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Four-body model for transfer ionization in fast ion-atom collisions
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2University of Niš, Department of Physics, P.O. Box 91, 18001 Nisˇ, Yugoslavia
3Institut für Kernphysik, Universita¨t Frankfurt, D60486 Frankfurt am Main, Germany

~Received 1 July 1996!

Total cross sections for transfer ionization in fast collisions of a bare nucleus with helium are examined in
the four-body distorted-wave formalism. A special emphasis is given to a proper inclusion ofdynamicelectron-
electron correlation effects. For this purpose, the four-body continuum distorted-wave~CDW-4B! approxima-
tion with the correct boundary conditions is introduced. Along with the appropriate potential operators con-
taining a single electron placed on one and/or both nuclear centers, accompanied by the corresponding
Coulomb waves for continuum intermediate states, thedielectronic interactionV1251/r 12[1/urW12rW2u also
explicitly appears in the perturbation potential of the transition probability amplitude. The inclusion of the
potentialV12 is essential for the description of the ThomasP-e-e scattering, through which one of the target
electrons could be captured or ionized without ever experiencing any direct interaction with the projectileP.
The total cross sectionss i f due to such a correlated CDW-4B theory are computed exactly and very efficiently
by means of precise evaluation of certain seven-dimensional quadratures in momentum space. The proposed
method is shown to be superior to the corresponding independent event model~CDW-IEM!, which also
proceeds through the same effort on multidimensional scattering integrals, but largely overestimates the mea-
sured values fors i f . Comparisons between the present resultss i f and the available experimental data at
E530–600 keV/amu for transfer ionization in the He21-He collision yield satisfactory agreement at impact
energiesE>80 keV/amu. This is in full harmony with the well-known low-energy limit of the validity of the
CDW-3B method assessed previously for the genuine three-body charge exchange in collisions between a fully
stripped projectile and a hydrogenlike atomic target.@S1050-2947~97!04801-4#

PACS number~s!: 34.70.1e, 82.30.Fi
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I. INTRODUCTION

In fast collisions of bare nuclei or hydrogenlike projectil
with the helium target, much attention has recently been
voted to two-electron transitions. These include double i
ization ~DI!, excitation~DE!, and capture~DC!, as well as
some hybrid phenomena including transfer ionization~TI! or
transfer excitation~TE! in its resonant~RTE! or nonresonant
~NTE! forms @1–21#. The present study is devoted to the
process. Most of the related experimental work has thus
been concerned with total cross sections@1–6# and only a
few measurements relate to angular distributions@7,8#. On
the theoretical side, the majority of the methods have d
with the independent particle model~IPM! or independent
event model~IEM! @9–13#. This procedure assumes that t
two electrons undergo completely independent transiti
without influencing each other at all. Such ana priori ab-
sence of the dielectronic interactionV1251/r 12 eliminates
the IPM from the list of the possible methods for studyi
the dynamic electron-electron correlations as undoubte
the most challenging facet of these double transitions. St
interelectron correlations in heliumlike subsystems co
partially be included in the IPM through the configuratio
interaction by expressing the two-electron wave function a
linear combination of single-particle orbitals. However, t
obtained results are generally inadequate, since they do
compare favorably with measurements in aconsistentman-
ner, as best illustrated for the DC within the IPM version
the continuum distorted wave~CDW-IPM! approximation
@17#. Static electron correlation effects could partially be
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corporated into the TCDW-IEM~T stands for the target! via
the wave function of Pluvinage@14# for helium which explic-
itly contain the r 12 coordinate. However, the TCDW-IEM
ignores the dynamic electron correlations and computes
total probability for the TI as the product of the individu
probabilities for transfer of one electron and independ
ionization of the other electron@10#. The resulting total cross
sectionss i f

TCDW-IEM are found to largely overestimate the e
perimental data@6,10#. Singhal and Lin@12# used a coupled-
channel semiclassical impact-parameter model with the t
eling atomic orbital expansion to calculate the cross secti
for single-electron transitions at intermediate impact en
gies. They combined these probabilities within the IPM a
plied to collisions of fully stripped projectiles with helium i
order to determine cross sections for the TI, DC, and
Their theoretical results for the TI in He21-He are consider-
ably larger than the corresponding experimental data.
total cross sections for the TI have also been calculated
Bhattacharyyaet al. @21# for the Li31-He collision above 100
keV/amu within a relativistically covariant field-theoretic
approach using the second-order Feynman diagrams. The
tained total cross sections are also much larger than the m
sured values.

A radically different strategy is provided by using th
four-particle scattering theory@15–19#. In this formalism,
both static and dynamic electron correlations are autom
cally included through the perturbation potentials and
scattering wave functions. An approach along these lines
the DC has recently been devised within the four-body c
tinuum distorted wave~CDW-4B! approximation@15#. When
378 © 1997 The American Physical Society
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55 379FOUR-BODY MODEL FOR TRANSFER IONIZATION IN . . .
applied to the DC in fast H1-He collisions and compare
with the experimental data, the CDW-4B was conclusiv
shown to be superior to the CDW-IPM or TCDW-IEM
@15,16#. The same observation was later reported on the
involving other bare projectiles with the helium target@17# as
well as on the RTE and NTE encompassing t
S151(1s)-H(1s) scattering @19#. The goal of the presen
work is to extend the CDW-4B method to ionizing collision
and particularly to the TI.

Atomic units will be used throughout unless stated oth
wise.

II. THEORY

Consider a collision in which a bare nucleusP of charge
ZP is impinging upon a heliumlike atomic system consisti
of two electronse1 and e2 initially bound to the target
nucleusT of chargeZT . During this collision one electron is
captured, while the other is simultaneously ionized, i.e.:

ZP1~ZT ;e1 ,e2! i→~ZP ;e1! f11ZT1e2~kW !. ~2.1!

The parentheses indicate the bound states, the quantum
bers of which are given by the collective labelsi or f 1 ,
whereaskW represents the momentum vector of the ejec
electrone2 with respect to its parent nucleusT. We adopt the
quantum-mechanical nonrelativistic spin-independent
malism, which allows one to consider the two electrons
being distinguishable from each other in~2.1!. Let sW1,2 and
xW1,2 be the position vectors of the electronse1,2 relative toP
andT, respectively. Further, letRW be the position vector ofP
with respect toT. The corresponding interelectron distance
denoted byr 125usW12sW2u5uxW12xW2u. The complete Schro¨-
dinger equation for the entire system is given by

HC5EC, ~2.2!

whereH is the full Hamiltonian,

H5H01V[VP1
1VP2

1VT1
1VT2

1V121VPT , ~2.3!

VPj
52

ZP
sj
, VTj

52
ZT
xj

~ j51,2!, ~2.4!

VPT5
ZPZT
R

, V125
1

r 12
. ~2.5!

The total energy is denoted byE and it can be expresse
through its conservation law:

E5Ei1
ki
2

2m i
5~Ef1

1Ek!1
kf
2

2m f
, ~2.6!

Ef1
52

ZP
2

2nf1
2 , Ek5

k2

2
. ~2.7!

Here,m i andm f are the reduced masses in the entrance
exit channel, m i5mP(mT12)/m, m f5mT(mP12)/m,
m5mP1mT12, wheremP andmT are masses of the pro
jectile and the target, respectively. The vectorskW i andkW f are
the initial and final momenta of the scattering aggrega
y

C

-

m-

d

r-
s

d

s.

The observablesEi and Ef1
1Ek are the initial and final

exactelectronic energies. In the case of the helium target,
remarkable variational estimate

Ei522.903 724 377 034 105,

obtained by Drake@22# via a fully correlated;600-term
Hylleraas wave function with an explicit allowance of ther 12
coordinate could rightly be considered as being the ex
value. Neglect of the mass-polarization terms2¹W 1•¹W 2 /mP

and 2¹W 1•¹W 2 /mT , in accordance with the eikonal limi
mP,T@1, will enable one to write the four-body kinetic en
ergy operatorH0 in the following separable and additiv
form:

H052
1

2m i
¹ r i
22

1

2b1
¹x1
2 2

1

2b2
¹x2
2

[2
1

2m i
¹ r i
21H0T

52
1

2m f
¹ r f
2 2

1

2a1
¹s1
2 2

1

2a2
¹s2
2

[2
1

2m f
¹ r f
2 1H0P . ~2.8!

The vectorrW i relates theP to the center of mass of the targ
in the entrance channel, whereasrW f is the position vector of
T with respect to the center of mass of the syst
(ZP ,e1) f11e2 in the exit channel. These relative vectors c

be connected to the electronic coordinatesxW1,2 and sW1,2 via
the expressions

rW i5
b

2
~xW11xW2!2

1

2
~sW11sW2!,

~2.9!

rW f5
a

2
~sW11sW2!2

1

2
~xW11xW2!,

wherea5mP/(mP12), b5mT/(mT12), a15a25mP/(mP
11), andb15b25mT/(mT11). As usual for rearranging
collisions, the complete HamiltonianH from Eq. ~2.3! is
further split into the following two equivalent relations:

H5Hi1Vi5Hf1Vf . ~2.10!

Here,Vi , f andHi , f are the perturbations and channel Ham
tonians in the initial and final states, respectively:

Hi5H01VT , Hf5H01VP , ~2.11!

Vi5V2VT , Vf5V2VP , ~2.12!

VT5VT11VT21V12, VP5VP1
. ~2.13!

The unperturbed channel statesF i andF f are defined by

~Hi2E!F i50, ~Hf2E!F f50, ~2.14!

F i5w i~xW1 ,xW2!e
ikW i•rW i, ~2.15!
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380 55DŽEVAD BELKIĆ , IVAN MANČ EV, AND VOLKER MERGEL
F f5w f1
~sW1!f f , f f5~2p!23/2e2 ikW f•rW f1 ikW •xW2. ~2.16!

The objectw i(xW1 ,xW2) represents the two-electron bound sta
wave function of the atomic system (ZT ;e1 ,e2) i , whereas
w f1

(sW1) is the single-electron hydrogenlike wave function

(ZP ,e1) f1 in the exit channel. The complete wave functio
from Eq. ~2.2! must obey the correct boundary conditions

C i
1 →
r i→`

F ie
in i ln~ki r i2kW i•rW i ![F i

1 , ~2.17a!

C f
2 ——→
r f→`,x2→`

F fe
2 in f ln~kf r f2kW f•rW f !1 i ~ZT /k!ln~kx21kW •xW2![F f

2 ,

~2.17b!

where

n i5
ZP~ZT22!

v
, n f5

~ZP21!~ZT21!

v
, ~2.18!

with vW being the vector of the incident velocity. Thus, th
initial F i and finalF f states and are distorted in their respe
tive channels even at infinity due to the presence of the
ymptotic Coulomb potentials.

