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Multiphoton detachment of electrons from negative ions
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A simple analytical solution for the problem of multiphoton detachment from negative ions by a linearly
polarized laser field is found. It is valid in the wide range of intensities and frequencies of the field, from the
perturbation theory to the tunneling regime, and is applicable to the excess-photon as well as near-threshold
detachment. Practically, the formulas are valid when the number of photons is greater than one. They produce
the total detachment rates, relative intensities of the excess-photon peaks, and photoelectron angular distribu-
tions for the hydrogen and halogen negative ions, in agreement with those obtained in other, more numerically
involved calculations in both perturbative and nonperturbative regimes. Our approach explains the extreme
sensitivity of the multiphoton detachment probability to the asymptotic behavior of the bound-state wave
function. Rapid oscillations in the angular dependence ofntpdoton detachment probability are shown to
arise due to interference of the two classical trajectories, which lead to the same final state after the electron
emerges at diametrically opposite sides of the atom when the field is close to maximal.
[S1050-294®@7)03205-9

PACS numbes): 32.80.Rm, 32.80.Gc, 32.80.Wr

I. INTRODUCTION y 1/2
r~R=| —| >1, 2
. . . 2
In this paper we present an analytical solution to the prob- wylty

lem of multiphoton detachment from a negative ion by awherey=au</F is the Keldysh parameter arfdlis the field
linearly polarized laser field. It gives very reliable quantita—strength_ In the weak field regime>1, Eq. (2) gives

tive results for a wide range of intensities and frequencies of, 1/Jw~k~12n>1, wherex~0.3 for a typical negative
the laser field, from the weak-field regime, where the procesg), binding |Eo| ~ 1 e\,/. In the strong field regime<1

is described by the perturbation theory, to the strong fieldsygtimate (2) yields R=\ylo=x \JFo/F>1, where
where it proceeds as tunneling. The theory is valid when thepoEK3 is the typical atomic electric fieldoariH«I’Zo.

number of photons is large, but usually gives good results  “The two features(i) and (ii), greatly simplify the multi-

as soon as=2. We use it to calculate and examine variousphoton detachment problem. Owing (i0), the final state of
characteristics of the problem: the total multiphoton detachthe electron can be described by the Volkov wave function
ment rate, ther-photon detachment cross sections, the specf4], which takes into account the external field and neglects
trum of excess-photon detachm¢BPD) photoelectronsthe  the atomic field. Moreover, the Volkov wave function de-
analogue of above-threshold ionization in atpmend the  scribes explicitly the variation of the electron energy in the

peculiar photoelectron angular distributions. laser field. This makes it very convenient for application of
There are two important physical properties of the multi-the general adiabatic theory, as suggestedi by
photon detachment process. Calculations based on the Volkov final-state wave func-
(i) The frequency of the laser field is much lower than thetion were first done by Keldysf8]. Subsequently, the idea
electron binding energy was developed by Perelomov, Popov, and Tererf&hand
later reconsidered by Faiddl] and Reisg§7]. This approach
w<|Ey|, oy is usually supposed to give a correct qualitative picture of

multiphoton processes. In this paper we demonstrate that, in
where Eq= — k%2 is the energy of the bound stat@omic  fact, it produces very accurate quantitative results for the
units are used throughquiThis means that multiphoton de- multiphoton detachment from negative ions. We reexamine
tachment is aradiabatic problem The external field varies and extend the Keldysh theory, paying particular attention to
slowly in comparison with the period of electron motion in the following points. First, we show that the EPD can be
the system. Therefore, the general adiabatic thébrg] is  described accurately by the theory. Originally, the theory
applicable. As long as the laser field is weaker than thevas developed for low-energy photoelectrd3$ with ki-
atomic field, the detachment probability is exponentiallynetic energies much smaller than the binding energy. The
small with respect to the adiabaticity parameteg|/w~n. present approach is valid at any photoelectron energy. Sec-
(il) The process of multiphoton detachment takes placend, the angular distribution of photoelectrons is examined
when the electron is far away from the atomic partidee in detail. We show that a nontrivial oscillatory pattern of the
Sec. l)), atlarge distances angular distribution is caused by the simple and interesting
physics. The photoelectron’s escape from the atomic particle
is most probable when the field reaches its maximum. There
*Electronic address: gribakin@newt.phys.unsw.edu.au are two such instants in every period of the laser field
TElectronic address: kuchiev@newt.phys.unsw.edu.au T=27l/w, say,t=0 andt=T/2. As a result, there are two
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classical trajectories which lead to the same final state of thential detachment rate can be written as the sum over
photoelectron. Interference of the corresponding amplitudes-photon processgsee Appendix A, Eq(A8)]

gives rise to an oscillatory angular dependence of the detach-

3

ment rate._ There is a similar effect. in the gingle—photon de- dwn=27r2 |Apn|25(Ep— Eo—Nw) d psy 3)
tachment in the presence of a static electric field, where the n (2m)
interference takes place between the two trajectories of the ) )
electron emitted up or down fie[®,9]. whereA,,, is the amplitude of thé-photon process

Estimate(2) leads to a further simplification of the prob- 107
lem, since the initial bound-state wave function of the atomic Apn:_f Wi (r HVE()Wo(r,tdr dt, (4)
system should also be considered at large distances, where it TJo

can be replaced by its simple asymptotic form. The compli- LBt ) ) L
cated behavior of the wave function inside the atom and th&¥ o(r,t) =€ =0'd(r) is the wave function of the initial
corresponding many-electron dynamics have little influenc&l€ctron state in the atomic potentl(r)

on the multiphoton detachment. In contrast, use of the wave 2

function with incorrect asymptotic behavior, e.g., that corre- p_+ U(r)}(bo(r)= Eo®o(r), (5
sponding to the Hartree-Fock binding energy, introduces an 2

error, .W.hiCh is exponen_tially_large with respgct\r{(—). Such V(t) is the interaction with the laser field,

sensitivity has been noticed in the perturbation theory calcu-
I[ati(]Jns of the two- and three-photon detachment from H Ve(t)=—er-F(t), (6)

10].

