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Generation of mesoscopic superpositions of two squeezed states of motion for a trapped ion
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We propose a scheme to generate mesoscopic superpositions of two squeezed states of motion using a highly
anisotropic two-dimensional trap in which the ion’s motion is tightly bound infrdirection. In our scheme,
the ion is driven multichromatically by three codirectional laser beams alony theas, as well as a resonant
laser beam along th¥ axis. We show that, with the appropriate chosen initial states, the desired states of
motion are realized in th& direction when the system reaches its steady state, which is indicated by the
extinction of the fluorescence from the idi$1050-294P7)00405-9

PACS numbse(s): 42.50.Vk, 42.50.Dv, 32.80.Pj

The generation of nonclassical states of light is at theApplying the squeeze operat(¢) on both sides of Eq2),
heart of quantum optics. In particular, the squeezed states dfis easy to show that
light, with reduced noise in one quadrature below the ) _
vacuum level, have been extensively studied in the past two [coshir)a+sinh(r)e'’a’?|¢.)=pB%¢.), ()

decadesl]. A squeezed state is defined as provided thata=cosh¢)B8—sinh{)d?8*. Equation(3) can
be explicitly expressed as

|@,€)=D(a)S(§)[0), () , ,

[a%+2 tankr)e'’ata+tantf(r)e? %a’?]| .. )

where|0) is the vacuum statd) («) =exp(ea’— o*a) is the
displacement operator, a¢) = ex (£ a?— £a'?)/2] is the =
“squeeze” operator, with the squeezing factor
é=r exp(6). Herea anda' are the annihilation and creation
operators for the harmonic oscillator, respectively. Defining
the two quadrature phase operatorsX;, by
X,=a'e'"?+ae %2 andX,=i(a'e'??>—ae"'??), it follows
that the variances o , given by Eq.(1) satisfy the mini-

2

—tanh(r)e'||¢.), (4)

( B
coshr)

in which various two-quantum processes are involved. The
realization of such states is of fundamental importance as
they demonstrate the quantum interference effects generated
by two already nonclassical statgy rather than the inter-
ference between two quasiclassical states. The problem re-

mAu>r(n 2_un£:2errta|r:jty Xrelza_t'og, .A(xlt)h(Aﬂxzi _t'l, With  ains of how such states can be generated and in this paper
(AXp) =e"“"and AX,)“=e, i.e., the fluctuations in one we address this issue.

quadrature are exponentially reduced at the expense of expo- Recently, due to the remarkable advances in laser cooling

ne?tlalgldl'?cre?siﬁ uncertalnté/ mt t?e other. . of trapped iong5], it has become possible to realize nonclas-
n addition 1o the squeezed Stales, Macroscopic SUPETPYi-| states of the center-of-mass motion of a single trapped

sitions of coherent states are also considered as an importagt, \vhen an ion is trapped in a harmonic potential and
type of nonclassical quantum statg. The archetype of driven by external laser beams, its internal and external de-

; . e of freedom are coupled via the momentum exchange
which are described d$i>:Ni(|ﬂ>iL_ B)), where|) tgeﬂ%tween the field and thepi({ﬁ]. Thus one can manipulateg
is a coherent state arld, =(2+2e"2#") Y2 are the nor-  the external motion of the ion by controlling the configura-
malization constants. F4B|>1, such states can be visual- tion of the driving lasers. Dissipative effects for the ion mo-
ized as superpositions of two macroscopically distinguishtion can be significantly suppressed as the coupling between
able states, the so-called Scthimger cat states. These statesthe vibrational modes and the environment is extremely
are of particular interest because they possess various nofeak. This unique feature thus makes trapped ions a versa-
classical properties, such as squeezing and sub-Poissonigig tool to examine fundamental aspects of quantum me-
statistics despite being made up of quantum states having th#anics, such as generation of nonclassical states of motion
strongest classical analog. In this paper, we propose By—10], the implementation of quantum logic gafd4], and
scheme to prepare superpositions of two squeezed states qlfantum state reconstructiph2,13.

