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Bose-Einstein condensation: Kinetic evolution obtained from simulated trajectories

M. Holland, J. Williams, and J. Cooper
JILA and Department of Physics, University of Colorado, Boulder, Colorado 80309-0440

~Received 27 November 1996!

In this paper, we present a method for simulating the kinetic evolution of a dilute gas of atoms that are
cooled below the critical temperature for Bose-Einstein condensation. Our method gives insight into the
formulation of physical kinetics by illustrating directly the decomposition of the distribution function into an
infinite sum of single-particle trajectories. This approach is valid for the entire range of phase-space densities,
although we limit the discussion here to exclude the region where the condensate fraction is close to unity and
the effect of the mean field is significant. We present explicit calculations of finite number effects on equilib-
rium, the dynamic build-up of the ground state, and simulations of evaporative cooling.
@S1050-2947~97!06005-8#

PACS number~s!: 03.75.Fi, 05.20.Dd, 32.80.Pj
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I. INTRODUCTION

In recent experiments demonstrating Bose-Einstein c
densation of a dilute alkali-metal vapor, the temperature o
gas was reduced by several orders of magnitude using
crucial technique of evaporative cooling@1–5#. The theoret-
ical study of this important technique and the description
condensate formation requires a kinetic theory that tre
nonequilibrium, open systems in both the classical and qu
tum degenerate regimes. It is also necessary to consid
system of finite size as determined by the form of the c
fining potential@6,7#.

We present an alternative approach to describing quan
kinetics that is motivated by the quantum trajectory meth
developed in quantum optics to describe the dissipative e
lution of open systems@8–14#. The basic principle on which
these models are built is that the evolution of the open s
tem, described by a density operator master equation, ca
obtained by accumulating an infinite number of stocha
realizations of a wave-function trajectory. A simple examp
of an open system is an excited atom coupled to the radia
vacuum reservoir. A trajectory in this case consists of
interruption of the continuous evolution of the atomic wa
function by a quantum jump to the ground state when
spontaneous photon is emitted.

We have applied this trajectory method to a fundam
tally different problem. In our case, we wish to describe
evolution of a gas of atoms that are not coupled to a reser
at all. The jumps that occur in the single-atom trajectory t
lead to the irreversible evolution of the system are caused
atomic collisions with other atoms in the gas. Thus the r
of the reservoir in our problem is played by the system its
This inherent nonlinearity is illustrated by the kinetic equ
tion we are trying to simulate. We have previously appli
this approach to treat the classical Boltzmann equation
order to describe the evaporative cooling process@15#. In this
paper, we extend the theory to treat Bose-Einstein conde
tion.

This paper is divided into three parts. We first present
theory for kinetic evolution in Sec. II. In Sec. III, we de
scribe our trajectory approach and outline in detail the c
responding simulation procedure. Finally, in Sec. IV, w
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present applications of the method for thermodynamics, c
densate growth, and evaporative cooling.

II. ERGODIC QUANTUM BOLTZMANN EQUATION

In this section, we outline our mathematical description
kinetic theory and highlight the physical assumptions ma
in its derivation. We present the quantum Boltzmann eq
tion ~QBE!, which is the starting point for our treatment. A
ergodic assumption is made, which simplifies the problem
assuming that the population of a state depends only on
energy. We show how the ergodic QBE goes to the ergo
classical Boltzmann equation in the appropriate limit, a res
that greatly simplifies the trajectory simulation presented
Sec. III.

A. Quantum Boltzmann equation

We consider a dilute system of atoms confined in an i
tropic harmonic oscillator of frequencyv. The Hamiltonian
H5H01HI consists of a free partH0 and an interaction
termHI due to binary collisions

H05(
nW

EnWanW
†anW ,

HI5
1

2 (
nW ,mW ,qW ,pW

C~nW ,mW ;qW ,pW !anW
†amW

† aqWapW , ~1!

whereEnW5(nx1ny1nz1
3
2)\v is the energy eigenvalue o

H0 with quantum numbernW 5(nx ,ny ,nz). Here anW is the
annihilation operator that removes an atom from the sing
particle eigenstatefnW . The transition amplitude is

C~nW ,mW ;qW ,pW !

