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Four-body model for transfer ionization in fast ion-atom collisions
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Total cross sections for transfer ionization in fast collisions of a bare nucleus with helium are examined in
the four-body distorted-wave formalism. A special emphasis is given to a proper inclusignarhicelectron-
electron correlation effects. For this purpose, the four-body continuum distorted¢®BW&-4B) approxima-
tion with the correct boundary conditions is introduced. Along with the appropriate potential operators con-
taining a single electron placed on one and/or both nuclear centers, accompanied by the corresponding
Coulomb waves for continuum intermediate states, digectronic interactionV,,=1/r ;,=1/|F;—r,| also
explicitly appears in the perturbation potential of the transition probability amplitude. The inclusion of the
potentialV,, is essential for the description of the Thonfase-e scattering, through which one of the target
electrons could be captured or ionized without ever experiencing any direct interaction with the préjectile
The total cross sections;; due to such a correlated CDW-4B theory are computed exactly and very efficiently
by means of precise evaluation of certain seven-dimensional quadratures in momentum space. The proposed
method is shown to be superior to the corresponding independent event (@iaMI-IEM), which also
proceeds through the same effort on multidimensional scattering integrals, but largely overestimates the mea-
sured values fowr;; . Comparisons between the present resufsand the available experimental data at
E=30-600 keV/amu for transfer ionization in the HleHe collision yield satisfactory agreement at impact
energiesE=80 keV/amu. This is in full harmony with the well-known low-energy limit of the validity of the
CDW-3B method assessed previously for the genuine three-body charge exchange in collisions between a fully
stripped projectile and a hydrogenlike atomic tar§8t050-294{®7)04801-4

PACS numbds): 34.70+e, 82.30.Fi

I. INTRODUCTION corporated into the TCDW-IEMT stands for the targgvia
the wave function of Pluvinadé 4] for helium which explic-

In fast collisions of bare nuclei or hydrogenlike projectilesitly contain ther,, coordinate. However, the TCDW-IEM
with the helium target, much attention has recently been deignores the dynamic electron correlations and computes the
voted to two-electron transitions. These include double ioniotal probability for the Tl as the product of the individual
ization (DI), excitation(DE), and capturgDC), as well as probabilities for transfer of one electron and independent
some hybrid phenomena including transfer ionizatioh or  ionization of the other electrdri0]. The resulting total cross
transfer excitatiodTE) in its resonantRTE) or nonresonant sectionso("°"'E™ are found to largely overestimate the ex-
(NTE) forms[1-21]. The present study is devoted to the Tl perimental dat§6,10]. Singhal and Lin12] used a coupled-
process. Most of the related experimental work has thus fathannel semiclassical impact-parameter model with the trav-
been concerned with total cross sectigfis-6] and only a  eling atomic orbital expansion to calculate the cross sections
few measurements relate to angular distributipng]. On  for single-electron transitions at intermediate impact ener-
the theoretical side, the majority of the methods have dealgies. They combined these probabilities within the IPM ap-
with the independent particle modédPM) or independent plied to collisions of fully stripped projectiles with helium in
event modellEM) [9-13]. This procedure assumes that the order to determine cross sections for the TI, DC, and DI.
two electrons undergo completely independent transitiongheir theoretical results for the Tl in Hé-He are consider-
without influencing each other at all. Such arpriori ab-  ably larger than the corresponding experimental data. The
sence of the dielectronic interaction;,=1/r;, eliminates total cross sections for the Tl have also been calculated by
the IPM from the list of the possible methods for studyingBhattacharyyat al.[21] for the Li¥"-He collision above 100
the dynamic electron-electron correlations as undoubtedlikeV/amu within a relativistically covariant field-theoretical
the most challenging facet of these double transitions. Statiapproach using the second-order Feynman diagrams. The ob-
interelectron correlations in heliumlike subsystems couldained total cross sections are also much larger than the mea-
partially be included in the IPM through the configuration sured values.
interaction by expressing the two-electron wave function as a A radically different strategy is provided by using the
linear combination of single-particle orbitals. However, thefour-particle scattering theor{l5-19. In this formalism,
obtained results are generally inadequate, since they do nbbth static and dynamic electron correlations are automati-
compare favorably with measurements icansistentman-  cally included through the perturbation potentials and/or
ner, as best illustrated for the DC within the IPM version of scattering wave functions. An approach along these lines for
the continuum distorted waveCDW-IPM) approximation the DC has recently been devised within the four-body con-
[17]. Static electron correlation effects could partially be in-tinuum distorted wavéCDW-4B) approximatior{ 15]. When
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applied to the DC in fast HHe collisions and compared The observable€; and Ef, +E. are the initial and final
with the experimental data, the CDW-4B was conclusivelyexactelectronic energies. In the case of the helium target, the
shown to be Superior to the CDW-IPM or TCDW-IEM remarkable variational estimate

[15,16. The same observation was later reported on the DC

involving other bare projectiles with the helium targgf] as E;=—2.903 724 377 034 105,

well as on the RTE and NTE encompassing the

S'*(1s)-H(1s) scattering[19]. The goal of the present obtained by Drakg22] via a fully correlated~600-term
work is to extend the CDW-4B method to ionizing collisions Hylleraas wave function with an explicit allowance of thg

and particularly to the TI. coordinate could rightly be considered as being the exact
Atomic units will be used throughout unless stated othervalue. Neglect of the mass-polarization term¥ ;- V,/mp
wise. and —V,-V,/my, in accordance with the eikonal limit
mp t>1, will enable one to write the four-body kinetic en-
Il. THEORY ergy operatorH, in the following separable and additive
Consider a collision in which a bare nucleBsof charge form:
Zp is impinging upon a heliumlike atomic system consisting 1 1 1
of two electronse; and e, initially bound to the target Hoy=—5—V?—-—V2— V2
nucleusT of chargeZ; . During this collision one electron is 2pi T 2by T 2by 2
captured, while the other is simultaneously ionized, i.e.:
: . n =- 5~ Vi+Hor
Zp+(Zrie1,€0)i—(Zpiey)s, +Zrtey(x). (2.0 i
. 1 1 1
The parentheses indicate the bound states, the quantum num- = V,Z - V§ - V§
bers of which are given by the collective labélsor f, 2pg ' 23y 1 28, 2
whereask represents the momentum vector of the ejected 1
electrone, with respect to its parent nuclelis We adopt the =—5 fo+ Hop. (2.8
Mt

guantum-mechanical nonrelativistic spin-independent for-
malism, which allows one to consider the two electrons a
being distinguishable from each other @.1). Let §; , and
X, » be the position vectors of the electroms, relative toP

andT, respectively. Further, |&® be the position vector d®
with respect tal'. The corresponding interelectron distance is
denoted byr,,=|5;—S,|=|X;—X,|. The complete Schro
dinger equation for the entire system is given by

SThe vectorr, ; relates theP to the center of mass of the target
in the entrance channel, wherggsis the position vector of

T with respect to the center of mass of the system
(Zp ,€1)¢, T €, in the exit channel. These relative vectors can

be connected to the electronic coordinatgs and S, , via
the expressions

_ b 1

HY=EV, 2.2 fi=5 (Rt %)= 5 (5148,

whereH is the full Hamiltonian, (2.9
a 1

H=Ho+V=Vp +Vp + V1 +Vr +Vi+Vpr, (2.3 Fi=5 (S.+ So)— > (X1 +X3),

Zp Zr wherea=mp/(Mmp+2), b=m¢/(m+2), a;=a,=mp/(Mp
Ve, =~ s_J Vo= - x_] (1=1.2), (24 +1), andb;=b,=m{/(m;+1). As usual for rearranging
collisions, the complete HamiltoniaH from Eq. (2.3 is
ZpZy 1 further split into the following two equivalent relations:
Ver=—g—» V= . (2.9

12 H:H|+V|:Hf+Vf (21@

The total energy is denoted Hy and it can be expressed

through its conservation law: Here,V; ; andH; ; are the perturbations and channel Hamil-

tonians in the initial and final states, respectively:

k2 k?
E:E|+_I=(Ef+EK)+_f, (26) H|:H0+VT, Hf:Ho+Vp, (21],)
2p ! 2t
2 , Vi=V-V;, Vi=V-Vp, (2.12
P K
Efl__Zan' EK_?' @7 Vi=Vr1+ VotV Vp=Vp.. (2.13

Here, u; and u are the reduced masses in the entrance andhe unperturbed channel statés and ®; are defined by
exit channel, u;=mp(Mm:+2)/m, pi=my(mp+2)/m,
m=mp+m;+2, wheremp andm; are masses of the pro- (Hi—B)®=0, (H{—E)®:=0, (2.14
jectile and the target, respectively. The vectirandk; are o

the initial and final momenta of the scattering aggregates. D= @i(X1,%)eki T, (2.19



380 DZEVAD BELKIé, IVAN MANC EV, AND VOLKER MERGEL 55

.= g , —(2 ,3/ge,nzf.;f+i,;.;2_ 21 ers a _model proble_m possess_ing certain auxiliary, flexible
=en(S)dr,  ¢r=(2m) (219 potentials and defines the distorted wavesd and x

The objecty;(X;,X,) represents the two-electron bound statethrough

wave function of the atomic systenZ{;e,,e,);, whereas F_ 0t P 0D 291
¢1,(81) is the single-electron hydrogenlike wave function of Xi P X TR (2.219
(Zp,e1)¢, in the exit channel. The complete wave function |n the limit e—~0", these scattering states satisfy the equa-
from Eq. (2.2) must obey the correct boundary conditions: tions

v = gtk i=gr (2,178 (E=Hi=W)|x")=0, (E~H¢=Wp|x;)=0.
ri— (2.210
vy e i |n(k,rf—12f.r‘,)+i(zT/K)|n<Kx2+,z‘>22)Eq)f— The original problen(2.2) is retrieved from the model equa-

(oo, g0 tion (2.2+1c) by the physical requirement that the scattering
(2.17H statesy; must asymptotically coincide with the associated
total wave functiongl ,if respectively. The transition ampli-
where tude (2.19 can now be rewritten in terms of the distorted
wavesy i as
_Zp(Z1—2) (Zp=1)(Z7—1)

VisT Mt (2.18 Ti=(& Uiy, Ti=(xr U710, (2.22

with & being the vector of the incident velocity. Thus, the where
initial ®; and final®; states and are distorted in their respec-
tive channels even at infinity due to the presence of the as-  [&7)=(1+G; Ui o|xi'1), Ui =Vii—Wi. (2.23
ymptotic Coulomb potentials.

