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Bose-Einstein condensation: Kinetic evolution obtained from simulated trajectories
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In this paper, we present a method for simulating the kinetic evolution of a dilute gas of atoms that are
cooled below the critical temperature for Bose-Einstein condensation. Our method gives insight into the
formulation of physical kinetics by illustrating directly the decomposition of the distribution function into an
infinite sum of single-particle trajectories. This approach is valid for the entire range of phase-space densities,
although we limit the discussion here to exclude the region where the condensate fraction is close to unity and
the effect of the mean field is significant. We present explicit calculations of finite number effects on equilib-
rium, the dynamic build-up of the ground state, and simulations of evaporative cooling.
[S1050-294@7)06005-8

PACS numbg(s): 03.75.Fi, 05.20.Dd, 32.80.Pj

[. INTRODUCTION present applications of the method for thermodynamics, con-
densate growth, and evaporative cooling.

In recent experiments demonstrating Bose-Einstein con-
densation of a dilute alkali-metal vapor, the temperature of a || ERGoDIC QUANTUM BOLTZMANN EQUATION
gas was reduced by several orders of magnitude using the ) ) _ ) o
crucial technique of evaporative coolifig—5]. The theoret-  In this section, we outline our mathematical description of
ical study of this important technique and the description of<inetic theory and highlight the physical assumptions made
condensate formation requires a kinetic theory that treat its derivation. We present the quantum Boltzmann equa-
nonequilibrium, open systems in both the classical and quarfion (QBE), which is the starting point for our treatment. An
tum degenerate regimes. It is also necessary to considergodic assumption is made, which simplifies the problem by
system of finite size as determined by the form of the con&Ssuming that the population of a state depends only on its
fining potential[6,7]. energy. We show how the ergodic QBE goes to the ergodic

We present an alternative approach to describing quantufgfassical Boltzmann equation in the appropriate limit, a result
kinetics that is motivated by the quantum trajectory methogdhat greatly simplifies the trajectory simulation presented in
developed in quantum optics to describe the dissipative evo2€c- lll.
lution of open systemg8—14]. The basic principle on which
these models are built is that the evolution of the open sys- A. Quantum Boltzmann equation
tem, described by a density operator master equation, can be
obte_une_d by accumulating an |nf|_n|te numbe_r of StOChaSt'C[ropic harmonic oscillator of frequenay. The Hamiltonian
realizations of a wave-function trajectory. A simple example , = . i )

. . .."H=Hg+H, consists of a free paftl, and an interaction

of an open system is an excited atom coupled to the radmnogarm H. due to binary collisions
vacuum reservoir. A trajectory in this case consists of the ! y
interruption of the continuous evolution of the atomic wave
function by a quantum jump to the ground state when a H0=Z Eﬁa:»aﬁ,
spontaneous photon is emitted. :

We have applied this trajectory method to a fundamen-
tally different problem. In our case, we wish to describe the H, =
evolution of a gas of atoms that are not coupled to a reservoir !
at all. The jumps that occur in the single-atom trajectory that
lead to the irreversible evolution of the system are caused bwhereEz= (n,+n,+n,+ 3)hw is the energy eigenvalue of
atomic collisions with other atoms in the gas. Thus the roleH, with quantum numberi=(n,,ny,n,). Here a; is the
of the reservoir in our problem is played by the system itselfannihilation operator that removes an atom from the single-
This inherent nonlinearity is illustrated by the kinetic equa-particle eigenstaté;. The transition amplitude is
tion we are trying to simulate. We have previously applied
this approach to treat the classical Boltzmann equation irC(i,m;d,p)
order to describe the evaporative cooling pro¢é&s In this
{:i)grp‘).er, we extend the theory to treat Bose-Einstein condensa- :f A3 A’ % (R) (X IV(X,X) ba(X) (X)), (2)