There have been a large number of papers where multin the length gaugee= —1 for the electron, ant ,(r,t) is
photon detachment from the hydrogen and halogen negativide continuous spectrum solution of the time-dependent
ions is investigated. Perturbation theory calculations includéchralinger equation with the guasienergy
those based on the Hartree-Fock approximafibti, adia- Ep=p2/2+ F2e?/4w?. It describes the outgoing photoelec-
batic hyperspherical approa¢i0], model potentia[12], a  tron in the laser field with the translational momentpnand
configuration-interaction proceduf&3], and the Lippmann- F2e?/4w? is the electron quiver energy due to the field. The
Schwinger equatiof14]. There are also numerous nonper- subscriptn in A,, reminds one that the amplitude must be
turbative methods, such as the Floquet close-couplingalculated aE,=Ey+ nw, provided by the energy conserva-
method [15], complex-scaling generalized pseudospectration in Eq. (3).
method [16], non-Hermitian Floquet Hamiltonian method  As we show below, the detachment probability is deter-
[17], and theR-matrix Floguet theory18,19. All the above  mined by the asymptotic behavior of the bound-state wave
methods rely on much more involved numerical calculationgunction at large distances. This means that the role of elec-
than those needed in our analytical approach. However, weon correlations in the multiphoton detachment of a single
believe that the present theory provides accurate answers fetectron is small, providedby(r) correctly represents the
most of the multiphoton detachment problems. For illustra-asymptotic behavior of the true many-electron wave function
tion purposes, we reproduce a variety of results obtainedf the system
earlier, including then-photon cross sections, total detach-
ment probability, EPD spectrum and photoelectron angular  ¥n(r1, .- Fn-1,1) = ¥nog(rg, o In-2)Po(r), (7)
distributions for a large range of frequencies and intensities r=1
of the field (Sec. lll). We believe that in some cases our
results are more accurate than those obtained previously, d
to the correct asymptotic behavior of the bound-state Wave 1 electron atomic residue
function we use. '

The good accuracy we have achieved within the Keldysh- If we neglect the mfluen_ce of the atomic potenti(r)

. . . on the photoelectron, the final state is given by the Volkov
type theory is quite useful for the multiphoton detachmentwave function
problem. On the other hand, its validity is very important for
the development of an adiabatic theory of more complicated it
phenomena, such as double ionizatj@an—22. ‘pr(r,t)zex;{i(va Ki)-r— ff (p+ ktr)zdt,:|, 8

The formulas obtained in this paper can be used to esti-
mate probabilities of multiphoton ionization of neutral at-
oms. However, the influence of the Coulomb field of the
positive ion on the wave function of the photoelectron canno
be neglectedl23,24 and our results for the multiphoton ion-
ization would be less reliable.

where ¥ is the ground-state wave function of the
Eelectron system, an®¥'_, is the wave function of the

wherek,=ef'F(t’)dt’ is the classical electron momentum
due to the field. By omitting the lower integration limit we
fhean that we set its contribution to zero, as if the integration
is performed from-cc and the integrand is switched on adia-
batically. For the Volkov function8) this gives the same
phase as ifi21], — (i/2) [5(p+k./)2dt’ +ipF/w?, and pro-
vides ¥ ,(r,t) with a convenient symmetry property with

Il. THEORY respect to inversion:

A. Basi ti
asie equations W (r )=V (~rt+ TR)exgiE,T2). (9
Consider the removal of a valence electron from an atom

or a negative ion by the laser fiek(t) = Fcoswt. The differ-  The wave function8) satisfies the Schainger equation
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Yy
ot

This makes the amplitudd,,, exponentially small and the
v,. (10 integralf] .. .dt should be calculated using the saddle-point
method. The positions of the saddle points are given by
The neglect of the short-range potentif(r) for the photo- ~dS(wt)/dt=0, which yields
electron is justified in multiphoton processes, e.g., in the

2
p
> +Ve()

multiphoton detachment from negative iofsee end of Sec. (p+ky) 2+ k?=0. 17
1B).
~ Using the complex conjugates of Eq8) and (10) and  The saddle-point method in this problem has simple and im-
igWo/dt=Eq¥, we transform amplitudéd) into portant physical contents. The two terms on the right-hand
1T RY side of Eq.(16) describe the energy of the electron in the
A :_f E.— (ptky) }gf) (p+ky) initial and final statesE, and (p-+k;)?2/2, respectively. Ac-
T So 0 2 0 ! cording to the general adiabatic thedrg], the transition
- from the initial to the final state happens at the moment in
_ 20447 i time when their energies are equal. This is exactly the mean-
xexp{zf (p+ki)“dt |E0t}dt, (11 ing of Eq. (17).
_ Note that condition(17) coincides with the positions of
where®,(q) is the Fourier transform obg(r) singularities of the Fourier transfordhg(p+k,) in the am-

plitude (11). Indeed, the general asymptotic formdf(r) is

Fo(a)= [ dre rag(n). (12 )
Do(r) = Ar’ Texpg( — kr)Ym(r), (18
Note that in the velocity gauge =1