5E d3x d3x8fnW
* ~xW !fmW

* ~xW8!V~xW ,xW8!fqW~xW !fpW~xW8!, ~2!

whereV(xW ,xW8) is a two-particle potential. In the temperatu
range of interest,s-wave scattering predominates and col
sions are characterized by a contact potential
3670 © 1997 The American Physical Society
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55 3671BOSE-EINSTEIN CONDENSATION: KINETIC . . .
V~xW ,xW8!5
4p\2a

m
d3~xW2xW8!, ~3!

where a is the scattering length. This gives the quantu
mechanical cross section for the collisions58pa2.

The correlation time arising from the duration of a col
sion in Bose-Einstein condensation experiments is typic
much shorter than the time scale on which the system rela
to equilibrium. The time scale for pair correlations is giv
by tcor5a/ v̄, wherev̄ is the mean velocity. The relaxatio
time is determined by the time between elastic collisio
tcol in the gas. For example, in the experiments describe
Ref. @1#, at the critical temperaturetcor'1ms, compared to
tcol'0.1 s. In this regime, Wick’s theorem@16–18# may be
applied to give the evolution under the Born and Mark
approximations of the atomic population

f nW5Tr$ranW
†anW%, ~4!

wherer is theN-particle density matrix for the system. I
the representation of the bare harmonic-oscillator states,
diagonal elementsf nWnW 85Tr$ranW

†anW 8%, nW ÞnW 8, @18# may be
adiabatically eliminated whenvtcol@1. This gives the QBE
@18–22#.1

] f nW
]t

5 (
mW ,qW ,pW

W~nW ,mW ;qW ,pW !@ f qW f pW~11 f nW !~11 f mW !

2 f nW f mW ~11 f qW !~11 f pW !#, ~5!

where the transition rateW(nW ,mW ;qW ,pW ) appearing in Eq.~5! is
obtained from Fermi’s golden rule

W~nW ,mW ;qW ,pW !5
2p

\
uC~nW ,mW ;qW ,pW !u2

dEnW 1EmW ,EqW 1EpW

\v
~6!

andd is the Kronecker delta function giving energy cons
vation. The total number of particles in the systemN deter-
mines the normalization off nW by (nW f nW5N.

B. Ergodic assumption

A practical problem for simulating the QBE is that th
degeneracy of states increases rapidly with increasing
ergy. The degeneracy of a level for the isotropic harmo
oscillator is proportional to the square of the energy so t
even for very low temperatures, the number of states wh
populations must be calculated may be very large. For
ample, if kBT510\v, we would have to consider approx
mately 105 states. This is a severe limitation on the comp
tation speed.

1Note that the use of Wick’s theorem makes it possible to
single-particle trajectories to simulate the mean number of ato
whose time evolution is given by Eq.~5!. This is in contrast with
the kinetic equation that is simulated in Ref.@23# by Jakschet al.
Although similar in form to Eq.~5!, their equation gives the time
evolution of a single realization out of the microcanonical ensem
for anN-body system.
-
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We resolve this difficulty by assuming that the populati
within a degenerate subspace is uniformly distributed am
the degenerate states. In other words, in the spherical b
we assume that the populationf nW depends only on the prin
ciple quantum numbern and not on the angular momentu
quantum numbersl andm. This assumption is true at equ
librium since then the distribution function is purely a fun
tion of the Hamiltonian. In many cases of interest, the syst
remains close to equilibrium and we expect the approxim
tion to be valid. In Ref.@23#, it was shown that for a homo
geneous system originally in equilibrium, if one of the thr
degenerate states in the first excited level is depleted and
system is allowed to evolve back to equilibrium, the popu
tion gets redistributed equally among the three degene
states in a time on the order of the mean collision time in
gas.

This ergodic assumption is defined as

f nW 5(
en

den ,EnW
f en
. ~7!