This paper is divided into three parts. We first present the
theory for kinetic evolution in Sec. Il. In Sec. lll, we de- whereV(X,X') is a two-particle potential. In the temperature
scribe our trajectory approach and outline in detail the corrange of interests-wave scattering predominates and colli-
responding simulation procedure. Finally, in Sec. IV, wesions are characterized by a contact potential

We consider a dilute system of atoms confined in an iso-

s s o Tt
> C(A,m;d,palataza;, 1)

n,m,q,p
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Amh2a o We resolve this difficulty by assuming that the population
= S3(X—X"), 3 within a degenerate subspace is uniformly distributed among
the degenerate states. In other words, in the spherical basis
we assume that the populatiép depends only on the prin-
ciple quantum numbem and not on the angular momentum

VR = —

where a is the scattering length. This gives the quantum-

mechanical cross section for the collisior 8wa?. . oo .
guantum numberk andm. This assumption is true at equi-

The correlation time arising from the duration of a colli- =% . o L
sion in Bose-Einstein condensation experiments is typicalli'.brlum since then the distribution function is purely a func-

much shorter than the time scale on which the system relax on O.f theIHamtlltomar)l:t:q many gases of 'm?rtiSt’ the system
to equilibrium. The time scale for pair correlations is given remains close to equiibrium and we expect e approxima-

by 7.o—=alv, wherev is the mean velocity. The relaxation tion to be valid. In Ref[23], it was shown that for a homo-
time is determined by the time between elastic collisiongdeneous system or_|g|nally n equ_lllbnum, 'f. one of the three
7.0 in the gas. For example, in the experiments described iIqegenerate states in the first excited level is depleted and the
RCeOIf. [1], at thé critical températurecor~1 us, compared to system is allowed to evolve back to equilibrium, the popula-

7.~0.1 s. In this regime, Wick's theorefl6—1§ may be tion gets redistributed equally among the three degenerate

applied to give the evolution under the Born and Markovzt;‘;es in a time on the order of the mean collision time in the

approximations of the atomic population This ergodic assumption is defined as
f-=Tr{pala:, 4)
T =3 6 e fo @
where p is the N-particle density matrix for the system. In o
the representation of the bare harmonic-oscillator states, o
diagonal elementéﬁﬁ/zTr{pa}aﬁ,}, n#+n’, [18] may be
adiabatically eliminated whea r.,> 1. This gives the QBE

ffEach statep,; in the degenerate subspace has the same popu-
lation fen. Therefore, a sum over all of the degenerate states

[18-23.1 is just
ofs - N
=S WM G B Faf s+ fa) (1+ F) Ge T =2 P s T ®
N map
—fafa(1+f5)(1+15)], (5)  where Je, is the degeneracy of energy leve|, which is
given by

where the transition raté/(n,m;q,p) appearing in Eq(5) is
obtained from Fermi’'s golden rule

1
g,,=5 (N+1)(n+2). 9
Wi 716, 5) 27 |C(R G, B) 2 5Eﬁ+Erﬁ,Ed+Eﬁ ®
n,maq,p)=— n,m:q, e — . . .
( P f ( 4P fiw With the ergodic assumption, Ep) can be reduced to
and § is the Kronecker delta function giving energy conser- of,
vation. The total number of particles in the systdhteter- 0. at" = > W(e, 1€mi€q.€p)[fe fe (14T, )
n q "p n

mines the normalization dof; by =;f;=N.

€m.€q1€p

X(1+f ) —f . f. (L+f )(1+f.)]. (10
B. Ergodic assumption " nom a P

A practical problem for simulating the QBE is that the The collision kerneW(e,,en;€q,€p) iS NOW a sum over all
degeneracy of states increases rapidly with increasing erf the rates corresponding to the possible degenerate states
ergy. The degeneracy of a level for the isotropic harmoniahat could participate in the collision,
oscillator is proportional to the square of the energy so that
even for very low temperatures, the number of states whosgy( €n+€mi€q . €p)
populations must be calculated may be very large. For ex-
ample, ifkgT=104 w, we would have to consider approxi- 2 5En+em,eq+ep
mately 1@ states. This is a severe limitation on the compu- =~ 7 =~ 74 >
tation speed.