In order to describe the double transition~2.1! at high
impact energies, we shall start from the following express
for the ‘‘prior’’ and ‘‘post’’ transition amplitudes@23,24#:

Ti f
25^F f uV f

2†@11Gx
1~Vf2Wf !#

†~Vi2Wi !V i
1uF i&,

~2.19a!

Ti f
15^F f uV f

2†~Vf2Wf !
†@11Gx

1~Vi2Wi !#V i
1uF i&,

~2.19b!

whereV i
1 andV f

2 are Møller wave operators,

V i , f
6 511Gi , f

6 Wi , f , Gi , f
6 5~E2Hi , f2Wi , f6 i e!21.

~2.20!

Here,Wi , f are certain distorting potentials ande is an infini-
tesimally small positive number~e→01!. The transition am-
plitudes~2.19a!, ~2.19b! are free from the so-called discon
nected diagrams@25,26#. These Feynman diagrams wou
correspond to divergent matrix elements for those collisio
paths describing two constituents interacting with each o
in the presence of a third freely propagating particle. Sin
the free motion is mediated via the free-particle Green’s
solventsG 0

651/(E2H06 i e), it is clear that the typical ker-
nels (Vf2Wf)

†G 0
6(Vi2Wi) from the iterated transitionT

operator would not contain any disconnected diagrams if
two-body interaction in the perturbationVf2Wf is repeated
in Vi2Wi . This can be achieved through introduction of
intermediate channel propagatorGx

1, such as

Gx
15~E2H1Vx1 i e!21, ~2.21a!

possessing a model potential operatorVx , which must be
chosen in accordance with the mentioned constraints on
distorting potentialsWi , f . In the distorted-wave formalism
instead of solving directly the full Schro¨dinger equation~2.2!
with rigidly determined interactions, one customarily cons
-
s-

n

l
er
e
-

o

he

-

ers a model problem possessing certain auxiliary, flexi
potentials and defines the distorted wavesx i

1 and x f
2

through

x i
15V i

1F i , x f
25V f

2F f . ~2.21b!

In the limit e→01, these scattering states satisfy the eq
tions

~E2Hi2Wi !ux i
1&50, ~E2Hf2Wf !ux f

2&50.
~2.21c!

The original problem~2.2! is retrieved from the model equa
tion ~2.21c! by the physical requirement that the scatteri
statesx i , f

6 must asymptotically coincide with the associat
total wave functionsC i , f

6 , respectively. The transition ampli
tude ~2.19! can now be rewritten in terms of the distorte
wavesx i , f

6 as

Ti f
25^j f

2uUi ux i
1&, Ti f

15^x f
2uUf

†uj i
1&, ~2.22!

where

uj i , f
6 &5~11Gx

6Ui , f !ux i , f
1 &, Ui , f5Vi , f2Wi , f . ~2.23!

We shall first determine the distorted wavex i
1 in the en-

trance channel. Imposing the boundary conditio
x i

1 →
r i→`

C i
1 , we look forx i

1 in a factored form, such as

x i
15w i~xW1 ,xW2!Gi1 . ~2.24!

Inserting Eq.~2.24! into Eq. ~2.21c!, we obtain

w i~E2Ei2H02Vi !Gi11(
j51

2
1

bj
¹W xjw i

•¹W sj
Gi11Uix i

1

1Gi1~Ei2HT!w i50, ~2.25!

whereHT is the target Hamiltonian (HT5H0T1VT). In or-
der to solve Eq.~2.25! without any further approximations
we shall make the following choice for distorting potenti
Ui :

Ui5ZPS 1R2
1

s2
D 2F (

j51

2
1

bj
¹W xj

w i•¹W sj
1Ow iG +

1

w i
, ~2.26a!

where

Ow i
[Ow i

~xW1 ,xW2!5~Ei2HT,w i
!w i~xW1 ,xW2!. ~2.26b!

An equivalent expression of~2.26a! is given by Ui

5 ZP(1/R2 1/s2) 2 (1/b1)¹W x1
ln wi•¹W s12(1/b2)¹W x2

ln wi•¹W s2
1Owi

. The possible nodes ofw i would renderUi singular. In
order to bypass this difficulty, we introduce the symbol+ in
Eq. ~2.26a! to indicate thatUi acts only on those function
which containw i in the factored form, as exemplified by Eq
~2.24!. Moreover, the HamiltonianHT in Eq. ~2.26a! oper-
ates only onw i and this is emphasized in~2.26b! through the
notationHT[HT,w i

. Hence,
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Uix i
15ZPS 1R2

1

s2
Dx i

12(
j51

2
1

bj
¹W xj

w i•¹W sj
Gi12Gi1Ow i

.

~2.26c!

Using the mass limitmP,T@1 together with the resulting
simplificationRW .2rW f , we obtain an equation forG i1, such
as

FE2Ei2H01
ZP
s1

2
ZP~ZT21!

r f
GGi150, ~2.27a!

which can be solved exactly, yielding

Gi15Ci
1wpW 1

1 ~sW1!fpW 2
~sW2!wpW f

1 ~rW f !, ~2.27b!

whereC i
1 is a constant andfvW (rW) is a plane wave. The

Coulomb waves with the outgoing and incoming bound
conditions are respectively labeled bywvW

1(rW) andwvW
2(rW), the

explicit expressions of which are

wpW 1

1 ~sW1!5G~12 inP8 !epnP8 /21 ipW 1•sW1
1F1~ inP8 ,1,ip1s1

2 ipW 1•sW1!, ~2.28!

fpW 2
~sW2!5eipW 2•sW2, ~2.29!

wpW f

1 ~rW f !5G~11 in8!e2pn8/21 ipW f•rW f
1F1~2 in8,1,ip f r f

2 ipW f•rW f !. ~2.30!

Here, 1F1 denotes the usual Kummer confluent hyperg
metric function with the Sommerfeld parametersnP8
5ZPa1 /p1 andn85ZP(ZT21)m f /pf . The vectorspW 1 , pW 2 ,
andpW f must satisfy the energy conservation law and prese
the form of the asymptotic plane wave exp(ikWi•rWi) in the en-
trance channel. This indeed will be the case provided th

E2Ei5
p1
2

2a1
1

p2
2

2a2
1

pf
2

2m f
, ~2.31!

pW 1•sW11pW 2•sW21pW f•rW f5kW i•rW i . ~2.32!

Using the relationrW i52brW f2a(sW11sW2)/m i and the mass
limit mP,T@1, it immediately follows from Eq.~2.32! that
the auxiliary intermediate momentum vectorspW 1 , pW 2 , and
pW f are identified as

pW 15pW 252
a

m i
kW i52avW i.2vW , ~2.33!

pW f52bkW i.2kW i . ~2.34!

Finally, leaving out the unimportant phase factorCi
1

5m i
2 inP, the distorted wavex i

1 reduces to

x i
15N1~nP!N1~n!eikW i•rW iw i~xW1 ,xW2!1F1~ inP,1,ivs1

1 ivW •sW1! 1F1~2 in,1,ik i r f1 ikW i•rW f !, ~2.35!

N1~nP!5G~12 inP!epnP/2, N6~n!5G~16 in!e2pn/2,
~2.36!
y

-

e

nP5
ZP
v
, n5

ZP~ZT21!

v
. ~2.37!

It is easily verified that the scattering statex i
1 exhibits the

required eikonal asymptotic behavior:x i
1 →
r i→`

F i
1 . The term

Ow i
in Eq. ~2.26a! vanishes identicallyonly for the exact

eigensolutionsw i and Ei of the target HamiltonianHT .
However, since these are unavailable, the termOw i

should,
in principle, be kept throughout, as originally suggested
Ref. @27# in the four-body corrected first Born~CB1-4B!
approximation for the DC.

Next, we shall look for the distorted wavej f
2 which sat-

isfies the equation

~E2H1Vx2 i e!uj f
2&52~ i e2Vx!ux f

2&, ~2.38a!

which is obtained from Eq.~2.23!. Choosing the intermediate
channel potentialVx in such a way that the constraint,

Vxux f
2&50, ~2.38b!

is automatically satisfied, we shall have, in the limite→01:

~E2H1Vx!uj f
2&50. ~2.38c!

Writing j f
2 in a factored form similar tox i

1:

j f
25w f1

Gf2 , ~2.39!

we arrive at

Gf2~Ef2H02VP!w f1
1w f1

~E2Ef2H02Vf !Gf2

1
1

a1
¹W s1

w f1
•¹W x1
Gf21Vxj f

250. ~2.40!

Analogous with Eq.~2.25!, we intend to find the solutions o
Eq. ~2.40! in the pertinent mass limitmP,T@1 without any
further approximations. This can be accomplished by cho
ing the model potentialVx , for example, as

Vx5ZPS 1R2
1

s2
D2S 1x12 1

r 12
D2

1

a1
¹W s1

w f1
•¹W x1

+
1

w f1

.

~2.41!

Hence, in the mentioned heavy mass limit, Eq.~2.41!, is
reduced to the equation

FE2Ef2H01
ZT21

x1
1
ZT
x2

2
ZP~ZT21!

r i
GGf250, ~2.42!

which can be solved exactly due to separation of the in
pendent variables. Again the meaning of the symbol+ in Eq.
~2.41! determines the domain of definition of the opera
Vx , which is allowed to act only onto a subspace of t
complete Hilbert space containing wave functions with t
factored hydrogenlike bound statew f1

, as in ~2.39!. We
search forG f

2 in the separable form:

Gf25Cf
2wqW1

2 ~xW1!wqW2
2 ~xW2!wqW i

2~rW i !, ~2.43!
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with C f
2 being an overall constant, and

wqW1
2 ~xW1!5G~11 inT8 !epnT8 /21 iqW1•xW1

1F1~2 inT8 ,1,2 iq1x1

2 iqW 1•xW1!, ~2.44!

wqW2
2 ~xW2!5G~11 i z8!epz8/21 iqW2•xW2

1F1~2 i z8,1,2 iq2x2

2 iqW 2•xW2!, ~2.45!

wqW i
2~rW i !5G~12 in9!e2pn9/21 iqW i•rW i

1F1~ in9,1,2 iqi r i

2 iqW i•rW i !, ~2.46!

where nT85(ZT21)b1 /q1 , z85ZTb2/q2 , and n95ZP(ZT
21)m i /qi . We impose the conservation of energy in the e
channel via

E2Ef5
q1
2

2b1
1

q2
2

2b2
1

qi
2

2m i
, ~2.47!

as well as preservation of the form of the three free-part
plane wave exp(2ikW f•rWf1ikW•xW2):

qW 1•xW11qW 2•xW21qW i•rW i52kW f•rW f1kW •xW2 . ~2.48!