Each statefnW in the degenerate subspace has the same p
lation f en

. Therefore, a sum over all of the degenerate sta
is just

gen
f en

5(
nW

den ,EnW
f nW , ~8!

wheregen
is the degeneracy of energy levelen , which is

given by

gen
5
1

2
~n11!~n12!. ~9!

With the ergodic assumption, Eq.~5! can be reduced to

gen

] f en

]t
5 (

em ,eq ,ep
W~en ,em ;eq ,ep!@ f eq

f ep
~11 f en

!

3~11 f em
!2 f en

f em
~11 f eq

!~11 f ep
!#. ~10!

The collision kernelW(en ,em ;eq ,ep) is now a sum over all
of the rates corresponding to the possible degenerate s
that could participate in the collision,

W~en ,em ;eq ,ep!

5
2p

\

den1em ,eq1ep

\v (
nW ,mW ,qW ,pW

S uC~nW ,mW ;qW ,pW !u2)
j

de j ,EjWD ,
~11!

where jP$n,m,q,p% in the product. The normalization o
the distribution becomes(en

gen
f en

5N.
We have made a great simplification by reducing the Q

to Eq. ~10!. Considering our previous example o
kBT510\v, the number of levels occupied is approximate
100, which is much less than the corresponding numbe
states 105.
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C. Classical limit

Although the ergodic assumption presented in Sec.
greatly simplifies the problem of simulating the QBE, it
desirable to reduce the problem further in order to desc
the evaporative cooling technique used to reach the crit
density for Bose-Einstein condensation. During the evapo
tion process, the temperature of the gas is reduced by se
orders of magnitude. Even with the ergodic assumption
very large number of energy levels must be considered
describe the system in this entire range. The process ca
described by the classical Boltzmann equation for mos
this range, down to some point close to the critical tempe
ture when quantum statistics becomes important. In this c
cal region, the QBE must be used.

The problem may be simplified if a smooth transition co
necting these two regions can be found, which would all
energy levels above some cutoff to be treated classica
Taking the classical limit of Eq.~10! corresponds to taking
en→` and assuming thatT.Tc so that the 11 f en

Bose-
enhancement factors go to unity.

Equation~10! can be written in dimensionless form

gen

] f en
]t

5 (
em ,eq ,ep

den1em ,eq1ep
g~en ,em ;eq ,ep!

3@ f eqf ep~11 f en!~11 f em!

2 f enf em~11 f eq!~11 f ep!#, ~12!

where time and energy are in the natural units of the pr
lem, t5 (msv2/p2\) t anden5en /\v. The collision ker-
nel given in Eq.~11! is now dimensionless and given by

g~en ,em ;eq ,ep!

5
4

p2 (
nW ,mW ,qW ,pW

S U)
i
Nni

Nmi
Nqi

Npi
I nimiqi piU2)j dej ,EjWD ,

~13!

whereiP$x,y,z% in the first product andNni
5(2nini !)

21/2 is

the normalization factor for componenti of the statefnW .
The overlap integral of the four Hermite polynomia
Hni

(ui) is

I nimiqi pi
5E duiHni

Hmi
Hqi

Hpi
e22ui

2
. ~14!

In taking the limiten→`, f en is replaced by a continuou

function of energyf (en), each sum overen is replaced by an
integral, and the Kroneckerd is replaced by a Diracd. For
temperatures well aboveTc , the Bose-enhancement facto
11 f en can be set equal to unity. The collision kern

g(en ,em ;eq ,ep) has a rather simple limiting form, which
may be found by computing numerically the quantity on t
right-hand side of Eq.~13!. We use the following expressio
for the overlap integral@24#:
B

e
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-
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-

l

I nmqp5
m!n!

p (
t50

min~m,n!
2t

t! ~m2t !! ~n2t !!
2k2 1/2

3G~k2p1 1
2 !G~k2m2n12t1 1

2 !G~k2q1 1
2 !,

~15!

where 2k5sn22t andsn5n1m1p1q must be even. The
integral is zero ifsn is odd.