lcimapPPll o e,

f.m.g,p P
(11)

1 o . . where j e {n,m,q,p} in the product. The normalization of
Note that the use of Wick's theorem makes it possible to US&4 o distribution becomQEEngenfen:N-

single-particle trajectories to simulate the mean number of atoms, “€n ¢n )
whose time evolution is given by E¢5). This is in contrast with We have made a great simplification by reducing the QBE
the kinetic equation that is simulated in RE23] by Jakschet al.  t0 EQ. (10). Considering our previous example of
Although similar in form to Eq/(5), their equation gives the time KkgT= 10/, the number of levels occupied is approximately
evolution of a single realization out of the microcanonical ensemblel00, which is much less than the corresponding number of
for an N-body system. states 18
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C. Classical limit

Although the ergodic assumption presented in Sec. Il B
greatly simplifies the problem of simulating the QBE, it is
desirable to reduce the problem further in order to describe
the evaporative cooling technique used to reach the critical
density for Bose-Einstein condensation. During the evapora-
tion process, the temperature of the gas is reduced by several
orders of magnitude. Even with the ergodic assumption, a
very large number of energy levels must be considered to
describe the system in this entire range. The process can be
described by the classical Boltzmann equation for most of

8 e
this range, down to some point close to the critical tempera- ’ 10 10 !
ture when quantum statistics becomes important. In this criti-
cal region, the QBE must be used. FIG. 1. Plot ofg(emin.em:€.€) Vs (eq.€,) for the minimum

The problem may be simplified if a smooth transition con-energy being in the ground statg,,=e,, wheree,, is determined
necting these two regions can be found, which would allowby energy conservation. It is a very flat function, differing from its
energy levels above some cutoff to be treated classicallygsymptotic formge =1, only whenA. is very small.

Taking the classical limit of Eg(10) corresponds to taking _
e,— and assuming thaf >T, so that the % f, Bose- mip! mnimm ot
enhancement factors go to unity. 'nmqp:T 20 ti(m—t)!(n—t)!

Equation(10) can be written in dimensionless form

2k— 1/2

XT'(k=p+ 3)T(k—m—n+2t+ ;)I'(k—q+ 3),

e
gen ar :em’eq’ep 5en+em,eq+epg(en1em;eqiep) (15
X[fofo(l+fe)(1+Fs) where X=o,,— 2t ando,=n+m+p+qg must be even. The
€ p en Em integral is zero ifo, is odd.
—fe fe (1t fe)(1+fe )], (12) We calculated the kernel(e, ,ey,;e,,€,) numerically for

€0=E€j<€y, Wheree,c{e,,en,,€,,€,}, and obtained a re-
markable result. This collision kernel converges very quickly
where time and energy are in the natural units of the probto the degeneracyen, given by Eq.(9), as the differences

lem, 7= (mow®/7*%) t ande,=e,/ho. The collision ker- A =g e, between the minimum energy and the other
nel given in Eq.(11) is now dimensionless and given by  three energies increase

€min:€m:€q,€ - 16
g(en’em;eq,ep) 9(Emin,€m q p) E’ gemIn (16)
4 2 . . - .
-— E ) (‘H NN Ng.Np I m.p, H 5e,- ’Ef)’ whereen,,=min{e, &€y} is the minimum energy. Figure
nma.p A\ | i ] 1 shows a plot oQ(enin,em:€q.p) VS (€p,€q) for emin==6y,

(13 with e,, determined by energy conservation. It is a very flat
function differing from its asymptotic form only wheh, is
) ) ] N 1 very small. From our calculations, we found that the conver-
wherei e {x,y,z} in the first product antll, = (2"n;!) " "“is  gence in Eq(16) becomes faster a&,;, increases. Further-
the normalization factor for componentof the state¢; . more, ase; increases, the degeneracy fa(ggjrconverges to
The overlap integral of the four Hermite polynomials the gensity of stateﬁ(ej)z(l/Z)ejZ
Hp (u) is
ge, — ple). (17)

e —x

)

