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Macroscopic averages in QED in material media

S. M. Dutra and K. Furuya
Instituto de Fı´sica ‘‘Gleb Wataghin,’’ Universidade Estadual de Campinas, UNICAMP 13083-970, Campinas, Sa˜o Paulo, Brazil

~Received 20 June 1996!

This article addresses the problem of whether it is possible to describe the effect of the atoms of material
media on the field only in terms of a dielectric constant, in the regime where the field has to be treated quantum
mechanically. Using a simple model of a linear lossless material medium, we start from first principles and
determine the validity of the approximations required to obtain such a quantum analogue of classical macro-
scopic electrodynamics. This theory is derived here from the fundamental microscopic QED description of a
medium, in terms of its constituent atoms in the vacuum, by taking macroscopic averages of the dynamical
variables. The condition of the validity of the macroscopic approximation is obtained as the proviso for
neglecting the contribution of the atoms of the medium to the quantum noise of the field. We show that
macroscopic averaging is compatible with a quantum theory and does not imply any smoothening of the
intrinsic quantum fluctuations of the field. Although this theory is based on a simple one-dimensional model of
a single-mode cavity, it is able to describe the frequency dependence of the dielectric constant.
@S1050-2947~97!00805-6#

PACS number~s!: 42.50.2p, 03.70.1k
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I. INTRODUCTION

Many physical systems where the quantum nature of e
tromagnetic radiation is important involve the presence
material media. There have been several examples of t
systems in the literature recently, including research
quantum optics in semiconductors@1#, semiconductor micro-
lasers@2–4#, cavity QED in microspheres@5–11#, photonic
band materials@12–19#, the generation of squeezed light
nonlinear material media@20–25#, and the discovery of non
local dispersion cancellation in single-photon propagat
through material media@26–28#. Although it is possible to
use ordinary quantum electrodynamics to describe the p
ics of these systems@28–38#, it would be convenient if there
were a quantum version of macroscopic classical electro
namics. Then instead of accounting for each atom of
medium in a fundamental way, their effect would be d
scribed by a dielectric constant only. There have been m
attempts to develop such a theory@39–59#. This article is
concerned with the validity of these macroscopic a
proaches.

The starting point of macroscopic theories of quant
electrodynamics in material media is usually the class
macroscopic Maxwell equations, which are then quantiz
In this article, we adopt the point of view that there is
need to quantize the macroscopic Maxwell equations
cause ordinary QED already provides a quantum descrip
of electrodynamics in material media at least in principle
a macroscopic description is possible, it should appear a
approximation, under certain conditions, to the fundame
microscopic theory. Here, we obtain such a macroscopic
proximation and derive its condition of validity.

We discuss in particular three main questions about
validity of macroscopic descriptions of QED in material m
dia. The first one concerns dielectric constants that dep
on the frequency@37,49#. This is the case of dispersive me
dia. The problem is that, if the fields vary faster than t
response time of the medium, the displacement field a
551050-2947/97/55~5!/3832~10!/$10.00
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given time will depend on the value of the electric field at
previous times@37,49,60#. Then the effective Lagrangian i
nonlocal in time and cannot be used in a quantization sch
@49#. Huttneret al. @36# argue that the energy of the mediu
@61# has to be introduced in any rigorous Lagrangian
Hamiltonian formalism. Nevertheless, some authors have
vised ways of avoiding the problem in certain special ca
@46,56,58#. We show in Sec. V that, when the condition for
macroscopic description to be a good approximation to
fundamental microscopic theory is fulfilled, we recov
Milonni’s results@58#.

The second question is about whether a macroscopic
proach can be used at all in the quantum regime. The at
that form a medium exhibit quantum fluctuations that c
affect the fields. If a material medium is to be described o
by a dielectric constant, we must be able to neglect the ef
of these quantum fluctuations. Usually, it is assumed that
can be done when the frequencies involved are far from
resonance frequency of the medium@47#. Rosewarne@35#,
however, has calculated the variance of the electric field
scalar version of the Hopfield model@62# and has shown
that, even far away from the resonance of the medium in
nondispersive region, there is an atomic contribution to
variance larger than the medium correction to the dielec
constant of the vacuum. In Sec. III, we calculate the varia
of the field in our microscopic model and find only a neg
gible contribution from the atoms of the medium in this r
gime. The difference between our result and Rosewarne
due to him having assumed a continuous polarization for
medium, implying a macroscopic average. That leads u
the third question addressed in this article.