These two conditions, together with the relation:rW f52arW i
2b(xW11xW2)/m f and the subsequent mass limitmP,T@1 lead
to

qW 15
a

m f
kW f.

1

m f
kW f.vW , qW i5akW f.kW f , ~2.49a!
t

e

qW 25
a

m f
kW f1kW .

1

m f
kW f1kW .pW , ~2.49b!

where

pW 5vW 1kW . ~2.49c!

Thus, the distorted wavej f
25w f1

Gf2 becomes:

j f
25N2~z!N2~nT!N2~n!f fw f1

~sW1! 1F1~2 i z,1,2 ipx2

2 ipW •xW2!1F1~2 inT,1,2 ivx12 ivW •xW1! 1F1~ in,1,

2 ik f r i2 ikW f•rW i !, ~2.50!

wheref f is defined in Eq.~2.16! and

N2~z!5G~11 i z!epz/2, N2~nT!5G~11 inT!epnT/2,

z5
ZT
p
, nT5

ZT21

v
. ~2.51!

It can immediately be checked that the conditions~2.38a! as
well as x f

2 →
r f→`

F f
2 are both fulfilled with the present dis

torted wavex f
2. Inserting Eqs.~2.50!, ~2.35!, and ~2.26a!

into Eq. ~2.22! for the ‘‘prior’’ transition amplitude, we ob-
tain
Ti f
25NPTE E E dRW dsW1dsW2e

iaW •sW11 ibW •xW12 ikW •xW2Rn~rW i ,rW f !w f1
* ~sW1! 1F1~ inT,1,ivx11 ivW •xW1!

31F1~ i z,1,ipx21 ipW •xW2!FZPS 1R2
1

s2
D 1F1~ inP,1,ivs11 ivW •sW1!w i~xW1 ,xW2!2¹W x1

w i~xW1 ,xW2!•¹W s1 1F1~ inP,1,ivs11 ivW •sW1!

21F1~ inP,1,ivs11 ivW •sW1!Ow i
~xW1 ,xW2!G

[Ti f ;n
2 ~hW !, ~2.52!
um

om-
m

or
la-
the
where the auxiliary functionOw i
(xW1 ,xW2) is given by Eq.

~2.26b! and

Rn~rW i ,rW f !5N2* ~n!N1~n! 1F1~2 in,1,ik f r i1 ikW f•rW i !

3 1F1~2 in,1,ik i r f1 ikW i•rW f !, ~2.53!

NPT5~2p!23/2N1~nP!N2* ~nT!N2* ~z!, ~2.54!

aW 5hW 2S v22
Q

v D vŴ , bW 52hW 2S v21
Q

v D vŴ ,
Q5Ei2~Ef1

1Ek!, ~2.55!
with hW being the transversal component of the moment

transfer kW i2kW f with the propertiesaW 1bW 52vW and hW •vW
50, where the impact velocity vectorvW is directed along the
Z axis. It is because of the underlying charge exchange c
ponent of the TI that there are two different momentu

transfers in Eq.~2.52!, i.e., aW 5akW f2kW i and bW 5bkW i2kW f ,
which reduce to Eq.~2.55! in the mass limitmP,T@1. The

relation kW i•rW i1kW f•rW f5aW •sW11bW •xW1 is also used in Eq.
~2.52!. The differenceEi2(Ef1

1Ek) between the initial and

final electronic energies is also known as the inelasticity
Q factor. This observable is of key importance to trans
tional spectroscopy, which through the measurement of
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Q values determines the experimental data on the en
gain or loss of the scattered projectile, i.e., on the inela
energy transfer.
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An analogous derivation is carried out for the ‘‘post
form of the transition amplitudeT i f

1 and we need only to
quote the final result as
Ti f
15NPTE E E dRW dxW1dxW2e

iaW •sW11 ibW •xW12 ikW •xW2Rn~rW i ,rW f !w i~xW1 ,xW2! 1F1~ inP,1,ivs11 ivW •sW1!1F1~ i z,1,ipx21 ipW •xW2!

3H FZPS 1R2
1

s2
D1S 1

r 12
2

1

x1
D G 1F1~ inT,1,ivx11 ivW •xW1!w f1

* ~sW1!2¹W s1
w f1
* ~sW1!•¹W x1 1F1~ inT,1,ivx11 ivW •xW1!J

[Ti f ;n
1 ~hW !. ~2.56!
-

n-

the

or

g

m-

the

ec-

f

A considerable simplification in calculation can be obtain
by employing the following approximation:

Rn~rW i ,rW f ! .
m→`

~mrv !2in, ~2.57!

which can be easily derived in the indicated mass lim
Here, m is the reduced mass ofP and T, i.e.,
m5mPmT/(mP1mT), whereas the projection of the vecto
RW onto thevW axis is denoted byrW , which need not necessa
ily be identified with the usual impact parameter of the IP
It is easy to see that the phase factor (mrv)2in

5(mrv)2iZP(ZT21)/v does not contribute to the total cros
sections s i f

6. A part of this phase, namely, the ter
(mrv)2iZPZT /v, incorporates the entire contribution to th
T i f

6 from the potentialVPT5ZPZT/R. Hence, the internu-
clear repulsionVPT , which we accounted forexactly in the
mass limitmP,T@1 and the accompanying small values
qP ~the eikonal approximation!, does not contribute at all to
s i f

6. The triple differential cross sections for~2.1! take the
following forms:

s i f
6~kW ![

d3s i f
6

dkW
5E dhW UTi f ;n6 ~hW !

2pv U25E dhW UTi f ;06 ~hW !

2pv U2

5E dhW uTi f ~hW !u2, ~2.58a!

where

Ti f6~hW !5
Ti f ;0

6 ~hW !

2pv
. ~2.58b!

Finally, the total cross section for the process~2.1! is given
by

s i f
65E dkW s i f

6~kW !. ~2.59!

The final expressions~2.52! and~2.56! for theT i f
6 constitute

the present four-body continuum distorted wave~CDW-4B!
approximation for the general TI process~2.1!. Although the
same type of approximation has been invoked in the p
T i f

2 and the postT i f
1 forms, the obtained expressions~2.52!

and ~2.56! are very different from each other due to the u
equal perturbation potentialsUiÞUf , where
d

.

.

r

-

Ui5ZPS 1R2
1

s2
D

2F (
j51

2
1

bj
¹W xj

w i•¹W sj
1~Ei2HT,w i

!w i G +
1

w i
, ~2.61!

and

Uf5ZPS 1R2
1

s2
D2S 1x12 1

r 12
D2

1

a1
¹W s1

w f1
•¹W x1

+
1

w f1

.

~2.62!

BothUi andUf describe the standard ThomasP-e-T double
scattering:~i! In the prior form~2.52! for T i f

2, this is accom-
plished through the portion ofUi comprised of the symme
trized potential operatorsMi(xW1 ,xW2 ;sW1 ,sW2)5Mi1

(xW1 ,sW1)

1Mi2
(xW2 ,sW2), which are concerned with the two indepe

dent Thomas double scatteringsP-e1-T andP-e2-T, where

Mi1
~xW1 ,sW1!5¹W x1

lnw i~xW1 ,xW2!•¹W s1
,

Mi2
~xW2 ,sW2!5¹W x2

lnw i~xW1 ,xW2!•¹W s2
. ~2.63!

However, due to the present simplification manifested via
absence of any functionf (sW2) in the scattering statesx i , f

6

of the proposed CDW-4B model, the operat
Mi(xW1 ,xW2 ;sW1 ,sW2) reduces merely toMi1

(xW1 ,sW1) associated
with P-e1-T. ~ii ! In the post form~2.56! of T i f

1, the classical
ThomasP-e1-T mechanism is described by the followin
part of the perturbationUf :

Mf1
~sW1 ,xW1!52¹W s1

lnw f1
~sW1!•¹W x1

. ~2.64!

The single-particle operatorsMi1
(xW1 ,sW1) andMf1

(sW1 ,xW1)
are capable of providing the corresponding quantu
mechanical counterpart of the ThomasP-e1-T double scat-
tering due to the fact that they depend upon the set of
coordinates$xW1 ,sW1% which couple togetherthe two Coulomb
centers$ZP ,ZT% and, hence, mediate the transfer of the el
tron e1 from the targetT to the projectileP. Both objects
Mi1

(xW1 ,sW1) andMf1
(sW1 ,xW1) are otherwise reminiscent o

the full transitionT operator of the three-body continuum
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distorted wave~CDW-3B! approximation for a pure hydro
genlike charge exchange@23,24#:

ZP1~ZT ,e! i→~ZP ,e! f1ZT , ~2.65!

with e5e1 , $ i , f %5$ i 1 , f 1%, andxW5xW1 , sW5sW1 . The operators
Mi(xW1 ,xW2 ;sW1 ,sW2) andMf1

(xW1 ,s1) from Ui andUf emerge

from the application of the Laplacians2¹x1
2 /(2b1)

2¹x2
2 /(2b2) and2¹s1

2 /(2a1)2¹s2
2 /(2a2) onto x i , f

6 , which

are of the separable formsw i(xW1 ,xW2)w2kW i

1 (rW f)w2vW
1 (sW1) and

w f1
(sW1)w2kW f

2
(rW i)wvW

2(xW1)wpW
2(xW2). Moreover, with a suitable

change of the independent variables inH0 , the electron-mass
polarizationsMi1

(xW1 ,sW1) andMi2
(xW2 ,sW2) would appear as

theperturbationpotential operators along with the more co
ventional Coulomb interactionsZPZT/R2ZP/s12ZP/s2 in
Vi . However, in contrast to, e.g., thesingle-centerlocal in-
teractions VPT(R)5ZPZT/R, VP1

(s1)52ZP /s1 and

VP2
(s2)52ZP /s2 , the electron-mass polarization

Mi1
(xW1 ,sW1), Mi2

(xW2 ,sW2) andMf1
(sW1 ,xW1) are two-center

nonlocal distorting pseudopotentials depending upon two
ordinatesxW j andsW j of the given electronej ( j51,2). Nonlo-
cal pseudopotentials in the form of differential and/or in
gral operators, which might also be velocity dependent,
customarily encountered in various branches of physics,
the Hartree-Fock model, radiative corrections, meson fi
theory, etc. @28#. It is now easy to show@29# that
Mi j

