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Variational Thomas-Fermi theory of a nonuniform Bose condensate at zero temperature
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We derive a description of the spatially inhomogeneous Bose-Einstein condensate, treating the system
locally as a homogeneous Bose gas. This approach, similar to the Thomas-Fermi model for the inhomogeneous
many-particle fermion system, is well suited to describe the atomic Bose-Einstein condensates that have
recently been obtained experimentally through atomic trapping and cooling. In this paper, we confine our
attention to the zero-temperature case, although the treatment can be generalized to finite temperatures, as we
shall discuss elsewhere. Several features of this approach, which we shall call the Thomas-Fermi-Bogoliubov
description, are very attractive.~i! It is simpler than the Hartree-Fock-Bogoliubov technique. We can obtain
analytical results in the case of weakly interacting bosons for quantities such as the chemical potential, the
local depletion, pairing, pressure, and density of states.~ii ! The method provides an estimate for the error due
to the inhomogeneity of the Bose-condensed system. This error is a local quantity so that the validity of the
description for a given trap and a given number of trapped atoms can be tested as a function of position. We
see, for example, that at the edge of the condensate the Thomas-Fermi-Bogoliubov theory always breaks down.
~iii ! The Thomas-Fermi-Bogoliubov description can be generalized to treat the statistical mechanics of the
Bose gas at finite temperatures.@S1050-2947~97!01305-X#

PACS number~s!: 03.75.Fi, 05.30.Jp, 32.80.Pj, 67.90.1z
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I. INTRODUCTION

The recently reported Bose-Einstein condensates~BECs!
of trapped neutral atoms@1–3# represent unambiguous obse
vations of a weakly interacting Bose-condensed gas. Qua
tatively, we can characterize the strength of the interac
by the expansion parameter in the perturbation treatmen
the homogeneous Bose gas,Ana3, wheren is the density and
a the scattering length of the interatomic potential. In t
atomic-trap experiments, typically n;1012–1014 cm23 and
a;1–5 nm, so thatAna3;1022–331025. Thus, in the
sense of perturbation theory, the observed condensate
indeed textbook examples of weakly interacting systems.
the uniform Bose gas, perturbation theory leads to sim
analytical results. Although the trapped condensates ca
described by means of the Hartree-Fock-Bogoliubov eq
tions @4,5#, the latter approach does not lend itself to an a
lytical perturbation treatment.

Intuitively, one expects that a many-body system who
density varies slowly in space can be described locally a
homogeneous system. Based on this picture, the Thom
Fermi method@6,7# was proposed for the calculation of th
electron density in a heavy atom. Lieb and Simon@8# showed
that the treatment is exact in the limit when the atomic nu
ber goes to infinity. Application to a confined Bose conde
sate was pioneered by Goldman, Silvera, and Legget@9# and
recently reconsidered by Chou, Yang, and Yu@10,11# for a
system of noninteracting bosons. Recently, Wu and Gri
@12# applied the Thomas-Fermi approach to a hydrodyna
description of the BEC. As pointed out by Kagan, Shlyap
551050-2947/97/55~5!/3645~13!/$10.00
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kov, and Walraven@13#, the local-density description is valid
when

m/\v@1, ~1!

wherem is the mean-field energy per particle, or chemic
potential, and\v is the zero-point energy in the trap. A
detailed discussion of where the Thomas-Fermi descrip
for the condensate wave function breaks down was given
Dalfovo, Pitaevskii, and Stringari@15#.

In this paper, we derive a Thomas-Fermi description
the condensateand the fluctuationsfrom first principles
within the framework of the variational technique. We em
phasize that, unlike the practice of neglecting the kine
energy term in the Gross-Pitaevskii equation, which in
recent literature is sometimes called the Thomas-Fermi
proximation, the resulting variational description is not lim
ited to the condensate, but describes the depletion, pres
and all other thermodynamic quantities. Furthermore, l
the uniform gas, the Thomas-Fermi theory leads to a per
bation treatment of the weakly interacting condensates,
ing simple analytical expressions for these quantities. A
other important advantage of the Thomas-Fermi treatmen
that it can be generalized to describe finite-temperature
tems, as we plan to discuss in future work. In this paper
focus on the Bose gas at zero temperature.

The paper is organized as follows. In Sec. II, we gene
ize the usual Bogoliubov transformation to describe spatia
inhomogeneous condensates. In Sec. III, we introduce
Wigner representation and gradient expansion, which p
3645 © 1997 The American Physical Society
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vide the tools to describe the nearly homogeneous syst
and make the Thomas-Fermi approximation. The advan
of this systematic approach to the Thomas-Fermi approxi
tion is that it provides an estimate of the error incurred by
inhomogeneity of the condensate, allowing one to estim
the accuracy of the Thomas-Fermi results. We consider
point to be very important in view of the fact that some tra
depending on the potential and the number of trapped ato
are too far from homogeneity to be described by a Thom
Fermi description. In addition, even if the Thomas-Fer
description is valid in the middle of the trap, it breaks dow
at the edge of the condensate. In Secs. IV and V, we ob
the mean-field description of the Bose system in the Thom
Fermi approximation. The equations, derived within t
framework of the variational principle, provide a fully sel
consistent description, indicating that the Thomas-Fermi
scription is by no means limited to weakly interacting sy
tems. This remark can be expected to be of future importa
in the light of recent experimental efforts to obtain conde
sates of higher density. Nonetheless, because of the sp
interest in the weakly interacting systems, we proceed in S
VI to derive a perturbation treatment and obtain analyti
results for quantities such as the chemical potential, the lo
depletion, pairing, and pressure. With the experimen
atomic traps in mind, we apply the results of the gene
theory to the special case of a trapping potential that is of
type of a simple spherically symmetric harmonic oscillator
Sec. VII. Finally, in Sec. VIII, we derive a density of state
of the trapped weakly interacting condensate within the sp
of the Thomas-Fermi approximation.