2 where v=2/k, Z is the charge of the atomic residue

e e t
_ 2 _ ' 2 ~
Ve(t)=— EA(t)'p+ EZA (1, Al)= _Cf F(t)dt', (v=2Z=0 for the negative iop andr =r/r is the unit vector.
(13 It is easy to see that due (@8) the Fourier transfornil2) is
singular atq®=— «?. Using [27] we derive the following

the Volkov wave function looks simpler, asymptotic form of®,(q) for g— *i«:
it
vyro=exgipr— [ (k| (4 . (260 T(r+1)
srn=onipr=3 [ i) e Fol @ =4mACE Vin(P) T, (19

This gauge, which apparently “leads to an analytical sim-
plicity” [7], where ()'=(*+1)' corresponds tg— *i .
Therefore, when the length-form amplitude is calculated
1 p?\ ~ T by the saddle-point method, we do not need to know the
Apnzf(EO_ E) d)o(p)fo behavior of the bound-state wave function in the whole
space. In contrast, when using the velocity-form amplitude
i [t o (15), the value of the Fourier transform for the true final-state
X ex 5] (p+ke)"dt —iE,t dt, (19 momentump is needed. To calculate it one must know the
exact wave function at all distances, including 1. What
is less physical though than the length gauge in this probleninakes the problem even harder is that many-electron corre-
The amplitude(4) is not gauge invariant whebl(r) is ne-  lations become essential there.
glected for the final statecompare(11) with (15)], except Equation(17) for the saddle points, presented explicitly as
for the zero-ranges-wave initial state®q(r)=Ar te "/

V4. The length gauge interactidf) emphasizes large dis- eF 2 )
tances, where the bound-state wave functibg(r) has a p+ sinwt, | +x°=0, (20

well-defined asymptotic behavior. We will see in the next
section that this gives it a major advantage over the velocity

- : defines complex values, where the transition from the
auge. In the limitw— 0 the length-gauge calculation repro- ! .
gucgs the static-fielg) resUI25 2% gaug P bound state into the Volkov state takes place. Equatih
T has two pairs of complex conjugate roots in the interval

0=<Re(wt)<2. According to the general theory of adia-
batic transitiong?2], in the case where the final-state energy
For multiphoton processes the integral over time in theE, is greater than the initial enerdy,, we should take into
amplitude (11) contains a rapidly oscillating exponent account the two saddle points in the upper half-plane of com-
exdiS(wt)], where S(wt)~27n is the coordinate- plext.
independent part of the classical action Changing the integration variable tet and substituting
the asymptotic expression for the Fourier transform near the
singularity(19), we can write amplitudéll) as the sum over
the two saddle points

B. Adiabatic approximation

1 [t
S(wt):zf (p+ky)2dt’ —Egt. (16)
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1 N
22,2, [ (ot conut, =+ T 5=, o
27T,U4=1'2 ,
S, =cC.(£+4zs,), (28)
| " v
ATACE) Yim(p,)(20) T (v 1) X iS(wt)]d(wt) and the signs* correspond to the two saddle points
2[(p+k)Z+ K277 L exfliS(wt)]d(wt), /
[(ptk)™+ 7] (21) u=1,2. The usual definition of the spherical harmoni2§]
— 111/2
where the integral is taken over the vicinity of th¢h saddle Yin(9,0)= 1 e‘m‘P(—l)mHm‘ 21+1 (I |m|);
point, |6M is the unit vector in the direction of NeT 2 (I+|m|)!
p+(eF/w)sinwt,, and the two signs inX) correspond to % P‘m‘(cos&) 29
| )

u=1,2. Note that for the initial electron state bound by
short-range forces, as in a negative ion, the integra@1in

has no singularity #=0) and the application of standard
saddle-point formulas is straightforward. Having the generaY

is generalized naturally to calculahqm(f)ﬂ) for complex
ectors by setting

case in mind, we will calculate the amplitude for arbitrary 2\ 1/2

v, taking into account the singularity at the saddle point. This cosd = (ptky-F :( p_L) (30)

is also useful if one wants to calculate the amplitude in the V(p+ky)?F 2

original form (4) without using the transformation that leads

to Eq.(12). where the last equality is valid at the saddle points, and
Using dY(wt)/d(wt)=[(p+k.)?+ k?]/2w, we can re- p,=psind is the component op perpendicular to-. The

write Eq.(21) as real physical angl®@ should not be confused with the com-

plex angled from Egs.(29) and(30). The azimuthal angle

k\" 1 i i
_ KL | ~ ¢ is the same in both cases.
2mAL (v+1) w) ZWMZELZ (£)¥im(P,) Using (9) and the symmetry of the spherical harmonics
Yim, one can show that the amplitud® has the following
exfiS(¢)] symmetry propertiesA,,— (— 1)”*'Apn, upon inversion
quﬁ, (22  p——p (6—>7—0, p—e+m), andAy—(—1)"TTMA,

upon reflection in the plane perpendicular to the direction of
the field (9— 7— 6). Consequently, the amplitude is zero for
p perpendicular to the field, ii+1+m is odd.