(xW j ,sW j ) exhibits a long-range Coulombic tail in th
CDW-4B method and, hence, the question arises whe
this potential could be considered as a perturbationcausing
the transition in Eq.~2.1!. In traditional collision theory, an
interaction is conceived of as being able to produce sca
ing only if it vanishes asymptotically at infinitely large va
ues of the interparticle separation. This statement is the b
of the concept known as ‘‘asymptotic freedom’’ according
which the full scattering statesC i , f

6 must reduce to the free
wave packets at infinitely large timest→7`. This is fully
compatible with the indispensable experimental requirem
which demands that in both the remote past and distant
ture (t→7`), the examined system must remain unp
turbed. In other words, at these two extreme times, the
tem moves only under the influence of the chann
HamiltoniansHi , f . It is only in this way that, for these as
ymptotic times, we can be sure of having prepared thefree
wave packetsF i , f which in the meantime evolve under th
action of the channel perturbationsVi , f5H2Hi , f . With this
definition of the asymptotically free states one could c
tainly consider the situations ‘‘before’’ (t→2`) and ‘‘af-
ter’’ ( t→1`) collision as being separated from each oth
Such a circumstance would guarantee that a transition f
the initial to the final state of the system occurs solely un
the influence of the interaction potentialVi or Vf . If that
were not the case, one could not talk at all about thefree
wave packets ast→7`. This means that neither the initia
or the final state of the system could be prepared~in the
sense of being controlled!, in which case the very definition
of a scattering phenomenon would cease to have any m
ing. In such a circumstance, the particles in the incid
beam would interact strongly with each other~before even
reaching the target! through, e.g.,intrabeamscatterings or
o-

-
re
g.,
ld

er

r-

sis

t,
u-
-
s-

-

.
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r
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otherwise, and one would not be able to identify the act
perturber of the colliding projectile-target system. Howev
this convincing and plausible concept is not directly app
cable to the Coulomb scattering. Namely, for long-ran
Coulombic interactions, the asymptotic form of the wa
packet is given by the functionsF i , f

6 , which are different
fromF i , f , as indicated in Eqs.~2.17a! and~2.17b!. In such a
case, we speak about a departure from the notion of
asymptotic freedom in the above conventional quantu
mechanical sense. The Coulomb interactions always dis
the unperturbed channel scattering state through appear
of a logarithmic phase factor, even in the asymptotic scat
ing region. In the limit of infinite times, corresponding t
infinitely large interparticle distances, this phase would yie
the logarithmically divergent Møller wave operatorsV i , f

6 ,
which, in turn, would preclude any mathematically sou
definition of the central object of the theory, namely, t
scatteringSmatrix. However, Dollard@30# was able to show
that any Coulombic potentials can indeedmake scattering
occur, provided thatV i , f

6 are replaced by the Coulomb
Møller wave operatorsV i , f

C(6), which contain an extra term
canceling automatically the logarithmically divergent pha
factor. The resulting regularized nonsingular kernelV i , f

C(6)

would lead to solely connected Feynman diagrams. Mo
over, this very same goal can also be achieved by retain
the simpler and much more tractable operatorsV i , f

6 and
choosing the distorting potentialsWi , f in such a way that
the resulting model scattering statesx i , f

6 properly incorpo-
rate the overall Coulomb logarithmic phase factors due
any Coulombic remainders from the perturbatio
Vi , f2Wi , f . This has consistently been done in the CDW-3
@23,24# for single capture~SC! and in the CDW-4B for DC
@15#, RTE, NTE@19# as well as in the TI process~2.1! of the
present work.

In the preceeding derivation, the ionizing path for t
electron e2 is described by the Coulomb wavewkW

2(xW2)
[N2(z)fkW (xW2) 1F1(2 i z,1,2 ipx22 ipW •xW2), with fkW (xW2)
5(2p)23/2eikW •xW2, z5ZT/p and pW 5kW 1vW . Even though the
appropriate startingansatzin the undistorted scattering sta
F f is given by the plane wavefkW (xW2) centered onT, the
present four-body analysis establishes a distortion
fkW (xW2) by N

2(z) 1F1(2 i z,1,2 ipx22 ipW •xW2) as a function
of the translated electron momentumkW 1vW [pW and not
merely ofkW , which one would expect in the plane wave fir
Born approximation. In addition toMi1

(xW1 ,sW1) and

Mf1
(sW1 ,xW1) from the prior and post forms, there is a com

mon perturbation:

VP~R,s2!5ZPS 1R2
1

s2
D , ~2.66!

in bothT i f
2 andT i f

1. When considered outside theT matrix,
the potentialVP2

52ZP /s2 represents the direct Coulom
interaction betweene2 and ZP . Its asymptotic value
VP2

` (R) at large distancess2 is given by 2ZP/R, since

s2→R asR→`. Hence, the termVP(R,s2) is precisely the
difference between the finite and asymptotic value of
same overall short-range potential VP(R,s2)5VP2

(s2)

2VP2
` (R), in accordance with the correct boundary con
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tion. However, when placed in theT matrices ~2.52! or
~2.56!, the potentialVP2

plays the role of a perturbatio
which causesthe capture of the electrone1 . This could only
occur through some kind of the underlying correlations
tweene2 ande1 . For example, a part of the energy receiv
by the electrone2 in its collision withZP could be sufficient
to accomplish the transfer ofe1 to the projectile, provided
that thee1-e2 correlation is active. This is possible as illu
trated by the following argument. Using the relationRW 5xW1
2sW15xW22sW2 , we can write: uVP(s2)/ZPu51/s251/urW12
2sW1u, wherer 125urW12u is the interelectronic coordinaterW12
5xW12xW25sW12sW2 . The electrone1 is captured byP in the
final bound statew f1

(sW1) in the reaction~2.1! and, therefore,
s1 is of the order of Bohr radiusa0 . For such small values o
s1 , we can develop 1/urW122sW1u in a power series aroundsW1
according to

1

s2
5

1

urW122sW1u
5

1

r 12
2
rW12•sW1
r 12
3 1••• . ~2.67!

The second term of the right-hand side of this equat
is known as the long-range dipole approximation. Fro
here we can see that the potentialuVP2

(s2)/ZPu51/r 12
2(rW12•sW1)/r 12

3 1••• contains information on the dielectron
correlatione12e2 through the potential 1/r 12. This means
that the sole potentialVP2

(s2) betweenZP ande2 in theT i f
6

can indeed lead to capture of the electrone1 , because of the
underlying dielectronic correlation, which is inherent
present in thee2’s coordinatesW2 through rW12 since sW25sW1
2rW12. A relative role of the potential~2.66! can be estimated
as follows. Total cross sections are mainly determined
small values ofk. This correspond to a situation where th
electrone2 resides in a close vicinity of the target nucleus.
such a case,x2 is small and the difference betweens2 andR
is negligible, so that the contribution ofVP(R,s2) to the total
cross sections should be modest. An illustration carried
in the next section for He21-He transfer ionization at 30–
1000 keV/amu shows that the relative contribution of t
perturbationVP(R,s2) varies from 24% at lower to 16% a
higher energies. Hence, at sufficiently large impact ener
the potential21/s2 appears to be nearly cancelled by 1/R.

The post formT i f
1 contains an additional term:

V~r 12,x1!5
1

r 12
2

1

x1
, ~2.68!

which is completely absent from theT i f
2. Here the dielec-

tronic interaction 1/r 12 appears explicitly and combined wit
the initial and final distortion functions on both centersZP
andZT describes the ThomasP-e-e scattering. Hence, whe
comparing with the experimental data of Mergelet al. @31#,
the post formT i f

1 from Eq.~2.56! should be used throughou
Due to the perturbationV(r 12,x1), even the total cross sec
tion in the post form should be more adequate than its p
counterpart. Here, it is instructive to draw a parallel betwe
the TI and the corresponding pure single capture of the ty

ZP1~ZT ;e1 ,e2! i→~ZP ,e1! f11~ZT ,e2! f2. ~2.69!
-

n

y

ut

s

r
n
e:

In all the previous applications of the CDW approximation
this process, the simplificationVP(R,s2)'0 has always been
made. This amounts for replacement of the potential 1/R by
1/s2 . As in the TI, this could also be roughly justified for th
pure SC in Eq.~2.69! at sufficiently high energies for trans
fer of e1 without ionization ofe2 . The basis for such a jus
tification is the small value of thex2 coordinate, since the
passive electrone2 in Eq. ~2.69! remainsboundin the target
rest (ZT ,e2) f2. Therefore, 1/s221/R51/s221/usW22xW2u
51/s22(1/s21xW2•sW2 /s2

31•••)52xW2•sW2 /s2
31•••, which

should yield small values ofVP(R,s2) for the SC reaction
~2.69!, in a fashion similar to the TI in Eq.~2.1!. Our recent
applications of the CDW-4B method to Eq.~2.69! for
ZP5ZT52 confirm that the total cross sections comput
with and withoutVP(R,s2) in the transitionT operator differ
from each other by at most 15% at 30–1000 keV/amu.

