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We have solved the time-dependent Sclimger equation to analyze the time evolution of a hydrogen atom,
initially in its ground 1s state, interacting with a one- or two-color linearly polarized laser pulse which is tuned
close to a two-photon resonance with the Retastable state. The two-photon transition therefore does not
involve an intermediate resonance state. Using a suitable combination of two laser pulses of different frequen-
cies, population can be transferred from treestate to the & state via the continuum. In both the single-color
and the two-color cases, a maximum amount of 17% of population can be found is #tat@ at the end of
the pulse. We compare and interpret our results in terms of the time-independent Floquet eigenvalues. The
system can also be modeled by an “essential states” two-level atom with decay. Both the Floquet and the
time-dependent solutions are compared with the model predictions. The model allows systematic optimization
studies for population transfer under a wide range of laser pulse parani&tE050-294{@7)06504-9

PACS numbgs): 32.80.Rm, 32.80.Qk, 42.50.Hz

I. INTRODUCTION A(t) = eA(t)cod w(t)t+ ¢], ()

Pumping an atom from the ground state into an excited

state with the help of a laser is q;ually pgrfprmed by tuniquith ¢ the polarization vectorA_(t) the amplitude, and
the laser to resonance and waiting sufficiently long. ThISw(t) the angular frequency. For sufficiently short laser

process can be understood in terms of a simple two-leveljses, this problem can be solved by direct numerical inte-
model atom[1], in which the laser coupling induces Rabi gration of the time-dependent Sétinger equation(4,5].
oscillations of the population between the two states. In prinResylts obtained this way will be presented below and re-
ciple, population can be transferred to 100% by choosing theerred to as the “full solution,” giving the correct time de-
pulse length appropriately 7 pulse”). Decay processes can pendence of the system.
be included in this model, for example the spontaneous de- |t is useful to interpret the time-dependent results in terms
cay, which destroys the coherence, but still allows at leasbf time-independent eigenstates of the atom in the field, with
50% population transfer. When laser-induced ionization othe help of the Floquet theo6]. The Flogquet calculation
the atom becomes important, however, in particular when theakes advantage of the fact thaft) and w(t) are slowly
ionization rate of the upper level becomes comparable to thearying functions oft, that is, they are approximately con-
Rabi frequency, it is not evident that population can be transstant over one field perioi=2/w. This yields “quasista-
ferred through Rabi oscillations. tionary” states describing an ionizing atom in the field at
Following the experimental observatig@] of relatively  constantA(t) and w(t), each state having a “quasienergy”
large populations in excited states after the interaction ofvith negative imaginary part Ini{)= —I'/2, wherel is the
xenon atoms with a laser pulse, there have been several thdecay rate of that state. The Floquet approach can be gener-
oretical time-dependent studies of possible mechanisms aflized to more than one col§6,7].
population transfef3]. The experiment involved a seven-  As the field intensity or frequency are varied adiabati-
photon resonance from the ground state, the excited statmlly, the atomic system follows a particular Floquet eigen-
being coupled to the continuum by one photon. state. If states of the system are resonantly coupled by one or
The case considered in the present calculation involvemore photon transitions, the single Floquet state approxima-
only a two-photon coupling between the groung) &nd the tion may become invalid. If the field parameters vary too
excited (&) states, the two photons being either of the sameapidly, notably in the vicinity of crossings of Floquet eigen-
frequency or of different frequencies. We explore differentvalue curves, the evolution may no longer be adiabatic and
schemes of excitation, varying several of the laser field papart of the population can be transferred to other Floquet
rameters, namely frequency, intensity, and pulse duratioreigenstates. Landau-Zener descriptions of narrow isolated
Atomic units (a.u) will be used throughout, unless other- avoided crossings have been successful in describing experi-
wise indicated. mentally observed population transfgd]. However, many
We consider a hydrogen atom, initially in its ground open questions still remain, which are not amenable to the
(1s) state, which interacts with a short, strong laser pulseusual Landau-Zener treatment, notably when the crossing is
described classically in the dipole approximation as an elecaot avoided but trug9], or when the transition time through
tric field £(t) = — ¢~ *dA(t)/dt, whereA(t) is the vector po- the crossing is too small for an adiabatic transition. This is
tential the case in the results presented below.
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Il. METHOD the full Floquet results as closely as possible. Such a com-
parison is discussed in Fig. 2 below. Generally, the agree-
ment is good as long as only two bound states are coupled by
the field. The global effects of the other bound states can be

