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Variational Thomas-Fermi theory of a nonuniform Bose condensate at zero temperature
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We derive a description of the spatially inhomogeneous Bose-Einstein condensate, treating the system
locally as a homogeneous Bose gas. This approach, similar to the Thomas-Fermi model for the inhomogeneous
many-particle fermion system, is well suited to describe the atomic Bose-Einstein condensates that have
recently been obtained experimentally through atomic trapping and cooling. In this paper, we confine our
attention to the zero-temperature case, although the treatment can be generalized to finite temperatures, as we
shall discuss elsewhere. Several features of this approach, which we shall call the Thomas-Fermi-Bogoliubov
description, are very attractiv@) It is simpler than the Hartree-Fock-Bogoliubov technique. We can obtain
analytical results in the case of weakly interacting bosons for quantities such as the chemical potential, the
local depletion, pairing, pressure, and density of stdtesThe method provides an estimate for the error due
to the inhomogeneity of the Bose-condensed system. This error is a local quantity so that the validity of the
description for a given trap and a given number of trapped atoms can be tested as a function of position. We
see, for example, that at the edge of the condensate the Thomas-Fermi-Bogoliubov theory always breaks down.
(iii) The Thomas-Fermi-Bogoliubov description can be generalized to treat the statistical mechanics of the
Bose gas at finite temperatur¢$1050-294707)01305-X]

PACS numbg(s): 03.75.Fi, 05.30.Jp, 32.80.Pj, 67.9&

I. INTRODUCTION kov, and Walravenl13], the local-density description is valid
when

The recently reported Bose-Einstein condenséisCs
of trapped neutral atonjd—3] represent unambiguous obser-

. : . . ulho>1, (1)
vations of a weakly interacting Bose-condensed gas. Quanti-
tatively, we can characterize the strength of the interaction
by the expansion parameter in the perturbation treatment ofhere u is the mean-field energy per particle, or chemical
the homogeneous Bose ga®a’, wheren is the density and ~ potential, andiw is the zero-point energy in the trap. A
a the scattering length of the interatomic potential. In thedetailed discussion of where the Thomas-Fermi description
atomic-trap experiments, typically 71 1012101 cm~3 and ~ for the condensate wave function breaks down was given by

a~1-5 nm, so that/na®~10 2—3x10°5. Thus, in the Dalfovo, Pitaevskii, and Stringafl5].

sense of perturbation theory, the observed condensates %eemctc?rfjepnas%?;r\\l(\;e tggn\fllﬁc?u;tri]gr:g‘?ije;irgt der?r?giptl'g: of
indeed textbook examples of weakly interacting systems. For .~ . L P P
within the framework of the variational technique. We em-

the uniform Bose gas, perturbation theory leads to simple hasize that, unlike the practice of neglecting the kinetic-

analytical results. Although the trapped condensates can %‘uergy term in the Gross-Pitaevskii equation, which in the

described by means of the Hartree-Fock-Bogoliubov equazecent jiterature is sometimes called the Thomas-Fermi ap-
tions[4,5], the latter approach does not lend itself to an anay,oximation, the resulting variational description is not lim-
lytical perturbation treatment. ited to the condensate, but describes the depletion, pressure,
Intuitively, one expects that a many-body system whosg\ng all other thermodynamic quantities. Furthermore, like
density varies slowly in space can be described locally as ghe uniform gas, the Thomas-Fermi theory leads to a pertur-
homogeneous system. Based on this picture, the Thomagation treatment of the weakly interacting condensates, giv-
Fermi method 6,7] was proposed for the calculation of the ing simple analytical expressions for these quantities. An-
electron density in a heavy atom. Lieb and Sini@hshowed  other important advantage of the Thomas-Fermi treatment is
that the treatment is exact in the limit when the atomic num+hat it can be generalized to describe finite-temperature sys-
ber goes to infinity. Application to a confined Bose conden-tems, as we plan to discuss in future work. In this paper we
sate was pioneered by Goldman, Silvera, and Lef@jeaind  focus on the Bose gas at zero temperature.
recently reconsidered by Chou, Yang, and M0,1]] for a The paper is organized as follows. In Sec. Il, we general-
system of noninteracting bosons. Recently, Wu and Giriffinize the usual Bogoliubov transformation to describe spatially
[12] applied the Thomas-Fermi approach to a hydrodynamiénhomogeneous condensates. In Sec. Ill, we introduce the
description of the BEC. As pointed out by Kagan, Shlyapni-Wigner representation and gradient expansion, which pro-
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vide the tools to describe the nearly homogeneous systems aI:Xkﬂl_Ykﬂ—ky ak:Xkﬂk_YKntki (4)
and make the Thomas-Fermi approximation. The advantage

of this systematic approach to the Thomas-Fermi approximawhich is the inverse transformation of Eq8).

tion is that it provides an estimate of the error incurred by the |t is useful to define the following quantities: the “distri-
inhomogeneity of the condensate, allowing one to estimat@ution function” p and the “pairing function”A,

the accuracy of the Thomas-Fermi results. We consider this

point to be very important in view of the fact that some traps, t 1

depending on the potential and the number of trapped atoms, pr={(aay) = 5[ coshar—1],

are too far from homogeneity to be described by a Thomas-

Fermi description. In addition, even if the Thomas-Fermi 1

description is valid in the middle of the trap, it breaks down A=—(aga_y)= > sinh2o7 , 5
at the edge of the condensate. In Secs. IV and V, we obtain

the mean-field description of the Bose system in the Thomas-h th lar bracket tth d-stat
Fermi approximation. The equations, derived within theVhere the anguiar brackets represent the ground-state expec-

framework of the variational principle, provide a fully self- tation value. The best values fef andy, are obtained varia-

; T ) - tionally by minimizing the ground-state free energy.
consistent description, indicating that the Thomas-Fermi de As stated, the above descriptioh)—(3) applies only to

scription is by no means limited to weakly interacting sys- ; h the treat t of |
tems. This remark can be expected to be of future importanc?omogeneOus systems, whereas the trealment of a genera
inhomogeneoyscondensate, as we shall show below, in-

in the light of recent experimental efforts to obtain conden- 7 ) . o .
sates of higher density. Nonetheless, because of the spec}’é?lves a Bogoliubov transformation that is quite different in
§ - @ppearance from the homogeneous case. However, we can