II. GENERALIZED BOGOLIUBOV TRANSFORMATION

The Bogolubov quasiparticle concept@14# provides a very
elegant description of the interacting Bose-Einstein cond
sate. The quasiparticles are represented by creation (h†) and
annihilation (h) operators that are linear combinations
regular single-particle creation (a†) and annihilation (a) op-
erators. In treating a homogeneous system, for which we
work in a basis of single-particle plane-wave states of m
mentumk, the Bogoliubov transformation that relates t
quasiparticle and regular particle operators takes on a
ticularly simple form

hk
†5xkak

†1yka2k , hk5xkak1yka2k
† , ~2!

where, for the purpose of describing the static properties
condensate in equilibrium, we can limit the transformati
parametersxk ,yk to real numbers. Furthermore, the isotro
of the many-body system suggests that the transforma
parameters depend only on the magnitude of the momen
xk5xk andyk5yk . Requiring the quasiparticle operators
be canonical, @hk ,hk8

†
#5dk,k8,@hk ,hk8#5@hk

† ,hk8
†

#50,
gives an additional constraint toxk andyk ,

xk
22yk

251, ~3!

from which we can see that a single parametersk , with xk
5coshsk and yk5sinhsk , suffices to parametrize th
Bogoliubov transformation~2!. In addition, with Eq.~3!, we
can also write the Bogoliubov transformation as
s
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ak
†5xkhk

†2ykh2k , ak5xkhk2ykh2k
† , ~4!

which is the inverse transformation of Eqs.~2!.
It is useful to define the following quantities: the ‘‘distr

bution function’’ r and the ‘‘pairing function’’D,

rk5^ak
†ak&5

1

2
@cosh2sk21#,

Dk52^aka2k&5
1

2
sinh2sk , ~5!

where the angular brackets represent the ground-state ex
tation value. The best values forxk andyk are obtained varia-
tionally by minimizing the ground-state free energy.

As stated, the above description~1!–~3! applies only to
homogeneous systems, whereas the treatment of a ge
~inhomogeneous! condensate, as we shall show below,
volves a Bogoliubov transformation that is quite different
appearance from the homogeneous case. However, we
expect the results of the homogeneous treatment to des
the ‘‘local’’ behavior of an inhomogeneous condensate, p
vided the spatial variations of the condensate are sufficie
slow. In describing many-particle fermion systems, this
tuitive picture forms one of the key ingredients of the we
known Thomas-Fermi description of slowly varying man
particle systems.

To arrive at a general treatment, we choose to work w
boson-field operatorsĈ(x) andĈ†(x), an approach that of-
fers the advantage of not having to specify a basisa priori.
Furthermore, in the presence of a condensate, it is conven
to work with the fieldsĉ(x) andĉ†(x), which are displaced
from the original fieldsĈ(x) andĈ†(x) by the expectation
valuef(x) of Ĉ(x),

Ĉ~x!5ĉ~x!1f~x!, Ĉ†~x!5ĉ†~x!1f* ~x!, ~6!

where, for the purpose of describing the static properties
condensate in equilibrium,f can be taken to be real an
ĉ(x) and ĉ†(x) are the displaced field operators that satis
the canonical commutation relation@ĉ(x),ĉ†(x8)#
5d(x2x8) and, furthermore,

^ĉ~x!&5^ĉ†~x!&50. ~7!

We introduce the Bogoliubov transformation as a gene
linear transformation relating the displaced fields to the q
siparticle fieldsĵ(x) and ĵ†(x),

ĉ~x!5E d3z@X~x,z!ĵ~z!2Y~x,z!ĵ†~z!#,

ĉ†~x!5E d3z@X* ~x,z!ĵ†~z!2Y* ~x,z!ĵ~z!#, ~8!

which is the generalization of Eq.~3!. The nonlocal nature of
the generalized Bogoliubov transformation~8! should not be
surprising: the ‘‘homogeneous’’ Bogoliubov transformatio
~2! can be written in the same form with the special featu
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55 3647VARIATIONAL THOMAS-FERMI THEORY OF A . . .
due to the homogeneity of the system, thatX(x,y) and
Y(x,y) depend only onx2y. Requiring the quasiparticle
fields to be canonical leads to

E d3z@X~x,z!X~z,y!2Y~x,z!Y~z,y!#5d~x2y!, ~9!

which is the generalization of Eq.~3!.
It is possible to derive equations for the inhomogene

Bose systems by variationally determining the best trans
mationsX andY, minimizing the free energy. This, howeve
is not the path we choose to follow here. Instead, we m
nipulate the generalized Bogoliubov transformations in
manner similar to the procedure to obtain the Wigner dis
bution from the off-diagonal single-particle density functio
Once this is achieved, the steps that lead to a Thomas-F
description are known from quantum transport theory. O
interesting aspect of this treatment is that the central ob
of the theory is not a distribution function, which in som
sense can still be regarded as an observable, but a tran
mation. Although this transformation determines the value
all observables, it is clearly not an observable quantity
itself.

III. WIGNER REPRESENTATION
AND GRADIENT EXPANSION

Wigner showed that a quantum-mechanical single-part
system, customarily characterized by its wave funct
C(x), can alternatively be fully characterized by a differe
function

rW~R,p!5E d3r C* ~R1r /2!C~R2r /2!exp~ ip•r !,

~10!

where here, as in the rest of the paper, we work in units
which \51. This function~10!, known as the Wigner distri-
bution function, can be interpreted as a phase-space dist
tion function @16# and leads to a description that is remar
ably close to classical mechanics. The analogy with
classical phase-space distribution function is not comp
~for example,rW can take on negative values!, but can be
justified by the fact that the quantum-mechanical expecta
value of observables are equal to the ‘‘phase-space i
grals’’ of the corresponding classical quantities, weighted
(2p)23rW ,

^Cu f uC&5E d3x C* ~x! f ~x!C~x!

5~2p!23E d3p E d3R f~R!rW~R,p!,

^Cup̂uC&5E d3x C* ~x!p̂C~x!

5~2p!23E d3p E d3R p rW~R,p!, ~11!
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etc. More recently, the many-particle generalization of
Wigner distribution has found many important applicatio
in diverse areas such as nuclear@17# and solid-state physics
@18#.

An important motivation to work in the transformed re
resentation of Eq.~10!, (x,x8)→(R,p),

AW~R,p!5E d3r A~R1r /2,R2r /2!exp~ ip•r !, ~12!

and its inverse

A~x,x8!5~2p!23E d3p AW~@x1x8#/2,p!