The third question is about the legitimacy of taking ma
roscopic averages in a quantum theory. The idea of a m
roscopic average is implicit in any macroscopic theory
electrodynamics in material media. It is based on the follo
ing assumption. Electromagnetic fields are rapidly vary
functions of position and time on the scale of the atom
constituents of a material medium. In many cases, howe
3832 © 1997 The American Physical Society
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55 3833MACROSCOPIC AVERAGES IN QED IN MATERIAL MEDIA
the particular features of the fields in this fine scale are ir
evant for the physics of the phenomena at hand; for exam
macroscopic measuring apparatuses are often insensitiv
detail in the atomic scale. Then it is possible to average o
the fine detail, performing some sort of coarse graining.
the realm of classical electrodynamics, such averaging yi
the macroscopic Maxwell equations with smoothly varyi
fields and continuous charge and current distributions. A
issue in the development of a macroscopic theory of QED
material media is whether averaging the fields in this w
will not also average their quantum fluctuations. Is a mac
scopic version of QED a contradiction of terms? This is
very important question connected to the exact nature
macroscopic averages that macroscopic theories of QED
material media@39–59# have often avoided discussing, b
which we address in this article in Sec. IV. Our results s
gest that there is no such contradiction for most pract
purposes, as in fact some experiments seem to demons
@20,22–25#. The most important consequence of macrosco
cally averaging the fields is the well-known problem of t
local field @63–66# which differs from the macroscopic field
Nevertheless, because the atoms in a medium are sourc
quantum noise as well, we find that macroscopic fields
exhibit different values for their variances when compared
microscopic fields. Our calculations reproduce Rosewarn
result for the variance of the electric field in a material m
dium @35#. We show that Rosewarne’s result does not r
out the possibility of a macroscopic theory of QED in
material medium because, under certain conditions, a g
atom immersed in the medium becomes insensitive to
large atomic medium contribution to the variance of t
field. We use this property in Sec. V to obtain a macrosco
theory from our microscopic model.

This article is organized as follows. In Sec. II we intr
duce the microscopic model of a material medium we ado
Then, in Sec. III, we discuss the problem of the extra qu
tum noise that is introduced by the atoms of the medium
Sec. IV, we address the problem of macroscopic average
Sec. V, we show that under certain conditions a macrosc
description, incorporating the frequency dependence of
dielectric constant, provides a good approximation to
physics of the system. In this domain, we recover Milonn
results@58#. Finally, we summarize the main points of th
article in Sec. VI.

II. MODEL

The simplest and most fundamental case of interac
between atoms and radiation is where a single mode of
field is coupled to a single atomic transition@67,68#. We
think that the essential features of material media can
described in terms of this basic case. So we adopt wha
believe to be the simplest one-dimensional microsco
model of lossless material media:N two-level atoms having
the same resonance frequencyv0 in a single-mode cavity of
resonance frequencyv. Although there is no wave packe
propagation in a single-mode cavity where dispersion
act, we are able to describe the frequency dependence o
dielectric constant with this model. We deal only with line
media where, as Fano has shown@69#, the two-level atoms
can be described approximately by harmonic oscillators.
l-
le,
to
er
n
ds

y
n
y
-

of
a

-
l
ate
i-

of
n
o
’s
-
e

st
e

ic

t.
-
n
In
ic
e
e

n
e

e
e
ic

n
the

e

also consider, however, a guest two-level atom of resona
frequencyva immersed in the material medium and strong
coupled to the field so that it will not be approximated by
harmonic oscillator~see Fig. 1!. A similar model was
adopted by Knoester and Mukamel@34# to study impurity
molecules in a dielectric host crystal, but their model do
not involve a single mode cavity.

The displacement field in the cavity is given by@70,71#

D~x!5«0A\v

«0L
~ â1â†!sinS v

c
xD ~1!

and the polarization of the medium by

P~x!5A \

2v0
(
j51

N

~ b̂ j1b̂ j
†!qjd~x2xj !, ~2!

where«0 is the dielectric constant of the vacuum~we are
adopting SI units!, L is the length of the cavity, and
A\/2v0(b̂ j1b̂ j

†) is the position operator of an oscillator o

effective chargeqj ; the productA\/2v0qj (b̂ j1b̂ j
†) is the

electric dipole moment operator of the atom of the medi
that is located atxj which we are approximating by a ha
monic oscillator. We notice thatv andL for the single-mode
cavity are related by

v5
pc

L
~3!

and that the operatorsâ, â†, b̂ j , andb̂ j
† satisfy the commu-

tation relations

@ â,â†#51, ~4!

@ b̂ j ,b̂ j 8
†

#5d j j 8, ~5!

@ b̂ j ,b̂ j 8#50, ~6!

and â, â†commute withb̂ j , b̂ j
† .

The Hamiltonian is given by

FIG. 1. This is a schematic representation of our on
dimensional model of a single-mode cavity filled with a mater
medium with an immersed guest atom. The medium is compose
N atoms located at the positionsx1 , . . . ,xj , . . . ,xN and the guest
atom sits atx5xa . As can be seen from this scheme, the frequen
v of the single mode is related to the length of the cavityL by
v5p/L.
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3834 55S. M. DUTRA AND K. FURUYA
Ĥ5\vâ†â1\v0(
j51

N

b̂j
†b̂ j2E dx

D~x!