VI to derive a perturbation treatment and obtain analyticaIeXpeCt the results of the homogeneous treatment to describe

results for quantities such as the chemical potential, the Iocéhe local behawor .of_an inhomogeneous condensatt_a,_pro-
depletion, pairing, and pressure. With the experimentaY'ded the spatl'all variations of 'Fhe condensate are sufﬂqently
atomic traps in mind, we apply the results of the genera I(.)‘.N' In_descrlbmg many-particle fe_rmmn_systems, this in-
theory to the special case of a trapping potential that is of th itive picture forms one of t_he_ key ingredients O.f the well-
type of a simple spherically symmetric harmonic oscillator in nown Thomas-Fermi description of slowly varying many-
Sec. VII. Finally, in Sec. VIII, we derive a density of states particle systems.

of the trapped weakly interacting condensate within the spirit To arrlve ata gene ral treatrpent, we choose to work with
of the Thomas-Fermi approximation. boson-field operatord (x) and ¥ '(x), an approach that of-

fers the advantage of not having to specify a baswiori.

Furthermore, in the presence of a condensate, it is convenient

o . to work with the fieldsy(x) and¢'(x), which are displaced
The Bogolubov quasiparticle concei] provides a very  from the original fields¥ (x) and¥(x) by the expectation

elegant description of the interacting Bose-Einstein conder\—/alue H(x) of ¥(x)

sate. The quasiparticles are represented by creaiibngnd '

annihilation () operators that are linear combinations of N N N

regular single-particle creatiom{) and annihilation &) op- Y=g+ d(x), VIX)=¢'(x)+¢"(x), (6

erator.s. In tregtlng a.homogen.eous system, for which we C"’Iv'?/here, for the purpose of describing the static properties of a

work in a basis of single-particle plane-wave states of mo-

mentumk, the Bogoliubov transformation that relates thecjondensate in equilibriumg can be taken to be real and

quasiparticle and regular particle operators takes on a paf£(X) and ¢'(x) are the displaced field operators that satisfy
ticularly simple form the canonical commutation relation[ J(x),#"(x')]
= §(x—x") and, furthermore,

Il. GENERALIZED BOGOLIUBOV TRANSFORMATION

t_ oAt _ t
me=Xe@g Y@k, =Xkt Yaoy 2

(P(x))= (' (x)=0. ()
where, for the purpose of describing the static properties of a
condensate in equilibrium, we can limit the transformation We introduce the Bogoliubov transformation as a general
parameters, ,y, to real numbers. Furthermore, the isotropy linear transformation relating the displaced fields to the qua-
of the many-body system suggests that the transformatiogiparticle fields&(x) and %T(x),
parameters depend only on the magnitude of the momentum

X=X, andy, =y, . Requiring the quasiparticle operators to “o 3 - ot
be  canonical, [, 74 1= Sk e me 1=, 74 1=0, ¢’<X)—f FAX(x 282~ Y(x2)E(2)]
gives an additional constraint tq andy,,
Coyie, @ V0= [ @i o @-vxaEal @

from which we can see that a single parameigr with x,  which is the generalization of E¢B). The nonlocal nature of
=coshs, and y,=sinhoy, suffices to parametrize the the generalized Bogoliubov transformatit8) should not be
Bogoliubov transformatioii2). In addition, with Eq.(3), we  surprising: the “homogeneous” Bogoliubov transformation
can also write the Bogoliubov transformation as (2) can be written in the same form with the special feature,
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due to the homogeneity of the system, thétx,y) and etc. More recently, the many-particle generalization of the

Y(x,y) depend only onx—y. Requiring the quasiparticle Wigner distribution has found many important applications
fields to be canonical leads to in diverse areas such as nucléa?] and solid-state physics

[18].
An important motivation to work in the transformed rep-
f d3Z[X(x,2)X(z,y) = Y(x,2)Y(z,y)]=8(x—y), (9) resentation of Eq(10), (x,x")—(R,p),

which is the generalization of EqQ3). AW(R,p)=f d’r A(R+r1/2,R—r/2)expip-r), (12

It is possible to derive equations for the inhomogeneous

Bose systems by variationally determining the best transforand its inverse
mationsX andY, minimizing the free energy. This, however,

is not the path we choose to follow here. Instead, we ma-
nipulate the generalized Bogoliubov transformations in a
manner similar to the procedure to obtain the Wigner distri- . ,
bution from the off-diagonal single-particle density function. xexp(—ip-[x=x"]),
Once this is achieved, the steps that lead to a Thomas-Fer
description are known from quantum transport theory. On

interesting aspect of this treatment is that the central obje early homogeneous systems. This convenient feature fol-

of the theory is not a distribution function, which in some . . .
sense can still be regarded as an observable, but a transf I?WS from the gradient expansid7,18. The gradient ex

mation. Although this transformation determines the value o ansion shows that, to first order, a “product” operator

AN 3 12 . . .
all observables, it is clearly not an observable quantity bysift)](;,))l(y) _g{\jjesz A;(hxéz) il(ggl(ar)ailcr:] thperovt;/:lgcr:eror;przs;]edntaéuon

A(x,x’):(2w)’3j d®p Aw([x+x']/2,p)
(13

Which shall henceforth be referred to as the Wigner repre-
entation, is that it is extraordinarily well suited to describe

itself. Cul(R.p)=Aw(R,p)By(R,p). The higher-order corrections
to this approximation can be written as a series of terms
Ill. WIGNER REPRESENTATION containing successively higher-order derivatives in the
AND GRADIENT EXPANSION (R,p) coordinates,
Wigner showed that a quantum-mechanical single-particle 3
. . . ; 1 dAw 9By
system, customarily characterized by its wave function C,(R,p)~Aw(R,p)BW(R,p)+ =2, | — —
W(x), can alternatively be fully characterized by a different 2i{=1 | IRy Ip;
function
unctio Ay aBW} 13, [22Ay 9By
- T Q. 2 2

+ -2 +
(10 ap? oR?  “dR;ap; IR;Ip;