motion in an ion trap, which are given in the form..) Consider the quantized motion of a two-level ion of mass
*(|a,é) =] —a,£)), where|a,&) is the squeezed state de- M trapped in an anisotropic two-dimensioriaD) harmonic
fined in Eq.(1). These superposed states are referred to asotential characterized by the vibration frequencigsand
even and odd squeezed staf8that can be formulated in ,, in the X andY direction, respectively. The annihilation
analogy with the even and odd coherent states. It is wellcreation of vibrational quanta in th& andY directions is
knoyvn that the stateg3..) are eigenstates of the operator gescribed by the operatoas (a’) andb (b'), respectively.

a2 i.e., Accordingly, the position operators are given by
x=\12v,M(a+a') and y=\1/2v,M(b+b") (we set

a%|B.)=p%B-). (20 %=1 throughout this papgrin our scheme, four laser beams
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are required to manipulate the motion of the ion: the firstwherel is the spontaneous decay rate of the excited state of
three laser beams whose detuning are set to 0,-apd, , the ion, and the modified density operator
respectively, are applied along theé axis; the fourth laser
beam is in resonance with the atomic transition and excites ~ 11 [ ik i

— (ux+uvy) —iky (ux+vy)
the ion along theY axis. In the rotating-wave approximation, p 4[_1f_1du dv A(u,v)e™ pe "t
the Hamiltonian for this system is given by 9)

ot . @O =) accounts for the momentum transfer in %er plane due to
H=wva'a+»rb'b+ 7‘72+[DE (x,y,)o_+H.c], spontaneous emission described by the angular distribution
(5) A(u,v). In this paper, we consider the case where the ion is
confined in a highly anisotropic 2D trap with<v, [15],
where the first three terms in E¢p) describe the free evo- 1-€., the ion is tightly bound in th¥ direction. In the Lamb-
lution of external and internal degrees of freedom of the ionPicke limit where the vibrational amplitude of the ion is
and the last indicates the atom-field interaction. The atomiénuch smaller than the laser wavelength, the anisotropy of
operators are defined as=|e)(e|—|g)(g|,o, =|e)(g| and  trapping frequencies leads to the criterig<7,<1, and
o_=|g)(e|, where|e) and|g) are the atomic excited and thus the master equation, E@), can be well approximated
ground states, respectively. The transition in the two-levePy expansion ofy, and », to the first few lowest orders. In
ion is characterized by the dipole matrix eleméhtind the ~ Particular, we assume that(u,v) is an even function ofi
transition frequencyn,. The negative frequency part of the andv and that all driving fields are of the same order of

Classical driving e|ectric f|e|d is given by magnitude. It iS thUS SuffiCient to expand the Hamiltonian
H, to the second order of, and zeroth order of, so that
EC)(x,y,t) = Eqellwot—kox+ dal 4 E gil(wo=20t—kyx+ ¢y] the master equation E) is simplified to
+ E, el l(wo+2nt—kox+ ¢l | E gilwot—koy+ sl dp o I
©) ar=ilHI 1+ 520 po.—0,0p=po.o.)
whereE; and ¢; indicate the amplitudes and phases of the +0O(I' 77)2(), (10

driving lasers, respectively.

Vogel and de Matos Filh{8,14] have pointed out that in whereH| is the effective Hamiltonian
the resolved sideband limit where the trapping frequency is
much larger than the other characteristic frequencies, the ion-
laser interaction can be described as a nonlinear Jaynes-
Cummings model, provided that the driving laser is resonant
with one of the vibrational sidebands. Following the ap-
proach of Refs[8,14], the Hamiltonian of Eq(5) can be
expressed in the interaction picture as

H/=(—g,e”'"1a*~g,e”'*2a"?~2goe”%a'a+ ¢) o,
+H.c., (11)

with g;= 75Q;/2 and{= Qe %o+ Qe %3, Here we have
ignored the exponential factors in E¢7), as the small
© i aiva Lamb-Dicke  parameters 7,<#,<1 imply that
H={ e 72S (I 7x) [Q,e%ali 2 exp(— 73/2)=exp(~ 7;/2)= 1. In order for the approximated

0 j!(j+2)! Hamiltonian Eq.(11) to be valid, we also need to choose
. appropriate field and phase, i.E3 and ¢3, such that{| has
Qe %alial 2]+ e 12 (imy) JQ o bogtial the same order of magnitude gs, i.e., the field along the
2 x T ko