«0
P~x!1

\va

2
ŝz

1\V~ â1â†!~ ŝ1ŝ†!, ~7!

where

V52dA v

«0L\
sinS v

c
xaD ~8!

is the Rabi frequency of the guest atom located atxa whose
electric dipole moment strength isd. We notice that we are
neglecting in Eq.~7! the terms describing the self-energies
the dipoles@71#, as is usually done in treatments based on
dipole interaction Hamiltonian@67,68#.

Writing the solution of the integral in Eq.~7! explicitly,
we obtain

Ĥ5\vâ†â1\v0(
j51

N

b̂j
†b̂ j1\(

j51

N

gj~ â1â†!~ b̂ j1b̂ j
†!

1
\va

2
ŝz1\V~ â1â†!~ ŝ1ŝ†!, ~9!

wheregj is given by

gj52qjA v

2«0Lv0
sinS v

c
xj D . ~10!

We see that the interaction of the atoms of the mate
medium with the field depends only on the weighted sum
all the atomic creation and annihilation operato
( j51
N gj (b̂ j1b̂ j

†). In fact, if we define the new operator

B̂15
1

A(
j 851

N

gj 8
2

(
j51

N

gj b̂j , ~11!

which is also an annihilation operator satisfying the stand
commutation relation

@B̂1 ,B̂1
†#51, ~12!

as can be verified from Eqs.~5!, ~6!, and~11!, we find that,
because all the atoms of the medium have the same r
nance frequencyv0, the Hamiltonian in the interaction pic
ture will depend only onB̂1 andB̂1

† . This suggests a poten
tial simplification in the Hamiltonian ~9!. Such a
simplification is possible if we express the Hamiltonian~9!
in terms of the transformed atomic medium operators

B̂15
1

GN
(
j51

N

gj b̂j ~13!

and

B̂k5
1

Gk21Gk
(
j51

k21

~gj
2b̂k2gkgj b̂j !, ~14!

wherek52, . . . ,N and
f
e

l
f
,

d

o-

Gn5A(
j 851

n

gj 8
2 . ~15!

As the operatorsb̂ j and b̂ j
† are annihilation and creation op

erators obeying the commutation relations~5! and~6!, it fol-
lows from the definitions~13! and~14! that the same is true
of the B̂j and B̂j

† operators, i.e.,

@B̂j ,B̂j 8
†

#5d j j 8 ~16!

and

@B̂j ,B̂j 8#50. ~17!

The simplification in the Hamiltonian~9!, which we are
about to achieve, is possible only because

(
j51

N

b̂j
†b̂ j5 (

k51

N

B̂k
†B̂k . ~18!

For the case of a ‘‘medium’’ made up of only two atom
Eqs.~13! and ~14! are reduced to

B̂15
g1b̂11g2b̂2

Ag121g2
2

, ~19!

B̂25
g1b̂22g2b̂1

Ag121g2
2

, ~20!

and a straightforward calculation shows that Eq.~18! is veri-
fied. In order to demonstrate that Eq.~18! remains true for a
medium made up of any arbitrary numberN of atoms, we
will show that if Eq.~18! is valid for n atoms, then it is also
valid for n11.

BecauseB̂1 depends on the number of atoms of the m
dium, in our demonstration, we will attach a superscript to
to denote this number; i.e.,B̂1

n is defined by

B̂1
n5

1

Gn
(
j51

n

gj b̂j . ~21!

Now, we assume that Eq.~18! holds forn atoms, i.e.,

B̂1
n†B̂1

n1 (
k52

n

B̂k
†B̂k5(

j51

n

b̂j
†b̂ j . ~22!

So forn11 atoms, we can write, using Eq.~22!,

B̂1
n11†B̂1

n111 (
k52

n11

B̂k
†B̂k5B̂1

n11†B̂1
n111B̂n11

† B̂n112B̂1
n†B̂1

n

1(
j51

n

b̂j
†b̂ j . ~23!

From Eqs.~14! and ~21!, we obtain

B̂1
n115

GnB̂1
n1gn11b̂n11

AGn
21gn11

2
~24!
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and

B̂n115
Gnb̂n112gn11B̂1

n

AGn
21gn11

2
. ~25!

A straightforward calculation yields

B̂1
n11†B̂1

n111B̂n11
† B̂n115B̂1

n†B̂1
n1b̂n11

† b̂n11 . ~26!

Substituting Eq.~26! into Eq. ~23!, we find

B̂1
n11†B̂1

n111 (
k52

n11

B̂k
†B̂k5 (

j51

n11

b̂ j
†b̂ j . ~27!

As we have already shown that Eq.~18! is valid for two
atoms, we have now demonstrated by induction that Eq.~18!
is valid for an arbitrary numberN of atoms in the medium.