3exp~2 ip•@x2x8# !, ~13!

which shall henceforth be referred to as the Wigner rep
sentation, is that it is extraordinarily well suited to descri
nearly homogeneous systems. This convenient feature
lows from the gradient expansion@17,18#. The gradient ex-
pansion shows that, to first order, a ‘‘product’’ operat
C(x,x8)5*d3z A(x,z)B(z,x8) in the Wigner representation
simply gives the algebraic product ofA and B,
CW(R,p)'AW(R,p)BW(R,p). The higher-order correction
to this approximation can be written as a series of ter
containing successively higher-order derivatives in
(R,p) coordinates,

CW~R,p!'AW~R,p!BW~R,p!1
1

2i(j51

3 F]AW

]Rj

]BW

]pj

2
]AW

]pj

]BW

]Rj
G2

1

8(j51

3 F]2AW

]Rj
2

]2BW

]pj
2

1
]2AW

]pj
2

]2BW

]Rj
2 22

]2AW

]Rj]pj

]2BW

]Rj]pj
G1•••.

~14!

The first-order correction in the gradient expansion~14! is
$AW ,BW%PB, the Poisson bracket ofAW andBW . If we know
that the range ofAW andBW in p space is of the order o
pc , then the magnitude of the derivatives]BW /]p and
]2BW /]p

2 in ~14! can be estimated to be of the order
BW /pc and BW /pc

2 , respectively. This approximation wil
allow us to obtain a very simple estimate of the ‘‘inhomog
neity’’ error.

At this point, we return to the generalized Bogoliubo
transformation,X(x,y),Y(x,y) of Sec. II. Working in the
Wigner representation and expanding the ‘‘canonicity’’ re
tion ~9! betweenX and Y in the manner of the gradien
expansion, we find up to first order in the spatial derivativ
a relation that is similar to the constraint equation~3! of the
homogeneous Bogoliubov transformation,

XW
2 ~R,p!2YW

2 ~R,p!'1. ~15!

Consequently, the general Bogoliubov transform can be
rametrized in the same way as the Bogoliubov transform
the homogeneous Bose gas,XW(R,p)5cosh@s(R,p)#,
YW(R,p)5sinh@s(R,p)#, where for the slowly varying con-
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densate, thes parameters depend on the momentumand
position: s(R,p). The distribution and pairing function
r(x,x8)5^ĉ†(x)ĉ(x8)& and D(x,x8)52^ĉ(x)ĉ(x8)& take
on the following form in the Wigner representation:

rW~R,p!5
1

2
$cosh@2s~R,p!#21%,

DW~R,p!5
1

2
sinh@2s~R,p!#. ~16!

The locals parametrization of the Bogoliubov transform
tion is crucial to the Thomas-Fermi description and it is up
the validity of Eq.~15! that the Thomas-Fermi theory rest
The error introduced to Eq.~15! due to the inhomogeneity o
the system can be estimated by the lowest-order nonvan
ing term in the gradient expansion~14!. Notice that the first-
order term in the gradient expansion of Eq.~15! vanishes
since it is the sum of Poisson brackets of quantities w
themselves. Consequently, the error has to be estimated
the second-order term.

IV. ENERGY DENSITY

In the variational method, the quantity to minimize isF,
the ground-state free energy, which we can put in a lo
form F5*d3R f(R), where f (R) is the energy density. We
achieve this result in two steps. In the first step, we shif
the Wigner representation in the integrand for the mean-fi
expression for the ground-state energy. In the second s
we notice that the short-range nature of the interatomic
teraction renders the resulting integrand essentially local
the integrand contains onlysingle~not double! integrals over
the position variables.

The ground-state free energy is the expectation value
Ĥ2mN̂, whereĤ is the many-body Hamiltonian of the bo
son system,N̂ the number operator, andm the chemical po-
tential:

Ĥ2mN̂5E d3x Ĉ~x!†ĥ~x!Ĉ~x!

1
1

2E d3x d3y Ĉ~y!†Ĉ~x!†

3V~ ux2yu!Ĉ~x!Ĉ~y!, ~17!

where V(ux2yu) represents the interatomic potential a
ĥ(x) is the one-body part of the free energy,

ĥ~x!52
¹2

2m
1Vext~x!2m, ~18!

whereVext(x) is the external potential.
The presence of a condensate displaces the field oper

Ĉ(x) by their expectation valuef(x). To generate the varia
tional free energy, we shall use the mean-field approxim
tion, in which terms of first and third order inĉ and ĉ†

vanish@Eq. ~7!# and the fourth-order term factorizes as
n

h-

h
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ld
p,
-
.,

of

ors

-

^ĉ~y!†ĉ~x!†ĉ~x!ĉ~y!&'D* ~x,y!D~x,y!1r~y,x!r~x,y!

1r~x,x!r~y,y!. ~19!

The variational nature of this procedure is ensured by
existence of a variational ground state that gives this type
factorization. In fact, the variational ground state cor
sponds to the choice of the Gaussian wave functional@5#.

The displacement of the fields and the factorization of
expectation values, although straightforward, gives rise t
somewhat lengthy expression for the free energy. It is th
convenient to classify the different contributions by their o
der in f and their functional dependence onr and D. ~i!
h1 is the one-body contribution of zeroth order inf to the
ground-state energy,

h15E d3x d3y ĥ~x!r~y,x!d~x2y!. ~20!

~ii ! In analogy with the Hartree-Fock theory, we callVdir ,
given below, the direct energy contribution to the energy

Vdir5
1

2E d3x d3y r~y,y!r~x,x!V~ ux2yu!. ~21!

~iii ! Using the same analogy to the Hartree-Fock treatm
the exchange energyVexch is equal to

Vexch5
1

2E d3x d3y r~x,y!r~y,x!V~ ux2yu!. ~22!

~iv! Standard Hartree-Fock theory does not describe pai
and the pairing energyVpair,

Vpair5
1

2E d3x d3y D* ~y,x!D~y,x!V~ ux2yu!, ~23!

is consequently absent from the Hartree-Fock expression
second order inf, we find contributions that can be obtaine
from the above terms by replacing eitherD(x,y) or r(x,y)
by f(x)f(y). ~v! For example, the one-body contributio
due to the kinetic and potential energy of the condensat
h1

f , where

h1
f5E d3x f~x!ĥ~x!f~x!. ~24!