It is easier to look at the physics behind E&5)—(28) in
the case where the photoelectron momentum is small,

where ¢=ot. In the vicinity of the saddle poinip,,
S'(¢,)=0, we haveS'(¢)=S"(¢,)(¢—¢,). The contri-
bution of this saddle point is then given by the following

ntegral p<< k. The following simpler formulas for the saddle points
exdiS(¢)] 1 exfiS(¢)] can be obtained fron26)—(28) by settingé=0:
! v d = U v v d 1
ST PTG G-en ¢ -
(23 sinwt,=*iy, comt,=*\1+y% S/ =iy 1+y2?,
which is calculated in Appendix B. (32)

The explicit form of the actio16) is where y= kw/F is the Keldysh parameter. Thus, for small

7 photoelectron momenta the saddle points ate=isinh 1y
S(¢p)=n¢—§& cosp— Esin2¢, (24)  and wt,=7+isinh 1y, and the detachment takes place at
the two instances when the external field is maximai0
and T/2 on the real axis. Accordingly, the total amplitude
(25) is the sum of the two contributions from these points.
This results in oscillations in the photoelectron angular dis-

wherez=e?F?/4w® is the mean quiver energy of the elec-
tron in the laser field in units ob, £é=eFp/w? depends on
the angled between the photoelectron momentprand the tribution, which we discuss in greater detail below.

field F, and we putt,—Eq=nw due to the energy conser- o riginal approach used [8,5] was to expand Egs.
vatlon in (3). Thus, we obtaln the f|ne.1l expression for the (26) and (27) and the action(24) in powers ofp/« to the
amplitude by the saddle-point method: second ordefsee Sec. [ID} thus obtaining corrections to
v (31). In this regime,y remains the main parameter which
Apn=—2mAT(1+ v/2)2”’2<—) > (i)lylm(ﬁ#) determines the probability of multiphoton detachmp2a).
®) =12 However, the applicability of the saddle-point res@g) is
. ) essentially narrowed by such expansi@ec. ).
x(c"+ is,)"exf —ic,(é+2s,)] The adiabatic nature of the problem allows us to estimate
‘/zw(—is;;)”l ' the radial distances that are important in the multiphoton
detachment process. We have already seen that the saddle
where points in the integral in11) coincide with the poles of the
Fourier transform®,(q). The form ofdy(q) atg— ik is
Sinwt,=(—§&=xi \/Sz(n—z)—gz)/4zzsﬂ, (26) given by the behavior ofby(r) at r—o. To estimate the

(29
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essential distances look at E@2). The range of¢p where and if we are interested in the total detachment rate for a
the integral is saturated is determined byclosed shell, the sum oven and the electron spin projec-
|S"(#,)(84)%|~1, which gives §¢~|S"(¢,)| Y2 The tions must be completed:

corresponding range of momenta-k; is given by

|
wy=2 >, wim, (35)

F Ji+42\12 1
6q~5cos¢ﬂé¢~(%) T m

o ~ The dominant contribution to this sum is given by the
where we use Eq31). The essential distances are obtainedm=0 state, since it is extended along the direction of the

from r 6g~1, which yields estimat€2). It is important that  fie|d (see Sec. IID®

R>1 in both weak- and strong-field regimes. This makes the |t is very easy to take the effect of fine-structure splitting
Keldysh approach valid for short-range potentials. There isnto account. The two fine-structure componeintd + £ of a
another physical reason which helps to clarify why thecjosed shell are characterized by different binding energies

When a large number of photons is absorbed by the phOtQ'sublevel is then given by

electron, higher-angular-momentum partial waves are popu-

lated. The influence of the short-range potential upon them is dwld)  2j+1 L dw
small. For a given electron momentum the importantl —_n_- - 1 (36)
values can be estimated laspR. In the perturbation theory d  2l+1m==) dO

regime this estimate yields- (p/ ) yn, which suggests that o ] o
the spread of the probability of finding the photoelectronWh'Ch |s_exact_ly what one would expect from naive statisti-
with given| is described by a random walk of steps. cal considerations. _ _

Estimate(2) also explains the extreme sensitivity of the ~ Of course, one can easily obtain the total detachment rate
multiphoton detachment rates to the asymptotic behavior dfY summing then-photon rates oven. The smallesn is
the bound-state wave function. Suppose a bound-state wag@iven by the integer part df(|Eq| + F?/4w®)/w]+1.
function characterized by’ instead of the truec is used.
The error in the amplitudé&) introduced by replacing by D. Limits

«’ comes in as a factor epAxR], whereA ="~ «. The There are two limits which can be usefully explored with

value ofR is large; thus, even a smallk can produce an - : L
exponential error in the amplitude. Using the perturbation-the help of Eq(33). The first is the perturbation theory limit,

. . . where th hmentr is pr rtional wer of
theory regime estimate dR we obtain the error factor of ere the detachment rate is proportional toritiepower o

the photon fluxJ=cF?/(87w), and the process is described
expf —2(Ax/x)\2n] for the detachment rate. by the generalized-photon cross section

C. Detachment rates %_ % -n (37)
The differentialn-photon detachment rate for the electron dQ  dQ '
in the initial statdm is obtained from Eqg.3) and(25) after _ o )
integration overp andp, The other is the low-photoelectron energy limit studied ear-
lier in [3,5]. It enables one to recover the static-field results
dw, PpA*(k\? (I=]m)! [25,26.
1. Perturbation-theory limit
[ml¢/ 2gi 2)[2 . . s .
X|PI(V1+p?sire ol «®)| To obtain the perturbation-theory limit, it is convenient to
(c,+is,)" rewrite the saddle-point equati¢@6) for sinwt, in the fol-
> +)l+m w1k exd —ic lowing form:
,;1,2 ( 2m(—is))"+! H-ieu(&
w .
2 SMZE(pHiI\/KZ'f‘pf), (38
+zs,)]| , (33

wherep| = pcos is the momentum component parallel to the
where p=y2(nw— F?/4w”+E,) is the photoelectron mo- field. The weak-field regime>1 infers|s,|>1, hence we
mentum determined by the energy conservationan@ for  obtain for cost,

negative ions. According to the symmetry properties of

Apn, the differential n-photon detachment rate is exactly

: i _
zero atf= /2 for oddn+1+m. Cﬂ=i\/1—si:—|sﬂ+g+0(sﬂ2). (39
The totaln-photon detachment rate of thea state is ob- .
tained by integrating33), Using Eqgs.(38) and(39) to calculate the amplitud€5) for
v=0, and retaining only the leading termar everywhere,
ng)zzwfﬁ%gngd 0, (34) exgept inc,+is,, yvhere the second term is necessary, we
0 dQ arrive at the followingn-photon detachment cross section:
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do, pA2w (I—|m])! This phase varies with the ejection angle of the photoelectron
—_—= (21+1) from Eo=(2n+1)tan }(p/«)+ px/w to —E,, and can be
2 o, I
dQ  4n?\2ne (I+|m)! quite large, even for the lowestn process,
me \" p~+w, 2o~ +n, thus producing oscillations in the photo-
X |P|M(\1+p?/x?)|? nsz) electron angular distribution. Note that in accordance with

the general symmetry properties, the cross section is zero at

exp(pﬁ/w) 0= /2, whenn+|+m is odd.

