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Generation of mesoscopic superpositions of two squeezed states of motion for a trapped ion

S.-C. Gou, J. Steinbach, and P. L. Knight
Optics Section, Blackett Laboratory, Imperial College, London SW7 2BZ, United Kingdom

~Received 20 December 1996!

We propose a scheme to generate mesoscopic superpositions of two squeezed states of motion using a highly
anisotropic two-dimensional trap in which the ion’s motion is tightly bound in theY direction. In our scheme,
the ion is driven multichromatically by three codirectional laser beams along theX axis, as well as a resonant
laser beam along theY axis. We show that, with the appropriate chosen initial states, the desired states of
motion are realized in theX direction when the system reaches its steady state, which is indicated by the
extinction of the fluorescence from the ion.@S1050-2947~97!00405-8#

PACS number~s!: 42.50.Vk, 42.50.Dv, 32.80.Pj
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The generation of nonclassical states of light is at
heart of quantum optics. In particular, the squeezed state
light, with reduced noise in one quadrature below t
vacuum level, have been extensively studied in the past
decades@1#. A squeezed state is defined as

ua,j&5D~a!S~j!u0&, ~1!

whereu0& is the vacuum state,D(a)5exp(aa†2a*a) is the
displacement operator, andS(j)5exp@(j*a22ja†2)/2] is the
‘‘squeeze’’ operator, with the squeezing fact
j5r exp(iu). Herea anda† are the annihilation and creatio
operators for the harmonic oscillator, respectively. Defin
the two quadrature phase operatorsX1,2 by
X15a†eiu/21ae2 iu/2 andX25 i (a†eiu/22ae2 iu/2), it follows
that the variances ofX1,2 given by Eq.~1! satisfy the mini-
mum uncertainty relation (DX1)

2(DX2)
251, with

(DX1)
25e22r and (DX2)

25e2r , i.e., the fluctuations in one
quadrature are exponentially reduced at the expense of e
nentially increased uncertainty in the other.

In addition to the squeezed states, macroscopic supe
sitions of coherent states are also considered as an impo
type of nonclassical quantum states@2#. The archetype of
such classes of states are the even and odd coherent s
which are described asub6&5N6(ub&6u2b&), where ub&
is a coherent state andN65(262e22ubu2)21/2 are the nor-
malization constants. Forubu@1, such states can be visua
ized as superpositions of two macroscopically distingui
able states, the so-called Schro¨dinger cat states. These stat
are of particular interest because they possess various
classical properties, such as squeezing and sub-Poisso
statistics despite being made up of quantum states having
strongest classical analog. In this paper, we propos
scheme to prepare superpositions of two squeezed stat
motion in an ion trap, which are given in the form,uw6&
}(ua,j&6u2a,j&), where ua,j& is the squeezed state d
fined in Eq.~1!. These superposed states are referred to
even and odd squeezed states@3# that can be formulated in
analogy with the even and odd coherent states. It is w
known that the statesub6& are eigenstates of the operat
a2, i.e.,

a2ub6&5b2ub6&. ~2!
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Applying the squeeze operatorS(j) on both sides of Eq.~2!,
it is easy to show that

@cosh~r !a1sinh~r !eiua†#2uw6&5b2uw6&, ~3!

provided thata5cosh(r)b2sinh(r)eiub* . Equation ~3! can
be explicitly expressed as

@a212 tanh~r !eiua†a1tanh2~r !e2iua†2#uw6&

5F S b

cosh~r ! D
2

2tanh~r !eiuG uw6&, ~4!

in which various two-quantum processes are involved. T
realization of such states is of fundamental importance
they demonstrate the quantum interference effects gener
by two already nonclassical states@4# rather than the inter-
ference between two quasiclassical states. The problem
mains of how such states can be generated and in this p
we address this issue.