~vi! Vdir
f is the direct contribution to the interaction energ

stemming from the interaction of the condensate with
particles that have been ‘‘forced’’ out of the condensa
~depletion!,

Vdir
f 5

1

2E d3x d3y f~y!f~y!r~x,x!V~ ux2yu!. ~25!

~vii ! Similarly, Vexch
f is the exchange contribution of secon

order inf,

Vexch
f 5

1

2E d3x d3y f~y!f~x!r~y,x!V~ ux2yu!. ~26!
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~viii ! We represent the pairing energy of the condensate w
the particles out of the condensate byVpair

f ,

Vpair
f 5

1

2E d3x d3y f~y!f~x!D~y,x!V~ ux2yu!. ~27!

~ix! Finally, we denote the contribution of fourth order
f, representing the interaction energy of the condensate
itself by Vff,

Vff5
1

2E d3x d3y f2~y!f2~x!V~ ux2yu!. ~28!

With this notation, the mean-field expression for the grou
state energy reads

F5^Ĥ2mN̂&5h11Vdir1Vexch1Vpair1h1
f12Vdir

f 12Vexch
f

22Vpair
f 1Vff, ~29!

where the minus sign of theVpair
f term stems from the defi

nition of D52^ĉĉ&.
At this point, we introduce the Wigner representation in

the integrands of the above contributions to the mean-fi
expressions for the ground-state free energy. The resu
expressions resemble the corresponding terms for the ho
geneous gas, with an additional labelR over which is inte-
grated. For the sake of notational convenience we introd
the following integration symbol*R or *p , which represents
the usual integral over all of space*d3R if R is a position
variable or (2p)23*d3p if p is a momentum variable:

E
p
[~2p!23E d3p, E

R
[E d3R. ~30!

The terms of zeroth order inf then give

h15E
R
E
p
F p22m1V~R!2m GrW~R,p!,

Vexch5
1

2ER E
p
E
p8

rW~R,p!v~p2p8!rW~R,p8!,

Vpair5
1

2ER E
p
E
p8

DW~R,p!v~p2p8!DW~R,p8!,

Vdir5
1

2ER E
r
E
p
E
p8
E
q

rW~R2r /2,p!rW

3~R1r /2,p8!exp~ iq•r !v~q!, ~31!

wherev is the Fourier transform of the interaction potent
v(q)5*d3r V(r )exp(2iq•r ).

The terms that are of second order inf can be obtained
by replacing oner or D by ff. In the Wigner representa
tion, this procedure yields expressions that are similar to
corresponding terms of zeroth order inf with rW(R,p) or
DW(R,p) replaced by a functionQW(R,p), where

QW~R,p!5E
r
f~R1r /2!f~R2r /2!exp~ ip•r !. ~32!
th

ith

-

ld
ng
o-

ce

l

e

Notice that the contributions of second order inf are non-
local in the sense that their expressions contain integrals
more than one position variable. Nevertheless, if we cons
the scale on which the physical quantities vary in space, o
momentum space, it becomes apparent that the nonloca
tegrals can be approximated by local expressions. We il
trate this point by considering the exchange (Vexch

f ) and pair-
ing (Vpair

f ) energies. The key to obtain local expressions is
notice thatQW(R,p) varies with respect top on the scale of
R0

21, whereR0 is the size of the condensate. On the oth
hand,v(p2p8) varies on the scale ofl r

21 , where l r is the
range of the atom-atom interaction. TypicallyR0@ l r so that
QW(R,p) varies much more rapidly with respect top than
v(p2p8). In fact, when p is large enough to make
v(p2p8) significantly different fromv(p8), QW(R,p)'0.
Thus we can replacev(p2p8) by v(p8) in the integrands

Vexch
f '

1

2ERErEpEp8 f~R1r /2!f~R2r /2!

3exp~ ip•r !v~p8!rW~R,p8!

5
1

2
f2~R!E

R
E
p8
v~p8!rW~R,p8!,

Vpair
f '

1

2
f2~R!E

R
E
p8

v~p8!rW~R,p8!. ~33!

The same considerations regarding the relative magnit
of the relevant length scales show that we can similarly s
plify the expression of thef4 interaction energyVff and the
direct interaction energiesVdir and Vdir

f . The local expres-
sions are most easily obtained by considering the differe
in length scales before introducing the Wigner represen
tion. In coordinate space, we notice thatr(x,x)'r(y,y) if
ux2yu< l r . Thus we can replacer(x,x) by r(y,y) in an
integrand if it is accompanied byV(ux2yu):

Vdir'
1

2E d3x d3y r2~x,x!V~ ux2yu!

5
1

2
v~0!E

R
E
p
E
p8

rW~R,p!rW~R,p8!,

Vdir
f '

1

2
v~0!E

R
E
p

f2~R!rW~R,p!,

Vff'
1

2
v~0!E

R
f4~R!. ~34!

To conclude this section, we summarize the results
remarking that the Wigner representation and the len
scale considerations bring the free energy in an almost-lo
form. We need to qualify that statement because of the
pearance of the Laplacian, a nonlocal operator, in thehf

contribution to the energy. In fact, it is the nonlocality of th
term that gives rise to a generalized Gross-Pitaevskii or n
linear Schro¨dinger equation~NLSE!. The resulting~almost-
local! ground-state free energy isF5*d3Rf(R), where
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f ~R!5E
p

F p22m1Vext~R!2mGr~R,p!1vexch~R!1vdir~R!

1vpair~R!1f~R!F2¹2

2m
1Vext~R!2m Gf~R!

12vexch
f ~R!12vdir

f ~R!22vpair
f ~R!1

1

2
v~0!f4~R!,

~35!

where the exchange, direct, and pairing energy densities
the integrands of the corresponding interaction energy c
tributions to the free energy:

vexch~R!5
1

2Ep Ep8 r~R,p!v~p2p8!rW~R,p8!,

vpair~R!5
1

2Ep Ep8 DW~R,p!v~p2p8!DW~R,p8!,

vdir~R!5
1

2
v~0!E

p
E
p8

rW~R,p!rW~R,p8!,

vexch
f ~R!5

1

2
f2~R!E

p
rW~R,p!v~p!,

vpair
f ~R!5

1

2
f2~R!E

p
DW~R,p!v~p!,

vdir
f ~R!5

1

2
f2~R!v~0!E

p
rW~R,p!. ~36!