Y axis is utilized to balance the overwhelmingly large con-
tribution from the zeroth-order expansion gf in the X
2 (imy)? b tin direction. It should be noted that if the higher-order terms are
+e ZO i Qze' b ro_+H.c, (7)  important, the desired steady vibrational states would never
= be reached. Therefore, it is significant to assume a small
where O, =DE, are the Rabi frequencies and the Lamb- Lamb-Dicke parameter in our scheme. Nevertheless, we note

, that 7, cannot be too small in real experiments, for the finite
Dicke parametersy,= Vki/2Mwvy, 7y=ki/2Mv, are de-  gj;0 of 5 is necessary to allow the second sideband excita-
fined assumingo=k,=kp=k_ . o tion. Typically, a small Lamb-Dicke parameter with order of

As the damping of vibrational quanta can be 5'9”'f'can“ymagnitude ranging from 10 from 1072 can be demon-
suppressed in an ion trap, the dominant decay process irated in experiment§l2,13. If we further assume that

spontaneous emission from the two-level ion and the timq<9_ then the high-order term®(T" 72) in Eq. (10) can
evolution of the system in the interaction picture can be dep, - * ,

scribed by a density operatprobeying the master equation m astzglzgheadti;: (ijs tgil\J/er hb(; steady-state solupigror the
[8]

=0 j'j!

Pss™ |g><g| ®Pys (12
dp . r ~
ai - " HHipl+ 5(20-pos—0or0_p=poio-),

dt as a consequence of the atomic spontaneous decay, where

(8) pys IS the vibrational steady state of the ion. If we substitute
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the steady statg into the equatiompg/dt=0, we find the 0.5
necessary conditiofH, ,pss]=0, or, equivalently,
(018”12’ +ge ' *2a"%+ 2gpe ' %0a’a) p,s= {p,s. 041
(13
. . . 0.3
The operator on the left-hand side of Ef3) is equivalent to =
that on the left-hand side of E¢4) apart from an overall &
scaling, provided that the configuration of the driving lasers 02+
along the X direction is specified byE,/E;=tanhf),
E,/E,=tani?(r) and 6=¢,— ¢g, 20=h,— ¢,. Accord- 01 |
ingly, the complex eigenvalug? is given by
> £ i £9 £
B~ _ 32 Eeie+ Eeiwmba) i Eei . (14) 0'00.0 4.0 80 120 160 200
COSH(I’) My El E1 E1 n

which is determined by the two resonant fields applied along FIG. 1. The number distributioR(n) of the vibrational steady
the X andY axes, respectively. We note that, since tagph( state(gray bars for the ion initially prepared in the vacuum state
—1 asr—c, we requireE,>Ey>E,, to guarantee the ex- and the Lamb-Dicke parameten,=0.02; Tr(p2)=0.98. The
istence of a normalized steady state of motion. number distribution of the even squeezed state? and¢=1, are
In general, the vibrational steady-state solutigg is not ~ shown in dark bars.
uniquely determined by Eq(13). In order to ensure the
steady-state solution approaches the even and odd squeezbsiribution P(n) for the ion in its steady state is shown in
states, additional restrictions on the initial vibrational stated=ig. 1, which is obtained by numerically integrating the mas-
are required. As the time evolution describedHbydoes not  ter equation containing all powers of a small Lamb-Dicke
mix even and odd states, an arbitrary initial stateparametern,=0.02 with the initial vibrational states pre-
|¢(0))==7_,cnln) can be separated into states having op-ared in the vacuum state. It is seen that the number distri-
posite parities, i.e., with bution is in good agreement with that pf ) with a negli-
gible difference caused by other higher-order terms that have
” been ignored in the analytical treatment. The purity of the
Ixe)= ZO Can|2N) (19  steady state in Fig. 1 is indicated by Bf()=0.98 that is
" very close to a pure state. In Fig. 2, we show the number
being the state of even parity and distribution of the steady state given by a larger Lamb-Dicke
parametern,=0.05. In this case, the purity of the steady
* state is given by Trpﬁs) =0.88 indicating an appreciable dif-
|Xo)= 2 Cons1l2n+1) (16)  ference from the desired pure state, as can be seen from the
n=0 number distribution in Fig. 2. The Wigner distribution func-
tion of the even and odd squeezed states are shown in Figs. 3
and 4. In comparison with those given by the even and odd
&oherent stateR8], the fringes of quantum interference are
more pronounced. The nonclassical nature of the even and