In order to describe the double transitié®.1) at high ~ We shall first determine the distorted wayg" in the en-
impact energies, we shall start from the following expressiortrance channel. Imposing the boundary condition:

for the “prior” and “post” transition amplitudeq23,24: xi — ¥, we look fory;" in a factored form, such as
riHoo
Tir = (@4 Q7 T1+G; (Vi— W) T (Vi— W) Q" |@)), L
(2.193 Xi = @i(X1,X2)G; . (2.24
T = (D Q7 T(Vi— W) 1+ G (Vi— W) Q| D)), Inserting Eq.(2.24) into Eq.(2.219, we obtain
(2.19h
2
+ - + 1. S A+ +
where();" and() ; are Mgller wave operators, @i(E—Ej—Hq— V)G +E b_ij‘P"VSjgi +Ujx;
=1 by

]
Q5=1+G Wi, G ;=(E—H;—W,(*ie) "
(2.20

Here,W, ¢ are certain distorting potentials amds an infini- k o
tesimally small positive numbdi—0"). The transition am- der to solve Eq(2.25 without any further approximations,

plitudes (2.19a, (2.19 are free from the so-called discon- we shall make the following choice for distorting potential

nected diagram$25,26.. These Feynman diagrams would i

correspond to divergent matrix elements for those collisional 2
paths describing two constituents interacting with each othey, _, (1 1| D 1
in the presence of a third freely propagating particle. Since”' “P

the free motion is mediated via the free-particle Green'’s re-

solventsG ; = 1/(E—Hy*ie), it is clear that the typical ker- where

nels (V;,—W;)'G5(V,—W,) from the iterated transition T

operator would not contain any disconnected diagrams if no 0, =0, (X1,%2)=(Ej—Hr ;) ¢i(X1,%). (2.260
two-body interaction in the perturbatiofk —W; is repeated

in V;—W,. This can be achieved through introduction of an 5, equivalent expression 0f2.26a is given by U,

; ; +
intermediate channel propaga@r, , such as = Zo(1R - 1/s,) — (1/b1)VXlIn @i-Vsl—(l/bz)szm <Pi'V52
Gl =(E-H+V,+ie) L, (2213  +O,. The possible nodes ef; would rendetU; singular. In

order to bypass this difficulty, we introduce the symbah
possessing a model potential operatgr, which must be Eg. (2.264 to indicate thatU; acts only on those functions
chosen in accordance with the mentioned constraints on th&hich containg; in the factored form, as exemplified by Eq.
distorting potentialsV, . In the distorted-wave formalism, (2.24). Moreover, the Hamiltoniat; in Eq. (2.263 oper-
instead of solving directly the full Schdinger equatior2.2) ates only onp; and this is emphasized (2.26h through the
with rigidly determined interactions, one customarily consid—notationHTEHT,%. Hence,

+G(Ei—Hpei=0, (229

whereH+ is the target HamiltonianH;=Hyr+ V7). In or-

. 1
ViVt Oy o~ (2262
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2
1 -
U|)(| ZP(R S )X| 2 x@i'vsjgr_grog'

(2.260

J

Using the mass limitmp +>1 together with the resulting

simplification R=—F; , we obtain an equation f@;", such
as

Zp Zp(Z7—1)

E—E —Ho+ - G =0, (2273
f
which can be solved exactly, yielding
G =Ci ¢35 (81) 5, (82 95 (T, (2.27h

where C;" is a constant andp;(f) is a plane wave. The

381

Z Zo(Z+—1
S G (2.37
U U

It is easily verified that the scattering stagg’ exhibits the

required eikonal asymptotic behavigri — ®;". The term
rj—o

O, in Eq. (2.26a vanishes identicallyonly for the exact

eigensolutionse; and E; of the target HamiltoniarH.

However, since these are unavailable, the té)gﬂ should,

in principle, be kept throughout, as originally suggested in
Ref. [27] in the four-body corrected first Bor(CB1-4B)
approximation for the DC.
Next, we shall look for the distorted wavg which sat-
isfies the equation
(E-H+V,—ie

)& )=—(ie=Volxr). (2.383

Coulomb waves with the outgoing and incoming boundary

conditions are respectively labeled ¢g(r) ande- (), the
explicit expressions of which are

(Pgl(gl) =T(1—ivp)e™ P2 PrsuF, (iv),1ipss;
(2.28
(2.29

—ip1-$y),
¢52(§2):eiﬁ2'§2,
(pgf(r*f):r(lﬂy')ez—WV”2+iﬁf'r’fllrl(—i1/',1,ipfrf

—ipg-Ty). (2.30

which is obtained from Eq2.23. Choosing the intermediate
channel potentiaV/, in such a way that the constraint,

Vil xs)=0,

is automatically satisfied, we shall have, in the limit0":

(2.38b

Here, ;F; denotes the usual Kummer confluent hypergeo-

metric function with the Sommerfeld parameterns,
=Zpa,/p, andv' =Zp(Z1— 1) i/ ps . The vectorsgi,, Py,

andp; must satisfy the energy conservation law and preserve

the form of the asymptotic plane wave ekp(’) in the en-

trance channel. This indeed will be the case provided that

2 2 2
p1+p2+pf

SR 2, 2a, 2y

(2.3)

P1-S1+ P2 Sp+ P M=K 1. (2.32

Using the relationr;= —bf;—a(5;+S,)/u; and the mass
limit mp +>1, it immediately follows from Eq(2.32 that
the auxiliary intermediate momentum vectqis, p,, and
ps are identified as

— R — aR_
P2 o

(2.33

—aﬁiz—ﬁ,

el
=

ﬁf:_bRi:_Ri' (234)

Finally, leaving out the unimportant phase fact@r’
=p; P, the distorted wave;" reduces to

Xi = N+(VP)J\/+(V)eilzi'Fiwi(il-iz)lFl(i vp,1,ivs;
(2.35

—7vl2
b

(2.39

+|l;§1) 1F1(_iV,1,ikirf+iKi'rf),

N (vp)=T(1—ivp)e™r? N (v)=T(1*iv)e

(E-H+Vy|& )=0. (2.380
Writing £; in a factored form similar toy;":
& =101 (2.39
we arrive at
Gt (Er—Ho—Vp)er, +¢r (E-Ef—Ho—Vy) Gy
1 = _
+ a Vs, 1, Vi, G5 +Vié;s =0. (2.40

Analogous with Eq(2.25), we intend to find the solutions of
Eq. (2.40 in the pertinent mass liminp +>1 without any
further approximations. This can be accomplished by choos-
ing the model potentiaV/, , for example, as

11 1 1
VZP -

Xy T2

1 . . 1

- a_l Vsl‘Pfl' Vxlocpfl

(2.41

Hence, in the mentioned heavy mass limit, £8.41), is
reduced to the equation

ZT_1+ZT ZP(ZT_l)
X1 X2 r

Gg; =0, (2.42

|:E_Ef_H0+

which can be solved exactly due to separation of the inde-
pendent variables. Again the meaning of the symbalEq.
(2.41) determines the domain of definition of the operator
V,, which is allowed to act only onto a subspace of the
complete Hilbert space containing wave functions with the
factored hydrogenlike bound statgr , as in (2.39. We

search forG; in the separable form:

Gr =Ci ¢q,(X1)@q,(R2) 0q (F)), (2.43
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with C; being an overall constant, and
9051()21):“1“V%)ew%/%iql'ill':l(_iV%vlfi%xl
(2.44

—iqq-Xy),

g, (R2) =T (L+i ¢ )em™ 210252 Fy (~i¢’ 1,~iq%

—id,-Xy), (2.45
¢q (M) =T(1=iv")e ™" 24T (i 1,~iqyr
—iq;-fi), (2.4

Where V'/I':(ZT_l)bl/ql' ngZszlqz, and V”:ZP(ZT

—1)ui/g; . We impose the conservation of energy in the exit

channel via

@ 9 q

=520, " 20, T 2w

(2.47

where

: (2.499

X

p=i+
Thus, the distorted wavé; = ¢, G; becomes:
& =NT(ON"(vpN (») drer (51) 1F1(—iL1,—ipX;

_ip)')_()Z)lFl(_ I VT,l,_iUXl—i17~)_()1) 1F1(i v,1,

_ikfri_in'Fi), (25@
where ¢; is defined in Eq(2.16 and

N“(O)=T(1+i0)e™?, N~ (vr)=T(1+ivp)e™?

as well as preservation of the form of the three free-particle

plane wave expiK;-ri+ik-Xy):
G1- X1+ Gp Xo+ G- 1= —Kp M+ K- X

(2.48

These two conditions, together with the relatigih= —ar;
—b(X;+X;)/ us and the subsequent mass limip +>1 lead
to