Notice that the free energy and free-energy density are fu
tionals ofD(R,p), r(R,p), andf(R). In the next section we
determine the equilibrium values ofD(R,p), r(R,p) and
f(R) by minimizingF@r,D,f;m#.

V. SELF-CONSISTENT MEAN-FIELD THEORY

In this section we derive the self-consistent mean-fi
equations that describe the nearly uniform Bose conden
at zero temperature. In the variational method, one m
mizes the mean-field ground-state free ene
F@r,D,f;m#. Writing the integrands of the different contr
butions to the mean-field free energy in the Wigner repres
tation, followed by the length scale arguments of the prec
ing section, showed thatF@rW ,DW ,f;m# is essentially a
local quantity. Finally, in the Thomas-Fermi limit of a near
homogeneous system,rW(R,p) and DW(R,p) are param-
etrized by a single Bogoliubov transformation parame
s(R,p) in the manner of Eq.~16!. Thus, to describe a nearl
homogeneous system, we minimize the Thomas-Fe
ground-state free energy, which is obtained from the me
re
n-

c-

d
te
i-
y

n-
d-

r

i
n-

field free energy, assuming thatrW andDW are parametrized
by s @Eq. ~16!#, F@s,f;m#5 F@rW(s),DW(s),f;m#. We
obtain the condensate wave functionf0(R) and Bogoliubov
parameters0(R,p) that describe the condensate by varyi
s andf independently to get a minimum inF:

dF

df~R!
U

s5s0 ,f5f0

50 ~NLSE!,

dF

ds~R,p!
U

s5s0 ,f5f0

50. ~37!

Thef variationdF/df50 gives the NLSE. Thes variation
dF/ds50 gives an equation for s0(R,p). From

r5 1
2 @cosh(2s)21# and D5 1

2 sinh(2s) @Eq. ~16!#, we find
that ]r/]s5sinh(2s) and ]D/]s5cosh(2s), so that
dF/ds50 is equivalent to

tanh~2s0!5
2dF/dDW

dF/drW
. ~38!

Now, several terms of the NLSE, as well as the functio
derivativesdF/dD, and dF/dr in Eq. ~38!, depend ons0
and f0 so that the resulting equations have to be solv
self-consistently. To make the self-consistent nature of
equations more explicit, we consider thes-dependent con-
tributions to the functional derivativesdVexch/dr,
dVdir /dr, and dVpair/dD, which we shall call the general
ized potentials

Uexch~R,p!5dVexch/drW~R,p!5E
p8
v~p2p8!rW~R,p8!,

Udir~R!5dVdir /drW~R,p!5v~0!E
p8

rW~R,p8!,

Upair~R,p!5dVpair/dDW~R,p!5E
p8
v~p2p8!DW~R,p8!,

~39!

where we name the generalized potentials after the respe
interaction energies of which they are the functional deri
tives:Uexch is the exchange potential,Udir the direct poten-
tial, andUpair the pairing potential. Writing the distribution
and pairing function in the integrands of the generalized
tentials in terms of 2s, we find with Eq.~38! that the gen-
eralized potentials implicitly depend on the functional d
rivatives ofF:

Uexch~R,p!5E
p8
v~p2p8!

3
1

2 F dF/dr

A~dF/dr!22~dF/dD!2
21G ,
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Udir~R!5v~0!E
p8

1

2 F dF/dr

A~dF/dr!22~dF/dD!2
21G ,

Upair~R,p!5E
p8
v~p2p8!

3
1

2 F 2dF/dD

A~dF/dr!22~dF/dD!2
G , ~40!

where it is understood that the functional derivatives in
integrands are evaluated atR andp8. Functional differentia-
tion shows that the functional derivatives ofF in turn depend
on the generalized potentials

dF

dDW~R,p!
5Upair~R,p!2f2~R!v~p!,

dF

drW~R,p!
5
p2

2m
1Vext~R!2m1Uexch~R,p!

1Udir~R,p!1f2~R!@v~p!1v~0!#. ~41!

Thus Eqs.~40! and~41! self-consistently determine the ge
eralized potentials. Furthermore, there is a dependenc
the condensate wave functionf. The latter has to be ob
tained from the NLSE:

F2
¹2

2m
1Vext~R!2m1U~R!1v~0!f2~R!Gf~R!50,

~42!

where the potentialU(R) is equal to

U~R!5Udir~R!1Uexch~R,0!2Upair~R,0!. ~43!

This potential term stems from the interaction of the cond
sate with the particles out of the condensate.

Equations~40!–~42! and ~43! are the full set of self-
consistent mean-field equations that describe the conden
in the Thomas-Fermi approximation. The self-consist
equations for the homogeneous gas@19# are recovered by
settingVext50 and by assuming thatf is independent of
position so that the kinetic-energy contribution to the NLS
vanishes. Regarding the connection with the intuit
Thomas-Fermi model, we note thatm andVext in the self-
consistent mean-field equations always appear
m2Vext(R), so that it is natural to define a local effectiv
chemical potential

meff~R!5m2Vext~R!. ~44!

In fact, this is the essence of the Thomas-Fermi descript
the system is described locally as a homogeneous sy
with a position-dependent effective chemical potential~44!.

The solutions to the fully self-consistent equations de
mine the expectation value of all~static! physical observ-
e

on

-

ate
t

s

n:
m

r-

ables as a function of the chemical potentialm. One observ-
able we can obtain in this manner isN, the number of
trapped particles,

N~m!5
]F

]m
5E

R
E
p
r~R,p!1E

R
f2~R!, ~45!

the inversion of which yieldsm(N), from which we can cast
the results for the thermodynamic quantities in terms of
parameter that is controlled or measured in the experim
the number of atomsN.