Recently, due to the remarkable advances in laser coo
of trapped ions@5#, it has become possible to realize noncla
sical states of the center-of-mass motion of a single trap
ion. When an ion is trapped in a harmonic potential a
driven by external laser beams, its internal and external
gree of freedom are coupled via the momentum excha
between the field and the ion@6#. Thus one can manipulat
the external motion of the ion by controlling the configur
tion of the driving lasers. Dissipative effects for the ion m
tion can be significantly suppressed as the coupling betw
the vibrational modes and the environment is extrem
weak. This unique feature thus makes trapped ions a ve
tile tool to examine fundamental aspects of quantum m
chanics, such as generation of nonclassical states of mo
@7–10#, the implementation of quantum logic gates@11#, and
quantum state reconstruction@12,13#.

Consider the quantized motion of a two-level ion of ma
M trapped in an anisotropic two-dimensional~2D! harmonic
potential characterized by the vibration frequenciesnx and
ny in the X andY direction, respectively. The annihilatio
~creation! of vibrational quanta in theX andY directions is
described by the operatorsa (a†) andb (b†), respectively.
Accordingly, the position operators are given b
x5A1/2nxM (a1a†) and y5A1/2nyM (b1b†) ~we set
\51 throughout this paper!. In our scheme, four laser beam
3719 © 1997 The American Physical Society
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are required to manipulate the motion of the ion: the fi
three laser beams whose detuning are set to 0, and62nx ,
respectively, are applied along theX axis; the fourth laser
beam is in resonance with the atomic transition and exc
the ion along theY axis. In the rotating-wave approximation
the Hamiltonian for this system is given by

H5nxa
†a1nyb

†b1
v0

2
sz1@DE~2 !~x,y,t !s21H.c.#,

~5!

where the first three terms in Eq.~5! describe the free evo
lution of external and internal degrees of freedom of the
and the last indicates the atom-field interaction. The ato
operators are defined assz5ue&^eu2ug&^gu,s15ue&^gu and
s25ug&^eu, where ue& and ug& are the atomic excited an
ground states, respectively. The transition in the two-le
ion is characterized by the dipole matrix elementD and the
transition frequencyv0. The negative frequency part of th
classical driving electric field is given by

E~2 !~x,y,t !5E0e
i [v0t2k0x1f0]1E1e

i [ ~v022n!t2k1x1f1]

1E2e
i [ ~v012n!t2k2x1f2]1E3e

i [v0t2k0y1f3] ,

~6!

whereEj andf j indicate the amplitudes and phases of t
driving lasers, respectively.

Vogel and de Matos Filho@8,14# have pointed out that in
the resolved sideband limit where the trapping frequenc
much larger than the other characteristic frequencies, the
laser interaction can be described as a nonlinear Jay
Cummings model, provided that the driving laser is reson
with one of the vibrational sidebands. Following the a
proach of Refs.@8,14#, the Hamiltonian of Eq.~5! can be
expressed in the interaction picture as

HI5H e2hx
2/2(

j50

`
~ ihx!

2 j12

j ! ~ j12!!
@V1e

if1a† j12aj

1V2e
if2a† jaj12#1e2hx

2/2(
j50

`
~ ihx!

2 j

j ! j !
V0e

if0a† jaj

1e2hy
2/2(

j50

`
~ ihy!

2 j

j ! j !
V3e

if3b† jbj J s21H.c., ~7!

where V j5DEj are the Rabi frequencies and the Lam
Dicke parametershx5AkL2/2Mnx, hy5AkL2/2Mny are de-
fined assumingk0.k1.k25kL .

As the damping of vibrational quanta can be significan
suppressed in an ion trap, the dominant decay proces
spontaneous emission from the two-level ion and the t
evolution of the system in the interaction picture can be
scribed by a density operatorr obeying the master equatio
@8#

dr

dt
52 i @HI ,r#1

G

2
~2s2r̃s12s1s2r2rs1s2!,

~8!
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whereG is the spontaneous decay rate of the excited stat
the ion, and the modified density operator

r̃5
1

4E21

1 E
21

1

du dvA~u,v !eikL~ux1vy!re2 ikL~ux1vy!