\/K2+ pi

where p=+2nw—«*, c~137 is the speed of light,
e=2.71..., andE is the momentum-dependent contribu-
tion to the relative phase of the two saddle-point terms in th
amplitude,

[1+(—1)"*McoE],  (40)

2. Low photoelectron energies and the static-field limit
Another simplification of the general formulés3) is
achieved when the energy of the photoelectron is low com-

$ared to the binding energy?< «2. Then, following[3,5]
one can expand the acti®@{¢,) and other quantities calcu-

[2+ D2 lated at the saddle points up in powerspto the second
E=(2n+1)tan? ZPH > +pH “ pl_ (41)  order. Forv=0, which corresponds to the multiphoton de-
\/K +p! @ tachment from a negative ion, we obtain
|
dw,  pAlwy 1 2141 (I+|m])! 2|E0| 1 1)\ - Ny
A0 " 2B Vit 2 @MMDZ dm (- [mr P T e [T 22 M YT Ty
— y |\ p? yp2sirtd | [ psing| 2™ | 2kpcosH/1+ 12
Xexg —| sinh ~y— —lexp — 1+(—1)""*Mcog ——M | |.
Vi+9?) @ w1+ 92 K Wy

(42)

This formula coincides with Eq(53) of Ref. [5]. The increases the detachment rate for Chy a factor of 2, in
cos (---) in the last square brackets of E42) appears due spite of the large polarizabilitw(Ca)=170 a.u.

to the interference between the contributions of the two It is worth noting that the perturbation theory formula
saddle points in amplitudé25) and is the analogue of (40) and the low electron energy lim{2) have a common
cosE in Eq. (40). It determines the oscillatory behavior of range of applicability. If we usp<< « in the first and take the
the angular dependence of tmephoton detachment rate, perturbation theory limity>1 in the second, the two formu-
which would otherwise simply peak along the direction oflas yield identical results.

the field §=0, or 8=, for m=0.

Formula(42) also shows clearly that the detachment rate
for the states withm#0 is much smaller than that of
m=0, due to the faCtorﬂsing/K)z\mL It comes from the lead- In this section we use the formulas we obtained within the
ing term in the expansion of the associated Legendre p0|yadiabatic theory to calculate the photodetachment rates, EPD
nomial le|(x) in Eq. (33 atx~1. spectra, and photoelectron angular distributions for &hd

IIl. NUMERICAL RESULTS AND DISCUSSION

As shown by Perelomov, Popov, and Teren{'6y; in the
limit ®«—0 Eq. (42) allows one to recover the well-known
formula for the ionization rate in the static electric fidfd
[26]

A (2I+l)(|+|m|)!(2Fo 2v=|m|-1
Wetat™ 2, 2= 2 (1= [m[)! | F
2F, 43
Xex _3_F (43

for negative ion case=0. It has been shown recen{l§0]
that the account of the polarization potentialve?/2r* act-

halogen negative ions. These are the most studied species so
far, which enables us to make comparisons with results of
other calculations. Our aim is to show that our theory
achieves good accuracy in describing multiphoton detach-
ment in both perturbative and strong-field regimes.

To apply the theory, all we need is the asymptotic param-
etersA and « of the corresponding bound-state wave func-
tions. The values oA are tabulated in various sources and
we use those frorf32]. The values of are calculated using
the corresponding binding energies=\2|Ey|. They are
taken from the electron affinity tabld83], or obtained by
combining those with the fine-structure intervals of the
atomic ground statg84], when we consider the detachment
of p4/, electrons from the halogens.

ing between the outer electron and the atomic residue in the In Fig. 1 we present the generalizeephoton detachment
negative ion changes the numerical pre-exponential factor inross sections for H obtained by integrating the differential
Eq. (43). However, this correction is not very large, e.g., it cross sections from Eq40) with A=0.75 and«x=0.2354
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near the atomic core. This idea is favored by the experience