The time-dependent Schiimger equation for a hydrogen
atom in a laser field described by the vector potential

reads incorporated by appropriat@nd generally nonperturbative
2 parameters and field dependence of thand A. If good
1% pc 1 1 . . . . .
; E\p(r,t): 5 F+ Ep.A(t) W(r,t), (20  modeling of the atom is achieved in this way, the two-level

Hamiltonian can be used in a time-dependent calculation,

where the term iA%(t) has been eliminated by performing a solving

unitary transformation. Spontaneous decay can be neglected 9
if the laser pulse duration considered is much shorter than /,'Eh/;(t)):H(t)lz,b(t)), (5
the spontaneous decay lifetime; this is certainly the case for

the 2s (metastablgstate. . .
We use standard finite-difference procedures for the soluwherel ¥(1)) is a column vector with two components and

tion of this time-dependent equation, working in positionWhere H(t) incorporates the explicit dependence on the

) X . , time-varying field parameters. Thex2 model solution can
space and using a spherical grid with a smooth mask; . . .

. . then again be compared to the full solution of the time-
function absorber at large radiug4,5,10.

The time-dependent solution thus obtained can be anaquendem Schdinger equatior(2).

lyzed by projecting the wave function on the unperturbed

(field-free eigenstategi| of the hydrogen atom. Thus we IIl. RESULTS
introduce the probabilities A. Single-color two-photon resonance
P=i| ()2 (3) The 1s-2s two-photon resonance in atomic hydrogen in a

linearly polarized single-color laser field has been exten-
Although the field-free eigenstates are no longer eigenstategvely used in studies of the zero-field energy difference of
when the field is turned on, an analysis in terms of the probthese two statefs 3]. state Usually, field-induced resonances
abilities P; can give indications about the dynamics of the produce avoided crossings in the dressed states’ energies as a
system. At the end of the pulse tRe give the true fractional function of a parameteffor example, the laser intensity or
populations in each of the bound states. frequency. In such two-level atoms, when ionization is ne-

If the intensity and frequency of the laser are assumed t@lected, Rabi oscillations are visible when projecting the
be constant, quasistationary solutions can be calculated wiffime-dependent wave function onto the field-free eigenstates.
the help of the Floquet theofs,9,11. The Floguet eigen- These oscillations are damped by the ionization out of the
states are frequency- and intensity-dependent and constitug@und states. When the ionization rate becomes larger than
a generalization of the field-free stationary states to the cagée Rabi frequency, no more oscillations will be visible].
where the field is not zero. In the present case, a laser field whose frequency is close

In the present case, we are considering a near resonantethe two-photon &-2s resonance frequency will also ion-
between two discrete states of the atom. Such a system ige the excited & state by a single photon. The two-photon
effectively composed of only two states, which are coupledcoupling matrix element between the and the 2 states,
by the laser, plus onéor more continuum into which the D(zzs?ls, turns out to be of almost the same magnitude as the
system can decay. The Hamiltonian for such a two-levekquare of the matrix element between the s2ate and the
atom, in the rotating wave approximation, can be written as &ontinuum, |D(€’12)S|2, where € denotes the [f) continuum