It is clear from the above analysis that the extent of inc
sion of the static and dynamic electron correlations~SEC and
DEC, respectively! is governed by the choice of the distor
ing potentials. The channel HamiltoniansHi , f are defined
strictly for two noninteracting aggregates. Therefore, th
are capable of including all the SEC, which provides info
mation on quantum-mechanical statesw i , f of the scattering
partnersbeforeor after the collision. These customary sta
tionary statesw i , f(rW1 ,rW2) are of primary importance to spec
troscopy. However, they also provide the basic input to
asymptoticscatteringstatesF i , f

6 built in the remote past as
well as in the distant future (t→7`) as the product ofw i , f
and the wave functions of the relative motion of the tw
aggregates~for example, in the DC bothw i andw f describe
the heliumlike bound states!. This would correspond, e.g., in
the entrance channel, to an experimental preparation of
target as well as of the incident beam in their respect
well-defined states~energy, polarization, spin, etc.! prior to
scattering when the projectile beam is turned off. In contr
to the SEC, which is unrelated to the very act of collisio
the DEC originates entirely from the scattering event. A c
lision takes place if both the relative velocityv of the two
aggregates and their perturbation interaction have non
values. The perturbation potential operatorsVi , f are naturally
conceived of as the difference between the total (H) and
channel HamiltoniansHi , f , i.e., Vi , f5H2Hi , f , and they
could directly contain the electronic interactionV12. It is in
this manner that the DEC comes into play and appears
plicitly in the transitionT operator as well as in the full
scattering statesC i , f

6 .
The first measurement aimed to detect the DEC in the

process was carried out by Horsdalet al. @7# on the angular
distribution of scattered projectiles in the collisio
H11He→H1He211e at four impact energies 200, 300
400, and 500 keV. More specifically, they intended to det
mine whether there could be any experimental evidence
the ThomasP-e-e scattering@32,33#. This effect is expected
to manifest itself through a peak in the angular distributi
of scattered projectiles at the critical angleqP

Thomas50.55
mrad in the laboratory system of reference. Horsdalet al. @7#
measured the angle-dependent probabilities for productio
He21 in the mentioned TI process and observed a stro
enhancement aroundq'0.5[qP

Horsdal. This enhancement o
the recorded relative yield~say,G! for capture of one elec-
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tron with and without ionization of the other electron oc
curred atqP

Horsdal which is close toqP
Thomas, and this led

Horsdalet al. @7# to consider their data as the first eviden
of the dynamic electron-electron correlation in the TI. Ho
ever, this turned out to be false, since it so happened tha
same signature atqP

Horsdal could also be reproduced withi
the CDW-IPM@34#, which excludes the dynamice-e corre-
lations altogether from the onset. The enhancemen
qP
Horsdalobtained in the CDW-IPM is due to a phase interfe

ence of the impact parameter transition probability am
tudes for independent electron transferAi f

6(T)(rW ) and ioniza-
tion Ai f

6(I )(kW ,rW ). The quantitiesAi f
6(T)(rW ) andAi f

6(I )(kW ,rW )
are obtained by applying the Fourier transforms to the c
responding quantum-mechanicalthree-body T matrices
Ti f ;06(T)(h) and Ti f ;06(I )(kW ,hW ), which are available from, e.g.
Ref. @24#. Analogous with the IPMprobability Pi f6(TI)(kW ,r)
5Pi f6(T)(r)Pi f6(I )(kW ,r), the full r-dependentprobability am-
plitudeAi f

6(TI)(kW ,rW ) for the composed TI process is given b
the productAi f

6(T)(rW )Ai f
6(I )(kW ,rW ). However, the differential

cross sectiond5s/dkW dVP , as a Hankel transform, require
an integration ofAi f

6(T)(rW )Ai f
6(I )(kW ,rW ) over all rP@0,̀ #

weighted with the Bessel functionJmi f
(hr) and the full in-

ternuclear contributionr2iZPZT /v:

d5s i f
6~TI !

dkW dVP
~a0

2sr21!5U imvE
0

`

dr r11 iZPZT /v

3Ai f
6~TI !~kW ,r!Jmi f

~hr!U2

5U imvE
0

`

dr r11 iZPZT /vAi f
6~T!~r!

3Ai f
6~ I !~kW ,r!Jmi f

~hr!U2, ~2.70!

wheremif5mf2mi andmi , f are the usual magnetic quan
tum numbers of the initial and final bound states, resp
tively. Since in the CDW-IPM, bothA i f

6(T)(r) andAi f
6(I )

3(kW ,r) are complex numbers, their phases can combine
produce an interference pattern. Such a coherent interfer
yields an enhancement inG and this occurs at nearly th
same scattering angle~say qCDW-IPM! as the valueqP

Horsdal

from Ref. @7#. Thus, Horsdalet al. @7# did not provide an
evidence of the ThomasP-e-e double scattering, since th
same structure in the angular distribution could also be
tained in the IPM without any recourse to the dynamic int
electron correlation. A phase of any wave function has
physical meaning. However, a phase difference of two w
functions can be measured experimentally and, theref
could represent a physical observable. Hence, a coheren
terference of phase factors in Eq.~2.70! for the CDW-IPM
might lead to a physical effect. In Eq.~2.70!, one does not
encounter directly phases of wave functions~since the spatia
integrations are already carried out!, but various phase fac
tors of ther-dependent transition probability amplitudes wi
a final cummulative effect, which leads to the mention
enhancement inG at qCDW-IPM. The relation qCDW-IPM

'qP
Horsdal appears to be fortuitous. Nevertheless, the cl
-
he
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independent-particle mechanism behindqCDW-IPM serves as a
counterexample to the conjuctered ThomasP-e-e correlated
scattering as the sole reason for enhancement inG at
qP
Horsdal. As a consequence of this couterargument provid

by the CDW-IPM@34#, the measurement of Horsdalet al. @7#
needs to be reinterpreted. Subsequent work on the ang
and/or energy distributions of ejected electrons within TI h
been undertaken by Pa´linkáset al. @8#. In contrast to Ref.@7#,
which dealt with the singly differential cross sections, R
@8# was concerned with the cross sectiond2s/dEedqe ,
which is differential in two observables, the energyEe and
angle qe of the ejected electron. This double differenti
cross section is integrated over the scattering anglesqP of
the projectile. Concentrating on the cusp condition of eq
velocities (v i've) of the projectile and the ionized electro
in the collision H11He→H1He211e, they searched for ye
another signature of the ThomasP-e-e double collision,
namely, a maximum ind2s/dEedqe at qe590°. This Tho-
masP-e-e peak was indeed experimentally confirmed in
conclusive way at the energyEP51 MeV of the incident
proton corresponding toEe5600 eV of the ejected electro
@8#. Pálinkás et al. @8# also recorded another maximum
d2s/dEedqe at qe558°. The mechanism behind this stru
ture is the interaction of the projectileP with each of the
target electrons leading to simultaneous single capture
ionization, which is predicted theoretically to occur
qe560°. Here, independent ionization is followed by th
so-called kinematic capture, based upon the velocity ma
ing mechanismvW e'vW P .

The above discussed different pathways within the TI, f
into a larger category of general interactive dynamics of io
and atoms. Understanding the mechanisms behind the
atom collisions is absolutely essential for achieving progr
in predicting the evolution of quantum scattering system
Until essentially ten years ago, most of atomic collision e
periments were technologically limited to measurements
only a few observables. Due to a paucity of experimen
data on the majority of the subtle and detailed features
collision phenomena, the adequacy and reliability of the
retical models could rarely be thoroughly tested. Howev
recent technological advances have made the goal of the
called complete experiment practically a reality. A substa
tial breakthrough has recently been achieved in determ
tion of a complete momentum kinematics of collidin
particles with unprecedented precision through the recoil
momentum spectroscopy~RIMS! @35,36#. The novel variant
COLTRIMS ~cold target recoil ion momentum spectroscop!
of this powerful and versatile technique is based upon a p
cooled supersonic gas jet target@36#. Heavy projectiles
mainly scatter forward and, therefore, it is very difficult
experimentally determine angular distributions at very h
energies where the most intriguing Thomas multiple scat
ings take place. The RIMS and COLTRIMS exploit an alte
native idea of bypassing the direct measurements of the s
tered projectile parameters through recording all
components of the recoil momentum of the target rest,
well as of the ejected electrons for ionizing collisions. T
backtransformation via the energy and momentum conse
tions enables one to retrieve the differential cross sections
the scattered projectiles. The impressive power of t
method lies in the fact that its nearly 4p detector efficiency
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55 387FOUR-BODY MODEL FOR TRANSFER IONIZATION IN . . .
successfully combines with a very high momentum (Dp)
and energy transfer (DQ) resolutions irrespective of the im
pact energy value and, at the same time, exhibits only a v
weak dependence upon the energy spread, as well as d
gence of the beam. This is in sharp contrast with the cust
ary translational spectroscopy~TS! measuring the energ
loss of the projectile, where any gain in the detector e
ciency is automatically compromised with loss in ener
resolution. The TS measures a change in the impact en
EP and, hence, relies heavily upon the quality of the proj
tile beam, its divergence and the energy spread. Implem
ing, e.g., the COLTRIMS within storage rings, with the ele
tron or laser cooling of both the incoming beam and
target, would be of primary importance in yielding the ad
tional experimental data on higher-orderinterelectronTho-
mas scatterings. This could provide the most stringent
of atomic collision theory at larger energies beyond the re
of the corresponding single-pass experiments@36#. The
COLTRIMS is, in fact, currently being built at the Stock
holm storage ring CRYRING, where a reduction by anoth
order of magnitude inDqP and DQ is anticipated to be
within reach at the end of 1996. The success of the CO
RIMS depends critically upon the possibility of high m
mentum resolutionDp of the recoiled target ion to within a
fraction of the atomic unit. At room temperature, such p
cision is impossible, since the requiredDp would lie in the
regime of the thermal motion of the target constituents. T
difficulty is overcome by cooling the target, so that at t
currently reached temperature;0.1 K, the achieved momen
tum ~in all three directions! and energy resolutions areDp'
60.025 a.u. andDQ'66 eV. Such accuracy in the, e.g
transversal momentum component of the recoiled ion le
to the resolutionDqP'61 mrad in the scattering angleqP
at, e.g., 1 MeV in H1-He one-electron transfer@36#. This
represents a remarkable achievement in comparison
DqP;30 mrad andDQ'650 eV reached by the conven
tional TS @37#. Such an angular resolution of COLTRIM
provides a unique opportunity to unfold the hidden structu
in the differential cross sections at high energies allow
access to various Thomas multiple scatterings. For exam
an inspection of the existing experimental data on H1-H and
H1-He single charge exchange reveals that the width of
Thomas peaks is larger for helium than for an atomic hyd
gen target@38,39#. We have shown@40# that such a phenom
enon is due to an additional peak originating from the Th
masP-e-e scattering. This structure atq P

P-e-e is very close
to the critical angleq P

PeT50.47 mrad of the standard Tho
mas P-e-T double collision. Since the position ofq P