— ' —2u?
Inimiqipi_f dUiHnHmHq Hpe ™ (14 In our simulation procedure described below, we use the

limiting form Eq. (16) for g(e,,en:€q,€,) When any one of
) . ) ) the energies is greater than the tenth lezgl and use the
In taking the limite,—ee, fe_is replaced by a continuous jimiting form Eq. (17) when all of the energies are greater
function of energyf (e,), each sum ovee, is replaced by an  than a cutoff energy, chosen such that (&f,)~1.

integral, and the Kroneckef is replaced by a Dira@. For The comparison with the ergodic classical Boltzmann
temperatures well abovE;, the Bose-enhancement factors equation can now be made. The classical limit of &) is

1+fe can be set equal to unity. The collision kernel
g(en,em:€q,6p) has a rather simple limiting form, which af(en)

may be found by computing numerically the quantity on the P(€n) —— Zf deydegdeyd(en+en—eq—ep) p(Emin)
right-hand side of Eq(13). We use the following expression

for the overlap integra24]: X[f(eq)f(ep) —f(en)f(em], (18
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where the same natural units given below E) are used afe (1) = t
here. This agrees with the classical Boltzmann equation g, = > { dt,-
given by Eq.(14) in Ref. [6]. oot 7=0e,...e [ Jtg
2 df(entlt,.e,,...)
Ill. TRAJECTORY SIMULATION X jt dty ot
0
In this section, we explain our approach to simulating the X .
QBE using simulated single-particle trajectories. We first + | dt _1...f Zdtlf(en,t“,e )L
show that the time evolution cfgn given by Eq.(12) can be to to !
described by a sum over all possible single-particle trajecto- (20)

ries. We then outline the specific simulation procedure.

We must find the correct time evolution of the trajectory

function f(en,t|t,7,e,7,...,tl,e1) so that the time evolution

. . given by this decomposition is equivalent to the QBE. The
We can now incorporate quantum statistics into the trafirst term on the RHS of Eq(20) gives the time evolution of

jectory method using the results of Sec. Il. We cannot expeghe trajectory between collisions, while the second term is

when a large proportion of atoms are in the ground statg,hen a collision occurs.

since we neglect the effect of the mean field on the system Between collisions, the trajectory’s norm will decay due

and work in the representation of the bare harmonictg the probability for a collision to occur with an atom from
oscillator basis. However, in the regime wheser,o>1  the rest of the gas

holds, the buildup of the condensate can still be investigated.

A. Trajectory decomposition of the QBE

This simulation method is now ideal for describing the 9f(en,t|tn,en,---)
evaporative cooling of atoms all the way down to tempera- p =—y(en,f(en.tlt,e,,...).
tures belowT,.. (21)

The trajectory decomposition of the ergodic QBE closely

resembles that given in RelfL5] for the classical case. Still The rate of decayy(e,,t) is equal to the collision rate. A
working in the natural units of time and energy given belowparticle in the system with energy, has a rate of colliding

Eq (12), we begin by defining a trajectory function with any other partic'e in the System given by
f(en,t|t,,e,,....t1,€1), which describes a specific collision

history with energye, at timet: The trajectory is labeled by g(en,em;€p,€eq)

its history of 7 collisions occurring at times,... t,,, with yen )= > e tem eqte, 0.
t>t,>--->t;, and with the energy before each collision em-€a € ®n

given bye,,....e,. ><fem(t)[1+feq(t)][1+fep(t)]. (22

Our task is to correctly describe the time evolution of this
traje_cto_ry f“”C“O’_‘ S0 '_[hat upon acc_umulat_mg all pOSSIbIeBecause of Bose statistics, some of the collisions will be
realizations of trajector|e§en(t) is attained with the correct enhanced by the factors+1feq(t) if the populations in those