— 3 * H
pw(R,p) fd r v*(R+r/2)V(R—r/2)expip-r), Ay, 7By, 2, (9ZBW}
where here, as in the rest of the paper, we work in units in (14)
which 7 =1. This function(10), known as the Wigner distri- ) L . .
bution function, can be interpreted as a phase-space distrib € first-order correction in the gradient expansia#) is
tion function[16] and leads to a description that is remark- "w:Bwlps, the Poisson bracket &, andBy . If we know
ably close to classical mechanics. The analogy with dhat the range ofy, andByy in p space is of the order of
classical phase-space distribution function is not completés: then2 the magnitude of the derivatives,y/Jp and
(for example,p,, can take on negative valuesut can be d°Bw/dp” in (14)zcan be elstlmated.to be of.the .order. of
justified by the fact that the quantum-mechanical expectatiofw/Pc @nd By/pg, respectively. This approximation will
value of observables are equal to the “phase-space intedllow us to obtain a very simple estimate of the “inhomoge-

grals” of the corresponding classical quantities, weighted byheity” error. - _ _
27 3pw, At this point, we return to the generalized Bogoliubov

transformation,X(x,y),Y(x,y) of Sec. Il. Working in the
Wigner representation and expanding the “canonicity” rela-

<\P|f|\[f>=j d3x U* (x) f(X) ¥ (X) tion (9) betweenX andY in the manner of the gradient
expansion, we find up to first order in the spatial derivatives
a relation that is similar to the constraint equati@h of the

=(27r)‘3f d3p deR f(R) pw(R,p), homogeneous Bogoliubov transformation,
Xa(R.P) ~ Yi(Rp)~1. (15)
<‘1’|6|‘1’>:f d3x ¥ (x)pW (x) Consequently, the general Bogoliubov transform can be pa-

rametrized in the same way as the Bogoliubov transform for
B a3 43 3 the homogeneous Bose gas{y(R,p)=cosha(R,p)],
=(2m) f d*p j d°R p pw(R.p), (11) Yw(R,p)=sinHo(R,p)], where for the slowly varying con-
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densate, ther parameters depend on the momentand
position: o(R,p). The distribution and pairing functions

p(x,x")= (T () h(x")) and A(x,X") = —(P(X)J(x')) take

on the following form in the Wigner representation:

1
pu(R.p) =5 {costi 20(R,p)] -1},

1
Aw(R,p) =5 sinf{20(R,p)]. (16)

The localo parametrization of the Bogoliubov transforma-
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(PN TP TP P(y) )= A% (X, Y) A(X,Y) + p(Y,X) p(X,Y)
+p(X,X)p(y,y). (19

The variational nature of this procedure is ensured by the
existence of a variational ground state that gives this type of
factorization. In fact, the variational ground state corre-
sponds to the choice of the Gaussian wave functipbial

The displacement of the fields and the factorization of the
expectation values, although straightforward, gives rise to a
somewhat lengthy expression for the free energy. It is then
convenient to classify the different contributions by their or-
der in ¢ and their functional dependence pnand A. (i)

tion is crucial to the Thomas-Fermi description and it is uponhy is the one-body contribution of zeroth order ¢gnto the

the validity of Eq.(15) that the Thomas-Fermi theory rests.
The error introduced to E¢15) due to the inhomogeneity of

the system can be estimated by the lowest-order nonvanish-

ing term in the gradient expansi@h4). Notice that the first-
order term in the gradient expansion of E@5) vanishes

ground-state energy,

n= [ @ Py hoopy sy (20

since it is the sum of Poisson brackets of quantities with(ii) In analogy with the Hartree-Fock theory, we c¥l;,
themselves. Consequently, the error has to be estimated frogiven below, the direct energy contribution to the energy,

the second-order term.

IV. ENERGY DENSITY

In the variational method, the quantity to minimizeHs

1
Vdir=§i d®*x d® p(y,y)p(x,x)V(|x=y]). (21

(iii) Using the same analogy to the Hartree-Fock treatment,

the ground-state free energy, which we can put in a localhe exchange energy.,., is equal to

form F=[d®R f(R), wheref(R) is the energy density. We

achieve this result in two steps. In the first step, we shift to
the Wigner representation in the integrand for the mean-field
expression for the ground-state energy. In the second step,
we notice that the Short'range nature of the interatomic |n'(|v) Standard Hartree_Fock theory does not describe pairing
teraction renders the resulting integrand essentially local i.egng the pairing energy pai,
the integrand contains onkingle(not double integrals over
the position variables.

The ground-state free energy is the expectation value of

H— N, whereH is the many-body Hamiltonian of the bo-

son systemN the number operator, and the chemical po-
tential:

1
Vexchzzf dx dsy P(Xi}/)P(YaX)V(lX_yl)- (22

1
VpairZEJ d3X d3y A* (yIX)A(yix)V(|X_y|)v (23)

is consequently absent from the Hartree-Fock expressions. In
second order i, we find contributions that can be obtained
from the above terms by replacing eith&(x,y) or p(x,y)

by #(x)¢(y). (v) For example, the one-body contribution
due to the kinetic and potential energy of the condensate is
h?, where

,q_MN:i d3x W () Th() W (x)

1 N -
+§i d3x d®y P(y)"o(x)T
. h{= f d®x p(x)h(x) p(x). (24)
XV([x=yDT(x)¥(y), (17)

(vi) Vj’ir is the direct contribution to the interaction energy,
stemming from the interaction of the condensate with the
particles that have been “forced” out of the condensate

(depletion),

where V(|x—y|) represents the interatomic potential and
h(x) is the one-body part of the free energy,

2
h(o =~ Zv—m+vex[<x>—ﬂ. (18) 1
Vi=3 i dx Py $(y)A(Y)p(x V(X)) (25
whereV,(X) is the external potential.
_ The presence of a condensate displaces the field operatqggi) Similarly, V&, is the exchange contribution of second
W (x) by their expectation valué(x). To generate the varia- order in ¢,
tional free energy, we shall use the mean-field approxima-

tion, in which terms of first and third order iy and g
vanish[Eq. (7)] and the fourth-order term factorizes as