We calculated the kernelg(en ,em ;eq ,ep) numerically for
e0<ej<e20, whereejP$en ,em ,eq ,ep%, and obtained a re-
markable result. This collision kernel converges very quic
to the degeneracygen, given by Eq.~9!, as the differences

De[ej2emin between the minimum energy and the oth
three energies increase

g~emin ,em ;eq ,ep! ——→
De→`

gemin, ~16!

whereemin5min$en ,em,eq ,ep% is the minimum energy. Figure
1 shows a plot ofg(emin ,em;eq ,ep) vs (ep ,eq) for emin5e0,
with em determined by energy conservation. It is a very fl
function differing from its asymptotic form only whenDe is
very small. From our calculations, we found that the conv
gence in Eq.~16! becomes faster asemin increases. Further
more, asej increases, the degeneracy factorgej converges to

the density of statesr(ej )[(1/2)ej
2

gej →
ej→`

r~ej !. ~17!

In our simulation procedure described below, we use
limiting form Eq. ~16! for g(en ,em ;eq ,ep) when any one of
the energies is greater than the tenth levele10 and use the
limiting form Eq. ~17! when all of the energies are great
than a cutoff energyec chosen such that (11 f ec)'1.

The comparison with the ergodic classical Boltzma
equation can now be made. The classical limit of Eq.~12! is

r~en!
] f ~en!

]t
5E demdeqdepd~en1em2eq2ep!r~emin!

3@ f ~eq! f ~ep!2 f ~en! f ~em!#, ~18!

FIG. 1. Plot ofg(emin ,em ;eq ,ep) vs (eq ,ep) for the minimum
energy being in the ground stateemin5e0, whereem is determined
by energy conservation. It is a very flat function, differing from
asymptotic formge051, only whenDe is very small.
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55 3673BOSE-EINSTEIN CONDENSATION: KINETIC . . .
where the same natural units given below Eq.~12! are used
here. This agrees with the classical Boltzmann equa
given by Eq.~14! in Ref. @6#.

III. TRAJECTORY SIMULATION

In this section, we explain our approach to simulating
QBE using simulated single-particle trajectories. We fi
show that the time evolution off en given by Eq.~12! can be
described by a sum over all possible single-particle traje
ries. We then outline the specific simulation procedure.

A. Trajectory decomposition of the QBE

We can now incorporate quantum statistics into the
jectory method using the results of Sec. II. We cannot exp
the simulation to be valid far below the critical temperatu
when a large proportion of atoms are in the ground s
since we neglect the effect of the mean field on the sys
and work in the representation of the bare harmon
oscillator basis. However, in the regime wherevtcol@1
holds, the buildup of the condensate can still be investiga
This simulation method is now ideal for describing t
evaporative cooling of atoms all the way down to tempe
tures belowTc .

The trajectory decomposition of the ergodic QBE clos
resembles that given in Ref.@15# for the classical case. Stil
working in the natural units of time and energy given belo
Eq. ~12!, we begin by defining a trajectory functio
f (en ,tuth ,eh ,...,t1 ,e1), which describes a specific collisio
history with energyen at timet: The trajectory is labeled by
its history ofh collisions occurring at timest1 ,...,th , with
t.th.•••.t1 , and with the energy before each collisio
given bye1 ,...,eh .

Our task is to correctly describe the time evolution of th
trajectory function so that upon accumulating all possi
realizations of trajectories,f en(t) is attained with the correc

time evolution governed by Eq.~12!. To obtain f en(t) from
the accumulated trajectories, we form a distribution of
energies collected fromM trajectories at the particular tim
t. Then in the limitM→`, the distribution should converg
upon f en(t). Realistically, the number of trajectories we a

cumulate is in the range 1042105. Of course, the trajectorie
must be weighted so that the final distribution obtained fr
the accumulated trajectories is normalized toN.

