very far from(},, the guest atom will not be affected

2G' .. .
at+a+ (BT+B)

wWow
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1
U1

nance frequencw, has to be, for the effect of this polariton (73

mode on the guest atom to be negligible, depends on the
coupling between them. An analysis of the probability of thiSUsing Egs.(46) and (71), we can expresy in terms ofQ,
mode inducing transitions of the guest atom shows that suchq: as

probability is negligible when '

much by this polariton mode. How far frof}, the reso- ( 1 )2
’y:

) d
u2Q|<|Qy— wy. (67) y= d—m(ﬂde—,), (74)

This is analogous to the condition for neglecting the counterwhich can be identified as the ratio between the speed of
rotating terms in the Jaynes-Cummings mod@ICM) |ight in vacuum and the group velocity in the medium.
[67,68. As in the JCM case the nonresonant terms can in- The macroscopic electric field is obtained from E5g)
duce a frequency shift in the guest atom similar to the Blochy,ith p . substituted foD and withP, Eqg. (61), without its

Siegert shiff83], but far from(}, such a shift is negligible. &,, &} polariton component, substituted f&. From Egs.
We also notice that conditio67) assumes a simpler form 44 and(71), we find

when the coupling between the atoms of the medium and the

field is weak, i.e.G'<wg,w. Then ifw, is close to the field 2G’ 1—¢
frequencyw, condition(67) becomeswy— w|>|Q|; i.e., the ="t (75)
detuning between the frequency of the field and the reso- Vwow Ve,

nance of the medium must be much larger than the Ra
frequency of the guest atom.

In the regime described by E®7), we extend our defi- 1— hQe e, 1/2
nition of macroscopic average to both a truncation in the g &X)Z( Jeo + 8f)( 18r 8“)
mode expansion of the fields, leaving out the polariton mode me e, goly
described by¢, and (‘:Z and the truncation of the Fourier 0
series at the spatial frequenay/'c. Then from the micro- A Aty 1
scopic Hamiltonian(52), we obtain the macroscopic Hamil- ><(c1+cl)sm( \/S—’TX>
tonian

tli’hen from Eqs(58), (61), (70), (73), and(75), we obtain

20 1/2 Q
(o] e ) o

We notice that our expressions for the macroscopic fields
From Eqs(8), (43), and(46), we find that we can rewrite the coincide with those derived by Milonfi68] if his results are
macroscopic Hamiltoniaf68) as particularized for the case of a single mode. This is interest-
ing because Milonni adopted a completely different approach
in his derivations of these expressions for the macroscopic
fields. He started from the macroscopic Maxwell equations
and showed that given a narrow range of frequencies where
wherex, is the position of the guest atord, is its electric ~ absorption is negligible, it is possible to define a Hamiltonian
dipole strength, and that is local in time, enabling him to quantize the macro-
scopic fields in the usual was for the vacuupnwithin this
frequency range.

. ta | o Loa L atua . At
Hmac=ﬁﬂlclcl+Taz+ﬁ9u1(cl+c1)(a+a). (68)

hwg

_d o
2 Uz_s_oDmac(Xa)(0'+0' ), (69

Hoac= i 818, +

1Qe08 e

DmadX)= Ly

1/2 Q
(&1+ e{)sin( E{x) (70)

VI. CONCLUSION

is the macroscopic displacement field. The relative permit-

tivity ¢, appearing in Eq(70) is derived from Eq/(47) and We have adopted a simple microscopic model for the in-

teraction between an atom and radiation in a linear lossless

found to be material medium: a guest two-level atom inside a single-
4G'2 mode cavity filled with a host medium composed of other
e=1+ —> (72) two-level atoms that are approximated by harmonic oscilla-

g —Qf’ tors. The guest atom works as a probe for the field, giving us

a definite criterium for deciding what is field and what is

with G'2 clearly appearing as the effective oscillator strengthmatter inside the material medium; namely, field is what af-
of the medium, justifying the physical meaning anticipatedfects the guest atom. Although the presence of the guest

for Gy in Sec. Il, and atom proved to be a very convenient way of introducing a
probe for the field, in principle any other probe, such as a
wy?=wi—4G'? (72 photodetector, would do equally well.

We have shown that when the transition frequency of the
being the correction on the resonance frequency of the meguest atom is far from the frequency of one of the polariton
dium due to the interaction with the fie[84]. The parameter modes, we can obtain an approximate macroscopic descrip-
v in Eq. (70) is given by tion for this model where the medium appears only through a
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dielectric constant. Hopfield had already mentioned in 195&annot allow for dispersive propagation of wave packets, we
that the medium could be treated as a classical dielectric ihave been able to preserve the frequency dependence of the
this regime[62] but, to the best of our knowledge, it is the relative permittivity in our macroscopic approximation, re-
first time that such a result is explicitly derived from a mi- covering Milonni’'s result§58]. This seems to suggest that a
croscopic theory by taking macroscopic averages. We noticeacroscopic description of QED in material media can in-
that the frequency discrimination carried out by the probeclude dispersion as long as the frequencies involved are far
(guest atorp is crucial here. If the probe could sense thefrom those of the other polariton branch. We are currently
frequency of the other polariton mode, it would be affectedworking on an extension of this method to free space where
by the excess fluctuations arising from the medium and thevave packet propagation under the influence of a frequency-
macroscopic approach would break down. However, in mostlependent dielectric permittivity would be possible.

of the situations of physical interest, the system that interacts
with the field is sensitive only to a narrow range of frequen-
cies as the probé&uest atomin our model, allowing then
the use of a macroscopic theory. S.M.D. would like to thank Kertay Tibor, Kertay kalg,

Our method has helped to clarify some questions aboutnd Szita Csaba for useful discussions. This work was sup-
the validity of macroscopic approaches. In particular weported by Conselho Nacional de Desenvolvimento Cientl
have shown that, contrary to Rosewarne’s suggegtah  fico e Tecnolgico (CNPg, Funda@o de Amparo éPesquisa
quantum fluctuations are properly described in the regimelo Estado de “%aPaulo (FAPESP, and Financiadora de
mentioned above. Moreover, although a single-mode cavitgstudos e Projetod-INEP).
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