</> 1

Vexchzii d*x dy ¢(y) p(x)p(y,x)V(|x=y]). (26)
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(viii) We represent the pairing energy of the condensate wittNotice that the contributions of second orderdgnare non-
the particles out of the condensate \bﬁair, local in the sense that their expressions contain integrals over
more than one position variable. Nevertheless, if we consider
the scale on which the physical quantities vary in space, or in
momentum space, it becomes apparent that the nonlocal in-
tegrals can be approximated by local expressions. We illus-
(|X) Fina”y, YVe den-ote the contribution of fourth order in. trate this point by Considering the exchang@)&:r) and pair-
¢, representing the interaction energy of the condensate witfy (Vgair) energies. The key to obtain local expressions is to
itself by V7, notice thatQ,,(R,p) varies with respect tp on the scale of
1 Ry %, whereR, is the size of the condensate. On the other
VM:EJ d3x a3y ¢2(y)p2(X)V(|x—y|]).  (28)  hand,v(p—p’) varies on the scale df *, wherel, is the
range of the atom-atom interaction. TypicalRy>1, so that
With this notation, the mean-field expression for the groundQw(R.p) varies much more rapidly with respect fothan

1
Viar—> f d* & B(y) pOOA(Y.X)V(Ix=y]). (27)

state energy reads v(p—p’). .In .f.act, whgan p is large enough to make
v(p—p') significantly different fromv(p’), Qw(R,p)~0.
F=(H—uN)=h;+ Vg + Vexen Vpairt h¢+2veé +2ve¢ . Thus we can replace(p—p') by v(p’) in the integrands
- ZVgairJ" Ve, (29

V= %JFJ fpfp, S(R+1/2) p(R—1/2)

where the minus sign of th‘«;ﬂ!g’air term stems from the defi-

nition of A= — (). xexp(ip-rv(p")pw(R.p’)
At this point, we introduce the Wigner representation into

the integrands of the above contributions to the mean-field — £¢2(R)f f v(p ) pw(Rp’)

expressions for the ground-state free energy. The resulting 2 RJp’ WERE

expressions resemble the corresponding terms for the homo-
geneous gas, with an additional lathelover which is inte- 1

grated. For the sake of notational convenience we introduce Vair §¢2(R)j f , v(PDpw(R,pY). (33
the following integration symbof or [, which represents RIP
the usual integral over all of spadel®R if R is a position

. ; . . The same considerations regarding the relative magnitude
variable or (27) “3fd%p if p is a momentum variable: d J g

of the relevant length scales show that we can similarly sim-
plify the expression of they* interaction energy’#¢ and the
fE(ZW)_SJ d®p, f EJ d°R. (30) direct interaction energie¥y, and V&,. The local expres-

P R sions are most easily obtained by considering the difference
in length scales before introducing the Wigner representa-
tion. In coordinate space, we notice thgtx,x)~p(y,y) if

p2 |x—y|<I,. Thus we can replace(x,x) by p(y,y) in an

m*-V(R)—M}Pw(R,P), integrand if it is accompanied by(|x—y|):

The terms of zeroth order i then give

e,

Vexch:%fR fp fp, pw(R,p)v(P=p")pw(R,p’),

1
Vg~ Ef d3x d® p?(x,x)V(|x—y|)

L '
Vpa":%fa fp fpr Aw(R,p)v(p—p ) Aw(R,p'), =§v(0)fFJp fp' PwRP)Pw(R.P").

1
1 va”ir~§v(0)f f $*(R)pw(R.p),
Vdir:_J j j f f pw(R=T112,p)pw RJPp
2)r Je Jp Jp Ja
X(R+r/2,p’)eXQIqr)U(Q), (31) V‘MS%%U(O)f ¢4(R) (34)
R

wherev is the Fourier transform of the interaction potential
v(g)=Jd% V(r)exp(=ig-r). To conclude this section, we summarize the results by

The terms that are of second ordergncan be obtained remarking that the Wigner representation and the length
by replacing onep or A by ¢¢. In the Wigner representa- scale considerations bring the free energy in an almost-local
tion, this procedure yields expressions that are similar to théorm. We need to qualify that statement because of the ap-
corresponding terms of zeroth order ¢gnwith p\(R,p) or  pearance of the Laplacian, a nonlocal operator, in hfie
Aw(R,p) replaced by a functio@w(R,p), where contribution to the energy. In fact, it is the nonlocality of this

term that gives rise to a generalized Gross-Pitaevskii or non-
_ _ . linear Schrdinger equatiofNLSE). The resulting(almost-
QudR.P) fr(ﬁ(RH/ZW(R ri2)exp(ip-1). (32 local) ground-state free energy B=fd®Rf(R), where
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p? field free energy, assuming thaj, andA,, are parametrized
f(R)=J [%+Vext(R)_#}P(Rap)_"vexcr{R)"_Udir(R) by o [Eq. (16)], F[o,¢;u]= F[pw(o),Aw(o),d;n]. We
P obtain the condensate wave functigg(R) and Bogoliubov
parametefoy(R,p) that describe the condensate by varying

+0pa R) + ¢(R)[_2_2+Vext(R)_M}¢(R) o and ¢ independently to get a minimum #:
m
1 R =0 (NLSB)
+ 2086 R)+ 204 (R) = 200 R)+ 50(0) $*(R), U] pa—— ( |
(35
oF

=0. (37

o=0q,6=dg

where the exchange, direct, and pairing energy densities are
the integrands of the corresponding interaction energy con-
tributions to the free energy:

oa(R,p)

The ¢ variation6F/6¢ =0 gives the NLSE. The variation
oF/60=0 gives an equation foroy(R,p). From
1 _1 _lai .
o (R :_f f R.D)o(p—p ) ol R.p'), p=3[cosh(2)—1] and A= sinh(20) [Eq. (16)], we find
=)= 3 o Jpr P (R.pJz(p=pT)ew(R.P) that dpldoc=sinh(2r) and JA/do=cosh(2), so that
6F/60=0 is equivalent to

1
Upair(R):Ef f Aw(R,p)v(p=p")AWR,p"), — SFIS8Ay
pJp tanf{200)=m. (38
1 Now, several terms of the NLSE, as well as the functional
Udir(R)ZEU(o)f j pw(R,p)pw(R,p"), derivatives 5F/5A, and 6F/8p in Eq. (38), depend onog
PP and ¢, so that the resulting equations have to be solved
self-consistently. To make the self-consistent nature of the
1 equations more explicit, we consider thedependent con-
v&HR)= §¢2(R)f pw(R,p)v(p), tributions to the functional derivatives 6Vq,c/ op,
P Vil 6p, and 6V 4/ SA, which we shall call the general-
ized potentials