P-e-e

was not resolved in the previous experiments@38,39#, the
P-e-e mechanism revealed itself indirectly through wide
ing the observedP-e-T peak. Both Thomas collisionsP-e-e
and P-e-T are of an intrinsically correlated nature. Th
former manifests the pure dielectronic correlation, wher
in the latter scattering, the target nucleus is the objec
correlation. This belongs to a class of a generalized corr
tion concept involving onlyone electronand the other arbi-
trary center of force, which is the target nucleusT in the
H1-He single charge exchange. Obviously, highly correla
events in atomic collisions need not necessarily encomp
two electrons. The above-mentioned improvements inDqP
at the combined COLTRIMS-CRYRING facility could allow
ry
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one to separate the two pathwaysP-e-e and P-e-T from
each other in an attempt to assess the relative role of th
competitive mechanisms behind charge exchange in
high-energy regime;5–10 MeV/amu. Recently, Merge
et al. @31#, used the COLTRIMS for the TI in H1-He and
confirmed the results of Ref.@8#. Their goal, however, was to
assess the relative role of the mentioned binary kinem
capture accompanied with independent ionizationand the
correlatedP-e-e mechanism. They found experimental ev
dence atE>1 MeV that the ThomasP-e-e scattering could
well dominate the independent event of the kinematic c
ture and ionization. It is pertinent to recall here, that dom
nance ofeP-eT interaction over theP-eT or T-eP potentials
~the so-called antiscreening effect! has previously been ex
perimentally detected in, e.g., collisions between two hyd
genlike atomic systems~eP andeT are the electrons of the
projectile and target, respectively! @41#. The finding of Mer-
gel et al. @31# is very challenging for atomic scatterin
theory, since the experimentally estimated behav
s;v27.461 at EP50.3–1.4 MeV of the TI total cross sec
tion is at variance with the corresponding predictionv211 of
the Thomas classical model@32# as well as the high-energ
limit of the peaking Oppenheimer-Brinkman-Krame
second-order~OBK2! approximation@33#. It would be of
utmost importance to verify experimentally whether this d
viation from the asymptotes;v211 would persist at the
higher energies at which the asymptotic formulae for
cross section are expected to be more justified than in
interval 0.3–1.4 MeV considered in Ref.@31#. In any case
there is an urgent need to theoretically investigate this pr
lem in considerable detail and see whether the TI cross
tion s should fall off more slowly than thev211 trend de-
rived from the classical Thomas and the quantal OB
approximations. The presently proposed CDW-4B mode
well suited to deal with these questions. The present st
concentrates on the total cross sections, whereas our su
quent paper will address the question of angular distributi
associated with the ThomasP-e-e scattering in the TI. In
addition to differential cross sections, it is often very impo
tant to acquire information on the impact paramet
dependent transition probabilityP(kW ,r) for, e.g., DI or TI
processes. Such a task is not straightforward for ioniz
collisions investigated within the RIMS because of the non
niqueness of the transformation between the transverse
mentum transferh52mv sin(qP/2) andr. This problem has
recently been studied by Wonget al. @42# and investigated
further in Ref.@43#.

III. CALCULATION OF THE MATRIX ELEMENTS

We consider the heliumlike target in~2.1! as being in the
ground state, i.e.,i51S and select the (1s)2 configuration
described by the simplest hydrogenic screened o
parameter wave function:

w i8~xW1 ,xW2!5Nl
2e2l~x11x2!, Nl5Al3

p
,

~3.1!

l5ZT2lS , lS5
5

16
.
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Here,lS is the well-known Slater screening and the cor
sponding binding energy is equal to2l2. It should be no-
ticed that function~3.1! tends to overestimate most cro
sections, since the ‘‘outer’’ electron is represented by an
bital which is too ‘‘tight.’’ In the subsequent analysis, w
shall limit ourselves to ground-state capture only, i.
f 151s. With the help of the inverse Fourier transform:

1

v
5

1

2p2 E dtW

t2
e2 i tW•vW , ~3.2!

for vW P$RW ,sW2 ,rW12%, RW 5xW12sW1 , sW25sW11xW22xW1 , rW125xW1
2xW2 , the transition amplitudesT i f

6 can be cast into the fol
lowing convenient forms:

T i f25TR2Ts22T ¹
21T w i

2 , ~3.3!

T i f15TR2Ts21T122Tx12T ¹
1 , ~3.4!

where

TR5NPT

ZP
5/2

2p5/2 Nl
2E dtW

t2 E dsW1e
iaW 1

•sW12ZPs1
1F1~ inP,1,ivs1

1 ivW •sW1!E dxW1e
ibW 2

•xW12lx1
1F1~ inT,1,ivx11 ivW •xW1!

3E dxW2e
2 ikW •xW22lx2

1F1~ i z,1,ipx21 ipW •xW2!, ~3.5!

Ts25NPT

ZP
5/2

2p5/2 Nl
2E dtW

t2

3E dsW1e
iaW 2

•sW12ZPs1
1F1~ inP,1,ivs11 ivW •sW1!

3E dxW1e
ibW 1

•xW12lx1
1F1~ inT,1,ivx11 ivW •xW1!

3E dxW2e
2 ikW 1

•xW22lx2
1F1~ i z,1,ipx21 ipW •xW2!,

~3.6!

T125NPT

ZP
3/2

2p5/2 Nl
2E dtW

t2 E dsW1e
iaW •sW12ZPs1

1F1~ inP,1,ivs1

1 ivW •sW1!E dxW1e
ibW 2

•xW12lx1
1F1~ inT,1,ivx11 ivW •xW1!

3E dxW2e
2 ikW 2

•xW22lx2
1F1~ i z,1,ipx21 ipW •xW2!, ~3.7!

with aW 65aW 6tW , bW 65bW 6tW , kW 65kW 6tW , and
-

r-

,

Tx15NPT

ZP
3/2

p1/2 Nl
2E dsW1e

iaW •sW12ZPs1
1F1~ inP,1,ivs11 ivW •sW1!

3E dxW1
eib

W
•xW12lx1

x1
1F1~ inT,1,ivx11 ivW •xW1!

3E dxW2e
2 ikW •xW22lx2

1F1~ i z,1,ipx21 ipW •xW2!, ~3.8!

T ¹
15NPT

ZP
3/2

p1/2 Nl
2E dsW1e

iaW •sW1
1F1~ inP,1,ivs11 ivW •sW1!

3¹W s1
e2ZPs1

•E dxW1e
ibW •xW12lx1¹W x11

F1~ inT,1,ivx1

1 ivW •xW1!E dxW2e
2 ikW •xW22lx2

1F1~ i z,1,ipx21 ipW •xW2!,

~3.9!

T ¹
25NPT

ZP
3/2

p1/2 Nl
2E dsW1e

iaW •sW12ZPs1¹W s11
F1~ inP,1,ivs1

1 ivW •sW1!E dxW1e
ibW •xW1

1F1~ inT,1,ivx11 ivW •xW1!•¹W x1

3e2lx1E dxW2e
2 ikW •xW22lx2

1F1~ i z,1,ipx21 ipW •xW2!.

~3.10!

The quantityT w i

2 in Eq. ~3.3! is related to the correction term

Ow i
from Eqs.~2.26a! and~2.52! due to unavailability of the

exact heliumlike wave function. This contribution to theT i f
2

will be practically equal to zero, if we employ the highl
correlated variational Hylleraas wave function of Drake@22#
or Pekeris@44# for, e.g., He with the corresponding near
exact binding energyEi . Such a functionw i can be consid-
ered as exact, but the computation would be prohibitiv
time-consuming due to a large number of terms contain
the r 12 coordinate. Deferring this for a future study, we sh
presently replace the exact wave function by the fully unc
related hydrogenic wave function~3.1!, i.e.,w i.w i8 and pre-
serve the exact energyEi in Eq. ~2.55! for the prior form,
becauseOw

i8
arises only in this version of theT matrix. As a

consequence, the corrective term (Ei2HT,w i
)w i.(Ei

2HT,w
i8
)w i8 becomes generally different from zero. Thus, w

have

Ow i
5~Ei2HT,w i

!w i'~Ei2HT,w
i8
!w i8

52S 1

r 12
2

lS

x1
2

lS

x2
2DEi Dw i8 ~3.11!

whereDEi5Ei2Ei8 andEi852l2. Then, the termT w i

2 can

concisely be written as

T w i

2 5T122lS~Tx11Tx2!2TD , ~3.12!

where
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Tx25NPT

ZP
3/2

p1/2 Nl
2E dsW1e

iaW •sW12ZPs1
1F1~ inP,1,ivs11 ivW •sW1!

3E dxW1e
ibW •xW12lx1

1F1~ inT,1,ivx11 ivW •xW1!

3E dxW2
e2 ikW •xW22lx2

x2
1F1~ i z,1,ipx21 ipW •xW2!, ~3.13!

TD5DEiNPT

ZP
3/2

p1/2 Nl
2E dsW1e

iaW •sW12ZPs1
1F1~ inP,1,ivs1

1 ivW •sW1!E dxW1e
ibW •xW12lx1

1F1~ inT,1,ivx11 ivW •xW1!

3E dxW2e
2 ikW •xW22lx2

1F1~ i z,1,ipx21 ipW •xW2!. ~3.14!

All the integrals over the electronic coordinatesxW1 , xW2 , and
sW1 in Eqs. ~3.5!–~3.10!, ~3.13! and ~3.14! can be done ana
lytically by means of the Nordsieck technique@45# with the
general results:

E drW
eiqW •rW2lr

r 1F1~ in,1,ivr1 ivW •rW !

5
4p

q21l2 S 112
qW •vW 2 ilv

q21l2 D 2 in

, ~3.15a!

E drWeiqW •rW2lr
1F1~ in,1,ivr1 ivW •rW !

5
8p

q21l2 S 112
qW •vW 2 ilv

q21l2 D 2 inS l
12 in

q21l2

1 in
l2 in

q21l212qW •vW 22ilv D , ~3.15b!

E drWeiqW •rW2lr¹W r 1F1~ in,1,ivr1 ivW •rW !

52nv
8p

~q21l2!2 S 112
qW •vW 2 ilv

q21l2 D 2 in21

3~lvŴ 1 iqW !, ~3.15c!

E drWeiqW •rW1F1~ in,1,ivr1 ivW •rW !¹W re
2lr

52 il
8p

q21l2 S 112
qW •vW 2 ilv

q21l2 D 2 inS 12 in

q21l2 qW

1 in
qW 1vW

q21l212qW •vW 22ilv D . ~3.15d!

This implies:
TR5
ZP
2p2 NE dtW

t2
UR , T125

ZP
2p2 NE dtW

t2
U12,

Ts25
ZP
2p2 NE dtW

t2
Us2, ~3.16a!

T¹
65NU¹

6 , Tx15NUx1, TD5NUD , Tx25NUx2,
~3.16b!

where

N5Nl
2NPT~8p!3AZP

3

p
, ~3.17!

UR5
T

1

inPR
2

inTS0
i zAL0

~a1b2k0!
2 , Us25

T
2

inPR
1

inTS1
i zBL1

~a2b1k1!2
,

~3.18!

UD5DEi

T0
inPR0

inTS0
i zDL0

~a0b0k0!
2 , Ux25

T0
inPR0

inTS0
i zD

2~a0b0!
2k0

, ~3.19!

U125
1

ZP

T0
inPR

2

inTSi
i zCL2

~a0b2k2!2
, ~3.20!