Written in terms of the new set of atomic operators, t
Hamiltonian ~9! takes a much simpler form. It can be e
pressed as the sum of two uncoupled Hamiltonians

Ĥ5Ĥb1Ĥm , ~28!

where

Ĥm5\vâ†â1\v0B̂1
†B̂11\GN~ â1â†!~B̂11B̂1

†!1
\va

2
ŝz

1\V~ â1â†!~ ŝ1ŝ†! ~29!

and

Ĥb5\v0(
k52

N

B̂k
†B̂k . ~30!

The atomic operatorsB̂k , B̂k
† with k52, . . . ,N have their

free time evolution, given by

B̂k~ t !5B̂k~0!exp~2 iv0t !, ~31!

undisturbed by the rest of the system described byĤm .
The new set of atomic operatorsB̂j ( j51, . . . ,N) is com-

posed of collective bosonic operators that involve all
atomic oscillators. TheN21 operatorsB̂k (k52, . . . ,N)
represent collective excitations that cannot be excited by
single-field modeâ. However, the physical meaning ofB̂1 is
more subtle. This is the only collective excitation that can
excited by the field mode with a strength that is dependen
the effective coupling constantGN , Eq. ~29!. As will be-
come clear in Secs. IV and V,B̂1 is related to the macro
scopic polarization density of the medium andGN to the
effective oscillator strength of the medium.

BecauseB̂k (k52, . . . ,N) are left undisturbed by the res
of the system, we will discuss onlyĤm from now on. In
order not to make the notation unnecessarily complicated
will drop the subscripts 1 fromB̂1, N fromGN , andm from
Ĥm . So we will be concerned with the Hamiltonian

Ĥ5Ĥ01ĤA , ~32!
e

e

e

e
n

e

where

Ĥ05\vâ†â1\v0B̂
†B̂1\G~ â1â†!~B̂1B̂†!, ~33!

ĤA5
\va

2
ŝz1\V~ â1â†!~ ŝ1ŝ†!, ~34!

B̂5
1

G(
j51

N

gj b̂j , ~35!

and

G5A(
j 851

N

gj 8
2 . ~36!

We can now deal with the polariton problem diagonal
ing Ĥ0. Following Hopfield’s procedure@62,72#, we define
two pairs of dressed annihilation and creation operat
given by

ĉk5x1
kâ1y1

kâ†1x2
kB̂1y2

kB̂†, ~37!

with k51,2, satisfying the usual commutation relations

@ ĉk ,ĉk8
†

#5dkk8, ~38!

@ ĉk ,ĉk8#50, ~39!

and diagonalizingĤ0,

@ ĉk ,Ĥ0#5\Vkĉk . ~40!

Equations~4!, ~16!, ~37!, ~38!, and~40! yield

xj
k5 1

2 ~v j
k1uj

k!, ~41!

yj
k5 1

2 ~v j
k2uj

k!, ~42!

where

u1
k5

v

Vk
v1
k , ~43!

u2
k5

Vk
22v2

2GVk
v1
k , ~44!

v2
k5

Vk
22v2

2Gv0
v1
k , ~45!

v1
k5A 4G2Vkv0

~Vk
22v2!214v0vG

2, ~46!

and

Vk
25

1

2
$v0

21v21~21!kL%, ~47!

L5~v0
22v2!A11

16v0vG
2

~v0
22v2!2

. ~48!
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3836 55S. M. DUTRA AND K. FURUYA
Equation ~47! shows the usual total absence of polarit

modes in the frequency interval betweenAv0
224G82and

v0, where

G85Av0

v
G ~49!

is the effective oscillator strength~in units ofv0), which is
held constant. Unlike Hopfield@62#, however, we have cho
sen the sign ofL in Eq. ~47! and ~48! so that when
G8→0, V1 approaches the field frequencyv and V2 ap-
proaches the atomic frequencyv0. This way of defining
V1 andV2 turns both of them into discontinuous function
of the wave numberv/c atv5v0. Usually,V1 andV2 are
defined as two continuous functions ofv/c corresponding to
the lower and the upper polariton branches. Figure 2 ill
trates this point. The reason for definingV1 andV2 in this
nonstandard way is that we want to have the electric per
tivity given by « r5(v/V1)

2 but « r must approach 1 when
G8→0. As we can see in Fig. 3, the plot of« r5(v/V1)

2 as
a function of the cavity frequencyv shows the usual feature
of « r for lossless media. Another peculiarity of our model

FIG. 2. This is a plot of the frequencies of the polariton mod
in units ofv0 as a function ofv/v0 for G850.1v0. The thick line
showsV1 and the dotted line showsV2. Our definition ofV1 and
V2 makes them discontinuous atv5v0. In the usual definition,
V1 is the entire upper curve andV2 the entire lower curve.