. SEEEREEE R R R gained from a number of problems, such as the single-photon
co I ] detachment, electron-atom scattering, etc., where electron
g 10 o] correlations are indeed very important. However, as shown
o0 - ° 1 above, the multiphoton problem under consideration proves
T I ] to be different. Absorption of several quanta is dominated by
S 5 7] large distances satisfying inequali®). The complicated be-
- - . havior of the wave function inside the atomic core turns out
© i | | | l ] to be inessential. This is the main reason for the good agree-
O L 111 11 i1 | 111 L1 1] ment We observe |n F|g 1
0.14 015 016 017 018 019 To check our theory in the nonperturbative regime, where
one must use Eq33), the EPD spectra of H for the three
. 8 large field intensities =10'%, 5x 10'°, and 18 W/cm?, of
) i the 10.6am radiation, »=0.0043 a.u., are presented in
SE N Table I. For these parameters, the electron quiver energy, or
.0 C the ponderomotive energy shift, in units ofw,
S 4r z=F?/403=0.894, 4.472, and 8.945, and the Keldysh pa-
i C rametery=1.895, 0.847, and 0.599, respectively. For given
~ 2r w, absorption of a minimum of 7 photons is required. The
© r ponderomotive threshold shift changes this number to
0— Nmin=28, 11, and 16. The calculation of the detachment rates
0.12 from Eqs.(33)—(36) has been done usingathematicg 31].
For the smallest intensity, the lowest EPD peak8 domi-
6 nates the total detachment rate, whereas for the higher inten-
& - sities many peaks in the EPD spectrum can be observed.
3& A The detachment rates in Table | are compared with those
o L obtained in the nonperturbative calculations of Telnov and
% [ Chu[17]. They describe their method as a complex-scaling
S LL generalized pseudospectral technique applied to the solution
~ - of the time-independent non-Hermitian Floquet Hamiltonian
Sy i for the complex quasienergies and use the accurate model
o L——1 potential from[12] to describe the interaction of the electron
0.1 0.11 0.12 0.13 with the atomic residue.

w (eV) There is good overall agreement between the two calcu-
lations. The discrepancy usually does not exceed a few
per cent, and is slightly larger for higher EPD peaks and
smaller field intensities. The latter is somewhat puzzling,
since there is good agreement in the perturbation-theory limit
for the seven-photon cross sectionest 0.0043 a.u.:

FIG. 1. Frequency dependence of the generalirgudhoton de-
tachment cross sections forkin=5,6,7. Solid curve: present cal-
culation, Eq. (40), integrated over angles; open circles:
perturbation-theory calculations of Laughlin and Gha].

over 6. The cross section has been multiplied by 2 to accoun7=3.537<10" 200 cm'“s° [Eq. (40) integrated over anglgs

for the two spin statefcf. Eq. (36) with =0, j=1/2]. The

results of the perturbation-theory calculatig@g] are shown 07=3.639< 107 2% cm!® (result of[17]).

for comparison. In the latter, the interaction of the electron

with the atomic core was described by a model potential In Fig. 2 we show the angular dependence of the photo-
which accounted for the polarizational attraction between thelectron peaks forn=16, 17, 18, and 19, at=10"
electron and the atomic core, and was chosen to reprodus&/cm?. We have checked that their shapes, as well as those
the binding energy of H, as well as the electron-hydrogen for other n and intensities, are practically identical to the
scattering phase shifts. Figure 1 shows that there is gooangular distributions presented in Figs. 5-7[&¥]. Also
agreement between our results and those[1#]. We  shown in Fig. 2 are the differential detachment rates obtained
checked that even fan=3 the difference does not exceed from Eq. (42). It works quite well for the two lowesh, but

20% at the cross section maximum. the agreement becomes poor with the increase of the photo-
Laughlin and Chu notgl2] that their model-potential re- electron energy, e.g., for=19, wherep/k~0.75.
sults are close to those obtained [it0] using the hyper- It is worth stressing again that the remarkable oscillatory

spherical method, which accounts for correlations betweebehavior is caused by the interference of the two saddle-
the two electrons in H. They are also in agreement with the point contributions in Eq(33), or, in other words, the inter-
two-electron perturbation-theory calculations[#f] and the  ference between the electron waves emitted at the two in-
recentR-matrix Floquet-theory calculatiorjd 8], which also  stants separated By2, when the field reaches its maximum.
take into account electron correlations. The main idea behindhe geometrical phase difference that determines the oscil-
those approaches was to reproduce the negative-ion wavations of co§...) in Eq.(42) can be calculated classically.
function as correctly as possible at all distances, particularhbuppose that the electron is considered free at the moment
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TABLE |. The EPD spectra of H in the strong laser field ofr=0.0043 a.u. The detachment rates
calculated by our saddle-point meth¢@8P, Eq. (33), A=0.75 andx=0.235, are compared with the non-
perturbative results by Telnov and ChLi7].

n-photon detachment rate.u)

| =10 W/cm? | =5x% 10'° W/cm? | =10 Wicm?
n SP [17] SP [17] SP [17]
8 6.69x10° ¥  7.12x10°%°
9 1921071  2.03x10°1°
10 4081071 4.32x10°4
11 49910712  526x10 %2  544x1077 4.07x10°7
12 7.24<10°1  7.86x10°%¥  4.68<10°7 4.88<10°7
13 2.03x10° 227x10°¥ 3571077 3.69x 1077
14 1.24<10°7 1.30x10°7
15 9.54<10°8 9.72x10°8
16 8.28x10°8 8.52x 1078 431x10°%  4.32x10°°
17 4721078 4.88<10°8  3.09x10°®  3.14x10°6
18 1.99<10°8 2.06x10°8 2.55x10°%  2.48x10°°
19 7.59<10°° 7.87x10°° 1.24<10°%  1.24<10°°
20 3.73x10°° 3.94x10°° 1.28<10°®  1.22x10°°
21 2.71x10°° 2.92x10°° 1.01x10°®  1.01x10°°®
22 2.18x10°° 2.37x10°° 4991077 5.05x10°7
23 1.62<10°° 1.77x10°° 3.74x10°7  3.64x10°7
24 1.09<10°° 1.18x10°° 437x10°7  4.25x10°7
25 6.62<10°1°  7.17x1070  432x1077  4.28x1077
26 3721071 4.02x10°%°  3.34x10°7  3.34x10°7
27 1.95<10°1° 2.10x10°%°  2.11x10°7  2.12x10°7
28 9.69x10° 1t  1.04x10°%° 1.16x107  1.17x10°7
29 6.23<10°%  6.26x10°8
30 3.88x10°8% 3.94x10°8
31 3.17%10% 3.26x10°8
32 3.0%10®% 3.14x10°8
33 2901078  3.03x10°8
34 2.62x10°8  2.75x10°8

Sum 9.0%x10°° 9.66x10° % 1.76x10°° 1.67x10°© 1.61x10°°>  1.61x10°°

when it escapes the atomic particle. Its classical coordinate i® our use of the Volkov wave function in the perturbation-

then given byr (t) = [k, dt’ = (F/w?)coswt. At the two in-  theory limit. As shown in the earlier works by Crang5],

stantst,, when the adiabatic transition takes place, we havethe multiphoton detachment results obtained in the plane-
wave approximation are close to those obtained using the

F 5 F kyVl+9y? frozen core Hartree-Fock wave functions of the photoelec-
rty)==—3Vl+y :iEy—w' tron.