U¹
25 ilvnP

3
T0
inP11R0

inTS0
i z@bW ~12 inT!2 inTaWR0#~ZPvŴ 1 iaW !L0

~a0b0k0!
2 ,

~3.21!

U¹
15 iZPvnT

3
T0
inPR0

inT11S0
i z@aW ~12 inP!2 inPbW T0#~lvŴ 1 ibW !L0

~a0b0k0!
2 ,

~3.22!

Ux15
T0
inPR0

inTS0
i z@ZP~12 inP!1 inP~ZP2 iv !T0#L0

2b0~a0k0!
2 ,

~3.23!

and

A5@ZP~12 inP!1 inP~ZP2 iv !T1#

3@l~12 inT!1 inT~l2 iv !R2#, ~3.24a!

B5@ZP~12 inP!1 inP~ZP2 iv !T2#

3@l~12 inT!1 inT~l2 iv !R1#, ~3.24b!

C5@ZP~12 inP!1 inP~ZP2 iv !T0#

3@l~12 inT!1 inT~l2 iv !R2#, ~3.24c!

D5@ZP~12 inP!1 inP~ZP2 iv !T0#

3@l~12 inT!1 inT~l2 iv !R0#, ~3.24d!

with
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T6
215112

aW 6
•vW 2 iZPv

a6
, T0

215112
aW •vW 2 iZPv

a0
,

~3.25!

R6
215112

bW 6
•vW 2 ilv
b6

, R0
215112

bW •vW 2 ilv
b0

,

~3.26!

S6
215122

kW 6
•pW 1 ilp

k6
, S0

215122
kW •pW 1 ilp

k0
,

~3.27!

a65~a6!21ZP
2 , b65~b6!21l2, k65~k6!21l2,

~3.28!

a05a21ZP
2 , b05b21l2, k05k21l2, ~3.29!

L65l~12 i z!1 i z~l2 ip !S6 ,

L05l~12 i z!1 i z~l2 ip !S0 . ~3.30!

This completes the analytical part of the calculation, so t
the priors i f

2 and the posts i f
1 forms of the total cross sec

tions can be succinctly summarized as follows:

s i f
2~pa0

2!5N 8E dkW nz

3E
0

`

dh huF22U¹
22lS~Ux11Ux2!2UDu2,

~3.31!

s i f
1~pa0

2!5N 8E dkW nzE
0

`

dh huF12U¹
12Ux1u

2, ~3.32!

where

F25F15
ZP
2p2 E dtW

t2
~UR2Us21U12!, ~3.33!

N 85
214

v2
Nl
4ZP

3p2nPnT
ep~nP1nT!

sinh~pnP!sinh~pnT!
, nz

5
pzepz

sinh~pz!
. ~3.34!

The integrations overkW 5(k sinuk cosfk ,k sinuk sinfk ,
k cosuk), tW5(t sinut cosft ,t sinut sinft ,t cosut), and h
have to be performed numerically. Hence, the final expr
sions ~3.31! and ~3.32! for the total cross sections for th
process~2.1! in the present CDW-4B method are given
terms of the above seven-dimensional~7D! integrals over the
real variableskP@0,̀ #, ukP@0,p#, fkP@0,2p#, hP@0,̀ #,
tP@0,̀ #, utP@0,p#, and ftP@0,2p#. The TCDW-IEM
method of Ref.@10# also encounters similar 7D scatterin
integrals when dealing with the total cross sections for the
process~2.1!. In Dunseath and Crothers’ TCDW-IEM mode
@10# the Pluvinage wave function@14# is employed with ex-
plicit allowance for ther 12 coordinate. This could be done i
the present CDW-4B theory, as well.
t

s-

I

IV. RESULTS

The integrations overfk andft are performed easily by
means of the very simple and highly efficient Gauss-Meh
~GM! quadrature:

E
0

2p

df f ~cosf!5
2p

NGM
(
k51

NGM

f S cos2k21

2NGM
p D , ~4.1!

whereNGM is the number of the pivotal points. The remai
ing integrals overuk , ut , k, t, andh are carried out after a
change of the variables according to

cosuk5u, cosut5v, uP@21,11#, vP@21,11#,
~4.2!

k5A2~11x!

12x
, xP@21,11#,

t5
11j

12j
, jP@21,11#, ~4.3!

h5A2~11z!

12z
, zP@21,11#. ~4.4!

Then, the variable-order Gauss-Legendre~GL! routines are
applied to theu, v, x, j, and z integrations following the
rule:

E
0

p

dq sinq f ~cosq!5 (
k51

NGL

wkf ~xk!, ~4.5!

wherexk are the zeros of the Legendre polynomials andwk
are the associated weights. The change of the variablh
through Eq.~4.4! is particularly important, because it con
centrates the integration points in a narrow forward co
which contributes dominantly to the total cross sections@46#.
The orders of the GM and GL quadratures, i.e., the numb
NGM andNGL of the pivotal points are varied until conve
gence totwo decimal placesis obtained for the total cros
sections. In practice, onlyNGM<20 for thefk , ft integrals
andNGL<40 for the remaininguk , ut , k, t, h quadratures
proved to be sufficient. The expressions in Eqs.~4.3! and
~4.4! are not used directly due to an apparent overflow
x'1, j'1, andz'1. This difficulty is readily avoided by
scaling the whole integrand analytically, i.e., by factoring o
the terms 1/A12x, 1/~12j!, and 1/A12z from the whole
integrand which, in turn, becomes a smooth functi
throughout the entire integration manifold. Finally, this alg
rithm is subjected to a powerful vectorization, with at lea
two orders of magnitude saving in the computer-centr
processing time.

As an illustration of the proposed CDW-4B approxim
tion, the total cross sections are computed for the follow
symmetric transfer ionization:

He211He~1s2!→He1~1s!1He211e. ~4.6!

The computations are carried out for both the priors i f
2 and

posts i f
1 total cross sections at impact energies ranging fr

30 to 1000 keV/amu. The results are displayed in Tab
I–III and Figs. 1–4. In Fig. 1, a comparison is made betwe
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TABLE I. The ‘‘prior’’ total cross sectionss i f
2 ~cm2! in the

CDW-4B model as a function of the laboratory incident ener
E ~keV/amu! for transfer ionization reaction: 4He21

14He(1s2)→4He1(1s)14He211e. The columns labeled by
s i f

2(a) ands i f
2(b) correspond to the results obtained with and wi

out the approximationVP(R,s2)[ZP(1/R21/s2)'0, respectively

~see text!. The notationx.yz[2uu8] implies x.yz3102uu8.

E ~keV/amu! s i f
2(a) ~cm2! s i f

2(b) ~cm2!

30 3.95@217# 5.21 @217#
40 3.23@217# 3.79 @217#
50 2.84@217# 3.12 @217#
60 2.58@217# 2.72 @217#
70 2.36@217# 2.43 @217#
80 2.16@217# 2.19 @217#
90 1.97@217# 1.98 @217#
100 1.79@217# 1.78 @217#
125 1.37@217#
130 1.33@217#
145 1.14@217#
150 1.05@217#
165 9.29@218#
175 8.02@217#
180 7.95@218#
200 6.46@218# 6.13 @218#
250 3.89@218# 3.64 @218#
300 2.40@218# 2.22 @218#
400 9.85@219# 8.92 @219#
500 4.46@219# 3.98 @219#
600 2.20@219# 1.93 @219#
700 1.16@219#
750 7.46@220#
800 6.52@220#
900 3.84@220#
1000 2.36@220# 1.99 @220#

TABLE II. The ‘‘prior’’ total cross sectionss i f
2 ~cm2! in the

CDW-4B as a function of the laboratory incident energyE ~keV/
amu! for transfer ionization reaction: 4He2114He(1s2)
→4He1(1s)14He211e. The columns labeled bys i f

2(c) and
s i f

2(d) correspond to the results obtained with and without the te
Ow

i8
[Oi , respectively~see text!.

E ~keV/amu! s i f
2(c) ~cm2! s i f

2(d) ~cm2!

30 4.91@217# 5.21 @217#
40 3.63@217# 3.79 @217#
50 3.00@217# 3.12 @217#
70 2.33@217# 2.43 @217#
100 1.71@217# 1.78 @217#
150 1.02@217# 1.05 @217#
200 2.95@218# 6.13 @218#
500 3.88@219# 3.98 @219#
700 9.92@220#
1000 2.00@220# 1.99 @220#
the prior cross sectionss i f
2(a) and s i f

2(b) of the CDW-4B
modelwith andwithout the approximation 1/R51/s2 corre-
sponding toVP(R,s2)50 andVP(R,s2)Þ0, respectively, as
stated in Eq.~2.66!. It is seen from Table I and Fig. 1 that th
potentialVP(R,s2) contributes by some 24% at low and 16
at high energies. At lower impact energies, where the pre
theory is not expected to be adequate, the probability for
TI is enhanced by inclusion of the interactio
VP(R,s2)5ZP(1/R21/s2). At high energies, which are
more appropriate for the CDW-4B method, this pattern
reversed andVP(R,s2) tends to suppress the chance for t
TI. As discussed before, the potential2ZP/s2 from
VP(R,s2) causes the capture ofe1 through the inherent
e12e2 subinteraction. Therefore, the situation observed
Fig. 1 indicates that the dynamic electron correlation co
play an important role at high impact energies~see also
Table I!.

Further, we have evaluated the contribution of the te
Ow

i8
[(Ei2HT,w

i8
)w i8 , which is contained only in the prio

cross section. Namely, if we ignore this term in Eq.~2.52!,
we would end up with the formula:

TABLE III. The ‘‘post’’ s i f
1 ~cm2! and the ‘‘prior’’ s i f

2 ~cm2!
total cross sections in the CDW-4B model as a function of
laboratory incident energyE ~keV/amu! for transfer ionization re-
action: 4He2114He(1s2)→4He1(1s)14He211e.

E ~keV/amu! s i f
1 ~cm2! s i f

2 ~cm2!

30 9.32@217# 5.21 @217#

35 4.35@217#

40 7.40@217# 3.79 @217#

45 3.40@217#

50 5.96@217# 3.12 @217#

55 2.90@217#

60 4.83@217# 2.72 @217#

65 2.57@217#

70 3.95@217# 2.43 @217#

75 2.30@217#

80 3.24@217# 2.19 @217#

85 2.08@217#

90 2.67@217# 1.98 @217#

95 1.88@217#

100 2.22@217# 1.78 @217#

125 1.42@217# 1.37 @217#

150 9.43@218# 1.05 @217#

175 8.02@218#

200 4.48@218# 6.13 @218#

250 2.32@218# 3.64 @218#

300 1.30@218# 2.22 @218#

350 1.39@218#

400 4.75@219# 8.92 @219#

500 2.05@219# 3.98 @219#

600 1.93@219#

750 3.98@220# 7.46 @220#

1000 1.16@220# 1.99 @220#
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s i f
2~pa0

2!5N 8E dkW nzE
0

`

dh huF22U¹
2u2,

~4.7!