FIG. 3. This is a plot of the relative permittivitye r5v/V1 as a
function ofv/v0 with G850.2v0. Forv!v0, the relative permit-
tivity is independent of the frequencyv and takes its static value
At v5v0, there is a singularity because the medium is lossless.
v@v0, the relative permittivity approaches one~as in the vacuum!.
-

it-

that in order forV1 not to assume imaginary values, we mu
satisfy the condition 4G82<v0

2 . This does not happen in th
Hopfield model where the polariton frequencies are alw
real for all values of the parameters of the system. The
parently extra condition 4G82<v0

2 we have here is a conse
quence of neglecting the self-energies of the dipoles in
model @71#. The effect of these self-energy terms in th
Hamiltonian is to shift the oscillator frequenciesv0. Such a
shift can be neglected if it is much smaller thanv0 which is
when 4G82<v0

2 is satisfied making our treatment consiste
We also notice that although we have chosenv1

k to be real,
this does not imply any loss of generality.

From the commutation relations satisfied byâ, â†, B̂,
B̂†, ĉk , andĉk

† we obtain the following expressions forâ and

B̂ in terms ofĉk and ĉk
† @72#:

â5x1
1* ĉ12y1

1ĉ1
†1x1

2* ĉ22y1
2ĉ2

† , ~50!

B̂5x2
1* ĉ12y2

1ĉ1
†1x2

2* ĉ22y2
2ĉ2

† . ~51!

Using Eq. ~50! in Eq. ~34!, we can rewrite Eq.~32! in
terms of the dressed operatorsĉk and ĉk

† :

Ĥ5\V1ĉ1
†ĉ11\V2ĉ2

†ĉ21
\va

2
ŝz1\Vu1

1~ ĉ11 ĉ1
†!~ ŝ1ŝ†!

1\Vu1
2~ ĉ21 ĉ2

†!~ ŝ1ŝ†!. ~52!

The original problem is reduced now to the case of a sin
atom coupled to two polariton modes. In the next section,
use the dressed operator formalism presented here to s
the influence of the atoms of the medium on the quant
noise of the field.

III. QUANTUM NOISE DUE TO THE ATOMS
OF THE MEDIUM

In the absence of a guest atom and when the total sys
is in its ground state defined byĉ1ug&50 andĉ2ug&50, we
find the following expression for the variance ofâ1â†:

^@D~ â1â†!#2&[^~ â1â†!2&2^â1â†&2

5 (
k51

2
v

Vk

Vk
22v0

2

2Vk
22v0

22v2 . ~53!

The simplest macroscopic theories of electrodynamics in
terial media assume no dispersion. Then the dielectric c
stant is independent of the frequency and takes its st
value. In our model, this regime corresponds tov!v0. If we
also consider the case where the atoms of the medium
only weakly coupled to the field, i.e.,G8,v!v0, with G8
given by Eq.~49!, we find from Eqs.~47!, ~48!, and~53! that

^@D~ â1â†!#2&'112
G82

v0
2 22

G82

v0
2 S v

v0
D 2, ~54!

up to second order inv/v0 andG8/v0. So if we neglect the
higher order term that is second order in bothv/v0 and
G8/v0, we obtain

s

or
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55 3837MACROSCOPIC AVERAGES IN QED IN MATERIAL MEDIA
^@D~ â1â†!#2&'A« r , ~55!

where« r is the relative permittivity defined in terms of th
change in the cavity resonance frequency by

V15
v

A« r
~56!

and, in this approximation, found to be

« r'114
G82

v0
2 , ~57!

in agreement with the expression for« r found in Ref.@35#.
Equation~55! reproduces the ratio between the varian

of the displacement field in the material medium and in
vacuum calculated by Glauber and Lewenstein@57#.
Rosewarne@35#, however, computed the variance of the ele
tric field in a scalar version of the Hopfield model and fou
that, in this regime (G8,v!v0), it had a contribution of the
order ofG82/(v0v). Such a contribution is larger than th
4G82 /v0

2 medium correction to the relative permittivity o
the vacuum and is not accounted for when the medium
described only in terms of a dielectric constant.

The electric field is given in terms of the displaceme
field and the polarization by

E5
D

«0
2

P

«0
. ~58!

As we have just shown that the variance ofD has no contri-
bution of orderG82/(v0v), this contribution can only come
from the polarization. Nevertheless, because the microsc
polarization, given by Eq.~2!, vanishes whenever we are n
at one of the positions occupied by atoms of the mediu
except for these positions the variance ofE will be of the
same order inG8/v0 as that ofD whenG8,v!v0. This
apparently contradicts the result of Ref.@35#.

The reason why Rosewarne finds a different value for
variance of the electric field is that he adopts a continu
distribution of atoms in the medium instead of a more re
istic discrete one. This implies that the dynamical variab
he uses are macroscopic averages already. In particular
electric field at a given position in his calculation@35# is not
the field an atom situated at that position would experien
but a macroscopically averaged electric field whose varia
is rather different from that of the microscopic field. In th
next section, we show this point explicitly taking the macr
scopic average of the microscopic electric field in our mo
and calculating the variance to demonstrate that we can
cover the result of Ref.@35#.

