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Time evolution of two-photon population transfer between the 1s and 2s states
of a hydrogen atom

M. Dörr,1,2 O. Latinne,2 and C. J. Joachain2
1Max-Born-Institut, D-12474 Berlin, Germany

2Physique The´orique, Universite´ Libre de Bruxelles, CP 227, B-1050 Bruxelles, Belgium
~Received 20 November 1996!

We have solved the time-dependent Schro¨dinger equation to analyze the time evolution of a hydrogen atom,
initially in its ground 1s state, interacting with a one- or two-color linearly polarized laser pulse which is tuned
close to a two-photon resonance with the 2s metastable state. The two-photon transition therefore does not
involve an intermediate resonance state. Using a suitable combination of two laser pulses of different frequen-
cies, population can be transferred from the 1s state to the 2s state via the continuum. In both the single-color
and the two-color cases, a maximum amount of 17% of population can be found in the 2s state at the end of
the pulse. We compare and interpret our results in terms of the time-independent Floquet eigenvalues. The
system can also be modeled by an ‘‘essential states’’ two-level atom with decay. Both the Floquet and the
time-dependent solutions are compared with the model predictions. The model allows systematic optimization
studies for population transfer under a wide range of laser pulse parameters.@S1050-2947~97!06504-9#

PACS number~s!: 32.80.Rm, 32.80.Qk, 42.50.Hz
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I. INTRODUCTION

Pumping an atom from the ground state into an exci
state with the help of a laser is usually performed by tun
the laser to resonance and waiting sufficiently long. T
process can be understood in terms of a simple two-le
model atom@1#, in which the laser coupling induces Ra
oscillations of the population between the two states. In p
ciple, population can be transferred to 100% by choosing
pulse length appropriately~‘‘ p pulse’’!. Decay processes ca
be included in this model, for example the spontaneous
cay, which destroys the coherence, but still allows at le
50% population transfer. When laser-induced ionization
the atom becomes important, however, in particular when
ionization rate of the upper level becomes comparable to
Rabi frequency, it is not evident that population can be tra
ferred through Rabi oscillations.

Following the experimental observation@2# of relatively
large populations in excited states after the interaction
xenon atoms with a laser pulse, there have been severa
oretical time-dependent studies of possible mechanism
population transfer@3#. The experiment involved a seven
photon resonance from the ground state, the excited s
being coupled to the continuum by one photon.

The case considered in the present calculation invo
only a two-photon coupling between the ground (1s) and the
excited (2s) states, the two photons being either of the sa
frequency or of different frequencies. We explore differe
schemes of excitation, varying several of the laser field
rameters, namely frequency, intensity, and pulse durat
Atomic units ~a.u.! will be used throughout, unless othe
wise indicated.

We consider a hydrogen atom, initially in its groun
(1s) state, which interacts with a short, strong laser pu
described classically in the dipole approximation as an e
tric field E(t)52c21dA(t)/dt, whereA(t) is the vector po-
tential
551050-2947/97/55~5!/3697~7!/$10.00
d
g
s
el

-
e

e-
st
f
e
e
s-

f
he-
of

te

s

e
t
-
n.

,
c-

A~ t !5 êĀ~ t !cos@v~ t !t1f#, ~1!

with ê the polarization vector,Ā(t) the amplitude, and
v(t) the angular frequency. For sufficiently short las
pulses, this problem can be solved by direct numerical in
gration of the time-dependent Schro¨dinger equation@4,5#.
Results obtained this way will be presented below and
ferred to as the ‘‘full solution,’’ giving the correct time de
pendence of the system.

It is useful to interpret the time-dependent results in ter
of time-independent eigenstates of the atom in the field, w
the help of the Floquet theory@6#. The Floquet calculation
takes advantage of the fact thatĀ(t) and v(t) are slowly
varying functions oft, that is, they are approximately con
stant over one field periodT52p/v. This yields ‘‘quasista-
tionary’’ states describing an ionizing atom in the field
constantĀ(t) andv(t), each state having a ‘‘quasienergy
with negative imaginary part Im(E)52G/2, whereG is the
decay rate of that state. The Floquet approach can be ge
alized to more than one color@6,7#.