time evolution governed by Eq12). To obtainfe (t) from 1t channels are large. This dependence on the population
the accumulated trajectories, we form a distribution of thein summing over the output channels is absent in the trajec-
energies collected frorM trajectories at the particular time tory method presented for the classical Boltzmann equation
t. Then in the limitM — <, the distribution should converge in Ref.[15]. In that case, the integrals over the output chan-
uponfe (t). Realistically, the number of trajectories we ac- nels can be done analytically, which makes the problem
cumulate is in the range 16 10°. Of course, the trajectories scale linearly with the number of energy bins used to store
must be weighted so that the final distribution obtained fromf(e). We cannot make that simplification here.
the accumulated trajectories is normalized\to The functionf(e,,t|t,e,,...) indicates that a collision
This sum over trajectories can be written explicitly as  has occurred at timg changing the energy from,, to e,,.
. We interpret the functiori(e,,t|t,e,,...) as therate that a
t ty particle with energye, will collide with any atom in the
Je,fe, ()= Z’o o Ee . dt, . dt,—q- system and attain " the energg, afterwards. Thus
e ° f(en.t/t,e,,...) can beobtained by omitting the sum over
t2 the output channed, in Eq. (22) and weighting the rate by
X fto dtlf(en’tltﬂ’en""'tl'el)' (19 the norm of the trajectory before the collision

where we sum over the numbgrof possible collisions, sum (g tlte,,..)= D e ie w
n

over all possible energies occurring before each collision, €m€p p+n™ €m e,
and integrate over the possible times at which each collision
can occur. Each trajectory has a weight given KM, Xfep(t)[l+fen(t)]

whereM goes to infinity in Eq(19).
The time evolution off, (t) in terms of the trajectory X[+ fe (DIF(ey tt)-1.8ma..0).
decomposition is found by differentiating E.9) (23
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With the above description of the time evolution of a trajec- 1
tory, one can easily verify that the decomposition in &%)
is equivalent to Eq(12) by substituting Eq(21)—(23) into osHt
Eq. (20) and using Eq(19) to reduce the expression.

One crucial point, however, has not been addressed in our 0.6
proof. Because the rates given in Eq22) and Eq.(23) )
depend orf, (t), which is the quantity being calculated, the “’

Lo . 0.4

problem is nonlinear and must be solved self-consistently. A : : , :
self-consistent solution can be found if we make the incre- Se
mental time of evolutiondt much smaller than the mean 02 i = -
collision time 7.y, SO thatfen(t) does not change apprecia- Hﬂﬂmmmﬁhﬁ
bly during the coarse-grained time steps. 0 10 20 30 40 50 60 70

Energy ¢/ ho

B. Simulation procedure ) L )
FIG. 2. lllustration of the distribution of populatiorig over the

We now describe the procedure for simulating the QBEgiscrete and continuous regions. Above the cutgff we drop the
using the trajectory method. One begins by creating the ini1 +f, factors and the levels are put in bins as though they formed
tlf’:l.| d|str|but|onfen(to)., thg time evollut|o.n gf V\{hlch is de- 5 continuous spectrum.
sired over a chosen time interval. This distribution is evolved
incrementally, by adding uM trajectories over a time inter- One can then move on to the next time step and repeat steps
val dt that must be chosen smaller than the average singld#)—(viii) by usingfen(to+ dt) as the initial distribution. This
particle collision timer.,. Then, the simulated distribution coarse-grained time evolution can be continued unti(t)
at the end of the timé,+dt is used as the starting distribu- 55 peen obtained for the desired time duration. "
tion for the next time step, and so on, until the desired time 1,5 trajectory simulation scales quadratically with the

is reached. In more detail, this procedure is as follows: 1, mper of levels whose populations must be stored, which is
(i) Create an empty distribution functidg (to+dt) with 51 improvement over the cubic scaling of a direct numerical