(2.493

(2.5

It can immediately be checked that the conditi¢2883a as

well as y; — ®; are both fulfilled with the present dis-
ff—)oc

torted wavey ; . Inserting Eqs.(2.50, (2.39, and (2.263

into Eq. (2.22 for the “prior” transition amplitude, we ob-

tain

Ti=Nor | | [ dRasdse® 55550 1 et (8 sFaliveLivx +i6-5%)

X1 F1(ig,1ipXy+ip-Xy)

—1Fa(ivpLivs;+iv-$)0, (X1,Xp)

=Tir,,(7),

where the auxiliary functiorO,, (X;,X,) is given by Eq.
(2.26bH and

R,(Fi,F)=N"(nN*(v) 1F1(—iv,Liker+iK-F)

X Fo(—iw,Likir¢+ik,-fy), (2.53

Npr=(2m) ¥ N*(vp)N" (1N (0), (259

&:ﬁ—(%—%)ﬁ, B=— i~ %+g i
Q=E;—(Ef,+E,), (2.55

1 . . L. s oo e s e e : : Lo
Zp(ﬁ_ 5_2) 1F1(ivp,Livs; +i0-81) @i(X1,X2) = Vi, @i(X1,X2) - Vs 1Fa(ivp,livs; +iv-$;)

(2.52

with # being the transversal component of the momentum
transfer kK, —K; with the propertiesa+B=—¢ and #-v

=0, where the impact velocity vectoris directed along the

Z axis. It is because of the underlying charge exchange com-
ponent of the TI that there are two different momentum
transfers in Eq.2.52, i.e., a=ak;—K, and B=bk —K;,
which reduce to Eq(2.55 in the mass limitmp +>1. The
relation K;-Fi+K;-fy=a-§+B-X;, is also used in Eq.
(2.52. The differenceg; — (EflwL E,) between the initial and
final electronic energies is also known as the inelasticity or
Q factor. This observable is of key importance to transla-
tional spectroscopy, which through the measurement of the
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y An analogous derivation is carried out for the “post

gain or loss of the scattered projectile, i.e., on the inelastiéorm of the transition amplitudd ;; and we need only to

energy transfer.

quote the final result as

T =Npr f f f dR d%yd%e'® S1F 1A% TIR %R (7 F1) @i(Xy,%p) 1F1(1vp,Livsy+i0-81)1F1(i1£,1ipXa+ip-Xy)

1 1 1 1 ) ) L . - L= ) i L
X Zp(ﬁ_ S_Z) +(r_12_ X_l) 1Fl(| VT,1,|UX1+|U'Xl)(P?l(Sl)_vsl(P?l(Sl)‘Vxl 1F1(| VT,1,|UX1+|U 'Xl)
|
A considerable simplification in calculation can be obtained 1 1
by employing the following approximation: U=2p R o
2
R,(Fi,Fy) = (upv)?”, (2.57 2 4
. —[Zl 0 Vx e Vs T(E—Hrgeilo—, (2,60
which can be easily derived in the indicated mass limit. . ) !
Here, u is the reduced mass off and T, ie, .4
u=mpmy/(mp+my), whereas the projection of the vector
R onto they axis is denoted bys, which need not necessar- 1 1 1 1 1 . 1
ily be identified with the usual impact parameter of the IPM.  Ut=Zp| 5= | = | o= | = = Vs, @1,  Vi,°
. i R s, Xy Tip) @ 17171
It is easy to see that the phase factoppf)?” %2 62

=(upv)??pZT=D does not contribute to the total cross
sections oj;. A part of this phase, namely, the term
(upv)?%p?Tv incorporates the entire contribution to the
T from the potentialVpr=ZpZ/R. Hence, the internu-
clear repulsiorVp, which we accounted foexactlyin the
mass limitmp t>1 and the accompanying small values of
Jp (the eikonal approximatigndoes not contribute at all to
o ;. The triple differential cross sections f¢2.1) take the
following forms:

. &y Tt (]2 | Tifo(?)|?
7if (K)= dx :Jdﬂ 27 :Jdﬁ 27
- [ iz (2583
where
o+ > Tiif—;o(ﬁ)
Ti ()= — — (2.58h

Finally, the total cross section for the procégsl) is given
by

0ﬁ=f di o (K). (2.59
The final expression.52 and(2.56) for the T ;i constitute

the present four-body continuum distorted wa@>W-4B)
approximation for the general Tl procegsl). Although the

Both U; andU; describe the standard ThomRse-T double
scatteringi(i) In the prior form(2.52 for Tz, this is accom-
plished through the portion df; comprised of the symme-
trized potential operatorsM;(Xy,Xz;S;,S2) = M, (X1,51)
+M; (X2,8;), which are concerned with the two indepen-
dent Thomas double scatteringse,-T andP-e,-T, where

M (%1,80) =V, Ingy(%4.%5)- V.,

Mi(%2,8) =V, IN@i(X1,%2)- Vs, (263
However, due to the present simplification manifested via the
absence of any functiofi(S,) in the scattering stateg;

of the proposed CDW-4B model, the operator
M;(X1,X5;81,S,) reduces merely to\/li1(>?1,§1) associated
with P-e;-T. (i) In the post form(2.56) of T f, the classical
ThomasP-e;-T mechanism is described by the following
part of the perturbatiot; :

M (81,%1) =

1

~Vs, Ings (31)-Vy,. (2.64
The single-particle operatorMil(il,§1) and Mf1(§1,>?1)

are capable of providing the corresponding quantum-
mechanical counterpart of the Thomse,-T double scat-
tering due to the fact that they depend upon the set of the
coordinateg X, ,5;} which couple togethethe two Coulomb

same type of approximation has been invoked in the priofentersZp,Z} and, hence, mediate the transfer of the elec-

T;; and the posf;; forms, the obtained expressio(&52)
and (2.56 are very different from each other due to the un-
equal perturbation potentials; # U;, where

tron e; from the targetT to the projectileP. Both objects
M; (X1,S;1) and M (S1,X;) are otherwise reminiscent of
the full transitionT operator of the three-body continuum
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distorted wave(CDW-3B) approximation for a pure hydro- otherwise, and one would not be able to identify the actual

genlike charge exchand@3,24: perturber of the colliding projectile-target system. However,
this convincing and plausible concept is not directly appli-
Zpt(Z7.8)i—(Zp,0)1+ 27, (2.65 cable to the Coulomb scattering. Namely, for long-range

Coulombic interactions, the asymptotic form of the wave
packet is given by the function® ,if which are different

B ) ; from @; ¢, as indicated in Eq$2.173 and(2.170. In such a

from the application of the Laplacians-V; /(2b;)  case, we speak about a departure from the notion of the
—ViZ/(ZbZ) and—Vﬁll(Zal)—ngl(Zaz) onto xi¢, which  asymptotic freedom in the above conventional quantum-
mechanical sense. The Coulomb interactions always distort
B the unperturbed channel scattering state through appearance
g0f1(§1)¢7Ef(Fi)(pg()zl)(pg()Zz). Moreover, with a suitable of a logarithmic phase factor, even in the asymptotic scatter-

change of the independent variablesHig, the electron-mass "9 region. In the limit of infinite times, corresponding to

polarizationsM; (%,8;) and M, (%,,5,) would appear as infinitely I.arge. mterpa}rucle distances, this phase woulg yield
h t bationlotential 0 eratozrs along with the more con—the- Ioggnthmmally divergent Mgller wave oper atal; .

t epertur poten pe 9 . which, in turn, would preclude any mathematically sound

:'/entﬁ;ﬁ;\gﬁuilgrggn'trr];esrtag'ogzPztﬁaéigrlﬂ_eﬂzgé zf i:"? definition of the central object of the theory, namely, the
i y 1] L KR}

) scatteringS matrix. However, Dollard30] was able to show
teractions Vp1(R)=ZpZ{/R, Vpl(sl)z —Zpls; and s d30]

I that any Coulombic potentials can indeathke scattering
Ve, (s2)=—Zpls;, the electron-mass polarizations occur, provided thatQ; are replaced by the Coulomb-

+

M; (X1,81), M (X2,S;) and M (§;,X;) are two-center ~ Maller wave operatorﬂi}—), which contain an extra term

nonlocal distorting pseudopotentials depending upon two cocanceling automatically the logarithmically divergent phase
ordinatesx; and§; of the given electror; (j=1,2). Nonlo- ~ factor. The resulting regularized nonsingular kerfief{ )

cal pseudopotentials in the form of differential and/or inte-would lead to solely connected Feynman diagrams. More-
gral operators, which might also be velocity dependent, ar@Ver, this very same goal can also be achieved by retaining
customarily encountered in various branches of physics, e.gthe simpler and much more tractable operatfys; and

the Hartree-Fock model, radiative corrections, meson fiel§hoosing the distorting potentiald; ; in such a way that

theory, etc.[28]. It is now easy to show[29] that the resulting model scattering statgﬁf properly incorpo-
M, (ij §j) exhibits a long-range Coulombic tail in the rate the overall Coulomb logarithmic phase factors due to
j 1

ny Coulombic remainders from the perturbations

i.t— W, ¢. This has consistently been done in the CDW-3B
[23,24] for single capturdSC) and in the CDW-4B for DC
LlS], RTE, NTE[19] as well as in the Tl proceg®.1) of the

with e=e,, {i,f}={i;,f;}, andx=X;, §=$§,. The operators
M;(X1,X5;51,5,) andel(il,sl) from U; andU; emerge

are of the separable forrrx;sfi(il,)Zz)<pflzk(r*f)gof5(§1) and

CDW-4B method and, hence, the question arises wheth
this potential could be considered as a perturbatiausing
the transition in Eq(2.1). In traditional collision theory, an
interaction is conceived of as being able to produce scatte
. fy . . P present work.