As the field intensity or frequency are varied adiaba
cally, the atomic system follows a particular Floquet eige
state. If states of the system are resonantly coupled by on
more photon transitions, the single Floquet state approxi
tion may become invalid. If the field parameters vary t
rapidly, notably in the vicinity of crossings of Floquet eige
value curves, the evolution may no longer be adiabatic
part of the population can be transferred to other Floq
eigenstates. Landau-Zener descriptions of narrow isola
avoided crossings have been successful in describing ex
mentally observed population transfer@8#. However, many
open questions still remain, which are not amenable to
usual Landau-Zener treatment, notably when the crossin
not avoided but true@9#, or when the transition time throug
the crossing is too small for an adiabatic transition. This
the case in the results presented below.
3697 © 1997 The American Physical Society
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II. METHOD

The time-dependent Schro¨dinger equation for a hydroge
atom in a laser field described by the vector potential~1!
reads

i
]

]t
C~r ,t !5Fp22 2

1

r
1
1

c
p–A~ t !GC~r ,t !, ~2!

where the term inA2(t) has been eliminated by performing
unitary transformation. Spontaneous decay can be negle
if the laser pulse duration considered is much shorter t
the spontaneous decay lifetime; this is certainly the case
the 2s ~metastable! state.

We use standard finite-difference procedures for the s
tion of this time-dependent equation, working in positi
space and using a spherical grid with a smooth ma
function absorber at large radiusr @4,5,10#.

The time-dependent solution thus obtained can be a
lyzed by projecting the wave function on the unperturb
~field-free! eigenstateŝ i u of the hydrogen atom. Thus w
introduce the probabilities

Pi5 z^ i uC~ t !& z2. ~3!

Although the field-free eigenstates are no longer eigenst
when the field is turned on, an analysis in terms of the pr
abilities Pi can give indications about the dynamics of t
system. At the end of the pulse thePi give the true fractional
populations in each of the bound states.

If the intensity and frequency of the laser are assume
be constant, quasistationary solutions can be calculated
the help of the Floquet theory@6,9,11#. The Floquet eigen-
states are frequency- and intensity-dependent and cons
a generalization of the field-free stationary states to the c
where the field is not zero.

In the present case, we are considering a near reson
between two discrete states of the atom. Such a syste
effectively composed of only two states, which are coup
by the laser, plus one~or more! continuum into which the
system can decay. The Hamiltonian for such a two-le
atom, in the rotating wave approximation, can be written a
232 matrix @12#

H5S E1s1D2iG1s/2 V

V E2s2 f ~v!2iG2s/2D , ~4!

with the Rabi-frequencyV proportional to the laser multi
photon coupling matrix element between the two statesG
the states’ ionization widths, the shift of the 1s stateD}I ,
and wherev is the laser frequency andI the intensity. The
2s state also experiences a shift in the field that, within
model, we have simply absorbed insideD. The presence o
the termf (v) is due to the fact that the resonance detuning
a function of the frequency~or frequencies!. For the one-
color two-photon resonance case below,f (v) is simply
equal to 2v.

The eigenvalues of the two-level atom complex symm
ric Hamiltonian of Eq.~4! can immediately be obtained an
compared to the eigenvalues from a full Floquet calculati
The parameters in the model can be adjusted to reprod
ted
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the full Floquet results as closely as possible. Such a c
parison is discussed in Fig. 2 below. Generally, the agr
ment is good as long as only two bound states are couple
the field. The global effects of the other bound states can
incorporated by appropriate~and generally nonperturbative!
parameters and field dependence of theG and D. If good
modeling of the atom is achieved in this way, the two-lev
Hamiltonian can be used in a time-dependent calculat
solving

i
]

]t
uc~ t !&5H~ t !uc~ t !&, ~5!

where uc(t)& is a column vector with two components an
where H(t) incorporates the explicit dependence on t
time-varying field parameters. The 232 model solution can
then again be compared to the full solution of the tim
dependent Schro¨dinger equation~2!.

III. RESULTS

A. Single-color two-photon resonance

The 1s-2s two-photon resonance in atomic hydrogen in
linearly polarized single-color laser field has been ext
sively used in studies of the zero-field energy difference
these two states@13#. state Usually, field-induced resonanc
produce avoided crossings in the dressed states’ energies
function of a parameter~for example, the laser intensity o
frequency!. In such two-level atoms, when ionization is n
glected, Rabi oscillations are visible when projecting t
time-dependent wave function onto the field-free eigensta
These oscillations are damped by the ionization out of
bound states. When the ionization rate becomes larger
the Rabi frequency, no more oscillations will be visible@12#.