~9!

accounts for the momentum transfer in theX-Y plane due to
spontaneous emission described by the angular distribu
A(u,v). In this paper, we consider the case where the ion
confined in a highly anisotropic 2D trap withnx!ny @15#,
i.e., the ion is tightly bound in theY direction. In the Lamb-
Dicke limit where the vibrational amplitude of the ion
much smaller than the laser wavelength, the anisotropy
trapping frequencies leads to the criteriahy!hx!1, and
thus the master equation, Eq.~8!, can be well approximated
by expansion ofhx andhy to the first few lowest orders. In
particular, we assume thatA(u,v) is an even function ofu
and v and that all driving fields are of the same order
magnitude. It is thus sufficient to expand the Hamiltoni
HI to the second order ofhx and zeroth order ofhy so that
the master equation Eq.~8! is simplified to

dr

dt
52 i @HI8 ,r#1

G

2
~2s2rs12s1s2r2rs1s2!

1O~Ghx
2!, ~10!

whereHI8 is the effective Hamiltonian

HI85~2g1e
2 if1a22g2e

2 if2a†222g0e
2 if0a†a1z!s1

1H.c., ~11!

with gj5hx
2V j /2 andz5V0e

2 if01V3e
2 if3. Here we have

ignored the exponential factors in Eq.~7!, as the small
Lamb-Dicke parameters hy!hx!1 imply that
exp(2hx

x/2).exp(2hy
2/2)51. In order for the approximated

Hamiltonian Eq.~11! to be valid, we also need to choos
appropriate field and phase, i.e.,E3 andf3, such thatuzu has
the same order of magnitude asgj , i.e., the field along the
Y axis is utilized to balance the overwhelmingly large co
tribution from the zeroth-order expansion ofhx in the X
direction. It should be noted that if the higher-order terms
important, the desired steady vibrational states would ne
be reached. Therefore, it is significant to assume a sm
Lamb-Dicke parameter in our scheme. Nevertheless, we
thathx cannot be too small in real experiments, for the fin
size ofhx is necessary to allow the second sideband exc
tion. Typically, a small Lamb-Dicke parameter with order
magnitude ranging from 1021 from 1022 can be demon-
strated in experiments@12,13#. If we further assume tha
G!V j , then the high-order termsO(Ghx

2) in Eq. ~10! can
be neglected and thus the steady-state solutionrss for the
master equation is given by

rss5ug&^gu ^ rvs ~12!

as a consequence of the atomic spontaneous decay, w
rvs is the vibrational steady state of the ion. If we substitu
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55 3721GENERATION OF MESOSCOPIC SUPERPOSITIONS OF . . .
the steady staterss into the equationdrss/dt50, we find the
necessary condition@HI8 ,rss#50, or, equivalently,

~g1e
2 if1a21g2e

2 if2a†212g0e
2 if0a†a!rvs5zrvs .

~13!

The operator on the left-hand side of Eq.~13! is equivalent to
that on the left-hand side of Eq.~4! apart from an overall
scaling, provided that the configuration of the driving las
along the X direction is specified byE0 /E15tanh(r),
E2 /E15tanh2(r) and u5f12f0 , 2u5f12f2. Accord-
ingly, the complex eigenvalueb2 is given by

b2

cosh2~r !
5

2

hx
2 FE0

E1
eiu1

E3

E1
ei ~f12f3!G1

E0

E1
eiu, ~14!

which is determined by the two resonant fields applied alo
theX andY axes, respectively. We note that, since tanhr )
→1 asr→`, we requireE1.E0.E2, to guarantee the ex
istence of a normalized steady state of motion.

In general, the vibrational steady-state solutionrvs is not
uniquely determined by Eq.~13!. In order to ensure the
steady-state solution approaches the even and odd sque
states, additional restrictions on the initial vibrational sta
are required. As the time evolution described byHI8 does not
mix even and odd states, an arbitrary initial sta
uw(0)&5(n50

` cnun& can be separated into states having o
posite parities, i.e., with

uxe&5 (
n50

`

c2nu2n& ~15!

being the state of even parity and

uxo&5 (
n50

`

c2n11u2n11& ~16!

being the state of odd parity. For any initial vibrational sta
having a mixed parity, the steady-state solution of Eq.~13! is
given by a statistical mixture of even and odd squee
states

rvs5Peuw1&^w1u1Pouw2&^w2u, ~17!

wherePe andPo are the weights of the even and odd par
states in the initial state. However, if the initial state is p
pared in a precise parity, either even or odd, then the ste
state of motion is a pure state. It is straightforward to ver
that if the initial state of motion is given byuxe&(uxo&), then
as t→` the system evolves touw1&(uw2&) in which only
quanta of even~odd! numbers exist. For simplicity,uxe& and
uxo& can be prepared in the Fock stateu0& and u1& which,
according to recent experiments, can be prepared with v
high efficiency@10,13#.