This sum over trajectories can be written explicitly as

genf en~ t !5 (
h50

`

(
eh ,...,e1

E
t0

t

dthE
t0

th
dth21•••

3E
t0

t2
dt1f ~en ,tuth ,eh ,...,t1 ,e1!, ~19!

where we sum over the numberh of possible collisions, sum
over all possible energies occurring before each collisi
and integrate over the possible times at which each collis
can occur. Each trajectory has a weight given byN/M ,
whereM goes to infinity in Eq.~19!.

The time evolution off en(t) in terms of the trajectory
decomposition is found by differentiating Eq.~19!
n

e
t

-

-
ct

te
m
-

d.

-

e

e

,
n

gen

] f en~ t !

]t
5 (

h50

`

(
eh ,...,e1

H E
t0

t

dth•••

3E
t0

t2
dt1

] f ~en ,tuth ,eh ,...!

]t

1E
t0

t

dth21•••E
t0

t2
dt1f ~en ,tut,eh ,...!J .

~20!

We must find the correct time evolution of the trajecto
function f (en ,tuth ,eh ,...,t1 ,e1) so that the time evolution
given by this decomposition is equivalent to the QBE. T
first term on the RHS of Eq.~20! gives the time evolution of
the trajectory between collisions, while the second term
related to the instantaneous change in the trajectory’s en
when a collision occurs.

Between collisions, the trajectory’s norm will decay du
to the probability for a collision to occur with an atom from
the rest of the gas

] f ~en ,tuth ,eh ,...!

]t
52g~en ,t ! f ~en ,tuth ,eh ,...!.

~21!

The rate of decayg(en ,t) is equal to the collision rate. A
particle in the system with energyen has a rate of colliding
with any other particle in the system given by

g~en ,t !5 (
em ,eq ,ep

den1em ,eq1ep

g~en ,em ;ep ,eq!

gen

3 f em~ t !@11 f eq~ t !#@11 f ep~ t !#. ~22!

Because of Bose statistics, some of the collisions will
enhanced by the factors 11 f eq(t) if the populations in those
output channels are large. This dependence on the popula
in summing over the output channels is absent in the tra
tory method presented for the classical Boltzmann equa
in Ref. @15#. In that case, the integrals over the output cha
nels can be done analytically, which makes the probl
scale linearly with the number of energy bins used to st
f (e). We cannot make that simplification here.
The function f (en ,tut,eh ,...) indicates that a collision

has occurred at timet, changing the energy fromeh to en .
We interpret the functionf (en ,tut,eh ,...) as therate that a
particle with energyeh will collide with any atom in the
system and attain the energyen afterwards. Thus
f (en ,tut,eh ,...) can beobtained by omitting the sum ove
the output channelen in Eq. ~22! and weighting the rate by
the norm of the trajectory before the collision

f ~en ,tut,eh ,...!5 (
em ,ep

deh1ep ,en1em

g~eh ,ep ;en ,em!

geh

3 f ep~ t !@11 f en~ t !#

3@11 f em~ t !# f ~eh ,tuth21 ,eh21 ,...!.

~23!
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3674 55M. HOLLAND, J. WILLIAMS, AND J. COOPER
With the above description of the time evolution of a traje
tory, one can easily verify that the decomposition in Eq.~20!
is equivalent to Eq.~12! by substituting Eq.~21!–~23! into
Eq. ~20! and using Eq.~19! to reduce the expression.

One crucial point, however, has not been addressed in
proof. Because the rates given in Eqs.~22! and Eq. ~23!
depend onf en(t), which is the quantity being calculated, th
problem is nonlinear and must be solved self-consistently
self-consistent solution can be found if we make the inc
mental time of evolutiondt much smaller than the mea
collision timetcol , so thatf en(t) does not change apprecia
bly during the coarse-grained time steps.

B. Simulation procedure

We now describe the procedure for simulating the Q
using the trajectory method. One begins by creating the
tial distribution f en(t0), the time evolution of which is de
sired over a chosen time interval. This distribution is evolv
incrementally, by adding upM trajectories over a time inter
val dt that must be chosen smaller than the average sin
particle collision timetcol . Then, the simulated distributio
at the end of the timet01dt is used as the starting distribu
tion for the next time step, and so on, until the desired ti
is reached. In more detail, this procedure is as follows:

~i! Create an empty distribution functionf en(t01dt) with
zero population throughout the levels.