IV. MACROSCOPIC AVERAGES

Although macroscopic theories of QED in a material m
dia @39–59# have often avoided discussing the macrosco
averaging procedure, the exact nature of these averag
one of the most important issues in any such theory. T
answer to the question posed in the Introduction about
possibility of the macroscopic averaging procedure wash
out quantum fluctuations in the field will clearly depend
e
e

-
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t

ic

,
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s
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e

-
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e-

-
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what is meant by macroscopic average. Schram@73# advo-
cates a quantum mechanical averaging. If this is the c
then quantum fluctuations will certainly be absent from t
macroscopic theory.

The problem of defining exactly what should be the ma
roscopic averaging procedure has been the source of m
confusion that has plagued, for many years, attempts to
rive the classical Maxwell equations for a material mediu
from the more fundamental microscopic equations for
fields and charged particles in the vacuum. It was Lore
@74# who, in the beginning of this century, first tried such
derivation using an averaging procedure. He introduce
macroscopic average over ‘‘physically infinitesimal’’ vo
ume elements. These elements had to be small enough
treated as infinitesimals in the macroscopic sense but la
enough to contain many atoms so that the spatial variat
in the microscopic densities and fields would vanish af
averaging. There are two main objections to the Lorentz p
cedure@75,76#. First, the division of a macroscopic syste
into ‘‘physically infinitesimal’’ volume elements will only
lead to uniquely defined macroscopic polarization and m
netization densities if these elements are strictly neutral
no currents leave the elements@75–78#. So the contributions
of the bound charges to the charge and current densities
to vanish always, which is absurd. Second, in many pr
lems there are no such ‘‘physically infinitesimal’’ volume
that are both macroscopically small and have a large num
of atoms, and yet the macroscopic equations seem to
true. This is the case of optics, for example, where the v
ume element cannot exceed 109 Å 3; otherwise, every oscil-
lation at optical frequencies would be averaged to zero. T
addition of a single extra electron to such a volume cause
change in the charge density of about 160 C m23 which is
extremely high to be regarded as an infinitesimal increme

For many years, not much progress was made in impr
ing Lorentz’s original ideas~a historical account of the sub
ject can be found in De Groot’s book@79# or in the review
article by van Kranendonk and Sipe@80#!. The first authors
to introduce a different macroscopic averaging proced
were Mazur and Nijboer@81#. They have shown that unde
certain circumstances the macroscopic Maxwell equati
can be obtained from a statistical ensemble average of
microscopic equations. Mazur and Nijboer’s statistical e
semble average does not suffer from the two problems m
tioned above about Lorentz’s average over ‘‘physically
finitesimal’’ volume elements, and it has been adopted
other authors@79,82#. The problem with ensemble averagin
is that it can only be used to define quantities independen
details of the microscopic structure of the system, if the
semble distribution function varies slowly over distances
the order of the interatomic spacing. This is true for flui
but not for crystals@75–77# or certain other physical system
such as some vacuum electronic devices to which, never
less, the macroscopic Maxwell equations can be app
@75,76#.

Robinson@75,76# has proposed a different kind of macro
scopic average that keeps the essence of Lorentz’s orig
ideas but which is free from the problems mentioned bef
and does not involve ensemble averaging. He regards a m
roscopic description as a description where spatial Fou
components of the field variables above some limiting spa
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frequencyk0 are irrelevant. The value ofk0 is to be deter-
mined only from the sort of problem and calculation i
volved, not by the physical specification of the syste
While the use of an ensemble presupposes that our kn
edge of the microscopic state of the system is incomplete
use of Robinson’s truncation procedure implies that we
not wish to make use of this knowledge even though it mi
be available to us@75,76#. Because in our view Robinson’
definition of macroscopic average is the most sensible d
nition so far, we adopt it in this article.

As there can be no atoms of the medium at the positi
occupied by the cavity walls, i.e., atx50 and atx5L, we
can express the Diracd functions in Eq.~2! as a Fourier sine
series inside the cavity:

d~x2xj !5
2

L(
n51

`

sinS np

L
xj D sinS np

L
xD . ~59!

In our model, involving only a single mode of the fiel
Fourier components with spatial frequencies abovev/c are
irrelevant in a macroscopic description. So following Rob
son @75,76#, we take as the macroscopically averaged va
ables those where such Fourier components have been
carded. Then from Eqs.~2!, ~3!, and ~59!, we can write the
following expression for the macroscopic polarization:

P̄~x!5
1

L
A2\

v0
sinS v

c
xD (

j51

N

~ b̂ j1b̂ j
†!qjsinS v

c
xj D . ~60!

Using the definitions ofgj , Eq. ~10!, B̂, Eq. ~35!, G, Eq.
~36!, andG8, Eq. ~49!, we obtain

P̄~x!52
2G8

Av0v
«0A\v

«0L
~B̂†1B̂!sinS v

c
xD , ~61!

and the role played by the collective operatorB̂1 of Sec. II
now becomes explicit. Then, the macroscopic electric fi
operator~58! is given by

Ē~x!5A\v

«0L
H â†1â1

2G8

Av0v
~B̂†1B̂!J sinS v

c
xD . ~62!