The shapes of angular distributions presented in Fig. 3 are

where Eq.(31) is used for small momenta<x. Note that  quite close to those in Fig. 2 of RefL1], although quanti-
thought,, are complex, the corresponding electron coordi-tative comparison is not feasible due to the use of an arbi-
nates are real. These points located at the opposite sides My vertical scale in11].

the atomic particle are sources of the two electron waves 1he absolute values of the-photon detachment cross
emitted at the angle with respect toF. The geometrical sections from our calculations af#ll] compare reasonably

phase is obtained by multiplying the basét,)—r(t,)| by on a logarithmic scale for all cases shown in Table Il. How-

the projection of the electron momentum on the direction of - there is a systematic discrepancy. To find its origin let
the ?iekjj bCosh us recall that the multiphoton detachment rate is very sensi-

. . _. tive to the asymptotic behavior of the bound-state wave func-
Our results for halogen negative ions are presented in Fi

. %ion (see end of Sec. IIB In [11] the Hartree-Fock wave
(332)”1?0:22:%';; g(ra]ywri]tivteh:ii?tl?r?)t:tl%idt;rgonr]yii?():ljggionsfunCtionS have been used. Their asymptotic behavior
- exp(—«yer) is different from the correct exp(«r), based on
[11] at the Nd:YAG laser frequency=0.0428 a.u. In that P( st ) p(i)

K th lativistic H Fock f ) fth the experimental value of. Thus, to account for the discrep-
work, the nonrelativistic Hartree-ock wave functions of t €ancy in Table Il, the Hartree-Fock-based results should be
valencenp electrons were used, together with experlmentalmultip"ed by the factor

threshold energies. The photoelectron was described in the

plane-wave approximation. This approximation is equivalent ~exd 2(kye— x)R], (44
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FIG. 2. Differential n-photon detachment rates of Hin the
strong laser field,w=0.0043 a.u.,|=10" W/cm?, z=8.945,
v=0.599. Solid curve: “exact” saddle-point calculation, Eg§3);
dashed curve: low photoelectron energy limit, E4R). Channels
with n<16 are closed.

where, according t¢2), R~1/\/w. Formula(44) shows that
when k> k the Hartree-Fock-based calculations underesti-,
mate the detachment rate, while fep-<« they overesti-
mate it.

The Hartree-Fock values af, - are 0.602, 0.545, 0.528,
and 0.508, for the outarp subshell of F, CI~, Br—, and
| ~, respectively. Examination of the lowestcross sections

throughout Table 1l shows that the qualitative explanation of

the discrepancy based dA4) is correct. For example, for
F~ where xye=0.6 and x=0.5, formula (44) gives 2.6,
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2P3/2 n=3 2P1/2 n=3 F- 2P n=4 F- ZPI/Q n=4

doy,
dQ

Cl" %Py n=4 CI" %Py n=4 CI"?Pyy n=5 CI"?Pp n=35
doy
dQ

Br~ Py, n=3 1~ 2Py, n=4 Br Py n=4 Bri Py n=5
doy ‘
daQ

I" 2Py n=3 I" %Py n=4 I- 2Py n=4 1" %Py n=5
doy, ‘
dQ ‘

Angle (0 < 6 < 7/2)

FIG. 3. Differentialn-photon cross sections for the electron de-
tachment from the halogen negative ions, which leaves the atom in
the 2P, or 2Py, states Eqs(40) and (36).

ment in Table Il is achieved for Br, j =1/2, wherexyg is
very close to the correct value. Therefore, we conclude that
the incorrect asymptotic behavior of the Hartree-Fock wave
functions can produce significant errors in the multiphoton
detachment rates. This must be kept in mind when compari-
sons are made between differenphoton detachment calcu-
lations[19].

IV. SUMMARY

The main result of our work is that the adiabatic-theory
approach to the multiphoton problems originally suggested
by Keldysh is more powerful and accurate than is generally
believed. It yields accurate multiphoton detachment rates for
negative ions and reveals a number of interesting details
about the physics of the problem: the role of large distances
and asymptotic behavior of the bound-state wave function
and the origin of oscillations in the angular distribution of
photoelectrons. The formulas obtained in the paper allow one
to make simple and reliable estimates of thgphoton de-
tachment rates fon=2 in both perturbative and nonpertur-
bative regimes.
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APPENDIX A: CALCULATION OF TRANSITION RATES
IN A STRONG PERIODIC FIELD

Suppose the system is in the initial state

Po(t)=e 'Eogy, Hodo=Eoeo

whereas the ratio of the three-photon detachment cross secf the time-independent Hamiltoniadty,, and a periodic field

tions for F~, j=3/2, in Table Il is 4.3. Also, the best agree-

V(t)=V(t+T) is turned on adiabatically. We assume that
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TABLE Il. Comparison of then-photon detachment cross sections from the halogen negative ions ob-
tained by the saddle-point methd8P), Egs. (40) and (36), with the perturbation-theory calculations by
Crance[11] at w=0.0428 a.u. For each, logo" is shown,o{) being in units of cM"s"~*; j=3/2 and
1/2 for the 2P, and 2P, final states of the atom.