zero population throughout the levels. integration of Eq(12). However, as already pointed out, the
(i) Choose an initial energg, for the trajectory from the trajectory simulation of the classical Boltzmann equation
initial distribution ge fe (to). scales linearly with the number of bins used to stie). It
(iii) Calculate the initial collision ratey(e;,ty) using is now very clear that making the ergodic assumption and
fo (to) for the distribution: using the classical, limiting form of the ergodic, QBE will
" increase the speed of the simulation enormously by decreas-
g(e1.em;€p.€q) ing the number of discrete energy levels whose populations

must be simulated. By treating most of the levels above some
cutoff e, classically according to Eq18), the linear scaling
Xfo (to)[1+fe (to)[1+fo (ty)]. (24  of the method described in R¢fL5] can almost be restored.
m a P The cutoff is chosen so thdt, <1. Becausee; increases
(iv) Simulate a realization of a uniform random variable with the number of atoms in the gas, it becomes increasingly
R;e[0,1] and find the time the particle will next collide difficult to simulate the QBE aBl increases.
given byt.=tg—In(R)/¢(ey,tp) In order to speed up the simulation by using the smooth
(V) If t>to+dt, record the atom irfig (to+dt) by incre- transition to the ergodic, classical Boltzmann equation de-

menting the level corresponding to its energy by the amoungcribed in Sec. Il C, we use a distribut.ion that has discrete
N/M. levels below a cutoff energg, and a continuous spectrum of

(Vi) If t<to+dt, a collision occurs. Simulate a second €nergies above this point, as shown in Fig. 2. Belwwe
random variabldR, [0,1]. The energy after the collision is retain the 1-f factors. We also usg(e, ,em;eq.€p) if all

y(e1,tg)= 2 5el+em,eq+ep

€m.€q.€p Qe,

found from the solution o0&y, in four energies are less than or equaktgand use its limiting
e . form e, if any of the four energies is greater thax,.
S S e e g(e1,€p;€n,em) o (to) Abovee., we drop the ¥ f_factors and use the density of
€ emep T PN Oe, P statesp(e) as the limiting form of the degeneracy factor.

When all four energies are abows, the simplifications
><[1“'fen(t())][1+fem(to)]:RZ?’(el’tO)' (25 made on the integrals in the collision rate, shown in Ref.

. . ) i , [15], can be used.
(vii) Continue stepsiii )—(vi) until the end of the interval

to+dt is reached. Becaus#t must be much smaller than
Teol, Multiple collisions should be rare.

(viii) Calculate the next trajectory by choosing another In this section, we carry out the simulation procedure de-
initial energy in step(ii) and carrying out step6ii )—(vii). scribed in Sec. Il to investigate physical properties of a con-
Continue the process fdvl trajectories. densing gas of atoms trapped in an isotropic, harmonic po-

(ix) When all of the trajectories have been accumulated, #ential. We show results demonstrating the equilibrium
good approximation tofen(t0+ dt) has been determined. properties of a finite system, the build-up of the ground state

IV. SIMULATION RESULTS
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FIG. 3. System evolves to equilibrium from the distribution

shown in the inset, where a single trajectory has on average 100 FIG. 5. Same procedure as in Fig. 4, but withk 20* atoms.
collisions. The final, stationary distributidoircles agrees with the

Bose-Einstein equilibrium distributioflashes (the natural log was  the correct equilibrium distribution for a finite number of
used.

atoms without a mean field interaction.

populaﬁon starting from zero, and evaporative cooling of A. Finite-number effects on equilibrium

atoms in the trap. o ] ] ]
A simple test of the trajectory simulation is to start the Finite-number effects can be studied by allowing the dis-

distributionf, (to) in a non-equilibrium state and allow it to tribution fe () to evolve to equilibrium. In Fig. 4, the

evolve to equilibrium. In the inset of Fig. 3, the initial ground-state fraction is plotted vs the temperature for the
nonequilibrium distribution is shown fa¥ = 10° and a mean case oN=500. The graph shows three different sets of data:
energy of 20.5w. It is allowed to evolve to the stationary the trajectory simulation, results from Rg23], and the ther-
state shown in Fig. 3, where each trajectory had, on averaggodynamic limit. The trajectory data agree with the results
100 collisions. The simulation data are compared with thedf Ref.[23], where a different approach to simulating the
Bose-Einstein equi”brium distribution QBE is used. The line for a finite number of atoms has the

same qualitative shape as in the thermodynamic limit, but it

1 is shifted toward lower temperatur¢®3,25,24. In Fig. 5,
fe = —Ze—a— (26)  the same plot is shown for the case ok 20° atoms. As
noetm -l expected, the line is shifted less from the thermodynamic
limit.