Now we can calculate the variance in the ground state
the term enclosed with curly brackets in Eq.~62!:

K H DF â†1â1
2G8

Av0v
~B̂†1B̂!G J 2L

5^~ â†1â!2&1
2G8

Av0v
^~B̂†1B̂!~ â†1â!

1~ â†1â!~B̂†1B̂!&1
4G82

v0v
^@D~B̂†1B̂!#2&. ~63!

If we write â, â†, B̂, andB̂† in terms ofĉ1, ĉ1
† , ĉ2, and ĉ2

†

using Eqs.~50! and ~51!, we find that
.
l-
he
o
t

fi-

s

-
i-
is-

d

f

^~B̂†1B̂!~ â†1â!1~ â†1â!~B̂†1B̂!&

5Av0

v (
k51

2 4v2G82 ~Vk
22v2!

@~Vk
22v2!214v2G82 #Vk

~64!

and

^@D~B̂†1B̂!#2&5 (
k51

2
v0

Vk

~Vk
22v2!2

~Vk
22v2!214v2G82

. ~65!

Then up to second order inG8/v0, we obtain

K H DF â†1â1
2G8

Av0v
~B̂†1B̂!G J 2L '126

G82

v0
2 14

G82

v0v
.

~66!

The first two terms on the right-hand side of Eq.~66! yield
the « r

23/2 variance obtained in Glauber and Lewenstein
macroscopic theory@57#. The last term on the right-hand sid
of Eq. ~66!, however, represents some extra noise that co
from the atoms of the medium. This noise is larger than
medium correction 4G82/v0 to the relative permittivity and
agrees with Rosewarne’s result@35#.

Thus we have shown that the macroscopic and the mi
scopic fields exhibit different variances. The variance of
macroscopic electric field, as Rosewarne demonstrated@35#,
derives a large contribution from the atoms of the mediu
This seems to suggest that any macroscopic theory will g
wrong results for the quantum fluctuations of its variables.
the next section, however, we show that we can still c
struct a macroscopic theory of QED in a material mediu
that is free from the problems discussed here.

V. RECOVERING MACROSCOPIC DESCRIPTIONS

We have been concerned so far only with the atoms of
medium and the cavity field. This is the material mediu
analogue of the field in the vacuum in the absence
sources. Most situations of interest, however, involve gu
atoms ‘‘immersed’’ in the medium, the main difference b
tween an ‘‘immersed’’ atom and an atom of the mediu
being that the transition frequency of the former is oft
closer to the field frequency than that of the latter. The ‘‘im
mersed’’ atoms are usually also coupled more strongly to
field than the atoms of the medium. In such situations,
only relevant fluctuations are those that the ‘‘immersed’’
oms can experience. So we should extend our criterion
what is irrelevant to eliminate, in the process of taking t
macroscopic average, the part of the microscopic field t
has a negligible effect on the ‘‘immersed’’ guest atom.
this section we show that when the extended criterion
adopted, the macroscopic description obtained will be a g
approximation to the microscopic theory if the transition fr
quency of the guest atom is far from the resonance of
medium. Then we derive expressions for the macrosco
fields that agree with those found by Milonni@58#.

The large atomic contribution to the variance of the ma
roscopic electric field that we have calculated in the previo
section comes from the variance of itsĉ2 and ĉ2

† compo-
nents. If, however, the resonance frequency of the guest a
va is very far fromV2, the guest atom will not be affecte
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much by this polariton mode. How far fromV2 the reso-
nance frequencyva has to be, for the effect of this polarito
mode on the guest atom to be negligible, depends on
coupling between them. An analysis of the probability of th
mode inducing transitions of the guest atom shows that s
probability is negligible when

uu2
2Vu!uV22vau. ~67!

This is analogous to the condition for neglecting the coun
rotating terms in the Jaynes-Cummings model~JCM!
@67,68#. As in the JCM case the nonresonant terms can
duce a frequency shift in the guest atom similar to the Blo
Siegert shift@83#, but far fromV2 such a shift is negligible.
We also notice that condition~67! assumes a simpler form
when the coupling between the atoms of the medium and
field is weak, i.e.,G8!v0 ,v. Then ifva is close to the field
frequencyv, condition~67! becomesuv02vu@uVu; i.e., the
detuning between the frequency of the field and the re
nance of the medium must be much larger than the R
frequency of the guest atom.

In the regime described by Eq.~67!, we extend our defi-
nition of macroscopic average to both a truncation in
mode expansion of the fields, leaving out the polariton mo
described byĉ2 and ĉ2

† and the truncation of the Fourie
series at the spatial frequencyv/c. Then from the micro-
scopic Hamiltonian~52!, we obtain the macroscopic Hami
tonian

Ĥmac5\V1ĉ1
†ĉ11

\va

2
ŝz1\Vu1

1~ ĉ11 ĉ1
†!~ ŝ1ŝ†!. ~68!