ing only if it vanishes asymptotically at infinitely large val- In the preceeding derivation. the ionizina path for the
ues of the interparticle separation. This statement is the basiﬁ P ) g ' 9 path N

of the concept known as “asymptotic freedom” according to €1€CON €, is described by the Coulomb wave; (X,)
which the full scattering state® ;*; must reduce to the free =N () ¢(Xz) 1Fa(—14,1,=ipX;—ip-%3), with ¢(X2)
wave packets at infinitely large timess Fo. This is fully ~ =(2m) 3%'**2, =Z/p and =k +7. Even though the
compatible with the indispensable experimental requiremen@ppropriate startingnsatzin the undistorted scattering state
which demands that in both the remote past and distant fu® is given by the plane wave(X,) centered orl, the
ture (t— ¥ ), the examined system must remain unper-present four-body analysis establishes a distortion of
turbed. In other words, at these two extreme times, the sysp«(Xz2) by N™({) 1F1(—i{,1,—ipX,—ip-X;) as a function
tem moves only under the influence of the channel of the translated electron momentumi<+v=p and not
HamiltoniansH; ¢ . It is only in this way that, for these as- merely of k, which one would expect in the plane wave first
ymptotic times, we can be sure of having preparedftee ~ Born approximation. In addition toM; (X;,5;) and
wave packetsb; ¢ which in the _meantime evolve l_mder the Mf1(§1,>'<’l) from the prior and post forms, there is a com-
act!op.of the channel pertu.rbatlold$'f=H— Hi . With this 1,05 perturbation:

definition of the asymptotically free states one could cer-

tainly consider the situations “before”t{~ —«) and “af- 11

ter” (t— +o0) collision as being separated from each other. VP(RaSZ):ZP(__ _), (2.66)
Such a circumstance would guarantee that a transition from R s

the initial to the final state of the system occurs solely under

the influence of the interaction potentis| or V. If that  in bothT;; andT;;. When considered outside tAematrix,
were not the case, one could not talk at all aboutftee  the potentialVp,=—Zp/s, represents the direct Coulomb
wave pz_ickets as— ¥ . This means that neither the initial jnteraction betweene, and Zp. Its asymptotic value
or the final state of the system could be prepatiedthe VOSZ(R) at large distances, is given by —Zo/R, since

sense of being controll¢din which case the very definition i )
of a scattering phenomenon would cease to have any meafz R @R—. Hence, the temV(R,s;) is precisely the
ing. In such a circumstance, the particles in the incidenglifference between the finite and asymptotic value of the

beam would interact strongly with each othé@efore even Same overall short-range potential Ve(R,S;)=Vp,(S,)
reaching the targgtthrough, e.g.intrabeamscatterings or  —Vp (R), in accordance with the correct boundary condi-
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tion. However, when placed in th& matrices(2.52 or In all the previous applications of the CDW approximation to
(2.56), the potentialVp, plays the role of a perturbation this process, the simplificatioiz(R,s;) ~0 has always been
which causeshe capture of the electrasy . This could only ~made. This amounts for replacement of the potentigl liy
occur through some kind of the underlying correlations be-1/s,. As in the TI, this could also be roughly justified for the
tweene, ande; . For example, a part of the energy receivedpure SC in Eq(2.69 at sufficiently high energies for trans-
by the electrore, in its collision withZp could be sufficient fer of e; without ionization ofe,. The basis for such a jus-
to accomplish the transfer @& to the projectile, provided tification is the small value of th&, coordinate, since the
that thee;-e, correlation is active. This is possible as illus- passive electror, in Eq. (2.69 remainsboundin the target
trated by the following argument. Using the relatiB=X;  rest (@r.€5)t, Therefore, ,— 1/R=1/s,— 1/|S,— X,
—$1=X,—%,, we can write: [Vp(Sp)/Zp|=1/s,=1T12 = 1/s,— (LUs,+ Ry §p/S3+ )= —Rp-Sp/S3+---,  which
_S:1|' \ivheier1§=|r*12| is the interelectronic coordinal®,  should yield small values 0¥ p(R,s,) for the SC reaction
=X, ~X;=8,~ ;. The electrore, is captured byP in the (5 g in a fashion similar to the Tl in E¢2.1). Our recent
final bound stat@ofl(sl) in the reaction2.1) and, therefore, applications of the CDW-4B method to Eq2.69 for
S is of the order of Bohr radiuao. For such small values of ZP:ZT: 2 confirm that the total cross sections Computed
s1, we can develop I7;,—$,| in a power series arounl  with and withoutVp(R,s,) in the transitioriT operator differ
according to from each other by at most 15% at 30—1000 keV/amu.

It is clear from the above analysis that the extent of inclu-
s _ . (2.67) sion of the static and dynamic electron correlati@®&C and
S, |Fo—8i i r§12 ’ ' DEC, respectivelyis governed by the choice of the distort-

ing potentials. The channel Hamiltonialhf ; are defined

The second term of the right-hand side of this equatiorstrictly for two noninteracting aggregates. Therefore, they
is known as the long-range dipole approximation. From@re capable of including all the SEC, which provides infor-

here we can see that the potentidlp (s,)/Zp|=1/r,, Mation on quantum-mechanical staigs; of the scattering
2 partnersbefore or after the collision. These customary sta-

; . . tionary statesp; (fy,r,) are of primary importance to spec-
correlatione, —e, through the potential 1, Th's meags trosco);)y. Hosv’illéf\fei, tr21)ey also Erovidg thg basic inputFt)o the
that the sole potential (s,) betweenZp ande, intheTir o ytoticscatteringstatesd ; built in the remote past as
can indeed lead to capture of the electmn because of the el as in the distant futuret(_;;oo) as the product o,
underlying dielectronic correlation, which is inherently ang the wave functions of the relative motion of the two
present in thee,'s coordinates, throughry, sinces,=S;  aggregategfor example, in the DC botlp; and ¢, describe
—r1,. Arelative role of the potentiaR.66) can be estimated the heliumlike bound statesThis would correspond, e.g., in

as follows. Total cross sections are mainly determined byhe entrance channel, to an experimental preparation of the
small values of«. This correspond to a situation where the target as well as of the incident beam in their respective
electrone, resides in a close vicinity of the target nucleus. Inel|-defined stategenergy, polarization, spin, ejcprior to
such a case, is small and the difference betwespandR  scattering when the projectile beam is turned off. In contrast
is negligible, so that the contribution ¥:(R,s;) to the total  to the SEC, which is unrelated to the very act of collision,
cross sections should be modest. An illustration carried Ol.[the DEC Originates entire|y from the scattering event. A col-
in the next section for He-He transfer ionization at 30— Jision takes place if both the relative velocity of the two
1000 keV/amu shows that the relative contribution of theaggregates and their perturbation interaction have nonzero
perturbationVp(R,s,) varies from 24% at lower to 16% at yalues. The perturbation potential operatdrs are naturally
higher energies. Hence, at sufficiently large impact energiegonceived of as the difference between the totd) @and

the potential—1/s, appears to be nearly cancelled bR1/  channel HamiltoniandH, ;, i.e., Vii=H—H;¢, and they

1 1 1 7S
1251

—(F12-§1)/r§2+ --+ contains information on the dielectronic

The post formT i contains an additional term: could directly contain the electronic interactidf,. It is in
this manner that the DEC comes into play and appears ex-
1 1 plicitly in the transitionT operatoras well as in the full
V(g Xy) == o (268 scattering state¥ ;.

The first measurement aimed to detect the DEC in the TI
process was carried out by Horsdlal. [7] on the angular
distribution of scattered projectiles in the collision
H*+He—H-+He*" +e at four impact energies 200, 300,
400, and 500 keV. More specifically, they intended to deter-
mine whether there could be any experimental evidence of

+ the ThomadP-e-e scatterind32,33. This effect is expected
the post formil ;7 from Eq. (2.5 should be used throughout. to manifest itself through a peak in the angular distribution

Due to the perturbatioW(r 45 ,), even the total cross sec- o o uereq projectiles at the critical angf"*™%=0.55
tion in the post form should be more adequate than its prior rad in the laboratory system of reference. Horsdail. [7]
counterpart. Here, it is instructive to draw a parallel betweerweasured the angle-gegendent probabilitiés for prod.uction of
the Tl and the corresponding pure single capture of the typ 462+ in the mentioned Tl process and observed a strong

enhancement arounti~ 0.5= 9H°"%!_ This enhancement of
the recorded relative yiel@say, I') for capture of one elec-

which is completely absent from thE;;. Here the dielec-
tronic interaction 1v;, appears explicitly and combined with
the initial and final distortion functions on both centé&ts
andZ; describes the Thomda-e-e scattering. Hence, when
comparing with the experimental data of Mergglal. [31],

Zpt+(Zr;€1,€)i—(Zp,81)1, T (Z1,€2) (2.69

for
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tron with and without ionization of the other electron oc- independent-particle mechanism behifd?V'"M serves as a
curred at9H°"s% which is close to9"°™ and this led counterexample to the conjuctered ThorRag-e correlated
Horsdalet al. [7] to consider their data as the first evidencescattering as the sole reason for enhancement it

of the dynamic electron-electron correlation in the TI. How- ﬁ';ors"a'_ As a consequence of this couterargument provided
ever, this turned out to be false, since it so happened that thg, the CDW-IPM[34], the measurement of Horsdzt al.[7]
same signature af£°"** could also be reproduced within needs to be reinterpreted. Subsequent work on the angular
the CDW-IPM[34], which excludes the dynamee corre-  and/or energy distributions of ejected electrons within Tl has
lations altogether from the onset. The enhancement ajeen undertaken by Rakas et al.[8]. In contrast to Ref[7],
95> obtained in the CDW-IPM is due to a phase interfer-which dealt with the singly differential cross sections, Ref.
ence of the impact parameter transition probability ampli{8] was concerned with the cross SeCtidﬁa—/dEed'ﬂe'
tudes for independent electron transfce?(T)(ﬁ) and ioniza-  which is differential in two observables, the energy and
tion A5("(%,5). The quantities4(p) and A" (k,5)  angle 9, of the ejected electron. This double differential
are obtained by applying the Fourier transforms to the corc€ross section is integrated over the scattering anglef
responding quantum-mechanicahree-body T matrices the projectile. Concentrating on the cusp condition of equal
7?(3)(77) and 7?;_(('))(,2,77), which are available from, e.g., Velocities pj~v,) of the projectile and the ionized electron