whereg=1/kgT andu is the chemical potential. Bots and The effect of finite size on the mean energy of the system
w are chosen in the plot so thgg fe is normalized tdN and  can also be studied. In Fig. 6, the mean energy is plotted vs.

the mean energy matches that of the simulated distributiofemperature for the case &f=500. Again, the trajectory
As Fig. 3 shows, the trajectory simulation evolvf%?(to) to  simulation agrees with the results of REZ3]. The same plot

is shown in Fig. 7 for the case of*210* atoms. The mean

] energy for a finite number of atoms is larger than that in the
* T
gog_ ....................... 4 . :
z° 3.5} | © trajectory model ...... L]
g : + Jaksch model :
.50.6. .................................... ......................... [_‘U 3_ —thermodynamiclimit ................. i
S : o ,
E b @ 2k T
804_ S N .
= - . © R R A N —
z | |o trajectory model : : 5
%0.2"“' + Jakschmodel ,,,,, Q AAAAAAAA _____________ gl.s_ ................... -
— thermodynamic limif : g
i i i : Th o B +. /o S
0 ; | 5 ; P ot ]
0 02 04 0.6 0.8 1 1.2 0.5f o & :
temperature T/Tc . 0-- + ©+ : :
0 0.5 1

FIG. 4. Each point is obtained by allowing a system of 500
atoms with a known mean energy to evolve to equilibrium. Once
equilibrium is obtained, the fraction in the ground state is recorded.

The plot shows our data, data from Rg23], and the thermody-
namic limit.

temperature T/T

FIG. 6. Each point is obtained by allowing a system of 500
atoms with a known mean energy to evolve to equilibrium. The plot
shows our data, data from R¢23], and the thermodynamic limit.
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FIG. 9. Plot of the final number in the ground staig(t;) as a
FIG. 7. Same procedure as in Fig. 6, but witk 20* atoms. function of the cut rateyy,, with (circled crosg and without
(circled do} background loss. The cut rate must be slower than the
thermodynamic limit belowl .. In the thermodynamic limit,  initial single-particle collision ratey,(t;) and faster than the back-
the number and volume are taken to infinity, with the local9round loss rateyy, for the evaporation to be successful.
density held fixed. For the case of atoms in a trap, taking the L
volume to infinity is achieved by allowing to go to zero. further the atoms are.frc.)reb, the longer |tyV|II take to reach
For a finite system, the effect of the potential remains, thudn® ground state. This is also why the time constande-
giving the system a higher mean energy than it would in the"€ases ablo(«) increases while keepiny fixed, since the
limit of w—0. mean energy decreases, requiring atoms to reside in levels
closer toey. As N gets large, more energy levels will be
occupied and one might expect there to be a delay time for
_ _ _ the atoms to begin filling the ground stdi23]. Finally, it
The buildup of the condensate can be investigated byvas found thatry/ 7., increases with increasinly, while
starting in a nonequilibrium distributiofy  with no atomsin  keeping No(«)/N fixed [27]. For the case of 100 atoms
the ground state initially and allowing the distribution to shown in Fig. 8,7o/7.,~25, compared to a separate case
evolve to equilibrium. One can monitor the occupation of thefor 50 atoms, whereq/ 7,4~ 10.
ground state over time. As Fig. 8 shows, the time depen-
dence of the popule}tion in the ground state is given by C. Evaporative cooling simulation
= —e Umn i i -
No(t) =No(=)(1—e 77), where the time constant, is de A practical use of our simulation method is to study the
termined by fitting the data. This result also agrees with that ; ; . . .
i . e . . evaporative cooling of a gas of atoms in an isotropic har-
given in Ref.[23]. The initial distribution, shown in the inset . ) : .
S ) . .monic trap. Evaporative cooling may be described by allow-
in Fig. 8, had 100 atoms with 10% in the ground state after it . ; ; ;
o ing trajectories with an energy above a time-dependent en-
had reached equilibrium.