2X2 matrix[12] state at energy=E .+ (E,s— E15)/2.
_ For this case, the parameters in the effectiveZ2Hamil-
Eis+A—/T 142 Q tonian matrix(4) are, at low intensity,
H= Q Ep—f(w)—/Tyf2] 4
2 L2
s ® Q=D X1, (6)
with the Rabi-frequency) proportional to the laser multi- I | D21, 7)
photon coupling matrix element between the two stales, ©
the states’ ionization widths, the shift of the StateA«I, and
and wherew is the laser frequency andthe intensity. The
2s state also experiences a shift in the field that, within the f(w)=2w. (8

model, we have simply absorbed inside The presence of

the termf(w) is due to the fact that the resonance detuning is Figure 1 shows the imaginary and real parts of the two

a function of the frequencyor frequencies For the one- eigenvalues of the Hamiltoniatd) for a fixed frequency

color two-photon resonance case beloffw) is simply ©=0.2 a.u.versusintensity. A small field-induced off-

equal to 2. resonant two-photon ionization widih ¢ of the ground state
The eigenvalues of the two-level atom complex symmethas been incorporated in Eg4)—the perturbative half-

ric Hamiltonian of Eq.(4) can immediately be obtained and widths in the absence of couplifgettingQ)=0) are indi-

compared to the eigenvalues from a full Floquet calculationcated by the dashed lines in the upper part of the figure. In

The parameters in the model can be adjusted to reprodudbe lower part, the dashed lines indicate the perturbative con-
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o FIG. 2. Top part, vector potentid(t). Frequencyw=0.2 a.u.,
FIG. 1. Quasistationary Floguet eigenvalues for a fixed fre-linear ramp turn-on fromt,=0 tot,=126 a.u., constant thereafter,
quency w=0.2 a.u., as a function of intensity. Upper, width field strength,=0.056 a.u. {=1.1x 10'* W/cm2). Lower parts,

I'=-2Im(E); lower, real part. Solid line, modg#); circles, full  time evolution of the projection onto the unperturbesl dnd
Floguet calculatior{11]; dashed, perturbative result without reso- eigenstates. Solid line, full solutids]; dashed line, mode#). The
nance. thin lines in the lower P,.) plot are a repetition of th®, ¢ results

. . . above. The thin line labeledp2gives the population of thef2state
tinuation of the uncoupled shifts and one should note thgi, the full solution.

deviation from these lines at high intensity. This deviation is

due to the fact that as a function of _intensity the couplingited in Fig. 2. The upper part shows the field's vector poten-
energy grows as rapidly as the detuning and thus the deviggy), A(t), which is ramped on rapidly and then kept constant,
tion from the perturbative uncouplettashed result is corresponding to the intensity=1.1x 10" W/cm?, just at
roughly constant. The main point of the figure, however, is tohe resonance fon=0.2 a.u. In the lower parts, the projec-
exhibit the ex_cellent quantitative agreement between the fulfiq, of the time-dependent wave function onto the field free
Floguet solutior{11] and the model(4). In fact, the param-  gjgenstate € is shown. The thicker solid line is from a full
eters of the model have been taken from the full Floquet, merical solution of the Schdinger equation for the hy-
calcglation rather than frpm a perturbative cal'culation. drogen atoni5], while the dashed line is the solution to the

~ Since both() andT'5s in Eq. (4) are proportional to the  ime_dependent Schdinger equation using the Hamiltonian
field intensity, there is a scaling invariance of the systenm)' The agreement between the two is again very good. The
with intensity: for a particular frequency, the intensity at hepavior at times larger than 500 a.u., however, is qualita-
which the crossing occurs is given by theéntensity- jyely different for the full solution as compared to the two-
dependent shift A(l). At sufficiently low intensities, |eyel model. TheP,; of the full solution converge to the same
A(l)=AXI. By rescaling the time and the detuning near-exponential decay curve, while the model results cross
0=Est+A(l) +2w—Eys, the behavior(e.g., as a function and show different and in part nonsingle-exponential behav-
of frequencyw) is the same, at all intensities for which the jor. In fact, for a resonance case one should not expect
model(4) is applicable. It breaks down at intensities highersingle-exponential decay and the full solutions in Fig. 2 can
than about 1&* W/cm? as is apparent from Fig. 1. There- pe fitted very well byP;(t)=P;otexp(—at) up to t=1600
fore, the time dependence discussed below applies at ary/u., where our numerical precision starts to run out. We
lower laser intensity, even in the very weak perturbativeoptain a;,=0.0083 a.u. andr,=0.0078 a.u., which is of
limit. This scaling applies in fact to any two-photon reso- the order of but not identical to the Floquet widths at the
nance, where the upper state is connected to the continuugtossing. In the lower part the thin lines give the results for
by a single photon. The explicit time dependence, howevethe 1s and for the D populations, respectively. Theptate
depends on the magnitude of the two matrix elemeBt)  is never actually populated but it contributes to the “field
and|D(E'12?|2, relative to each other and to the photon energydressed” & state.