In the present case, a laser field whose frequency is c
to the two-photon 1s-2s resonance frequency will also ion
ize the excited 2s state by a single photon. The two-photo
coupling matrix element between the 1s and the 2s states,
D2s,1s
(2) , turns out to be of almost the same magnitude as

square of the matrix element between the 2s state and the
continuum, uDe,2s

(1) u2, where e denotes the (p) continuum
state at energye5E2s1(E2s2E1s)/2.

For this case, the parameters in the effective 232 Hamil-
tonian matrix~4! are, at low intensity,

V}D2s,1s
~2! 3I , ~6!

G2s}uDe,2s
~1! u23I , ~7!

and

f ~v!52v. ~8!

Figure 1 shows the imaginary and real parts of the t
eigenvalues of the Hamiltonian~4! for a fixed frequency
v50.2 a.u. versus intensity. A small field-induced off-
resonant two-photon ionization widthG1s of the ground state
has been incorporated in Eq.~4!—the perturbative half-
widths in the absence of coupling~settingV50) are indi-
cated by the dashed lines in the upper part of the figure
the lower part, the dashed lines indicate the perturbative c



th
i
ing
v

t
fu

ue

em
at

g

e
e
-
a
iv
o-
uu
ve

gy
t
e
at
o
a
ib

n-
nt,

-
ee
l

e
n
he
ita-
-
e
oss
av-
ect
an

e

he
for

ld

i-

an
is
he
oi-

re
th

o-

r,

55 3699TIME EVOLUTION OF TWO-PHOTON POPULATION . . .
tinuation of the uncoupled shifts and one should note
deviation from these lines at high intensity. This deviation
due to the fact that as a function of intensity the coupl
energy grows as rapidly as the detuning and thus the de
tion from the perturbative uncoupled~dashed! result is
roughly constant. The main point of the figure, however, is
exhibit the excellent quantitative agreement between the
Floquet solution@11# and the model~4!. In fact, the param-
eters of the model have been taken from the full Floq
calculation rather than from a perturbative calculation.

Since bothV andG2s in Eq. ~4! are proportional to the
field intensity, there is a scaling invariance of the syst
with intensity: for a particular frequency, the intensity
which the crossing occurs is given by the~intensity-
dependent! shift D(I ). At sufficiently low intensities,
D(I )5D̄3I . By rescaling the time and the detunin
d5E1s1D(I )12v2E2s , the behavior~e.g., as a function
of frequencyv) is the same, at all intensities for which th
model ~4! is applicable. It breaks down at intensities high
than about 1014 W/cm2 as is apparent from Fig. 1. There
fore, the time dependence discussed below applies at
lower laser intensity, even in the very weak perturbat
limit. This scaling applies in fact to any two-photon res
nance, where the upper state is connected to the contin
by a single photon. The explicit time dependence, howe
depends on the magnitude of the two matrix elements,D2,1

(2)

and uDe,2
(1)u2, relative to each other and to the photon ener

The gap at the avoided crossing of the real parts has
same magnitude as22 times the imaginary parts at th
crossing. This indicates that the coupling between the st
is just as large as the damping due to the ionization width
the upper state. Therefore, the system should behave
critically damped oscillator. This behavior is indeed exh

FIG. 1. Quasistationary Floquet eigenvalues for a fixed f
quency v50.2 a.u., as a function of intensity. Upper, wid
G522 Im(E); lower, real part. Solid line, model~4!; circles, full
Floquet calculation@11#; dashed, perturbative result without res
nance.
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ited in Fig. 2. The upper part shows the field’s vector pote
tial, A(t), which is ramped on rapidly and then kept consta
corresponding to the intensityI51.131014 W/cm2, just at
the resonance forv50.2 a.u. In the lower parts, the projec
tion of the time-dependent wave function onto the field fr
eigenstate 2s is shown. The thicker solid line is from a ful
numerical solution of the Schro¨dinger equation for the hy-
drogen atom@5#, while the dashed line is the solution to th
time-dependent Schro¨dinger equation using the Hamiltonia
~4!. The agreement between the two is again very good. T
behavior at times larger than 500 a.u., however, is qual
tively different for the full solution as compared to the two
level model. ThePi of the full solution converge to the sam
near-exponential decay curve, while the model results cr
and show different and in part nonsingle-exponential beh
ior. In fact, for a resonance case one should not exp
single-exponential decay and the full solutions in Fig. 2 c
be fitted very well byPi(t)5Pi0texp(2ait) up to t51600
a.u., where our numerical precision starts to run out. W
obtain a1s50.0083 a.u. anda2s50.0078 a.u., which is of
the order of but not identical to the Floquet widths at t
crossing. In the lower part the thin lines give the results
the 1s and for the 2p populations, respectively. The 2p state
is never actually populated but it contributes to the ‘‘fie
dressed’’ 1s state.