. Lo o ergy thresholdeg(t) to be lost from the trap. We can also
It was found thatr, depends slightly on the initial distr allow there to be a finite probability for trajectories to be lost

bution: With the mean energy and total number fixed, thedue to collisions with background atoms, which occur at a

B. Dynamic buildup of the condensate

rate Yol -
1 ol In Fig. 9, we show data points collected from simulations
: ; of a particular evaporative cooling scenario. We began with
0.8F e e e e N=10" atoms in thermal equilibrium at a temperature
e 3 : T=15T.. We then allowed the system to evolve while low-
=06 ering the energy thresholg, (t) exponentially in time at a
& £i5 rate y., With no background losses. As the temperature
4 § approached ., when there was one atom in the ground state
04 g'lo with 500 atoms left in the trap, we stopped the simulation.
5 T I I We then proceeded cutting exponentiallyetg,(t;) =e,, the
0.2 "ot TT second energy level, at varying rateg,, as well as with
o 3 e6nergy? 12 and without background loss. Figure 9 shows a semi-
0 ; : ; ; i logarithmic plot of the final number in the ground state
0 05 1 t/Tol.s 2 25 3 No(ts) VS Yeur-

The result is intuitive. With no background logsg(ts)

FIG. 8. Population in the ground state increases as the system §f€Creases as the cut rate increases. If we cut faster than the
100 atoms evolves to equilibrium, starting in the initial distribution collision rateyc,, then the evaporation completely fails be-
shown in the inset(where energy is given in units ofw). cause the gas does not have time to equilibrate as the thresh-
The ground-state fraction increases according idy(t) old is lowered. When background loss is included, one can
=Ng(e)(1—e~Y7). see that the lower limit ony, is determined by the back-
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ground loss rateyy,. If we cut slower than the background this paper is applicable to many problems of interest. One
loss rate, all of the atoms are lost from the trap before théuch problem is that of finding the optimum way to lower
evaporation process is finished. Thus there is an optimum c@&.{t) during the evaporative cooling process with a conden-

rate v, bracketed by these two physical properties. sate present, while taking into account all of the various loss
mechanisms, such as heating due to two-body and three-
V. CONCLUSION body inelastic collisions. Another interesting problem is that

of including the mean field effect on the system during the
We have presented an alternative approach to treatinginetic evolution close t&=0. To address this problem us-
quantum Kinetics that is based on a decomposition of théng the QBE, we will have to work in the representation of
ergodic QBE into single-particle trajectories. We presentedhe mean-field states, which requires finding the mean-field
the underlying physical theory, explained our trajectory apeigenstates self-consistently after each time step in the simu-
proach to simulating quantum kinetics, and displayed resultgtion. Finally, it may also be interesting to use the trajectory
of our method applied to some contemporary problems conapproach to treat Fermi-Dirac statistics and describe the time
cerning Bose-Einstein condensation. As a test of the validityvolution of a gas of fermions.
of our method, it agrees well with independent studies on the
processes studied in Sec. [\23]. Our approach gives an ACKNOWLEDGMENTS
efficient simulation of quantum kinetics and is valid for the
entire range of phase-space densities, excluding at this stage We would like to thank D. Jaksch, P. Zoller, and C. Gar-
the region close t@ =0 when the mean field effect on the diner for insightful discussions on quantum kinetic theory.
system must be considered. This work was supported by the National Science Founda-
The trajectory approach of quantum kinetics described irion.
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