Ref. [24]. Analogous with the IPNprobability P T)(z,p) N the collision H +He—H+He*" +e, they searched for yet
_px(T) SO the full o-d d babilit _another signature of the Thomd%e-e double collision,
Pi (p) " (K,p), the full p-dependenprobability am namely, a maximum in?o/dE.d 9, at 9,=90°. This Tho-

; =(Thy = = L
plitude A" (&, p) for the composed TI process is given by masP-e-e peak was indeed experimentally confirmed in a

the productAy; (V(5) A )(%,p). However, the differential o0 oy cive way at the energgp=1 MeV of the incident
Cross sectiord5a/dk’+dﬂp, as+a Hankel transform, requires proton corresponding t&,=600 eV of the ejected electron
an integration of A ("(5)A;"(%,5) over all pe[0] [8]. Pdinkas et al. [8] also recorded another maximum in
weighted with the Bessel functiody, (7p) and the full in-  §25/dE d9, at 9,=58°. The mechanism behind this struc-
ternuclear contributiop?%pZ1/v: ture is the interaction of the projectile with each of the

target electrons leading to simultaneous single capture and
dSO_i(TI)

1 s 1| % R ionization, Which is predicte_d _the(_)retif:ally to occur at
d7 d0p (agsr ) =|ipv fo dp p=T'PT ¥.=60°. Here, independent ionization is followed by the
so-called kinematic capture, based upon the velocity match-
2 ing mechanisnv.~vp.

X At TV(R,p) I, (1p)

The above discussed different pathways within the TI, fall
into a larger category of general interactive dynamics of ions

x _ and atoms. Understanding the mechanisms behind the ion-

= ilwf dp ptHiZeZTlv AL (p) atom collisions is absolutely essential for achieving progress
0 in predicting the evolution of quantum scattering systems.
2 Until essentially ten years ago, most of atomic collision ex-

XAiif“)(f?,P)Jmif(ﬂp) , (270  periments were technologically limited to measurements of
only a few observables. Due to a paucity of experimental

) data on the majority of the subtle and detailed features of
wherem;; =m;—m; andm, ; are the usual magnetic quan- co|jision phenomena, the adequacy and reliability of theo-
tum numbers of the initial and final lzound states, respecretical models could rarely be thoroughly tested. However,
tively. Since in the CDW-IPM, both4;i™(p) and 45" recent technological advances have made the goal of the so-
X(,p) are complex numbers, their phases can combine angalled complete experiment practically a reality. A substan-
produce an interference pattern. Such a coherent interferengg| breakthrough has recently been achieved in determina-
yields an enhancement ifi and this occurs at nearly the tion of a complete momentum kinematics of colliding
same scattering angksay 9°°V'"M) as the valued3®*®  particles with unprecedented precision through the recoil ion
from Ref.[7]. Thus, Horsdalkt al. [7] did not provide an momentum spectroscodiRIMS) [35,36. The novel variant
evidence of the ThomaB-e-e double scattering, since the COLTRIMS (cold target recoil ion momentum spectroscppy
same structure in the angular distribution could also be obef this powerful and versatile technique is based upon a pre-
tained in the IPM without any recourse to the dynamic inter-cooled supersonic gas jet targg6]. Heavy projectiles
electron correlation. A phase of any wave function has namainly scatter forward and, therefore, it is very difficult to
physical meaning. However, a phase difference of two wavexperimentally determine angular distributions at very high
functions can be measured experimentally and, therefor&nergies where the most intriguing Thomas multiple scatter-
could represent a physical observable. Hence, a coherent iings take place. The RIMS and COLTRIMS exploit an alter-
terference of phase factors in EQ.70 for the CDW-IPM  native idea of bypassing the direct measurements of the scat-
might lead to a physical effect. In E€2.70, one does not tered projectile parameters through recording all the
encounter directly phases of wave functigsisice the spatial components of the recoil momentum of the target rest, as
integrations are already carried pubut various phase fac- well as of the ejected electrons for ionizing collisions. The
tors of thep-dependent transition probability amplitudes with backtransformation via the energy and momentum conserva-
a final cummulative effect, which leads to the mentionedtions enables one to retrieve the differential cross sections for
enhancement inl" at 9™ The relation 9°P°W'PM  the scattered projectiles. The impressive power of this
~ 9Horsda appears to be fortuitous. Nevertheless, the cleamethod lies in the fact that its nearlyr4detector efficiency
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successfully combines with a very high momentutp] one to separate the two pathwalse-e and P-e-T from

and energy transferAQ) resolutions irrespective of the im- each other in an attempt to assess the relative role of these
pact energy value and, at the same time, exhibits only a vergompetitive mechanisms behind charge exchange in the
weak dependence upon the energy spread, as well as divéligh-energy regime~5-10 MeV/amu. Recently, Mergel
gence of the beam. This is in sharp contrast with the custonet al. [31], used the COLTRIMS for the Tl in HHe and

ary translational spectroscoWS) measuring the energy confirmed the results of Rd:f8:| Their goal, however, was to
loss of the projectile, where any gain in the detector effi-2SS€sS the relative_ role _of 'ghe mentionet_:l b_inar_y kinematic
ciency is automatically compromised with loss in energyCapture accompanied with independent ionizatord the
resolution. The TS measures a change in the impact enerdy'rélatedP-e-e mechanism. They found experimental evi-
E, and, hence, relies heavily upon the quality of the projec- ence aE>1 MeV 'that the Thoma®-e-e scatte:rmg CO_UId

tile beam, its divergence and the energy spread. Implemen vell dominate the independent event of the kinematic cap-

ing, e.g., the COLTRIMS within storage rings, with the elec.re and ionizgtion. It _is pertinent to recall here, that_domi-
tron or laser cooling of both the incoming beam and theance ofep-ey interaction over thé-ey or T-ep potentials

target, would be of primary importance in yielding the addi- (thq so-called antiscreening eﬁ)ams previously been ex-
tional experimental data on higher-ordeterelectronTho- perimentally detected in, e.g., collisions between two hydro-

mas scatterings. This could provide the most stringent tesqer!hkiz_latongci[ systteméep art1_d elT ?Lre'lfue ]?Ie(zjgtron? I(\)/If the
of atomic collision theory at larger energies beyond the reacRrol€ctii€ and target, respec 'VW ]. The fin ing ot Mer-

of the corresponding single-pass experimef@§]. The gel etal. [.31] IS very chal!englng for atomic scattering
COLTRIMS is, in fact, currently being built at the Stock- thSorYﬂislmc:[eE t_h((a) Se)ipfrll/lm?/maf”%/h ?t'{nf‘tfd behavior
holm storage ring CRYRING, where a reduction by another” Y attp=0.5-L1.4 Viev of the 17 tota crclr?lsi sec-
order of magnitude i 9, and AQ is anticipated to be tion is at varlance_wnh the corresponding predlc_:tw of
within reach at the end of 1996. The success of the COLT'—[he Thomas classical modg82] as well as the high-energy

- . ; limit of the peaking Oppenheimer-Brinkman-Kramers
RIMS depends critically upon the possibility of high mo- =
mentum resolutio\ p of the recoiled target ion to within a second-ordefOBK2) approximation[33]. It would be of

fraction of the atomic unit. At room temperature, such pre_u'tm.ost importance to verify exp(irirlnentally Whther this de-
cision is impossible, since the requirdgp would lie in the viation from the asymptoter—v would persist at the

regime of the thermal motion of the target constituents. Thdligher energies at which the asymptotic formulae for the

difficulty is overcome by cooling the target, so that at theCross section are expected to be more justified than in the

currently reached temperatured.1 K, the achieved momen- Lﬂterval 0.3-1.4 I:/IeV g()tnstlgeredt_|n IFEEBH' 'tf‘ atnytrc]:_ase b
tum (in all three directionsand energy resolutions afep~ | ere s an g(jrgenblnedet 'cl) ((ejore Ica hy Lﬂvestr:ga_r? IS prob-
+0.025 a.u. anddQ~ *6 eV. Such accuracy in the, e.g., em In considerabie detail and see whether the 11 cross sec-

i -1
transversal momentum component of the recoiled ion leadion @ should fall off more slowly than the trend de-
to the resolutiolA 9p~ =1 urad in the scattering angkp rived from the classical Thomas and the quantal OBK2

at, e.g., 1 MeV in H-He one-electron transfdB6]. This approxi_mations. The _presently propqsed CDW-4B model is
represents a remarkable achievement in comparison t ell suited to deal with these questions. The present study
A9 p~30 urad andAQ~+50 eV reached by the conven- concentrates on the total cross sections, whereas our subse-
tioan:\I TS[37]. Such an angular resolution of COLTRIMS quent paper will address the question of angular distributions

provides a unique opportunity to unfold the hidden structure?ssqqated W'th the_ ThomaB—e-e_ scattering In the TI.' In
in the differential cross sections at high energies aIIowin{ddltlon fo differential cross sections, it is often very impor-
I

access to various Thomas multiple scatterings. For examp da,mt tg atC(tquwe.t'mform%UObr.\r on thef Impact [E)Iaran_:_(later-
an inspection of the existing experimental data on#and ependent transition proba ”W(K’p) of, €.., or 11
grocesses. Such a task is not straightforward for ionizing