The main point of this second figure is that only a max
mum of about 15% of population is ever found in the 2s
excited state. This amount of real population transfer c
indeed be obtained, by employing a finite laser pulse. It
evident from Fig. 2 that the pulse duration must be of t
order of 300 a.u. In Fig. 3 we show the results for a trapez

-
FIG. 2. Top part, vector potentialA(t). Frequencyv50.2 a.u.,

linear ramp turn-on fromt050 to t15126 a.u., constant thereafte
field strengthE050.056 a.u. (I51.131014 W/cm2). Lower parts,
time evolution of the projection onto the unperturbed 1s and 2s
eigenstates. Solid line, full solution@5#; dashed line, model~4!. The
thin lines in the lower (P2s) plot are a repetition of theP1s results
above. The thin line labeled 2p gives the population of the 2p state
~in the full solution!.
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3700 55M. DÖRR, O. LATINNE, AND C. J. JOACHAIN
dal pulse, where the field strength is increased linearly fr
t0 to t1, then held constant fromt1 to t2, and finally turned
off linearly from t2 to t3. The same amount can be obtain
with other pulse shapes~e.g., a sin2 or a sech2 pulse! show-
ing that the population transfer is robust with respect to
pulse shape~as long as it is reasonably smooth!.

As said above, this result is also robust under variation
the crossing intensity and frequency: the time after whic
maximum of population will be transferred into the excit
state depends on the ionization rate at the crossing, bu
maximum amount will always be around 15%. Converse
if the atom experiences a laser pulse of fixed durationt a
maximum 2s signal will be seen after the pulse for a partic
lar frequencyvX , which is approximately given by

vX'
E2s2E1s

2
2

pD̄

D2s,1s
~2! t

. ~9!

This condition follows since forvX the crossing is at an
intensity of I X5(E2s2E1s22vX)/D̄, and the durationt
must be approximately equal top/V, whereV is the energy
width of the gap at the crossing, withV5D2s,1s

(2) 3I X . For an
optimal population transfer with a short pulse, in order
reduce ionization losses, the peak intensityI 0 must be chosen
somewhat larger thanI X ~roughly a factor 1.3!, in order to
make the pulse as short as possible, as seen in Fig. 2. S
the shift is no longer linear at higher intensity, the conditi
~9! is valid only for I 0 not too large, as mentioned above.
a two-photon transition between a bound state and a mem
of a Rydberg series of higher-lying excited states is con
ered, a particular peak intensity will induce optimal popu
tion transfer only to a few specific Rydberg states, for a fix
t andv.

FIG. 3. Same as for Fig. 2, real population transfer with a sh
pulse. Frequencyv50.2 a.u., trapezoidal pulse fromt050 to
t15251 to t25314 to t45440 a.u., peak field strengthE050.065
a.u. (I51.531014 W/cm2).
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The question now arises whether more efficient popu
tion transfer is possible using the intensity variation toget
with a frequency variation~chirp! of the laser pulse. The
avoided crossing seen in Fig. 2 might be used by choosin
path in intensity-frequency parameter space which lead
an adiabatic transfer of population from the 1s to the 2s
state. The problem with this hypothetical adiabatic variat
is that an adiabatic variation through the avoided cross
must occur during a time which is longer than the inverse
the Rabi splitting at the crossing. But since this time is of t
same order as the lifetime of the states at the crossing~see
Fig. 2, bottom part!, the system will be ionized during th
slow passage through the crossing. Thus, in Fig. 3, the o
mal pulse duration is only 450 a.u., which is roughly equ
to p/V. Due to the intensity scaling mentioned above, t
situation will not change by choosing a lower intensity a
corresponding different frequencies. Systematic optimizat
studies using the model~4! also demonstrate that the add
tional freedom of a frequency chirp does not lead to lar
population transfer.