The gap at the avoided crossing of the real parts has the The main point of this second figure is that only a maxi-
same magnitude as-2 times the imaginary parts at the mum of about 15% of population is ever found in the 2
crossing. This indicates that the coupling between the statesxcited state. This amount of real population transfer can
is just as large as the damping due to the ionization width ofndeed be obtained, by employing a finite laser pulse. It is
the upper state. Therefore, the system should behave asesident from Fig. 2 that the pulse duration must be of the
critically damped oscillator. This behavior is indeed exhib-order of 300 a.u. In Fig. 3 we show the results for a trapezoi-
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) _ ) structure involving a two-color coupling of the two states, via the
FIG. 3. Same as for Fig. 2, real population transfer with a shoricontinuum.

pulse. Frequencyw=0.2 a.u., trapezoidal pulse fromy=0 to
t;=251 tot,=314 tot,=440 a.u., peak field strengtfy=0.065 The question now arises whether more efficient popula-
a.u. (=1.5<10" wicm?). tion transfer is possible using the intensity variation together
with a frequency variatior(chirp) of the laser pulse. The
dal pulse, where the field strength is increased linearly fromavoided crossing seen in Fig. 2 might be used by choosing a
to to t5, then held constant from, to t,, and finally turned  path in intensity-frequency parameter space which leads to
off linearly fromt, to t;. The same amount can be obtainedan adiabatic transfer of population from the fo the X
with other pulse shapésg.g., a sirf or a seck pulse show-  state. The problem with this hypothetical adiabatic variation
ing that the population transfer is robust with respect to thdés that an adiabatic variation through the avoided crossing
pulse shapéas long as it is reasonably smopth must occur during a time which is longer than the inverse of
As said above, this result is also robust under variation othe Rabi splitting at the crossing. But since this time is of the
the crossing intensity and frequency: the time after which asame order as the lifetime of the states at the crossiag
maximum of population will be transferred into the excited Fig. 2, bottom pait the system will be ionized during the
state depends on the ionization rate at the crossing, but ttetow passage through the crossing. Thus, in Fig. 3, the opti-
maximum amount will always be around 15%. Conversely mal pulse duration is only 450 a.u., which is roughly equal
if the atom experiences a laser pulse of fixed duratitom to «#/Q. Due to the intensity scaling mentioned above, the
maximum 2 signal will be seen after the pulse for a particu- situation will not change by choosing a lower intensity and
lar frequencywy, which is approximately given by corresponding different frequencies. Systematic optimization
studies using the modé#l) also demonstrate that the addi-
- tional freedom of a frequency chirp does not lead to larger
E2xs—Eis mA lati f
- (9)  Ppopulation transfer.. .
2 D(Zs,lsT Also, a combination of two laser pulses does not yield a
higher & population, as has been verified by systematic
studies on the two-level model, varying the pulse durations,
peak intensities, and temporal offséts overlap$. It is in-
teresting to note, however, that after the first pulse has
passed, a second pulse can be applied which cohergetly
populatesthe 2s level completely, actually pumping back
some population into thesllevel.