~ii ! Choose an initial energye1 for the trajectory from the
initial distributiongenf en(t0).

~iii ! Calculate the initial collision rateg(e1 ,t0) using
f en(t0) for the distribution:

g~e1 ,t0!5 (
em ,eq ,ep

de11em ,eq1ep

g~e1 ,em ;ep ,eq!

ge1

3 f em~ t0!@11 f eq~ t0!#@11 f ep~ t0!#. ~24!

~iv! Simulate a realization of a uniform random variab
R1P@0,1# and find the time the particle will next collid
given by tc5t02 ln(R1)/g(e1,t0)

~v! If tc.t01dt, record the atom inf en(t01dt) by incre-
menting the level corresponding to its energy by the amo
N/M .

~vi! If t,t01dt, a collision occurs. Simulate a secon
random variableR2P@0,1#. The energy after the collision i
found from the solution ofesim in

(
en

esim

(
em ,ep

de11ep ,en1em

g~e1 ,ep ;en ,em!

ge1
f ep~ t0!

3@11 f en~ t0!#@11 f em~ t0!#5R2g~e1 ,t0!. ~25!

~vii ! Continue steps~iii !–~vi! until the end of the interva
t01dt is reached. Becausedt must be much smaller tha
tcol, multiple collisions should be rare.

~viii ! Calculate the next trajectory by choosing anoth
initial energy in step~ii ! and carrying out steps~iii !–~vii !.
Continue the process forM trajectories.

~ix! When all of the trajectories have been accumulate
good approximation tof en(t01dt) has been determined
-

ur

A
-

i-

d

e-

e

nt

r

a

One can then move on to the next time step and repeat s
~i!–~viii ! by usingf en(t01dt) as the initial distribution. This

coarse-grained time evolution can be continued untilf en(t)
has been obtained for the desired time duration.

This trajectory simulation scales quadratically with t
number of levels whose populations must be stored, whic
an improvement over the cubic scaling of a direct numeri
integration of Eq.~12!. However, as already pointed out, th
trajectory simulation of the classical Boltzmann equati
scales linearly with the number of bins used to storef (e). It
is now very clear that making the ergodic assumption a
using the classical, limiting form of the ergodic, QBE w
increase the speed of the simulation enormously by decr
ing the number of discrete energy levels whose populati
must be simulated. By treating most of the levels above so
cutoff ec classically according to Eq.~18!, the linear scaling
of the method described in Ref.@15# can almost be restored
The cutoff is chosen so thatf ec!1. Becauseec increases
with the number of atoms in the gas, it becomes increasin
difficult to simulate the QBE asN increases.

In order to speed up the simulation by using the smo
transition to the ergodic, classical Boltzmann equation
scribed in Sec. II C, we use a distribution that has discr
levels below a cutoff energyec and a continuous spectrum o
energies above this point, as shown in Fig. 2. Belowec , we
retain the 11 f en factors. We also useg(en ,em ;eq ,ep) if all

four energies are less than or equal toe10 and use its limiting
form gemin if any of the four energies is greater thane10.

Aboveec , we drop the 11 f en factors and use the density o

statesr(e) as the limiting form of the degeneracy facto
When all four energies are aboveec , the simplifications
made on the integrals in the collision rate, shown in R
@15#, can be used.

IV. SIMULATION RESULTS

In this section, we carry out the simulation procedure d
scribed in Sec. III to investigate physical properties of a co
densing gas of atoms trapped in an isotropic, harmonic
tential. We show results demonstrating the equilibriu
properties of a finite system, the build-up of the ground st

FIG. 2. Illustration of the distribution of populationsf e over the
discrete and continuous regions. Above the cutoffec , we drop the
11 f en factors and the levels are put in bins as though they form
a continuous spectrum.
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55 3675BOSE-EINSTEIN CONDENSATION: KINETIC . . .
population starting from zero, and evaporative cooling
atoms in the trap.