In order to check the validity of our analytic argument, w
have employed a Monte Carlo state-vector method@16# to
solve the master equation without using a Lamb-Dicke
pansion. Our numerical analysis was performed using a
lay function technique@17# in a truncated Fock-state bas
with a cutoff chosen such that an increase of this cutoff d
not alter the result of our integration. The vibrational numb
s
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distributionP(n) for the ion in its steady state is shown
Fig. 1, which is obtained by numerically integrating the ma
ter equation containing all powers of a small Lamb-Dic
parameterhx50.02 with the initial vibrational states pre
pared in the vacuum state. It is seen that the number di
bution is in good agreement with that ofuw1& with a negli-
gible difference caused by other higher-order terms that h
been ignored in the analytical treatment. The purity of t
steady state in Fig. 1 is indicated by Tr(rvs

2 )50.98 that is
very close to a pure state. In Fig. 2, we show the num
distribution of the steady state given by a larger Lamb-Dic
parameterhx50.05. In this case, the purity of the stead
state is given by Tr(rvs

2 )50.88 indicating an appreciable dif
ference from the desired pure state, as can be seen from
number distribution in Fig. 2. The Wigner distribution fun
tion of the even and odd squeezed states are shown in Fi
and 4. In comparison with those given by the even and o
coherent states@8#, the fringes of quantum interference a
more pronounced. The nonclassical nature of the even
odd squeezed states is indicated by the negative values o
Wigner distribution function.

FIG. 1. The number distributionP(n) of the vibrational steady
state~gray bars! for the ion initially prepared in the vacuum sta
and the Lamb-Dicke parameterhx50.02; Tr(rvs

2 )50.98. The
number distribution of the even squeezed state,a52 andj51, are
shown in dark bars.

FIG. 2. The same as Fig. 1 excepthx50.05; Tr(rvs
2 )50.88.
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We noticed that in a very recent paper@3# Nieto has stud-
ied the dynamical behavior of the spatial probability dist
bution of even and odd squeezed states. The spatial dist
tion consists of two squeezed wave packets which are p
separated byp with respect to their coherent displacemen
at t50, evolving periodically with a period 2p/nx . The
quantum interferences appear when the two wave pac
move towards each other at the timet j5( j11/2)p/nx ,
where j is an integer. It has been shown that if the init
separated wave packets have a smallx uncertainty, then the
colliding wave packets att j have a largex uncertainty and
exhibit a broad and very pronounced interference pat
symmetric with respect to the origin. On the other ha
however, if the wave packets have largex uncertainty ini-
tially, the interference pattern att j shows a highly confined
peak structure about the origin, which has a smaller wi
than that given by the coherent states@8#.

In conclusion, we have proposed a scheme for the rea

FIG. 3. The Wigner distribution function for the even squeez
states, a52 and j51, with the scaling factors x0
5(2nxM )21/2, p05(nxM /2)21/2.
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tion of even and odd squeezed states of the center-of-m
motion of the trapped ion. In our scheme, the ion which
trapped in a highly anisotropic 2D harmonic potential well
driven multichromatically by four laser beams. Three las
beams with detuningsD50,62nx , determining the squeez
ing factorj, excite the ion along theX axis; the laser beam
with D50 is applied along theY axis to balance the carrie
field along theX axis to generate a moderate displacem
a. In appropriate limits, the system relaxes to a steady s
due to the spontaneous emission from the ion, and can
described as a product of the atomic ground state wit
quantum superposition of two squeezed states of motion
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d FIG. 4. The Wigner distribution function for the odd squeez
states, a52 and j51 with the scaling factors x0
5(2nxM )21/2, p05(nxM /2)21/2.
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