Wy~

This condition follows since forwy the crossing is at an
intensity of |y=(E,s— E1s—2wy)/A, and the durationr
must be approximately equal t&/(), whereQ} is the energy
width of the gap at the crossing, wifa=D%), X I« . For an
optimal population transfer with a short pulse, in order to
reduce ionization losses, the peak intenkjtynust be chosen
somewhat larger thahy (roughly a factor 1.3 in order to
make the pulse as short as possible, as seen in Fig. 2. Since
the shift is no longer linear at higher intensity, the condition Many authors have considered the\:configuration,”

(9) is valid only for |, not too large, as mentioned above. If depicted in Fig. 4, in which two bound states 1 and 2 of an
a two-photon transition between a bound state and a membatom are coupled via the continuum, using two lasers of
of a Rydberg series of higher-lying excited states is considangular frequencies, andwy [14,15. Usually thewy laser
ered, a particular peak intensity will induce optimal popula-(the probe is kept weak so that thes, laser effectively
tion transfer only to a few specific Rydberg states, for a fixednduces continuum structufeICS) analogous to an autoion-

7 and w. izing resonance. This resonance gives rise to a marked inter-

B. Laser-induced continuum structure
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ference structure in the ionization rate of the ground state. At 0.000 ————F——F T T —
the heart of this interference lies a degeneracy of tam- -
plex Floquet eigenvalues, at a particular value of the two
frequencies and intensities. Similar degeneracy points have
been discussed ifil6,17. This opens the fascinating pros- — _g.005 I
pect of observing a geometric phd4ge] by encircling such g L
a degeneracy point by a suitable variation of the laser param-— -
eters. The main problem comes from the fact that the atom is{}
decaying in the field, and most of the population is ionized ‘g —0.010 L
when the path is completed. In the present case we are inter——
ested in optimal population transfer and this is only effected L
by a nonadiabatic transition. In the single-color case dis- L
cussed in Sec. Il A above, for exactly the same reason the 3
optimal population transfer was also given by a nonadiabatic =~ —0-013 =35~ —'o.|52'5 —'o.|52'0 0515
transition. Re(E) (a.u.)

Figure 5 shows the complex Floguet quasienergies for
atomic hydrogen in two laser fields with, =0.3 a.u. fixed,

I =2x%x 10" W/cm?, wy as indicated on the curves, ahg

FIG. 5. Floquet quasienergy trajectories in the complex energy

. 4 5 plane for two-photon ionization of atomic hydrogen in the 1
varying from 0 to 310" W/cm? along the four curves on or 2s state. Frequency, =0.3 a.u. fixed, intensity, =2x10*

5 2
t_he left and to, x 10" .W/cm along the four curves on the W/cm? fixed, wy indicated in a.u., ant}, varying along the curves
right. Comparison with the results ¢1.7] shows that the ¢0m o to 3¢ 101 W/em? (left curves or to 1x 10 W/em? (right

simple LICS model is approximately applicable here. In Eq.c;rve3. The dots denote steps in intensity of 2013 W/cn?.
(4), the widthI",4 is now given by the sum of the two colors’

ionization probabilities for the upper stat4, includes the , i o
shifts of both statefin the absence of resonancendT . is the g(_aneral |Qeas of coherent control are a_ppllcgble. Wishing
principally due to the ionization width of thesistate by the 0 gain maximal output of the cost function, given as the
laser fieldwy alone. The two-photon coupling of thesaind  final population in the excited state after the laser pulses, one
the 2s states now occurs via the continuum and tuss  mMust find thg thlmal laser parameters within a defined pa-
now complex and proportional IOQF/*)Dgs,ls' where ~rameter variation space. Computatlon of the cost function
D%s,ls is equal to\T 1ol oo The quantitied’ ;o and g, through solution of the full t_|me_-depende_n_t Scﬂh_nger

are, respectively, the one-photon ionization rate of tise 1 equation would be too expensive in a multidimensional pa-
state by frequencyy, alone and of the @state byw, alone. rameter space. We have therefore used the two-level model
The Fano parametar=0.35 can be obtained from a Fano- and applied a numerical multidimensional minimization pro-
profile fit to the Floquet rate of theslstate versusoy, at ~ cedure to find the optimal laser pulse parameters in order to
low I,. As discussed in[17], the resulting complex- transfer a maximum amount of population into thes?ate at
symmetric Hamiltonian matrix4) has pairs of two degener- the end of the pulses. We have allowed parameter variations
ate eigenvalues at two different complex energies, correof the peak intensities of both pulses, the frequency of the
sponding to two different particular sets of field parametershigher frequency pulse and the pulse shapes, keeping the
The real parts of the two degeneracies lie asymmetricallyower frequency fixed ab, =0.3. We have also allowed for
about 6=0, where the detuning is defined as a chirp in the higher frequency pulse, the optimal transfer
6=EQY—EY+w —wy. The energy separation between requiring no chirp, however.