1
v?fair(R)=§¢2(R)f Aw(R,p)v(p),
P Uexck(Rap):5Vexch/5PW(R=p):Jp, v(p—p")pw(R,p'),

1
bR~ 5 RO [ puRp. (@9
; UarlR) = Vo[ pudRop) =0(0) | pulRp")

Notice that the free energy and free-energy density are func-

tionals of A(R,p), p(R,p), and¢(R). In the next section we

determine the equilibrium values &(R,p), p(R,p) and U (R.D)= V... / SAw(R :J —"VAu(R.D’
#(R) by minimizing F[p,A, ¢; u]. pail R,P) pair/ SAw(R.P) p’ v(p—p)Aw( 'p(;*g)

V. SELF-CONSISTENT MEAN-FIELD THEORY where we name the generalized potentials after the respective

In this section we derive the self-consistent mean-fieldntéraction energies of which they are the functional deriva-
equations that describe the nearly uniform Bose condensafty€S: Uexch i the exchange potentidl g, the direct poten-
at zero temperature. In the variational method, one minifial, and Uy, the pairing potential. Writing the distribution
mizes the mean-field ground-state free energyand.palr-lng function in the |-ntegr.ands of the generalized po-
F[p,A,;1]. Writing the integrands of the different contri- tentials in terms of &, we find with Eq.(38) that the gen-
butions to the mean-field free energy in the Wigner represene_rah_zed potentials implicitly depend on the functional de-
tation, followed by the length scale arguments of the precedtivatives ofF:
ing section, showed that[py,Aw,d;u] is essentially a
local quantity. Finally, in the Thomas-Fermi limit of a nearly
homogeneous system(R,p) and A(R,p) are param- Uexch(R,p)=f v(p—p’)
etrized by a single Bogoliubov transformation parameter P’
o(R,p) in the manner of Eq(16). Thus, to describe a nearly 1
homogeneous system, we minimize the Thomas-Fermi

« O6F/6p
ground-state free energy, which is obtained from the mean- 2

\/(5F/5p)2—(5F/5A)2_1
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SF/6p

1
= -1
V(8F18p)?—(8F18A)?

Udir(R):U(O)fp, 5

upaim.p>=fp/ v(p—p')

L
2

— 5F18A
V(6F18p)?— (8F18A)?

(40

RMI THEORY OF A ... 3651

ables as a function of the chemical potenjalOne observ-
able we can obtain in this manner i, the number of
trapped patrticles,

%szJpp(R’p“JR #R), (49

the inversion of which yieldg.(N), from which we can cast
the results for the thermodynamic quantities in terms of the
parameter that is controlled or measured in the experiment:
the number of atomsl.

N(un)=

where it is understood that the functional derivatives in the

integrands are evaluated Rtandp’. Functional differentia-
tion shows that the functional derivatives®iin turn depend
on the generalized potentials

oF _ )
m_upair(Rvp)_ $“(R)v(p),

5F p?

Spw(R.p)  2m
+Ua(R,p) + $%(R)[v(p) +v(0)]. (41)

+ Ve R) =+ Uged R, P)

VI. LOW-DENSITY LIMIT

The self-consistent equatiori40)—(42) and (43) can be
solved iteratively. In the low-density regime, where
Jna®<1, we approximate the result by the expressions ob-
tained after a single iteration, starting frorr{"’=0
(US= U= Ul =0, where the superscript indicates the
order of the iteration With this first guess we solve the
NLSE and obtain the functional derivativg€qg. (40)]
S6F/8p and 6F/ 8A, yielding the first-orderr parametefEq.
(38)] ¢V and the generalized potentigl&qgs. (39)] U,
UG, andU ). With ) we compute the expectation val-
ues of the observables. In solving the NLSE, we shall as-

Thus Eqs(40) and(41) self-consistently determine the gen- sume thatg(R) varies slowly enough that we can also ne-
eralized potentials. Furthermore, there is a dependence qjlect the kinetic-energy operator. The expressions for the
the condensate wave functiap. The latter has to be ob- |ocal quantities obtained in this manner are identical to the

tained from the NLSE:

2

Ve R)—ut U(R)+v(0)¢2(R)}¢(R)=O,

2m
(42)
where the potentidl (R) is equal to
U(R):Udir(R)+Uexcf(Rvo)_Upair(Rvo)- (43

This potential term stems from the interaction of the conden
sate with the particles out of the condensate.
Equations(40)—(42) and (43) are the full set of self-

consistent mean-field equations that describe the condensate

perturbation results for the dilute homogeneous Bose gas
with the (zeroth-order chemical potential equal tp.x(R).

To make the dependence on the scattering length explicit,
we replace the potential by a pseudopotential

J
Vpseud&r):)\é(r)&_rra (46)

where\ =4x#2a/m and the derivative operator is necessary
to remove the divergency in the ground-state free energy
[21]. Furthermore, we shall assume thitR) varies slowly
enough that we can also neglect the kinetic-energy operator
in solving the NLSE(42):

M P(R) = pe(R), (47)

in thg Thomas-Fermi approximation. The self'CO”SiSte”MhereMeﬁ is the effective chemical potentiéd4). The func-
equations for the homogeneous da$] are recovered by ional derivatives(41) are

setting Ve, =0 and by assuming thap is independent of

position so that the kinetic-energy contribution to the NLSE SE@

vanishes. Regarding the connection with the intuitive SA -AoM(R)T?,

Thomas-Fermi model, we note that and Vg, in the self-

consistent mean-field equations always appear as SFL  p2

u—Ve{R), so that it is natural to define a local effective =— —ue(R)+ 2\ [ ¢ Y(R) ]2 (48)
chemical potential dp  2m

e(R)=p—Ved(R). (44

In fact, this is the essence of the Thomas-Fermi description:
the system is described locally as a homogeneous system

with a position-dependent effective chemical poten(dl).