VI. LOW-DENSITY LIMIT

The self-consistent equations~40!–~42! and ~43! can be
solved iteratively. In the low-density regime, whe
Ana3!1, we approximate the result by the expressions
tained after a single iteration, starting froms0

(0)50
(Uexch

(0) 5 Udir
(0)5 Upair

(0)50, where the superscript indicates th
order of the iteration!. With this first guess we solve th
NLSE and obtain the functional derivatives@Eq. ~40!#
dF/dr anddF/dD, yielding the first-orders parameter@Eq.
~38!# s (1) and the generalized potentials@Eqs. ~39!# Udir

(1) ,
Uexch
(1) , andUpair

(1) . With s (1) we compute the expectation va
ues of the observables. In solving the NLSE, we shall
sume thatf(R) varies slowly enough that we can also n
glect the kinetic-energy operator. The expressions for
local quantities obtained in this manner are identical to
perturbation results for the dilute homogeneous Bose
with the ~zeroth-order! chemical potential equal tomeff(R).

To make the dependence on the scattering length exp
we replace the potential by a pseudopotential

Vpseudo~r !5ld~r !
]

]r
r , ~46!

wherel54p\2a/m and the derivative operator is necessa
to remove the divergency in the ground-state free ene
@21#. Furthermore, we shall assume thatf(R) varies slowly
enough that we can also neglect the kinetic-energy oper
in solving the NLSE~42!:

l@f~1!~R!#25meff~R!, ~47!

wheremeff is the effective chemical potential~44!. The func-
tional derivatives~41! are

dF ~1!

dD
52l@f~1!~R!#2,

dF ~1!

dr
5
p2

2m
2meff~R!12l@f~1!~R!#2. ~48!

Consequently, the single iteration value for the Bogoliub
transformation parameters is equal to

tanh@2s0
~1!~R,p!#5

lf2~R!

~p2/2m!2meff~R!12lf2~R!

5
meff~R!

~p2/2m!1meff~R!
, ~49!
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which can be recognized as the dilute uniform gas resu
we setmeff5m.

The expression for the Bogoliubov parameters0
(1) from

Eq. ~49! is what we would have obtained with an effectiv
energy density neglecting the interaction energies of
particles out of the condensate,Vdir , Vexch, and Vpair.
In other words, the effective ground-state energy isFeff
5*d3R feff(R), where

f eff~R!52meff~R!f2~R!1
l

2
f4~R!1E

p
F S p22m2meff~R!

12lf2~R! D rW~R,p!2lf2~R!DW~R,p!G . ~50!

We obtain the results for the observable quantities by ca
lating their expectation values from the single iterations0

(1)

of Eq. ~49!. For example, the condensate wave function
determined from the NLSE

lf2~R!'meff~R!2U ~1!~R!, ~51!

where the potentialU(R) is the sum of the generalized po
tentials at zero momentum~43!,

U ~1!~R!5Uexch
~1! ~R,0!1Udir

~1!~R!2Upair
~1! ~R,0!, ~52!

evaluated with the single-iteration value fors. The single-
iteration values for the generalized potentials are compu
to be

Uexch
~1! ~R,0!5Udir

~1!~R!5
l

3p2 @meff~R!#3/2m3/2,

Upair
~1! ~R,0!52

l

p2 @meff~R!#3/2m3/2. ~53!

Thus the condensate density is@Eq. ~51!#

f2~R!'
1

l
meff~R!2

5

3p2 @meff~R!#3/2m3/2. ~54!

The total density n(R), including the correction tof2(R)
@Eq. ~54!# and the local depletion, is equal to

n~R!5f2~R!1E
p

r~R,p!

'f2~R!1
1

3p2 @meff~R!#3/2m3/2

'
1

l
meff~R!2

4

3p2 @meff~R!#3/2m3/2, ~55!

resulting in an expression for the densityn(R) in terms of
the effective chemical potentialmeff(R). Inverting this rela-
tion up to first order inAna3, we obtain

meff~R!'ln~R!F11
32

3
An~R!a3

p G , ~56!
if

e

u-

s

d

which, for the homogeneous case, reduces to the well-kn
perturbation result.

Finally, in a similar manner, we obtain the local pressu
P(R) from the expression for the effective free-energy de
sity @Eq. ~50!# P(R)52 f eff

(1)(R),

P~R!5
lf4~R!

2 F12
128

15p2An~R!a3G . ~57!

We can then replacef2 in Eq. ~57! by its single-iteration
value @Eq. ~54!#. Furthermore, replacingmeff(R) in the re-
sulting expression by Eq.~56! results in a local equation o
state.

The above results illustrate an important advantage of
Thomas-Fermi description: by neglecting the kinetic-ene
operator in the NLSE we recover simple analytical expr
sions for most quantities. These expressions are the ana
of the perturbation results for the dilute homogeneous B
gas. It is then of course very important to determine
regime and the conditions under which these results can
trusted.

One source of error in the theory stems from neglect
the Laplacian operator in the NLSE. We can estimate
error by calculatingeL , the ratio of the kinetic energy term
2¹2f/2m, and the nonlinear potential energy in the NLS
lf3,

eL~R!5u2¹2f/2mlf3u5U 2¹2f~R!/f~R!

kc
2~R!

U, ~58!

wherekc(R)5@8pan(R)#1/2 is the inverse of the local co
herence lengthkc5lc

21(R).
Another source of error, which cannot be remedied bu

truly inherent to the Thomas-Fermi approximation, ste
from the inhomogeneity of the system. This error is a
more difficult to estimate, and one benefit of our approach
that the lowest-order nonvanishing term in the gradient
pansion can be used to estimate the magnitude of the e
This term is of second order because the first-order te
vanishes. We estimate its magnitude~14! by replacing the
partial derivatives with respect to the momentum variab
by kc

21 , sincekc is a measure of the range inp of the ob-
servable at zero temperature. The relative error for the g
eral product of two arbitrary operatorsA andB, ei@AB#, is
then given by

ei@AB#'
1

8kc
2~R!

F¹2AW

AW
1

¹2BW

BW
22

“AW •“BW

AWBW
G ,
~59!

The validity of the Thomas-Fermi description depends
XW
2 2YW

2 51 @Eq. ~15!#, so that we use the accuracy of th
equality to test the validity of the local homogeneity descr
tion. The expression ~15! can also be written as
exp@s(R,p)#exp@2s(R,p)#51, so that we chooseAW as
exp@s(R,p)# andBW as exp@2s(R,p)# to estimate the rela-
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55 3653VARIATIONAL THOMAS-FERMI THEORY OF A . . .
tive error ei . In fact, it is more convenient to work with
exp(4s) than exp(s), so we compute the inhomogeneity err
ei@exp(4s)exp(24s)# of exp(4s) and divide by 4@since the
relative error off n is simplyn3 ~the relative error off )#. In
this manner, we find that

ei@exp~s!exp~2s!#5
1

4
ei@exp~4s!exp~24s!#

'
1

8kc
2~R!