the two degeneracy points is of the ordedgf . In order to In Fig. 6 we show the optimal transfer result, in which a
follow a quasienergy trajectory, one must vary the param{inal population of 16% is obtained in thes 3tate, while the
eters @y andly) slowly enough, while in order not to lose 1s state is almost empty at the end of the pulse. The result is
all population due to ionization along the way the parametefobust, that is, it is not too sensitive to the exact numerical
variation must be fast enough. The first condition impliesyalues of the parameters of the laser pulses. The reason for
two relations:(i) the pulse duratiom of the lasers must be the near-complete depopulation of thestate is simply that
long enough for the frequencyy to be defined within s jonization rate through the higher-frequency field alone is
Awy=[dy=dy|~Te, thus Ty/7<Awy/wye7>27Te  mych larger than the ionization rate of the tate by the
(noting Ty =27/ wy), and(ii) the passage should be slow on pigh frequency field. Our result shows that the population
the time scale set by the two-color Rabi coupling frequency,nster through the continuum in a real system, including
QR between the two stateg and e. EsnmatmgQRer the incoherent decay channels, need not be as small as noted
yields the re_lathnr> 1le. The seconpl condition, on the in [15]. The pulse parameters must of course be optimized
o_ther han_d, |mpI|e§ roughly <1/ Ey|dently, these rela- within a model including all interactions, as we have done.
tions are incompatible, but only marginally so. .

It must be stressed that the present optimal pulse param-
eters can only be obtained with the help of the adapted
model, since a minimization must be performed in a multi-

We note that the present two-color transfer mechanisntdlimensional parameter space for the two laser pulses, which
uses noncommensurable frequencies and thus does not ralpuld require prohibitively large computer time when using
on a fixed phase relation between the two colors. Howevetthe full time-dependent solution.

C. Optimal two-color population transfer



3702 M. DORR, O. LATINNE, AND C. J. JOACHAIN 55

since the dampingonization is comparable to the coupling
(Rabi frequency: It is never possible to achieve an inversion,
that is, a population larger in the excited than in the ground
state, for this case. Chirping the frequency of the laser pulse
does not lead to more effective population transfer in the
present case.

For a two-color coupling of the two states, via the con-
tinuum, effective population transfer is again possible, in fact
to about the same amount. This can be achieved by an opti-
mized choice of the laser pulse parameters. In this case, the
ground state is severely depopulated, since its ionization rate
by the high-frequency laser alone is much larger than the one
of the 2s state. Since the energy difference of the degenera-
cies is comparable to the ionization rate, in the two-color
case again it is not possible to follow quasienergy curves
adiabatically and it is consequently not possible to resolve
the two complex energy degeneracy points.

We have shown that for resonant couplings, even via the
100 200 300 400 continuum, a two-by-two effective Hamiltonian reproduces

Time (a.u.) to satisfactory accuracy the solution of the full Sdlinger
equation, both fully time-dependent and within the Floquet

FIG. 6. Same as for Fig. 3, but for a combination of two laser@PProach. It is important in order to obtain accurate model-
pu|ses of different frequency. Lower frequemy: 0.3 a.u., trap_ |ng to adjust the m0de| parameters to the fu" nonperturbative
ezoidal pulse fromt,=12 tot,=290 tot,=340 tot,=400 a.u., Floquet calculation; if perturbative couplings are used, the
peak field strengti€, =0.0755 a.u. Higher frequenay,=0.697  agreement is usually not good. The adjusted effective Hamil-
a.u., sin-pulse from 0 to 410 a.u., peak field stren§gh=0.174  tonian has been used in a numerical minimization calcula-
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a.u. These values give an optimal population transfer. tion, which yields optimal laser pulse parameters. In the
present case, optimization has been performed on the popu-
IV. CONCLUSIONS lation in the excited state at the end of the laser pulses.
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