H'-He single ch h Is that the width of th& ~=>>=2 . .
Thomeaslpr)]gaeks? igggreggi(?o?r?gl?urne]\{cﬁgs foraan aet(;anﬁc hgdro_colhsmns investigated within the RIMS because of the nonu-

nigueness of the transformation between the transverse mo-
gen targef38,39. We have showf40] that such a phenom- - ; X
enon is due to an additional peak originating from the Tho-Mentum transfe=2uu sin(dp/2) andp. This problem has

masP-e-e scattering. This structure dt5-®® is very close recently been studied by Worgg al. [42] and investigated

to the critical angled 5°T=0.47 mrad of the standard Tho- fUrther in Ref.[43].
mas P-e-T double collision. Since the position af5®®

was not resolved in the previous experime[88,39, the lll. CALCULATION OF THE MATRIX ELEMENTS

P-e-e mechanism revealed itself indirectly through widen- . o o

ing the observed®-e-T peak. Both Thomas collisior3-e-e We consider the r11el|uml|ke target {@.1) as being in the
and P-e-T are of an intrinsically correlated nature. The 9round state, i.ei="S and select the (§“ configuration
former manifests the pure dielectronic correlation, wherea§lescribed by the simplest hydrogenic screened one-
in the latter scattering, the target nucleus is the object oParameter wave function:

correlation. This belongs to a class of a generalized correla-

tion concept involving onlyone electrorand the other arbi- L 2N Xyt %) A3

trary center of force, which is the target nuclelisin the @i (X, Xp) =Nye a2, Ny = P

H™-He single charge exchange. Obviously, highly correlated 3.1)
events in atomic collisions need not necessarily encompass '
two electrons. The above-mentioned improvementa i N=Zr—\s,

at the combined COLTRIMS-CRYRING facility could allow AS:E'
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Here, \g is the well-known Slater screening and the corre- 23/2

sponding binding energy is equal te\% It should be no- = NPT—,Q N j d3,e'* 17 2pSU F o (ivp,Livs, +i5-§;)
ticed that function(3.1) tends to overestimate most cross
sections, since the “outer” electron is represented by an or-
bital which is too “tight.” In the subsequent analysis, we

shall limit ourselves to ground-state capture only,
f,=1s. With the help of the inverse Fourier transform:

1 1 a7 ...
_:_f _Ze—lr-a)’ (32)

for ée{li,§2,ﬁlz}, Ii:)_()l_gl, §2:§1+)-()2_)—()1, F12:)_()1

—X,, the transition amplitude$; can be cast into the fol-

lowing convenient forms:

Tyi=ToTo,~T5 + T, (33

=T Ts,+ Tio~ T, — Ty, (3.9

where

5/2
dr
7& NPTZ_IZN f fdslela Sl ZPSJ‘J_FJ_('VP,].'US]_
+i5-§1)f d%,eB K1 (g Livxg +id - %y)

X J d%e ™ F XN F (1, 1,ipXa+ip-Xp), (3.5

ZEF’,/Z N2 dr
Ts,=Npr5 s Ny | —=

Xfdgleiailsl_zpsl]_[:l(iVp,l,iUSl+iJ'§1)
> 'Q+.a — . . PR
dexle'ﬁ XTMNF L (fvg,dioXg +io - Xg)

xfdzze—if*~*z-“zllzl(ig,l,ipx2+iﬁ-iz),

(3.6)

z3? d7
P T . .
ﬂzZNPTWNiJ ?fdsle'“ 2Py (ivp, Livs,

+|5§1)J d)?leiﬁi')zl_)\xlllzl(i VT,l,il)Xl‘l‘il})')_()l)

x [ dre v EL G dipx D %), @

iB-Xy— Xy
Xf d)?l X—l 1Fl(iVT,1,iUXl+ilj')_()1)

XJ dxe ! * VAR (L LipXo+ipXo), (39
Z3/2 o
Ter: NPT Flii N)Z\f dglela'S]_lFl(i Vp,l,iUSl‘i‘ilj'S)l)

X Vg e ?PL. f dx,e'f MV, (R (v Livxg

+ia.>zl)f dx,e KX M2 E (i, 1,ipXe+ip - Xo),

(3.9
3/2
TV—NPT—,? fdsle'“ s1” Zpslvs 1Fa(ive,livs;
+i17-§1)f d)*(leiﬁ'illFl(iVT,l,ivx1+i5-il)-ﬁ

xe‘*xlj d%pe™ X2V Fy (i, LipXo+iP- %y).
(3.10

The quanti'[yZ’;i in Eqg. (3.3 is related to the correction term
O(Pi from EQs.(2.263 and(2.52 due to unavailability of the

exact heliumlike wave function. This contribution to th¢

will be practically equal to zero, if we employ the highly
correlated variational Hylleraas wave function of DrdRe]

or Pekeris[44] for, e.g., He with the corresponding nearly
exact binding energ¥; . Such a functionp; can be consid-
ered as exact, but the computation would be prohibitively
time-consuming due to a large number of terms containing
ther ,, coordinate. Deferring this for a future study, we shall
presently replace the exact wave function by the fully uncor-
related hydrogenic wave functidB.1), i.e., ¢j=¢; and pre-
serve the exact enerdy; in Eq. (2.59 for the prior form,
becauseowi/ arises only in this version of thE matrix. As a

consequence, the corrective termE{Hy o )ei=(E;
—H+ )@ becomes generally different from zero. Thus, we
have

O(pi:(Ei_ HT,¢i)(Pi~(Ei_ HT,(pi')(Pi,
1 s \s

=—|——————AE;
2 X1 X

(3.11

whereAE;=E;—E; andE/
concisely be written as

=—\2. Then, the tern?’, can

T, =T AT, T Ty,) ~ T (3.12

where
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3/2

Z dr
P . G . . L _ZLp
/]Z(ZZNPT??N}Z\I dse'* %17 2P% Fy(ivp, Livs; +iv-§)) TR_ﬁNf 7L{R,

L ina . . Lo Z d7r
><f dx;e'P 71N R vy, Livxg +io - Xy) T, = 2_7:2Nf — Us, (3.163
efiE-izf)\xz .

Xf dizx—lFl(lgallleZ—’—IﬁiZ)v (313) ’]%zj\ﬂ,{g, 7;(1=WX1’ %:WA’ Z(ZZWXz’

2 (3.16b
32 where
Ty=AENpt 77?2 NiJ' d3;e' o1 2PSLFy (ivp,Livs 73

N=NiNpr(8m)\ (3.17

+I5§l)f d)-zlei’g')zl_)\xllFl(iVT,l,iUX]_"'il?')_()l)
i i i
T'PRTS{BL,

(a—ﬁ+K+)2 7

T"PRTSE AL,

e = U=
xfd)?ze""'XZ’“ZlFl(ig,l,ipx2+iﬁ->?2). (3.14 R (s B-ko)? 52

(3.18
. i . N R TlVPRlVTS|O£,D£ TlVPRlVTS|O£,D
All the integrals over the electronic coordinatés X,, and Ui=AE. -0 0 0 o o (3.19
§; in Egs.(3.5-(3.10, (3.13 and(3.14 can be done ana- ATEE T (apBoko)? X2 2(apBo)’ko
lytically by means of the Nordsieck techniq(#5] with the
general results: 1 TiOVF’Ri_”TS“CE_
U= ———F 7 (3.20
6.7 Zp (agB-k-)
e|q~r7)\r . . L
f dr ; Fi(ivljor+io-r) Uy =i\vvp

1+2

G-d—iNw\ "
q°+ A2 ;

a
q2+)\2

fdreid'Hlel(iy,l,iwr+i(5-r)

B 1 Z(j-tf)—i)\w —iv \ 1-iv
TP T T Pz
i A—iv
PN 26 6—2INw)’

f dreld TNV L FL(ivLior+id-T)

T G-d—iNw| "1
=—Vvw ((]24'—)\2)2 1+2

rad

X(N&+iq),

fdFeid'FlFl(iv,l,iwr+i£-F)§re‘”r

o T 1 zﬁ-é—i)\w il—iv
=—I\ T \2 + 7T \2 q2+)\2q
G+ @
+iv——s qa = .
g°+A+20-0—2i\w

This implies:

(3.153 y TUP RIS B(1—ivr) —ivr@Re)(Zpo +id) Lo
(aoBoko)® '

(3.21

ugZinU VT

y TOPRITH S a(1—ivp) —i vpBTol (Ao +i ) Lo

(@oBoko)” 3 ’22)
(3.15h - '
Ty PRy TSEIZp(1—ivp) +ivp(Zp—iv)Tol Lo
. 2Bo(agko)? ’
(3.23
and
A:[Zp(l_ i Vp)+ i Vp(Zp_|U)T+]
(3.159 X[AN1—ivy)+tivi(N—iv)R_], (3.243
B:[Zp(l_ i Vp)+ i VP(ZP_HJ)T_]
X[AN1—ivp)+tivi(N—iv)R,], (3.24h
C=[Zp(l—ivp)+ivp(Zp—iv)Ty]
X[AN1—ivy)+ivi(A—iv)R_], (3.249
(315d D:[Zp(1_|Vp)+|Vp(Zp_|U)T0]
X[)\(l_|VT)+|VT()\_|U)R0], (324d
with
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at-v—iZpv a-v—iZpv
Til=1+2 L Tol=l42—,
- at ao
(3.25
- BE-v—ikv B-v—i\v
RI'=1+2 . Ry'=1+2 :
N B 0 Bo
(3.26
KE-B+in K-P+iN
S;t=1-2 P p, Syt=1-2 i p,
K+ KO
(3.2
a¢=(at)2+2%, Bi:(ﬁt)z"')\za Ki:(Ki)2+)\21
(3.29