U“exp~4s!

exp~4s!
U2. ~60!

With the single-iteration value for the low-density conde
sate

exp@4s~R,p!#511
2meff~R!

p2/2m
, ~61!

we find that the inhomogeneity errorei(R) @Eq. ~60!# is
equal to

ei~R!5
1

2 U Fext~R!lc~R!

~p2/2m!12meff~R!
U2, ~62!

where Fext is the force of the external potentialFext
52“Vext. As expected, the error is largest forp50, and
using thep50 value, we obtain a simple position-depende
estimate for the inhomogeneity errorei(R),

ei~R!5
1

8
uFext~R!lc~R!/lf2~R!u2, ~63!

where we replacedmeff by lf2. By equating this error~63!
to a chosen valueecut!1, reflecting the accuracy we deman
from the theory, we can determine the spatial boundary
yond which the Thomas-Fermi theory is less accurate t
ecut.

VII. SPHERICALLY SYMMETRIC
HARMONIC-OSCILLATOR TRAP

We now specializeVext(R) to a harmonic-oscillator po
tential

Vext~R!5
1

2
\v~R/L !2, ~64!

whereL is the size of the harmonic-oscillator ground stat

L5A \

mv
, ~65!

and compute the expectation value of important quantitie
the low-density limit of the preceding section. In zeroth o
der in the iteration, we recover the results of Baym a
Pethick@20#. From Eq.~47! we see that

@f~0!~R!#25@m2Vext~R!#/l5
R0
2

8paL4
@12~R/R0!

2#,

~66!
-

t

e-
n

in
-
d

whereR0 is the size of the condensateR05A2m/\vL. In
zeroth order, all particles are in the condensate, so
N5*Rf2(R),

m~0!5
\v

2 S 15aNL D 2/5, ~67!

and, consequently,

R05LS 15aNL D 1/5. ~68!

The local coherence lengthlc(R) is given by

lc~R!5
L2

AR0
22R2

. ~69!

Before we proceed to calculate the perturbation corr
tions to the observables, we test the validity of the lo
density Thomas-Fermi formalism by calculating the erro
The error due to neglecting the Laplacian in the NLS
eL(R) @Eq. ~58!#, is easily computed with Eq.~69!:

eL~R!5S LR0
D 4 @322~R/R0!

2#

~12~R/R0!
2!3

, ~70!

from which we see that the Laplacian can be omitted in
NLSE on condition that the size of the condensate is m
larger than the size of the ground stateR0@L or
(15aN/L)1/5@1. The error due to the departure of the BE
from homogeneity,ei(R) @Eq. ~60!#, is

ei~R!5
1

2 S LR0
D 4 ~R/R0!

2

@12~R/R0!
2#3

. ~71!

Again, notice thatei is small over most of the condensa
region (R,R0) if R0@L.

In Fig. 1 we show the density @f (0)(R)#2/
@f (0)(R50)#2 @Eq. ~66!# and both errorseL and ei as a
function of the distance to the middle of the trap. The curv
are calculated for a harmonic-oscillator trap ofL51 mm and
an interatomic interaction with scattering lengtha55 nm.
The dotted lines correspond toN5103 atoms in the trap and
the full line gives the results forN5106 atoms. Notice that
for 103 particles, the Laplacian error is already substan
(;10%) in the middle of the trap. Consequently, in th
example of 1000 atoms, neglecting the Laplacian operato
the NLSE is not a valid approximation. The Thomas-Ferm
Bogoliubov approximation is of the local-density type a
cannot account for finite-size effects. If theeL or ei errors are
too large, the effect of finite-size features, such as the cu
ture of the condensate wave function, is expected to be la
than the effects of the fluctuations calculated in the Thom
Fermi approximation.

On the other hand, for 106 atoms,ei andeL become only
of the order of 10% atR59.0L, whereasR059.4L, which
shows that the Thomas-Fermi description and neglecting
Laplacian operator are valid approximations in almost all
the condensate region. Under this condition, it is meaning
to calculate the perturbation corrections to the expecta
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values of the observable quantities. Including the pertur
tion correction, the local density~55! is equal to

n~R!5
R0
2

8paL4
@12~R/R0!

2#F12
2A2
3p

aR0
L2

A12~R/R0!
2G .

~72!

The number of trapped particlesN is obtained by integrating
over the densityn(R),

N5E
R
n~R!54pE

0

R0
dR R2n~R!, ~73!

which leads to

N5
1

15

L

a S 2m

\v D 5/22 A2
24 S 2m

\v D 3. ~74!

The inverse relationm as a function ofN can be obtained by
solving form iteratively in Eq.~74!, which gives, up to sec
ond iteration, the result

m5
\v

2 S 15aL D 2/5N2/5F11
A2
60 S 15aL D 6/5N1/5G . ~75!

FIG. 1. ~a! Condensate density forN5103 and 106. ~b! Error
incurred in neglecting the kinetic term in the NLSE.~c! Error in-
curred in the Thomas-Fermi approximation. The length scale on
horizontal axis is in units ofL, the extent of the ground-state wav
function. Calculations are done forL51024 cm and scattering
lengtha5531027 cm.
a-

Similarly, we obtain the condensate density from Eq.~54! or
the local depletion d(R)5$n(1)(R)2@f (1)(R)#2%/
@f (1)(R)] 2:

d~R!5
2A2
3p

aR0
L2

A12~R/R0!
2. ~76!

In Fig. 2, we show the local depletion as a function of pos
tion for the same parameters as those of Fig. 1. The lo
pressure is shown in Fig. 3.