lon and its |og(,{13/2) log 0511/2)
parameters n SP [11] n SP [11]
Fluorine 3 —81.62 —82.25 3 —-82.01 —-83.21
A=0.7 4 —113.45 —114.06 4 —113.81 —114.39
k3= 0.4998 5 —145.36 —145.87 5 —145.71 —146.21
K1,=0.5035 6 —177.40 —177.75 6 —177.74 —178.08
Chlorine 4 —-113.14 —113.42 4 —113.53 —-113.74
A=13 5 —145.05 —145.26 5 —145.47 —145.46
K35=0.5156 6 —177.05 -177.12 6 —177.45 —177.49
Kk1p=0.5233 7 —209.14 —209.08 7 —209.53 —209.44
Bromine 3 —80.99 —81.23 4 —113.52 —113.52
A=14 4 —112.81 —113.06 5 —145.51 —145.46
K3=0.4973 5 —144.73 —144.85 6 —177.48 —177.31
K1o=0.5300 6 —176.77 —176.75 7 —209.55 —209.25
lodine 3 —80.59 —80.85 4 —113.35 —113.10
A=1.8 4 —112.27 —112.46 5 —145.48 —145.13
K3=0.4742 5 —144.25 —144.31 6 —177.45 —176.98
Kq,=0.5423 6 —176.33 —176.29 7 —209.50 —208.93
this field can be strong, so that the lowest-order perturbation da, _
theory is inapplicable. The time-dependent wave function of ar — i (OIVO) (1)
the system _ _
v =—ie'Exte 1Eol{ ¢, (1)|V(1)] o). (A3)
'E:[HOJFV(I)]W (A1) The last matrix element is a periodic function of time
can be presented as the sum iont
(SAOIV(D] po) =2 e *MAyy, (A4)
W(t)=go(t)+ 2, ay(t) (1) (A2)
( Yo ; A wherew=27/T and
over the set of eigenstateg (t) of the total Hamiltonian 1(T ont
An=7 JO (S\DIV(D)] do)e Mdlt. (A5)
RAUN
I —— =[Ho+ V(D ]y,

Using (A4), we rewrite(A3) as

which represent the possible final states of the system, da

a, (t) being the amplitude of finding the system in one of J:_iZ e (Ex—Bo—no)tp
these states. In Eq(A2) we assume thah,(t)—0 at dt n

t——o and the rate of the transitioig— i, is given by

dla)\(t)|2/dt and find

According to the Floguet theorem, each state d i(Ey—Eg—no)tant
s (t)y=e Extg, (1) is characterized by its quasienergy a, = as _ € e. A
and the corresponding periodic quasienergy wave function . dt n Ex—Eo—no—in ™

o (t)= &\ (t+T), found from
where the energies, have been given an infinitesimal shift

N —in to make /' - -dt converge at—«. The probability is
'7:[HO+V(U_E>\]¢)\- given by
At any givent the quasienergy wave functions form a com- la,|2= D 7| Aynl?
N

N _—
plete orthonormal sety |y /) ={(dy|Pr/)=Sx\:- (Ex—Eo—nNw)?+ 7? oscillating terms
After insertingW (t) (A2) into Eq. (A1) and projecting it

onto the staté ¢, (t)|, we arrive at and the rate is
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d ) 2pe?m | ) for A —oo. In this case it is well know36] that the integra-
a| ay ()] =§ (E,—Eo—nNw)?+ 772IA)\n| , tion contourC should be deformed to go through the saddle
point Xy, wheref’(xg) =0. The vicinity of this point gives
where we dropped the osci"ating terms since they do no&he main contribution to the integral. If the fUnCtimX) is
contribute to the transition rate after we average it over g0t singular aix=Xxo, the integral(B1) is evaluated as
period. Finally, we take the limiy— 0 using the following

representation of thé function: m \1?
J=0(Xo) N(xg) exf — A f(Xo)]. (B2
2y 0
7—0 g If g(x) has a singularity atx=xg, €.9., g(x)
and obtain =(Xx—Xq) ", the saddle-point answer has to be modified.
Consider the following integral:
d
qilaOPF=272 |A*8(E\~Eo—nw),  (A6) ext — M (X)]
" = f w7 (B3)
(X=Xo)

where the amplitudd, , given by Eq.(A5) can be written as

1 (T By using the transformatiof27]
Axn=$Jo (I (OIV(D)|gho(D))dt, (AT)
1

due to the energy conservatiéf — Ey=nw implied by the (X—Xg)”
6 function. This amplitude describes thequantum process
and the total transition ratéA6) is the sum over all such
processes. If the spectrum »fis continuous, the differential
transition ratedw, is proportional to the corresponding den-

sity of statesdp,: J:dgg”*lj exd — M f(x)—&(x—Xg)]dx.  (B5)

* f “deerTexit — Ex—xo)],  (B4)
T o o)l

we turn(B3) into the double integral

dw, =272 |A\n|28(E\~Eo—nw)dp,.  (AB)
n Calculating - - - dx by means of(B2) and then integrating

over &, we obtain forh — oo

APPENDIX B: SADDLE-POINT METHOD

FOR INTEGRALS WITH A SINGULARITY T(v2)

BN

12
[2NF"(x0)]"2exd — N f(Xo)].

(B6)

2

M7 (Xo)

=

Consider the integral

= —\f Bl
J fcg(x)exp: MO0 Jdx B1) For v—0 we, of course, recoveiB?2).
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