Bo=B2+\%,  ko=xk?+\?, (3.29

Lo=N1-1)+i{(A=ip)S.,

a0=a2+22,

Lo=N(1—i0)+it(A—ip)Sy. (3.30

This completes the analytical part of the calculation, so that
the prioro;; and the postr;; forms of the total cross sec-

tions can be succinctly summarized as follows:
O'i_f(ﬂag)Zle d< n;
< [ S nlF -t Ntk U Ul
(3.3)

oﬂ(ﬂ'ag):./\/'f dx ngfo dzy n|F—L{$—L{Xl|2, (3.32

where
B . Zp d7
F=F “on2 7WR_U52+U12)’ (3.33
514 em(vptrT)
N
N v? NaZpm“vpvy sin(rvp)sin(7vy)’ k&
e 3.3
S0 o

The integrations overk=(« sinf, cosp,,« sinb, sin ¢,,
Kk C0%,), 7=(7 Sinf.cosp,,7sind,sing,,7cos,), and n

IV. RESULTS

The integrations oves, and ¢, are performed easily by
means of the very simple and highly efficient Gauss-Mehler
(GM) quadrature:

20 o7 Nem -1
f do¢ f(cosd)=— 2 f| cos 77), (4.0
0 Nem k=1 2Ngm

whereNgy is the number of the pivotal points. The remain-
ing integrals over,, 6,, k, 7, and n are carried out after a
change of the variables according to

cod,.=u, cod.=v, ue[—-1+1], ve[—-1,+1],
(4.2
[2(1+x)
K= 1% xe[—1,+1],
1+¢
T:ng, §e[—l,+l], (43)
2(1+2)
n= 17 ze[—1,+1]. (4.9

Then, the variable-order Gauss-Legend&) routines are
applied to theu, v, X, & and z integrations following the
rule:

NeL

O”da sindt(cosd) = 3, wif(xy), 4.5

wherex, are the zeros of the Legendre polynomials and
are the associated weights. The change of the varigble
through Eq.(4.4) is particularly important, because it con-
centrates the integration points in a narrow forward cone,
which contributes dominantly to the total cross sectietg.

The orders of the GM and GL quadratures, i.e., the numbers
Ngm and Ng, of the pivotal points are varied until conver-
gence totwo decimal placess obtained for the total cross
sections. In practice, onljigy=<20 for the ¢,., ¢, integrals
and Ng, <40 for the remaining,., 6,, x, 7, 7 quadratures
proved to be sufficient. The expressions in Egs3 and
(4.4) are not used directly due to an apparent overflow at
x=~1, é~1, andz=1. This difficulty is readily avoided by
scaling the whole integrand analytically, i.e., by factoring out
the terms 1J1—x, 1/(1—-¢), and 14/1—z from the whole
integrand which, in turn, becomes a smooth function
throughout the entire integration manifold. Finally, this algo-
rithm is subjected to a powerful vectorization, with at least

have to be performed numerically. Hence, the final expresyyg orders of magnitude saving in the computer-central-
sions (3.31) and (3.3 for the total cross sections for the processing time.

process(2.1) in the present CDW-4B method are given in
terms of the above seven-dimensiofi@D) integrals over the

real variableske[0], 0,.€[0,7], ¢.€[0,27], ne[0s°],
Te[0,2],

0,€[0,7], and ¢,e[0,2r]. The TCDW-IEM
method of Ref.[10] also encounters similar 7D scattering

As an illustration of the proposed CDW-4B approxima-
tion, the total cross sections are computed for the following
symmetric transfer ionization:

He?t +He(1s?)—He' (1s)+ HE?t +e. (4.6)

integrals when dealing with the total cross sections for the Tl
procesq2.1). In Dunseath and Crothers’ TCDW-IEM model The computations are carried out for both the pedgy and

[10] the Pluvinage wave functiofi4] is employed with ex-

posto ;i total cross sections at impact energies ranging from

plicit allowance for the 1, coordinate. This could be done in 30 to 1000 keV/amu. The results are displayed in Tables

the present CDW-4B theory, as well.

I-11l and Figs. 1-4. In Fig. 1, a comparison is made between
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TABLE |. The “prior” total cross sectionsoj; (cn?) in the TABLE Ill. The “post” ot (cmP) and the “prior” o7 (cn?)
CDW-4B model as a function of the laboratory incident energytotal cross sections in the CDW-4B model as a function of the
E (keV/amy for transfer ionization reaction: *He?* laboratory incident energg (keV/amy for transfer ionization re-
+%He(1s?) —*He' (1s) +*He? " +e. The columns labeled by action: “He?" +*He(1s?) —*He' (1s) +*He? " +e.
ot anda 7 correspond to the results obtained with and with-
out the approximatioVp(R,s,)=Zp(1/R— 1/s,)~0, respectively E (keV/amy ot (cmd) o (cm)
(see text The notationx.yz[ —uu’] implies x.yzx 107V,

30 9.32[—17] 5.21[—17]
E (keV/amy ot @ (cnP) ait® (cnP) 35 4.35[-17]
30 3.95[—17] 5.21[—17] 32 7:400~17] i’i%{_ig
oo gmom anlw =V
60 2.58[—17] 2.72[~17] 55 2.90[-17]
70 2.36[17] 2.43[-17] 60 4.83[~17] 2.72[~-17]
80 2.16[—17] 2.19[-17] 65 2.57[-17]
90 1.97[-17] 1.98[—17] 70 3.95[—17] 2.43[—17]
100 1.79[—17] 1.78[—17] 75 2.30[—17]
125 1.37[-17] 80 3.24[-17] 2.19[-17]
130 1.33[—17] 85 2.08[—17]
145 1.14[-17] 90 2.67[—17] 1.98[—17]
150 1.05[—17] o5 1.88[-17]
U e R o
180 7.95[-18 ' '
200 6.46%—18} 6.13[~ 18] 150 9.43(~18] 1.05[~17]
250 3.89[—18] 3.64[—18] 175 8.02[-18]
300 2.40[-18] 2.22[~18] 200 4.48( 18] 6.13[-18]
400 9.85[—19] 8.92[—19] 250 2.32[-18] 3.64[—18]
500 4.46[—19] 3.98[—19] 300 1.30[—18] 2.22[-18]
600 2.20[—19] 1.93[-19] 350 1.39[—18]
700 1.16[-19] 400 4.75[—19] 8.92[-19]
750 7.46[—20] 500 2.05[—19] 3.98[—19]
800 6.52[—20] 600 1.93[—19]
900 3.84[-20] 750 3.98[20] 7.46[~20]
1000 2.36(—20] 1.99[—20] 1000 L16—20] 1.99[20]

the prior cross sections ;;® and o;;® of the CDW-4B
modelwith andwithoutthe approximation B=1/s, corre-
TABLE II. The “prior” total cross sectionsoi; (cn?) in the  sponding toVp(R,s,)=0 andVp(R,s,) #0, respectively, as
CDW-4B as a function of the laboratory incident eneigykeV/  stated in Eq(2.66). It is seen from Table | and Fig. 1 that the
amu for transfer ionization reaction: *He** +“He(1s?) potentialVp(R,s,) contributes by some 24% at low and 16%
—“He"(1s)+*He’" +e. The columns labeled byr;® and  at high energies. At lower impact energies, where the present
a1 correspond to the results obtained with and without the termneory is not expected to be adequate, the probability for the

O, =0, respectively(see text Tl is enhanced by inclusion of the interaction
_ _ Vp(R,s,)=Zp(1/R—1/s,). At high energies, which are
—(c) —(d) P 2 P 2
E (keviamy oir'® (enf) oir® (em) more appropriate for the CDW-4B method, this pattern is
30 4.91[—-17] 5.21[—17] reversed and/p(R,s,) tends to suppress the chance for the
40 3.63[—17] 3.79[-17] TI. As discussed before, the potentiatZy/s, from
50 3.00[—17] 3.12[-17] Vp(R,s,) causes the capture &, through the inherent
70 2.33[—-17] 2.43[-17] e, — e, subinteraction. Therefore, the situation observed in
100 1.71[-17] 1.78[~17] Fig. 1 indicates that the dynamic electron correlation could
150 1.02[—17] 1.05[-17] play an important role at high impact energiesee also
200 2.95[—18] 6.13[-18] Table ). o
500 3.88[-19] 3.98[19] Further, we have evaluated the contribution of the term
700 9.92[—20] qui'E(Ei_HT,@i')QDi/ , Which is contained only in the prior
1000 2.000—20] 1.99[—20] cross section. Namely, if we ignore this term in EB.52),

we would end up with the formula:
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He™ + He(1s?) —>He*(Z) + He** + ¢
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including O;

- — —excluding O

Ll . R
10 10°

Impact energy E (keV/amu)

FIG. 1. The total cross sections as a function of the laboratory FIG. 2. The total cross sections as a function of the laboratory
incident energy E (keV/amy for the reaction: *He?*  incident energy E (keV/amy for the reaction: “He?*
+%He(1s?) —*He'* (1s) +*He?* +e. The dashed and the full lines +*He(1s?)—*He" (1s)+*He?* +e. The full and the dashed lines
represent the “prior” cross sectionsj;® and o;;(®) of the  represent, respectively, the “prior” cross sectiang(® andoj; (9
CDW-4B approximation with and without the approximation of the CDW-4B method with and without the initial-eigenvalue
Vp(R,s,)=Zp(1/R—1/s,)~0, respectively(see also Table)l corrective termOizO%r:(EifHw,ir)qoi’ from Egs. (2.52 and