A simple test of the trajectory simulation is to start t
distribution f en(t0) in a non-equilibrium state and allow it t
evolve to equilibrium. In the inset of Fig. 3, the initia
nonequilibrium distribution is shown forN5103 and a mean
energy of 20.5\v. It is allowed to evolve to the stationar
state shown in Fig. 3, where each trajectory had, on aver
100 collisions. The simulation data are compared with
Bose-Einstein equilibrium distribution

f en5
1

eb~en2m!21
, ~26!

whereb51/kBT andm is the chemical potential. Bothb and
m are chosen in the plot so thatgenf en is normalized toN and
the mean energy matches that of the simulated distribut
As Fig. 3 shows, the trajectory simulation evolvesf en(t0) to

FIG. 4. Each point is obtained by allowing a system of 5
atoms with a known mean energy to evolve to equilibrium. On
equilibrium is obtained, the fraction in the ground state is record
The plot shows our data, data from Ref.@23#, and the thermody-
namic limit.

FIG. 3. System evolves to equilibrium from the distributio
shown in the inset, where a single trajectory has on average
collisions. The final, stationary distribution~circles! agrees with the
Bose-Einstein equilibrium distribution~dashes! ~the natural log was
used!.
f

e,
e

n.

the correct equilibrium distribution for a finite number o
atoms without a mean field interaction.

A. Finite-number effects on equilibrium

Finite-number effects can be studied by allowing the d
tribution f en(t) to evolve to equilibrium. In Fig. 4, the
ground-state fraction is plotted vs the temperature for
case ofN5500. The graph shows three different sets of da
the trajectory simulation, results from Ref.@23#, and the ther-
modynamic limit. The trajectory data agree with the resu
of Ref. @23#, where a different approach to simulating th
QBE is used. The line for a finite number of atoms has
same qualitative shape as in the thermodynamic limit, bu
is shifted toward lower temperatures@23,25,26#. In Fig. 5,
the same plot is shown for the case of 23104 atoms. As
expected, the line is shifted less from the thermodynam
limit.

The effect of finite size on the mean energy of the syst
can also be studied. In Fig. 6, the mean energy is plotted
temperature for the case ofN5500. Again, the trajectory
simulation agrees with the results of Ref.@23#. The same plot
is shown in Fig. 7 for the case of 23104 atoms. The mean
energy for a finite number of atoms is larger than that in

e
d.

FIG. 5. Same procedure as in Fig. 4, but with 23104 atoms.

FIG. 6. Each point is obtained by allowing a system of 5
atoms with a known mean energy to evolve to equilibrium. The p
shows our data, data from Ref.@23#, and the thermodynamic limit
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thermodynamic limit belowTc . In the thermodynamic limit,
the number and volume are taken to infinity, with the loc
density held fixed. For the case of atoms in a trap, taking
volume to infinity is achieved by allowingv to go to zero.
For a finite system, the effect of the potential remains, t
giving the system a higher mean energy than it would in
limit of v→0.

B. Dynamic buildup of the condensate

The buildup of the condensate can be investigated
starting in a nonequilibrium distributionf en with no atoms in
the ground state initially and allowing the distribution
evolve to equilibrium. One can monitor the occupation of t
ground state over time. As Fig. 8 shows, the time dep
dence of the population in the ground state is given
N0(t)5N0(`)(12e2t/t0), where the time constantt0 is de-
termined by fitting the data. This result also agrees with t
given in Ref.@23#. The initial distribution, shown in the inse
in Fig. 8, had 100 atoms with 10% in the ground state afte
had reached equilibrium.

It was found thatt0 depends slightly on the initial distri
bution: With the mean energy and total number fixed,

FIG. 7. Same procedure as in Fig. 6, but with 23104 atoms.