From Eqs.~8!, ~43!, and~46!, we find that we can rewrite the
macroscopic Hamiltonian~68! as

Ĥmac5\V1ĉ1
†ĉ11

\va

2
ŝz2

d

«0
Dmac~xa!~ ŝ1ŝ†!, ~69!

wherexa is the position of the guest atom,d is its electric
dipole strength, and

Dmac~x!5F\V1«0« rA« r
Lg G1/2~ ĉ11 ĉ1

†!sinSA« r
V1

c
xD ~70!

is the macroscopic displacement field. The relative perm
tivity « r appearing in Eq.~70! is derived from Eq.~47! and
found to be

« r511
4G82

v08
22V1

2 , ~71!

with G82 clearly appearing as the effective oscillator stren
of the medium, justifying the physical meaning anticipat
for GN in Sec. II, and

v08
25v0

224G82 ~72!

being the correction on the resonance frequency of the
dium due to the interaction with the field@84#. The parameter
g in Eq. ~70! is given by
he

ch

r-

-
-

e

o-
bi

e
e

t-

h

e-

g5S 1v11D
2

. ~73!

Using Eqs.~46! and ~71!, we can expressg in terms ofV1
and« r as

g5
d

dV1
~V1A« r !, ~74!

which can be identified as the ratio between the speed
light in vacuum and the group velocity in the medium.

The macroscopic electric field is obtained from Eq.~58!
with Dmacsubstituted forD and withP̄, Eq. ~61!, without its
ĉ2, ĉ2

† polariton component, substituted forP. From Eqs.
~44! and ~71!, we find

2G8

Av0v
u2
15

12« r

A« r
v1
1 . ~75!

Then from Eqs.~58!, ~61!, ~70!, ~73!, and~75!, we obtain

Emac~x!5S A« r1
12« r

A« r
D S \V1« rA« r

«0Lg D 1/2
3~ ĉ11 ĉ1

†!sinS A« r
V1

c
xD

5S \V1

«0A« rLg
D 1/2~ ĉ11 ĉ1

†!sinS A« r
V1

c
xD . ~76!

We notice that our expressions for the macroscopic fie
coincide with those derived by Milonni@58# if his results are
particularized for the case of a single mode. This is intere
ing because Milonni adopted a completely different appro
in his derivations of these expressions for the macrosco
fields. He started from the macroscopic Maxwell equatio
and showed that given a narrow range of frequencies wh
absorption is negligible, it is possible to define a Hamiltoni
that is local in time, enabling him to quantize the macr
scopic fields in the usual way~as for the vacuum! within this
frequency range.

VI. CONCLUSION

We have adopted a simple microscopic model for the
teraction between an atom and radiation in a linear loss
material medium: a guest two-level atom inside a sing
mode cavity filled with a host medium composed of oth
two-level atoms that are approximated by harmonic osci
tors. The guest atom works as a probe for the field, giving
a definite criterium for deciding what is field and what
matter inside the material medium; namely, field is what
fects the guest atom. Although the presence of the gu
atom proved to be a very convenient way of introducing
probe for the field, in principle any other probe, such as
photodetector, would do equally well.

We have shown that when the transition frequency of
guest atom is far from the frequency of one of the polarit
modes, we can obtain an approximate macroscopic des
tion for this model where the medium appears only throug
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dielectric constant. Hopfield had already mentioned in 19
that the medium could be treated as a classical dielectri
this regime@62# but, to the best of our knowledge, it is th
first time that such a result is explicitly derived from a m
croscopic theory by taking macroscopic averages. We no
that the frequency discrimination carried out by the pro
~guest atom! is crucial here. If the probe could sense t
frequency of the other polariton mode, it would be affect
by the excess fluctuations arising from the medium and
macroscopic approach would break down. However, in m
of the situations of physical interest, the system that intera
with the field is sensitive only to a narrow range of freque
cies as the probe~guest atom! in our model, allowing then
the use of a macroscopic theory.

Our method has helped to clarify some questions ab
the validity of macroscopic approaches. In particular
have shown that, contrary to Rosewarne’s suggestion@35#,
quantum fluctuations are properly described in the reg
mentioned above. Moreover, although a single-mode ca
dy

ce

e,

cto
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tt

,

t-
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8
in

ce
e

d
e
st
ts
-

ut
e

e
ty

cannot allow for dispersive propagation of wave packets,
have been able to preserve the frequency dependence o
relative permittivity in our macroscopic approximation, r
covering Milonni’s results@58#. This seems to suggest that
macroscopic description of QED in material media can
clude dispersion as long as the frequencies involved are
from those of the other polariton branch. We are curren
working on an extension of this method to free space wh
wave packet propagation under the influence of a frequen
dependent dielectric permittivity would be possible.
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