(3.1 (see Table I\

— 2\ ’ * _ 112
o (mag) =N f dk ”Jo dy 7|7 ~Us ", O/, which is shown above to be negligibly small. Hence,

(4.7)  the difference betweenr;; ando; is solely due to the po-
tential V(r15,X,) = 1/r ;,— 1/x4, which is present in the post
and absent from the prior cross sections. An inspection of
Fig. 3 reveals that the post-prior discrepancy is very signifi-
cant throughout the energy range 30—1000 keV/amu. The
post cross sections are larger by about 45% than the prior
note the prior total cross sectiomith and without the term ~ '€Sults at lower energies, with precisely the opposite pattern
0,, respectively. The results for bothi‘f(c) andai‘f(d) are a hlgher energies. Such a _conS|der_abIe d|ff§arence can be
T _— o attributed to the role of the dielectronic repulsiom 3/ Ex-

displayed also |p(§|g. 2. A:s(d():an be seen from this figure, theent for a much larger difference, this qualitative behavior is
cross sections ;™ ando ;" are quite close to each other o miniscent of the situation described before in Fig. 1, where
and their difference is slightly more pronounced at lower ang,,o compared the results with and without the correlation

intermediate than at high energies. In the absolute magni,m 1R— 1/s, in the prior version of the CDW-4B model.
tude, however, this difference does not exceed 6% and thg, e same Fig. 3, the experimental data of Skahl. [6]

values of the ratiar ;(9/o;(© are all contained in the in-
terval [0.995,1.06] at the energies under studgee Table

Zo [ d7
F=ﬁf —z (Ur=Us)),

instead of having Eq.3.31). The numerical results of such a
version are shown in Table II, wheee;© and o (@ de-

are also displayed. In contrast to the prior varianf, the

X A post versiono ;i of the CDW-4B method is found to be in

I). Thus, it follows that the tem®,; does not contribute  gatistactory agreement with the measurements at impact en-

significantly to the total cross section, wheri from Eq.  ergiesE=80 keV/amu. At lower energies, the results &oj

(3.1 is used. A similar conclusion has recently been reachedre larger than the experimental values, which is expected

in Ref.[27] for the DC within the CB1-4B model. since the CDW-4B is a high-energy approximation. This is
Next, we examine the so-called “post-prior” discrepancy, consistent with the previously assessed lower energy limit of

which arises from unequal perturbation potentials in The validity of the CDW-3B and CDW-4B approximations for

matrices(2.52 and(2.56). In Fig. 3, we depict the “prior”  single charge exchange in the proces2e85 and(2.69. In

oi; and “post” o; cross sections of the CDW-4B approxi- Sec. lll, we already identified the reason for which one

mation. Here, the prior results do not include the correctiorshould expect superiority of the post over the prior version of
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101: ————T—] T T — ] 10' —

He* + He(1s?) —> He'(Z) + He™* + ] E He* + He(1s?) — He*(S) + He™ + ¢

10° = E 10°|- N e

101 E 10|

Total cross section ¢ (10" cm?)
Total cross section ¢ (10" cm?)

107 E 102

Theory (CDW-4B): Theory (post):

102 3 post 1031 ——— CDW-4B

- — — prior - - - TCDW-IEM

10*

10*

10? 10° 10? 10°

. . Impact energy E (keV/amu)
FIG. 3. The total cross sections as a function of the laboratory

[ iane 4 +
'“S'de”‘ 5 en4erg)i E (ka/a+mL) for the reaction: He2_ FIG. 4. The total cross sections as a function of the laboratory
+'He(1s%)—*He"(1s) + *He?* +e. The full and the dashed lines jciqent energy E (keV/amy for the transfer ionization:

reprc_esent, respectively, the “pos# anq the “prior” o cross 4H?" +9He(1s?) — *He' (1s) + *He?* +e. The full line represents
sections of the CDW-4B model. Experimental dafa; O Shah e «nost total cross sectionrj; of the CDW-4B method. The

et al.[6]. dashed line represents the corresponding “post” cross sections of
the TCDW-IEM due to Dunseath and Croth¢i®]. Experimental

the CDW-4B method. This reason was precisely direct  j.12-0 O shahet al.[6].

appearance of the electron-electron interactian,lih the
perturbationU; of the post form as indicated i{2.62. The ¢, ihe ground staté="1S of helium is obtained fok=0.41,

interelectronic pote_ntia_ll t{, also appears itJ; of the_ prior i which casec(k)=0.603 366. The wave functiofé.8)
form, bUt, inan indirect way through the’ objecEi(  contains two entirely uncorrelated hydrogenic wave func-
—Hr o) ei=—[Ur—(As/xi+As/xt AE) Jei . which  tions with the unscreenedcharge Z; multiplied with a
is invoked in Eq.(2.61) as a consequence of replacing thecorrective  rq,-dependent  term of the form
exact wave functionp;(X;,X,) by Eq.(3.1). However, after exp(—ikrq,);F1(1—i7%',2,3kr,,). By definition, the exact
such a replacement, the three termé\ o/x; + A g/X,+ AE;)  total correlation energEff‘;t)'( M is introduced as the differ-
appear to largely cancel the contribution fronm,3/ In this  enceE; ¢,— E; ryr between the exadf;=E; , (Drake[22],
way, the whole effect of the electronic correlation was pracPekerig44], or an experimental datand the corresponding
tically washed out fronT ;;. self-consistent field Roothan-Hartree-FodRHF) value
In Fig. 4, comparison is given between the TCDW-IEM E; rue- The quantityEi(f‘gt); o includes both radial and an-
of Dunseath and Crothefd0] and our CDW-4B method. gular correlations. In the case of heliumE; o=

Both approximations are taken in the same post version. The 2 g3 724 4,E; rye= —2.861 67 and, thereforezi(“;‘)i corp

TCDW-IEM includes the static electron correlati®EQ in  — _ 042 504 4. The Pluvinage totéladial and angular
the target through the bound state wave function of the, relation energy E(19: com_ E; puv— E; rye= —0.016 33

. . i,Pluv
Pluvinage typg14]: amounts for 38.4% of the exact total correlation energy

(%170~ 0! (R0, %) E,“?;X M For comparison, a much simpler four-parameter
ne e wave function of Boham and Koli#7] for helium given by:
3
=c(k) ?T e~ Ztxp+xp) g ikr

><1F1(1—i77’,2,2kr12), (48) ><(1+a3e*a4’12), (49)

@i(X1,X)~ (PiBK()-fl Xp)=Npy(e X1~ 2% 4 @~ 82X~ 21%2)

wherer ;,=|X;—X,|, 7’ =1/(2k), andc(k) is the normaliza- Yyields the binding energy;(BK) =—2.901 923 and pro-
tion constant. Herek is a nonlinear variational parameter. vides remarkable 94.7% dE{'%". Even neglecting the
The corresponding lowest binding energy p,,=—2.878  non-linear termage™ 2412 in (4.9), i.e., including solely the
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radial correlations, in which case one recovers the two- V. CONCLUSION
parameter Eckart-Silverman wave function for thes,(%") . . L
configuration[48]: We have investigated the problem of transfer ionization in

collisions between bare nuclei and heliumlike atomic sys-
0i(X1, %)~ @E(R1,Xp) = N @ 2117 22%2 4 @~ 22X1- 21Xz tems. A second-order theory, termed the four-body con-
(4.10  tinuum distorted-wave(CDW-4B) method, is formulated.
The scattering wave functions of the proposed method ex-
implies: E; g.s= —2.875661 4. Such a result amounts for hibit the proper asymptotic behaviors in both entrance and
32.9% ofEff‘gtx' °" and this is very close to the corresponding exit channels. The CDW-4B approximation is presently ap-
Pluvinage estimate obtained with £4.8). Use of Eqs(4.9)  plied to the transfer ionization in symmetric collisions be-
and(4.10 in scattering problems is quite straightforward. In tweena particles and helium targets at impact energies from
contrast, Eq(4.8) requires a considerable computational ef-30 to 1000 keV/amu. The previous independent electron
fort with bound-free atomic form factors through numerical model (TCDW-IEM) is known to largely overestimate the
guadratures for the Laplace transforms in a complex planexperimental data. The conclusion from the present study
[10]. In the TCDW-IEM, the dynamic electron correlations indicates that the dynamic electronic correlations in the ac-
(DEC) are neglected altogether. The CDW-4B model explic-tive perturbation potentials are much more important than
itly includes the DEC through the dielectronic interactionthe static ones in the target bound state wave function.
1/r 1, in the transitionT operator. The SEC can also be fully Agreement of the theoretical total cross sections obtained by
included in the CDW-4B, but it is ignored in the present means of the CDW-4B model with the available measured
illustration with purpose of providing an unambiguous as-findings is very good. Such a substantial improvement over
sessment of the DEC alone. The relative role of the SEC anthe CDW-IEM is attributed solely to the dynamic electron
the DEC could otherwise be inferred from the two curvescorrelation effects.
associated with the TCDW-IEM and CDW-4B displayed in
Fig. 4. The DEC emerges as more important than the SEC.
When comparing these two theories with the experimental
data in Fig. 4, it is seen that the CDW-4B represents a sub- This work was supported by the Wenner-Gren Science
stantial improvement over the TCDW-IEM. This seems toFoundation(Stockholm, Sweden The authors also appreci-
indicate that only four-body theories, with a proper inclusionate useful discussions with A. Salin, R. Gayet, R. Rivarola, J.
of thedynamicelectronic correlations, could successfully de-Hansen, A. Beany, R. Schuch, H. Schmidt-B&ing, and
scribe transfer ionizatio4.6). R. Dorner.
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