Notice that the depletion~76! vanishes at the edge of the
condensate. This behavior is different from the result of t
hydrodynamic Thomas-Fermi description@12#, which yields
a depletion that diverges at the edge of the condensate.
divergence can be related to the surface modes@22#, which
cannot be described by a local-density approximation such
the Thomas-Fermi-Bogoliubov technique. Regarding the d
ference between the hydrodynamic and Thomas-Fer
Bogoliubov results, we remind the reader that both appro
mations break down before the edge is reached, and
significance of the behavior of any quantity in this region
questionable.

e

FIG. 2. Depletion, defined asd(R)5@n(R)2f2(R)#/f2(R),
for the same systems as Fig. 1.

FIG. 3. Pressure for the same systems as in Fig. 1.
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To conclude this section, we repeat that the condition
the validity of the Thomas-Fermi description is that the s
of the condensate exceeds the size of the ground state o
trap R0@L. An equivalent condition is that the coheren
length in the middle of the condensate is smaller than
size of the ground statelc(R50)!L or that the chemica
potential exceeds the ground-state energym@\v/2. These
statements do not depend on the details of the trapping
tential. Of course, the shape of the condensate, the boun
where the Thomas-Fermi description breaks down, and
expectation values of the local observables do depend on
shape of the potential. In this section we gave the results
a spherically symmetric harmonic-oscillator potential. F
the convenience of the reader we tabulate several of the
sults up to first nonvanishing order in Table I.

VIII. DENSITY OF STATES

In the Thomas-Fermi picture, the system is loca
equivalent to a uniform system. Therefore, there are lo
excitations, which in the low-density regime are described
the energy spectrum

ep~R!5A@p2/2m1meff~R!#22meff
2 ~R!1m, ~77!

which is well known from the Bogoliubov treatment of th
uniform case. The local dispersion relation~77! describes a
phonon with position-dependent sound velocity.

To obtain the excitation of the whole system we comp
the density of states using the formula

g~e!5(
i

d„e2e i…, ~78!

where( i represents the sum over all excited states. In
spirit of the Thomas-Fermi approximation we take

TABLE I. Results for the spherically symmetric harmoni
oscillator trap.

Size of the condensate R05LS15aNL D 1/5
Chemical potential m5

\v

2 S 15aNL D 2/5
Condensate density f2~R!5

R0
2

8paL4
@12~R/R0!

2#

Local coherence length lc~R!5
L2

AR0
22R2

Local depletion d~R!5
2A2
3p

aR0
L2

A12~R/R0!
2

Error due to
neglecting the Laplacian eL~R!5S LR0

D 4 @322~R/R0!
2#

@12~R/R0!
2#3

Error due to the inhomogeneity ei~R!5
1
2 S LR0

D 4 ~R/R0!
2

@12~R/R0!
2#3
r
e
the

e

o-
ary
e
he
or
r
re-

al
y

e

e

g~e!5E
R
E
p

d„e2ep~R!…. ~79!

After integration over the momentum variable, we obtain

g~e!5
1

2p2E
R
pe
2~R!U ]e

]p U
21

, ~80!

wherepe(R) is the momentum of a particle at positionR
with energye. When calculating the remaining integral ov
space, we need to distinguish between spatial region I w
condensate and a second region II without condens
shown schematically in Fig. 4. It is necessary to break up
integral ~80! over the different integration regions, becau
the dispersion relations for the excitations are different.
region I we use the Bogoliubov spectrum~77!, whereas in
region II the atoms are essentially free particles moving
the trap:

ep~R!5
p2

2m
1Vext~R!. ~81!

The density of states is then the sum of the integrals o
regions I and II:

g~e!5
A2
2

m3/2

p2 F ~e2m!E
I
d3R

3
AA@e2m#21meff

2 ~R!2meff~R!

A@e2m#21meff
2 ~R!

1E
II
d3RAe2Vext~R!G . ~82!

FIG. 4. Schematic representation of the region with~region I!
and without condensate~region II! for a BEC in a harmonic trap.
The condensate density is proportional tomeff(R), which is a ‘‘mir-
ror image’’ of the trapping potential. Particles in the condens
have energym and a particle excited up to energye can move into
region II as far as the classical turning pointRe .
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For the special case of a spherically symmetric harmo
oscillator trap, we find the expression for the density of sta

g~e!5
4

p

m2

~\v!3 F ~e/m21!E
0

1

drA12r

3
AA~e/m21!21r 22r

A~e/m21!21r 2

12E
1

e/m

dr r 2Ae/m2r 2 G . ~83!

In Figs. 5 and 6 we show the density of states for the sys
discussed in Sec. VII,L51 mm, a55 nm,N5103 ~Fig. 5!,
andN5106 ~Fig. 6!. The dotted lines show the result for th
interacting Bose gas and the full line shows the density
states of the ideal gas in the same trap. The density of s
starts from the chemical potentialm, consistent with Eq.
~77!, which implies that the energies are measured from
bottom of the potential well so that a particle of zero m
mentum in the condensate has energym. If we were to set
out the density of states as a function of excitation ene
e2m, the density of states curves for the interacting BE
systems would be shifted to the left by an amountm. In
contrast to the homogeneous BEC, the density of states
the interacting case, as a function of the excitation ene
grows faster than the density of states of the ideal gas.

FIG. 5. Density of states calculated in the Thomas-Fermi
proach described in the paper. The system is a BEC ofN5103

particles interacting with a scattering lengtha5531027 cm in a
harmonic trap with ground state of extentL51024 cm.
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reason is purely geometrical: the phonon has a much la
volume in coordinate space available~at least the volume of
the condensate! than the noninteracting boson that receiv
the same amount of energy and can only move near the
tom of the potential well. This effect outweighs the fact th
the momentum space volume available to the phonon is
than the momentum space volume available to the nonin
acting particle with the same energy. Of course, as m
tioned previously, the Thomas-Fermi model does not
scribe finite-size effects such as surface modes. These c
alter the density of states somewhat. In analogy with an
compressible spherical fluid, surface modes might be
pected to appear in the low-energy region@23#. Related to
surface effects, we remark that the sharpness of the boun
between regions I and II is an artifact of neglecting the L
placian operator in the NLSE. Nevertheless, except for a
gion near the boundary, we argue that the rest of the spa
well described and that the contribution of the near-bound
region is comparatively small so that the error that is int
duced in the integral~80! is small provided the Thomas
Fermi description is valid in most of the condensate regi
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FIG. 6. Density of states for the same system as in Fig. 5,
with N5106 particles.
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