FIG. 8. Population in the ground state increases as the syste
100 atoms evolves to equilibrium, starting in the initial distributi
shown in the inset~where energy is given in units of\v).
The ground-state fraction increases according toN0(t)
5N0(`)(12e2t/t0).
l
e

s
e

y

e
-
y

t

it

e

further the atoms are frome0 , the longer it will take to reach
the ground state. This is also why the time constantt0 de-
creases asN0(`) increases while keepingN fixed, since the
mean energy decreases, requiring atoms to reside in le
closer toe0 . As N gets large, more energy levels will b
occupied and one might expect there to be a delay time
the atoms to begin filling the ground state@23#. Finally, it
was found thatt0 /tcol increases with increasingN, while
keepingN0(`)/N fixed @27#. For the case of 100 atom
shown in Fig. 8,t0 /tcol'25, compared to a separate ca
for 50 atoms, wheret0 /tcol'10.

C. Evaporative cooling simulation

A practical use of our simulation method is to study t
evaporative cooling of a gas of atoms in an isotropic h
monic trap. Evaporative cooling may be described by allo
ing trajectories with an energy above a time-dependent
ergy thresholdecut(t) to be lost from the trap. We can als
allow there to be a finite probability for trajectories to be lo
due to collisions with background atoms, which occur a
rategbl .

In Fig. 9, we show data points collected from simulatio
of a particular evaporative cooling scenario. We began w
N5104 atoms in thermal equilibrium at a temperatu
T515Tc . We then allowed the system to evolve while low
ering the energy thresholdecut(t) exponentially in time at a
rate gcut, with no background losses. As the temperatu
approachedTc , when there was one atom in the ground st
with 500 atoms left in the trap, we stopped the simulatio
We then proceeded cutting exponentially toecut(t f)5e2 , the
second energy level, at varying ratesgcut, as well as with
and without background loss. Figure 9 shows a se
logarithmic plot of the final number in the ground sta
N0(t f) vs gcut.

The result is intuitive. With no background loss,N0(t f)
decreases as the cut rate increases. If we cut faster tha
collision rategcol , then the evaporation completely fails b
cause the gas does not have time to equilibrate as the th
old is lowered. When background loss is included, one
see that the lower limit ongcut is determined by the back

of

FIG. 9. Plot of the final number in the ground stateN0(t f) as a
function of the cut rategcut , with ~circled cross! and without
~circled dot! background loss. The cut rate must be slower than
initial single-particle collision rategcol(t i) and faster than the back
ground loss rategbl for the evaporation to be successful.
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ground loss rategbl . If we cut slower than the backgroun
loss rate, all of the atoms are lost from the trap before
evaporation process is finished. Thus there is an optimum
rategcut bracketed by these two physical properties.

V. CONCLUSION

We have presented an alternative approach to trea
quantum kinetics that is based on a decomposition of
ergodic QBE into single-particle trajectories. We presen
the underlying physical theory, explained our trajectory a
proach to simulating quantum kinetics, and displayed res
of our method applied to some contemporary problems c
cerning Bose-Einstein condensation. As a test of the vali
of our method, it agrees well with independent studies on
processes studied in Sec. IV@23#. Our approach gives an
efficient simulation of quantum kinetics and is valid for th
entire range of phase-space densities, excluding at this s
the region close toT50 when the mean field effect on th
system must be considered.

The trajectory approach of quantum kinetics described
ys

ys

s-

m

e
ut

g
e
d
-
ts
n-
ty
e

ge

n

this paper is applicable to many problems of interest. O
such problem is that of finding the optimum way to low
ecut(t) during the evaporative cooling process with a cond
sate present, while taking into account all of the various l
mechanisms, such as heating due to two-body and th
body inelastic collisions. Another interesting problem is th
of including the mean field effect on the system during t
kinetic evolution close toT50. To address this problem us
ing the QBE, we will have to work in the representation
the mean-field states, which requires finding the mean-fi
eigenstates self-consistently after each time step in the s
lation. Finally, it may also be interesting to use the trajecto
approach to treat Fermi-Dirac statistics and describe the t
evolution of a gas of fermions.
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