The solutions to the fully self-consistent equations deter-

mine the expectation value of albtatig physical observ-

Consequently, the single iteration value for the Bogoliubov
transformation parameter is equal to

~ \G2(R)
" (p2T2m) — pen(R) + 28 HA(R)

_ Meri(R)
(p°12m) + preg(R) ’

tanf 206" (R,p)]

(49



3652

EDDY TIMMERMANS, PAOLO TOMMASINI, AND KERSON HUANG 55

which can be recognized as the dilute uniform gas result ifvhich, for the homogeneous case, reduces to the well-known

We Setie= u.
The expression for the Bogoliubov parame«bé}) from

perturbation result.
Finally, in a similar manner, we obtain the local pressure

Eq. (49) is what we would have obtained with an effective P(R) from the expression for the effective free-energy den-
energy density neglecting the interaction energies of theity [Eq. (50)] P(R)=—f§f)(R),

particles out of the condensat®, Veycn, and V.
In other words, the effective ground-state energyFig;
=[d®R f.4(R), where

2
bR

A
feit(R) = — pen(R) $*(R) + 5 (R)+ f
p

+2\ ¢2(R))pw(R,p) —A*(R)AwW(R,p)|. (50

We obtain the results for the observable quantities by calcu.i.h

lating their expectation values from the single iteratiﬁ&]l)

128

AR >Vn(R)a3|.

PRI=—— |17 15,

(57)

We can then replace? in Eq. (57) by its single-iteration
value [Eq. (54)]. Furthermore, replacing.(R) in the re-
sulting expression by Eq56) results in a local equation of
state.

The above results illustrate an important advantage of the
omas-Fermi description: by neglecting the kinetic-energy
operator in the NLSE we recover simple analytical expres-

of Eq. (49). For example, the condensate wave function isjong for most quantities. These expressions are the analogs

determined from the NLSE

N PA(R)~ per(R) —UD(R), (51)

where the potentidl (R) is the sum of the generalized po-

tentials at zero momentui@3),
UB(R)=Ugf RO+ UG (R)-UR(RO), (52

evaluated with the single-iteration value fot The single-

of the perturbation results for the dilute homogeneous Bose
gas. It is then of course very important to determine the

regime and the conditions under which these results can be
trusted.

One source of error in the theory stems from neglecting
the Laplacian operator in the NLSE. We can estimate the
error by calculatingg, , the ratio of the kinetic energy term
—V?2¢/2m, and the nonlinear potential energy in the NLSE

A3,

iteration values for the generalized potentials are computed

to be

A
UG R0 =UG (R) = 5[ per(R) [*2m®?,

A
Ui RO =~ —5 [ne(R)]¥"m™? (53)
Thus the condensate density{5q. (51)]
2 1 5 31214312
¢ (R)= - pen(R) = gl per(R)ITM™ (54)

The total density nR), including the correction tap?(R)
[Eq. (54)] and the local depletion, is equal to

n(R)=¢*(R)+ fp p(R.p)

1
~¢*(R)+ 32 LA R)]¥2m3"?

4
~ S uei(R) ~ 52l RIPAZ (59

resulting in an expression for the densityR) in terms of
the effective chemical potential.¢(R). Inverting this rela-
tion up to first order inyna®, we obtain

32 /n(R)a

pen(R)=AN(R)| 1+

: (56)

-V24(R)/¢(R
eL(R)=|—V2¢/2mx¢3|:—ﬁg%‘, (58)

wherek.(R)=[8man(R)]*? is the inverse of the local co-
herence length.=\_*(R).

Another source of error, which cannot be remedied but is
truly inherent to the Thomas-Fermi approximation, stems
from the inhomogeneity of the system. This error is also
more difficult to estimate, and one benefit of our approach is
that the lowest-order nonvanishing term in the gradient ex-
pansion can be used to estimate the magnitude of the error.
This term is of second order because the first-order term
vanishes. We estimate its magnitude! by replacing the
partial derivatives with respect to the momentum variables
by kc_l, sincek, is a measure of the range mof the ob-
servable at zero temperature. The relative error for the gen-
eral product of two arbitrary operatofs and B, e[AB], is
then given by

1 V2AW+VZBW 2VAW -VByw
8ki(R)| Aw  Bw AwBw |’
(59

e[AB]~

The validity of the Thomas-Fermi description depends on
X&,—Y2,=1 [Eq. (15)], so that we use the accuracy of this
equality to test the validity of the local homogeneity descrip-
tion. The expression(15 can also be written as
exgo(R,p)]exd —o(R,p)]=1, so that we choosé,, as
exdo(R,p)] andBy, as exp—oa(R,p)] to estimate the rela-
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tive errorg;. In fact, it is more convenient to work with whereR, is the size of the condensaky=2ul/fiwl. In
exp(4o0) than expg), so we compute the inhomogeneity error zeroth order, all particles are in the condensate, so that

ei[exp(4o)exp(—40)] of exp(40) and divide by 4[since the N=[rd?*(R),
relative error off" is simplynx (the relative error of)]. In

this manner, we find that (o_Tw(15aN 215
] eyl (67)
1
ei[exp(o)exp(—o)]:Zei[exp(4a)exp(—4a)] and, consequently,
1 |Vexp4o)|? 15aN\ 15
~82R) | opdo) | - 0 0= '-(T) : (68)
With the single-iteration value for the low-density conden-The local coherence lengtt.(R) is given by
sate
L2
2men(R Ae(R)= ——. (69)
exdo(R.p)]=1+ 2etR) 61) o(R) JRE-R?

p2/2m

Before we proceed to calculate the perturbation correc-

we find that the inhomogeneity err@(R) [Eq. (60)] is tions to the observables, we test the validity of the low-

equal to density Thomas-Fermi formalism by calculating the errors.
1| FoRM(R) |2 The error due to neglecting the Laplacian in the NLSE,
(R)= — X ¢ e (R) [Eg. (58)], is easily computed with Eq69):
e(R)=5 O72m) 20| 62  eu(R) [Eq.(58)] y comp q69)
. . L \*[3—2(R/Ry)?]
where F, is the force of the external potentiafey el(R)= Re) (I=(RIRg)D°" (70

=—VV.. As expected, the error is largest fpe=0, and
using thep=0 value, we obtain a simple position-dependent