Also, a combination of two laser pulses does not yield
higher 2s population, as has been verified by systema
studies on the two-level model, varying the pulse duratio
peak intensities, and temporal offsets~or overlaps!. It is in-
teresting to note, however, that after the first pulse
passed, a second pulse can be applied which coherentlyde-
populatesthe 2s level completely, actually pumping bac
some population into the 1s level.

B. Laser-induced continuum structure

Many authors have considered the ‘‘L-configuration,’’
depicted in Fig. 4, in which two bound states 1 and 2 of
atom are coupled via the continuum, using two lasers
angular frequenciesvL andvH @14,15#. Usually thevH laser
~the probe! is kept weak so that thevL laser effectively
induces continuum structure~LICS! analogous to an autoion
izing resonance. This resonance gives rise to a marked in

rt

FIG. 4. Schematic energy diagram for laser-induced continu
structure involving a two-color coupling of the two states, via t
continuum.
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55 3701TIME EVOLUTION OF TWO-PHOTON POPULATION . . .
ference structure in the ionization rate of the ground state
the heart of this interference lies a degeneracy of twocom-
plex Floquet eigenvalues, at a particular value of the t
frequencies and intensities. Similar degeneracy points h
been discussed in@16,17#. This opens the fascinating pros
pect of observing a geometric phase@18# by encircling such
a degeneracy point by a suitable variation of the laser par
eters. The main problem comes from the fact that the ato
decaying in the field, and most of the population is ioniz
when the path is completed. In the present case we are i
ested in optimal population transfer and this is only effec
by a nonadiabatic transition. In the single-color case d
cussed in Sec. III A above, for exactly the same reason
optimal population transfer was also given by a nonadiab
transition.

Figure 5 shows the complex Floquet quasienergies
atomic hydrogen in two laser fields withvL50.3 a.u. fixed,
I L5231014 W/cm2, vH as indicated on the curves, andI H
varying from 0 to 331014 W/cm2 along the four curves on
the left and to 131015 W/cm2 along the four curves on th
right. Comparison with the results of@17# shows that the
simple LICS model is approximately applicable here. In E
~4!, the widthG2s is now given by the sum of the two colors
ionization probabilities for the upper state,D includes the
shifts of both states~in the absence of resonance!, andG1s is
principally due to the ionization width of the 1s state by the
laser fieldvH alone. The two-photon coupling of the 1s and
the 2s states now occurs via the continuum and thusV is
now complex and proportional to (q2i )D2s,1s

2 , where
D2s,1s
2 is equal toAG1sHG2sL. The quantitiesG1sH andG2sL

are, respectively, the one-photon ionization rate of thes
state by frequencyvH alone and of the 2s state byvL alone.
The Fano parameterq50.35 can be obtained from a Fan
profile fit to the Floquet rate of the 1s state versusvH , at
low I H . As discussed in@17#, the resulting complex-
symmetric Hamiltonian matrix~4! has pairs of two degener
ate eigenvalues at two different complex energies, co
sponding to two different particular sets of field paramete
The real parts of the two degeneracies lie asymmetric
about d50, where the detuning is defined a
d5E2s

(0)2E1s
(0)1vL2vH . The energy separation betwee

the two degeneracy points is of the order ofG2s . In order to
follow a quasienergy trajectory, one must vary the para
eters (vH and I H) slowly enough, while in order not to los
all population due to ionization along the way the parame
variation must be fast enough. The first condition impl
two relations:~i! the pulse durationt of the lasers must be
long enough for the frequencyvH to be defined within
DvH5ud12d2u'Ge , thus TH /t,DvH /vH⇔t.2p/Ge
~notingTH52p/vH), and~ii ! the passage should be slow o
the time scale set by the two-color Rabi coupling frequen
VR between the two statesg and e. EstimatingVR'Ge
yields the relationt.1/Ge . The second condition, on th
other hand, implies roughlyt,1/Ge . Evidently, these rela-
tions are incompatible, but only marginally so.