being the state of odd parity. For any initial vibrational state
having a mixed parity, the steady-state solution of @8§) is
given by a statistical mixture of even and odd squeeze

tat L .
states odd squeezed states is indicated by the negative values of the
Pos=Pel @i W] +Polo_Weo_|, (17)  Wigner distribution function.
whereP, andP, are the weights of the even and odd parity 0.5 ‘

states in the initial state. However, if the initial state is pre-
pared in a precise parity, either even or odd, then the steady

state of motion is a pure state. It is straightforward to verify 04 |
that if the initial state of motion is given biye)(| xo)), then

ast—o the system evolves thp,)(|¢-)) in which only 03 |
quanta of everfodd) numbers exist. For simplicityy.) and a

|xo) can be prepared in the Fock std@ and|1) which, & 02

according to recent experiments, can be prepared with very
high efficiency[10,13.

In order to check the validity of our analytic argument, we 0.1 T
have employed a Monte Carlo state-vector methbgl to
solve the master equation without using a Lamb-Dicke ex- 0.0 1. 1 —
pansion. Our numerical analysis was performed using a de- 0.0 4.0 8.0 12.0
lay function techniqud17] in a truncated Fock-state basis
with a cutoff chosen such that an increase of this cutoff does
not alter the result of our integration. The vibrational number FIG. 2. The same as Fig. 1 except=0.05; Tr(p2,)=0.88.

16.0  20.0
n
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- / -8 plpo
X/Xg 8 PiPo X/Xg

FIG. 3. The Wigner distribution function for the even squeezed FIG. 4. The Wigner distribution function for the odd squeezed
states, a=2 and &=1, with the scaling factors x,  States, a—:uzz and ¢=1 _Y/VZ'Yh the scaling factors xo
=2, M) Y2 po=(rM/2)" 2 =(2rM) ™75 po=(vxM/2)" 7

We noticed that in a very recent pag8il Nieto has stud- tion of even and odd squeezed states of the center-of-mass
motion of the trapped ion. In our scheme, the ion which is

ied_the dynamical behavior of the spatial probabil_ity d_istr_i- trapped in a highly anisotropic 2D harmonic potential well is
bution of even and odd squeezed states. The spatial dIStrIblCji'riven multichromatically by four laser beams. Three laser

tion consists of two squeezed wave packets which are phase ith detuninad =0 + 2 determining th i
separated byr with respect to their coherent displacements. eams wi euning8 =u,= 2vy, dé ermlplng € squeez
at t=0, evolving periodically with a period 2/v,. The Ing factorgl, exc"? the ion along thﬁ axis; the laser beqm
guantum interferences appear when the two wave packe ith A=0 is appheq along th¥ axis to balance t'he carrier
move towards each other at the tinme=(j+1/2)m/v,, ield along th_eX axis to generate a moderate displacement
wherej is an integer. It has been shown that if the initial & In appropriate limits, the system relaxes to a steady state

. due to the spontaneous emission from the ion, and can be
separated wave packets have a smalhcertainty, then the ; . .

o . described as a product of the atomic ground state with a
colliding wave packets at have a largex uncertainty and o )

o . guantum superposition of two squeezed states of motion.
exhibit a broad and very pronounced interference pattern
symmetric with respect to the origin. On the other hand, This work was supported in part by the UK Engineering
however, if the wave packets have lamgauncertainty ini- and Physical Sciences Research Council and the European
tially, the interference pattern &t shows a highly confined Union. S.-C. Gou is supported by the Ya-Chih Tsai Research
peak structure about the origin, which has a smaller widtH-oundation. J. Steinbach is supported by the German Aca-
than that given by the coherent staf8% demic Exchange ServicéDAAD-Doktorandenstipendium

In conclusion, we have proposed a scheme for the realizaaus Mitteln des zweiten Hochschulsonderprograinms
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