. : . from which we see that the Laplacian can be omitted in the
estimate for the inhomogeneity erre(R),

NLSE on condition that the size of the condensate is much

1 larger than the size of the ground stai,>L or

&i(R)= = |Fex RIN(R)/A ¢2(R)|2, (63  (15aN/L)®>1. The error due to the departure of the BEC
8 from homogeneitye;(R) [Eqg. (60)], is

where we replacegiq¢ by A ¢?. By equating this errof63) 1( L
(7D

4 2
(R/Rg)

to a chosen value. <1, reflecting the accuracy we demand e(R)= AN m.
from the theory, we can determine the spatial boundary be- 0 0

yond which the Thomas-Fermi theory is less accurate that&gain, notice thate; is small over most of the condensate

Cout- region R<R,) if Ry>L.
In Fig. 1 we show the density[¢©(R)]%
VII. SPHERICALLY SYMMETRIC [¢©(R=0)]? [Eq. (66)] and both errorse, and e as a
HARMONIC-OSCILLATOR TRAP function of the distance to the middle of the trap. The curves

are calculated for a harmonic-oscillator trapLof 1 um and
an interatomic interaction with scattering lengis=5 nm.
The dotted lines correspond k= 10° atoms in the trap and

1 the full line gives the results faN=10° atoms. Notice that
Ve R) = Eﬁw(R/L)z, (64)  for 10° particles, the Laplacian error is already substantial
(~10%) in the middle of the trap. Consequently, in this
example of 1000 atoms, neglecting the Laplacian operator in
the NLSE is not a valid approximation. The Thomas-Fermi-

7 Bogoliubov approximation is of the local-density type and
"= Vo

We now specialize/(R) to a harmonic-oscillator po-
tential

wherelL is the size of the harmonic-oscillator ground state

(65)  cannotaccount for finite-size effects. If thgor e; errors are

too large, the effect of finite-size features, such as the curva-

ture of the condensate wave function, is expected to be larger
and compute the expectation value of important quantities ifhan the effects of the fluctuations calculated in the Thomas-
the low-density limit of the preceding section. In zeroth or- Fermi approximation.
der in the iteration, we recover the results of Baym and (Qn the other hand, for fatoms,e; ande, become only
Pethick[20]. From Eq.(47) we see that of the order of 10% aR=9.0L, whereasR,=9.4L, which
shows that the Thomas-Fermi description and neglecting the
Laplacian operator are valid approximations in almost all of
the condensate region. Under this condition, it is meaningful
(66)  to calculate the perturbation corrections to the expectation

RZ
[6O(R)P=[ 1= Ved RN =g 5[ 1~ (RIRo)?],



3654

EDDY TIMMERMANS, PAOLO TOMMASINI, AND KERSON HUANG 55
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N§ 06 | N ==~ 10" particles —— 10° particles
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NE 04 | ‘\‘ R
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02 Y 1.0
\\ ~
00 1\ 1 (] 1 i
20 — T T T £
‘ o
!
I’
I, 05 |
DR ] Y I I S
c s
@' ™
0 ) 0.00 é :1 é 8 10
6.0 — . . Distance (in units of L)
]
! FIG. 2. Depletion, defined ad(R)=[n(R)— ¢?(R)1/$*(R),
~ 40| :' for the same systems as Fig. 1.
& i
& : Similarly, we obtain the condensate density from E¢f) or
S 20 ! : the local depletion d(R)={n®(R)—[sM(R)]?}/
/ [6M(R)]*
0.0 Lez” : . : 22 aR,
o 2 4 6 8 16 _ \/ﬁ
Distance (in units of L) d(R)= 37 2 1-(R/Rp)". (76)
FIG. 1. (a) Condensate density fdd=10° and 16. (b) Error
incurred in neglecting the kinetic term in the NLS() Error in-

In Fig. 2, we show the local depletion as a function of posi-
tion for the same parameters as those of Fig. 1. The local
curred in the Thomas-Fermi approximation. The length scale on th@ressure is shown in Fig. 3.
horizontal axis is in units ok, the extent of the ground-state wave
lengtha=5x10"7 cm.

Notice that the depletiofi76) vanishes at the edge of the
function. Calculations are done fdr=10"* cm and scattering condensate. This behavior is different from the result of the

hydrodynamic Thomas-Fermi descriptipt2], which yields
a_depletion that diverges at the edge of the condensate. This
values of the observable quantities. Including the perturbadivergence can be related to the surface mg@e$ which
tion correction, the local densit{5) is equal to
R2 22 aR,
_ _ 27 1—
n(R)= g—al1-(R/R)?| 1

cannot be described by a local-density approximation such as
3 12 1—(R/Ry)?|.

the Thomas-Fermi-Bogoliubov technique. Regarding the dif-
ference between the hydrodynamic and Thomas-Fermi-

Bogoliubov results, we remind the reader that both approxi-
mations break down before the edge is reached, and the
(72)

significance of the behavior of any quantity in this region is
questionable.
The number of trapped particlésis obtained by integrating
over the densityn(R),

Pressure”‘
1.0 < .
\‘ --—-10 particles
Rg \“ —— 10° particles
N=J n(R)=417f dR Rn(R), (73 o8
R 0 \
which leads to o8| ‘\‘
£ \
i [}
_1L 2M o \/§2M3 74 50.4- “\
T 15a\he)  24lhoe) {9 \
The inverse relatiop as a function oN can be obtained by %2 \
solving for u iteratively in Eq.(74), which gives, up to sec- \
ond iteration, the result . ‘ ‘
%05 2 4 6 8 10
2/5 6/5 Distance (in units of L)
M:ﬁ_w % N2/5 1_|_\/_§ & NY5| (75)
2\ L 60\ L