C. Optimal two-color population transfer

We note that the present two-color transfer mechan
uses noncommensurable frequencies and thus does no
on a fixed phase relation between the two colors. Howe
t
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the general ideas of coherent control are applicable. Wish
to gain maximal output of the cost function, given as t
final population in the excited state after the laser pulses,
must find the optimal laser parameters within a defined
rameter variation space. Computation of the cost funct
through solution of the full time-dependent Schro¨dinger
equation would be too expensive in a multidimensional
rameter space. We have therefore used the two-level m
and applied a numerical multidimensional minimization pr
cedure to find the optimal laser pulse parameters in orde
transfer a maximum amount of population into the 2s state at
the end of the pulses. We have allowed parameter variat
of the peak intensities of both pulses, the frequency of
higher frequency pulse and the pulse shapes, keeping
lower frequency fixed atvL50.3. We have also allowed fo
a chirp in the higher frequency pulse, the optimal trans
requiring no chirp, however.

In Fig. 6 we show the optimal transfer result, in which
final population of 16% is obtained in the 2s state, while the
1s state is almost empty at the end of the pulse. The resu
robust, that is, it is not too sensitive to the exact numeri
values of the parameters of the laser pulses. The reaso
the near-complete depopulation of the 1s state is simply that
its ionization rate through the higher-frequency field alone
much larger than the ionization rate of the 2s state by the
high-frequency field. Our result shows that the populat
transfer through the continuum in a real system, includ
the incoherent decay channels, need not be as small as n
in @15#. The pulse parameters must of course be optimi
within a model including all interactions, as we have don

It must be stressed that the present optimal pulse par
eters can only be obtained with the help of the adap
model, since a minimization must be performed in a mu
dimensional parameter space for the two laser pulses, w
would require prohibitively large computer time when usi
the full time-dependent solution.

FIG. 5. Floquet quasienergy trajectories in the complex ene
plane for two-photon ionization of atomic hydrogen in the 1s
or 2s state. FrequencyvL50.3 a.u. fixed, intensityI L5231014

W/cm2 fixed,vH indicated in a.u., andI H varying along the curves
from 0 to 331014 W/cm2 ~left curves! or to 131015 W/cm2 ~right
curves!. The dots denote steps in intensity of 231013 W/cm2.
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IV. CONCLUSIONS

When a hydrogen atom, initially in its 1s ground state, is
subject to a laser pulse whose frequency is close to the
photon resonance with the metastable 2s excited state, the
system behaves like an overdamped oscillator. Only a m
mum of 16% of population can be transferred into the
cited state. It is not possible to follow quasienergy curv
adiabatically for the hydrogenic two-photon 1s-2s coupling

FIG. 6. Same as for Fig. 3, but for a combination of two las
pulses of different frequency. Lower frequencyvL50.3 a.u., trap-
ezoidal pulse fromt0512 to t15290 to t25340 to t35400 a.u.,
peak field strengthE0L50.0755 a.u. Higher frequencyvH50.697
a.u., sin-pulse from 0 to 410 a.u., peak field strengthE0H50.174
a.u. These values give an optimal population transfer.
el
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since the damping~ionization! is comparable to the coupling
~Rabi frequency!. It is never possible to achieve an inversio
that is, a population larger in the excited than in the grou
state, for this case. Chirping the frequency of the laser pu
does not lead to more effective population transfer in
present case.

For a two-color coupling of the two states, via the co
tinuum, effective population transfer is again possible, in f
to about the same amount. This can be achieved by an o
mized choice of the laser pulse parameters. In this case
ground state is severely depopulated, since its ionization
by the high-frequency laser alone is much larger than the
of the 2s state. Since the energy difference of the degene
cies is comparable to the ionization rate, in the two-co
case again it is not possible to follow quasienergy cur
adiabatically and it is consequently not possible to reso
the two complex energy degeneracy points.

We have shown that for resonant couplings, even via
continuum, a two-by-two effective Hamiltonian reproduc
to satisfactory accuracy the solution of the full Schro¨dinger
equation, both fully time-dependent and within the Floqu
approach. It is important in order to obtain accurate mod
ing to adjust the model parameters to the full nonperturba
Floquet calculation; if perturbative couplings are used,
agreement is usually not good. The adjusted effective Ham
tonian has been used in a numerical minimization calcu
tion, which yields optimal laser pulse parameters. In
present case, optimization has been performed on the p
lation in the excited state at the end of the laser pulses.
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