F25
ZP
2p2 E dtW

t2
~UR2Us2!,

instead of having Eq.~3.31!. The numerical results of such
version are shown in Table II, wheres i f

2(c) ands i f
2(d) de-

note the prior total cross sectionwith andwithout the term
Ow

i8
, respectively. The results for boths i f

2(c) ands i f
2(d) are

displayed also in Fig. 2. As can be seen from this figure,
cross sectionss i f

2(c) ands i f
2(d) are quite close to each othe

and their difference is slightly more pronounced at lower a
intermediate than at high energies. In the absolute ma
tude, however, this difference does not exceed 6% and
values of the ratios i f

2(d)/s i f
2(c) are all contained in the in

terval @0.995,1.061# at the energies under study~see Table
II !. Thus, it follows that the termOw

i8
does not contribute

significantly to the total cross section, whenw i8 from Eq.
~3.1! is used. A similar conclusion has recently been reac
in Ref. @27# for the DC within the CB1-4B model.

Next, we examine the so-called ‘‘post-prior’’ discrepanc
which arises from unequal perturbation potentials in theT
matrices~2.52! and ~2.56!. In Fig. 3, we depict the ‘‘prior’’
s i f

2 and ‘‘post’’ s i f
1 cross sections of the CDW-4B approx

mation. Here, the prior results do not include the correct

FIG. 1. The total cross sections as a function of the labora
incident energy E ~keV/amu! for the reaction: 4He21

14He(1s2)→4He1(1s)14He211e. The dashed and the full line
represent the ‘‘prior’’ cross sectionss i f

2(a) and s i f
2(b) of the

CDW-4B approximation with and without the approximatio
VP(R,s2)[ZP(1/R21/s2)'0, respectively~see also Table I!.
e

d
i-
he

d

,

n

Ow
i8
, which is shown above to be negligibly small. Henc

the difference betweens i f
2 ands i f

1 is solely due to the po-
tential V(r 12,x1)51/r 1221/x1 , which is present in the pos
and absent from the prior cross sections. An inspection
Fig. 3 reveals that the post-prior discrepancy is very sign
cant throughout the energy range 30–1000 keV/amu.
post cross sections are larger by about 45% than the p
results at lower energies, with precisely the opposite pat
at higher energies. Such a considerable difference can
attributed to the role of the dielectronic repulsion 1/r 12. Ex-
cept for a much larger difference, this qualitative behavio
reminiscent of the situation described before in Fig. 1, wh
we compared the results with and without the correlat
term 1/R21/s2 in the prior version of the CDW-4B model
In the same Fig. 3, the experimental data of Shahet al. @6#
are also displayed. In contrast to the prior variants i f

2, the
post versions i f

1 of the CDW-4B method is found to be in
satisfactory agreement with the measurements at impac
ergiesE>80 keV/amu. At lower energies, the results fors i f

1

are larger than the experimental values, which is expec
since the CDW-4B is a high-energy approximation. This
consistent with the previously assessed lower energy limi
validity of the CDW-3B and CDW-4B approximations fo
single charge exchange in the processes~2.65! and~2.69!. In
Sec. III, we already identified the reason for which o
should expect superiority of the post over the prior version

y FIG. 2. The total cross sections as a function of the laborat
incident energy E ~keV/amu! for the reaction: 4He21

14He(1s2)→4He1(1s)14He211e. The full and the dashed line
represent, respectively, the ‘‘prior’’ cross sectionss i f

2(c) ands i f
2(d)

of the CDW-4B method with and without the initial-eigenvalu
corrective termOi[Ow

i8
5(Ei2HT,w

i8
)w i8 from Eqs. ~2.52! and

~3.11! ~see Table II!.
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the CDW-4B method. This reason was precisely thedirect
appearance of the electron-electron interaction 1/r 12 in the
perturbationUf of the post form as indicated in~2.62!. The
interelectronic potential 1/r 12 also appears inUi of the prior
form, but in an indirect way through the object (Ei

2HT,w
i8
)w i852@1/r 122(lS /x11lS /x21DEi)#w i8 , which

is invoked in Eq.~2.61! as a consequence of replacing t
exact wave functionw i(xW1 ,xW2) by Eq. ~3.1!. However, after
such a replacement, the three terms2(lS/x11lS/x21DEi)
appear to largely cancel the contribution from 1/r 12. In this
way, the whole effect of the electronic correlation was pr
tically washed out fromT i f

2.
In Fig. 4, comparison is given between the TCDW-IE

of Dunseath and Crothers@10# and our CDW-4B method
Both approximations are taken in the same post version.
TCDW-IEM includes the static electron correlation~SEC! in
the target through the bound state wave function of
Pluvinage type@14#:

w i~xW1 ,xW2!'w i9~xW1 ,xW2!

5c~k!
ZT
3

p
e2ZT~x11x2!e2 ikr12

31F1~12 ih8,2,2ikr 12!, ~4.8!

wherer 125uxW12xW2u, h851/(2k), andc(k) is the normaliza-
tion constant. Here,k is a nonlinear variational paramete
The corresponding lowest binding energyEi ,Pluv522.878

FIG. 3. The total cross sections as a function of the labora
incident energy E ~keV/amu! for the reaction: 4He21

14He(1s2)→4He1(1s)14He211e. The full and the dashed line
represent, respectively, the ‘‘post’’s i f

1 and the ‘‘prior’’ s i f
2 cross

sections of the CDW-4B model. Experimental data:h, s Shah
et al. @6#.
-

he

e

for the ground statei51S of helium is obtained fork50.41,
in which casec(k)50.603 366. The wave function~4.8!
contains two entirely uncorrelated hydrogenic wave fun
tions with the unscreenedcharge ZT multiplied with a
corrective r 12-dependent term of the form
exp(2 ikr 12)1F1(12 ih8,2,2ikr 12). By definition, the exact
total correlation energyEi ,ex

~tot. corr! is introduced as the differ-
enceEi ,ex2Ei ,RHF between the exactEi[Ei ,ex ~Drake @22#,
Pekeris@44#, or an experimental data! and the corresponding
self-consistent field Roothan-Hartree-Fock~RHF! value
Ei ,RHF. The quantityEi ,ex

~tot. corr! includes both radial and an
gular correlations. In the case of helium,Ei ,ex5
22.903 724 4,Ei ,RHF522.861 67 and, therefore,Ei ,ex

~tot. corr!

520.042 504 4. The Pluvinage total~radial and angular!
correlation energy Ei ,Pluv

~tot. corr)5Ei ,Pluv2Ei ,RHF520.016 33
amounts for 38.4% of the exact total correlation ener
Ei ,ex

~tot. corr! . For comparison, a much simpler four-parame
wave function of Boham and Kohl@47# for helium given by:

w i~xW1 ,xW2!'w i
BK~xW1 ,xW2!5NBK~e2a1x12a2x21e2a2x12a1x2!

3~11a3e
2a4r12!, ~4.9!

yields the binding energyEi(BK)522.901 923 and pro-
vides remarkable 94.7% ofEi ,ex

~tot.corr! . Even neglecting the
non-linear terma3e

2a4r12 in ~4.9!, i.e., including solely the

y

FIG. 4. The total cross sections as a function of the laborat
incident energy E ~keV/amu! for the transfer ionization:
4He2114He(1s2)→4He1(1s)14He211e. The full line represents
the ‘‘post’’ total cross sections i f

1 of the CDW-4B method. The
dashed line represents the corresponding ‘‘post’’ cross section
the TCDW-IEM due to Dunseath and Crothers@10#. Experimental
data:h,s Shahet al. @6#.
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394 55DŽEVAD BELKIĆ , IVAN MANČ EV, AND VOLKER MERGEL
radial correlations, in which case one recovers the tw
parameter Eckart-Silverman wave function for the (1s,1s8)
configuration@48#:

w i~xW1 ,xW2!'w i
ES~xW1 ,xW2!5NES~e

2a1x12a2x21e2a2x12a1x2!,
~4.10!

implies: Ei ,ES522.875 661 4. Such a result amounts f
32.9% ofEi ,ex

~tot. corr! and this is very close to the correspondi
Pluvinage estimate obtained with Eq.~4.8!. Use of Eqs.~4.9!
and~4.10! in scattering problems is quite straightforward.
contrast, Eq.~4.8! requires a considerable computational
fort with bound-free atomic form factors through numeric
quadratures for the Laplace transforms in a complex pl
@10#. In the TCDW-IEM, the dynamic electron correlation
~DEC! are neglected altogether. The CDW-4B model exp
itly includes the DEC through the dielectronic interacti
1/r 12 in the transitionT operator. The SEC can also be ful
included in the CDW-4B, but it is ignored in the prese
illustration with purpose of providing an unambiguous a
sessment of the DEC alone. The relative role of the SEC
the DEC could otherwise be inferred from the two curv
associated with the TCDW-IEM and CDW-4B displayed
Fig. 4. The DEC emerges as more important than the S
When comparing these two theories with the experime
data in Fig. 4, it is seen that the CDW-4B represents a s
stantial improvement over the TCDW-IEM. This seems
indicate that only four-body theories, with a proper inclusi
of thedynamicelectronic correlations, could successfully d
scribe transfer ionization~4.6!.
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V. CONCLUSION

We have investigated the problem of transfer ionization
collisions between bare nuclei and heliumlike atomic s
tems. A second-order theory, termed the four-body c
tinuum distorted-wave~CDW-4B! method, is formulated.
The scattering wave functions of the proposed method
hibit the proper asymptotic behaviors in both entrance a
exit channels. The CDW-4B approximation is presently a
plied to the transfer ionization in symmetric collisions b
tweena particles and helium targets at impact energies fr
30 to 1000 keV/amu. The previous independent elect
model ~TCDW-IEM! is known to largely overestimate th
experimental data. The conclusion from the present st
indicates that the dynamic electronic correlations in the
tive perturbation potentials are much more important th
the static ones in the target bound state wave funct
Agreement of the theoretical total cross sections obtained
means of the CDW-4B model with the available measu
findings is very good. Such a substantial improvement o
the CDW-IEM is attributed solely to the dynamic electro
correlation effects.
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