FIG. 3. Pressure for the same systems as in Fig. 1.
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TABLE I. Results for the spherically symmetric harmonic-
oscillator trap. g(e):J f d(e—€p(R)). (79
RJp
15aN| Y
Size of the condensate =L |— ; ; ; ;
( L ) After integration over the momentum variable, we obtain
2/5
Chemical potential M:%’(@) 1 f 2R de| ™t 80
, g(f)— ﬁ R pe( ) a_p ] ( )
Condensate density H2(R)= Ro 2[1-(RIRp)?]
8mal where p_(R) is the momentum of a particle at positidh
Local coh lenath R)— L2 with energye. When calculating the remaining integral over
ocal coherence leng Ae(R)= R-R space, we need to distinguish between spatial region | with
condensate and a second region Il without condensate,
Local depletion d(R) = 2.2 @ 1-(RIRy)? _shown schematically in.Fig. 4.1t is necessary to break up the
37 L integral (80) over the different integration regions, because

Error due to L \4[3—2(R/Ry)?] the dispersion relations for the excitations are different. In
neglecting the Laplacian eL(R):(R_O) 1-(RIR)Z® region | we use the Bogoliubov spectruf?7), whereas in
L\* (RIRy? region Il the atoms are essentially free particles moving in

%(_) T the trap:

Error due to the inhomogeneity e;(R) R;) [1=(RIRyZ
0 - 0

2
p
Ep(R)= ﬁ"'vext(R)- (81
To conclude this section, we repeat that the condition for
the validity of the Thomas-Fermi description is that the sizepy, o density of states is then the sum of the integrals over
of the condensate exceeds the size of the ground state of tl?@gions | and II:
trap Ry>L. An equivalent condition is that the coherence '

length in the middle of the condensate is smaller than the

size of the ground state.,(R=0)<L or that the chemical B V2 m¥2 3

potential exceeds the ground-state eneugy# w/2. These 9(e)= 2 72 (6_'“)f,d R

statements do not depend on the details of the trapping po-

tential. Of course, the shape of the condensate, the boundary \/\/[E_M]2+M2 (R)— pes(R)

where the Thomas-Fermi description breaks down, and the X eff eff
expectation values of the local observables do depend on the Vle—u)?+ usq(R)

shape of the potential. In this section we gave the results for

a spherically symmetric harmonic-oscillator potential. For J 3R v (P

the convenience of the reader we tabulate several of the re- " I PRYe=Ve(R)|- (®2

sults up to first nonvanishing order in Table I.

VIIl. DENSITY OF STATES

In the Thomas-Fermi picture, the system is locally & Y----------------=-----1
equivalent to a uniform system. Therefore, there are local
excitations, which in the low-density regime are described by
the energy spectrum

€p(R)=[P?/2m+ pe(R) 12— uoe(R) + 1, (77)

which is well known from the Bogoliubov treatment of the
uniform case. The local dispersion relati¢f¥) describes a
phonon with position-dependent sound velocity.

To obtain the excitation of the whole system we compute
the density of states using the formula

Distance

FIG. 4. Schematic representation of the region witgion )
g(e)in o(e—€i), (78 and without condensat@egion Il) for a BEC in a harmonic trap.
The condensate density is proportionaltgy(R), which is a “mir-
ror image” of the trapping potential. Particles in the condensate
where X; represents the sum over all excited states. In théave energy. and a particle excited up to energycan move into
spirit of the Thomas-Fermi approximation we take region Il as far as the classical turning poRy.
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Density of Sates for 10’ particles
30 T T T 10000

Density of States for 10° particles

8000 - 2
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5 Z 4000 e .

2 =3 7" Interacting gas
=
o Ideal gas -

10 | 9 7

2000 | ol
/,’
0 a” 1 1
V) B 100 200 300 400

Energy. (in units of «w/2)

° o Energy (in1lﬁ1its of w/2) " 2 FIG. 6. Density of states for the same system as in Fig. 5, but
with N=10° particles.
FIG. 5. Density of states calculated in the Thomas-Fermi ap-
proach described in the paper. The system is a BE®Iof10° reason is purely geometrical: the phonon has a much larger
particles interacting with a scattering lengi=5x10"" cm in a  volume in coordinate space availaljl least the volume of
harmonic trap with ground state of extdrt=10"* cm. the condensajethan the noninteracting boson that received
the same amount of energy and can only move near the bot-
For the special case of a spherically symmetric harmonitom of the potential well. This effect outweighs the fact that
oscillator trap, we find the expression for the density of stateshe momentum space volume available to the phonon is less

than the momentum space volume available to the noninter-

4wt 1 acting particle with the same energy. Of course, as men-

9(e)=— (hw) (6/“_1)fodr"1_r tioned previously, the Thomas-Fermi model does not de-

scribe finite-size effects such as surface modes. These could

N (el p—1)2+12—7¢ alter the density of states somewhat. In analogy with an in-

X compressible spherical fluid, surface modes might be ex-
\/(e/,u,—l)z-i-r2

pected to appear in the low-energy regi@8]. Related to

dlu surface effects, we remark that the sharpness of the boundary
+2] dr r’\elu—r? 1 (83) between regions | and Il is an artifact of neglecting the La-
1 placian operator in the NLSE. Nevertheless, except for a re-
gion near the boundary, we argue that the rest of the space is
! ' : MWell described and that the contribution of the near-boundary
discussed in Sec. VIL.=1 um,a=5 nm,N=10" (Fig. 5,  regjon is comparatively small so that the error that is intro-
_andN=_106 (Fig. 6). The dotted lines show the result for the gyced in the integra(80) is small provided the Thomas-
interacting Bose gas and the full line shows the density Ofermij description is valid in most of the condensate region.
states of the ideal gas in the same trap. The density of states
starts from the chemical potential, consistent with Eqg.
(77), which implies that the energies are measured from the
bottom of the potential well so that a particle of zero mo-  This work was supported in part by funds provided by the
mentum in the condensate has energylf we were to set U.S. Department of Energy under cooperative agreement No.
out the density of states as a function of excitation energfDE-FC02-94ER40818. P.T. was supported by Conselho Na-
e— u, the density of states curves for the interacting BECcional de Desenvolvimento Cientifico e Tecnologico
systems would be shifted to the left by an amountIn (CNPq, Brazil. The work of E.T. is supported by the NSF
contrast to the homogeneous BEC, the density of states fahrough a grant for the Institute for Atomic and Molecular
the interacting case, as a function of the excitation energyPhysics at Harvard University and Smithsonian Astrophysi-
grows faster than the density of states of the ideal gas. Theal Observatory.

In Figs. 5 and 6 we show the density of states for the syste
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