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Positive energy Sturmian states for two-Coulomb-center problems
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Properties of two-center Coulomb Sturmian basis sets are discussed. Analytic and numerical techniques to
calculate these functions and coupling matrix elements are developed. A class of Sturmian functions is found
that has no analytic continuation to negative energies and is not present in one-center potentials. Advantages of
Sturmian sets over conventional eigenstate sets are emphasized.@S1050-2947~97!06205-7#

PACS number~s!: 34.80.Dp, 34.20.Mq, 31.15.2p, 34.10.1x
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I. INTRODUCTION

Most basis-set representations of wave functions
quantum systems employ energy eigenstates of some m
Hamiltonian. Sturmian representations are exceptional in
regard since the Sturmian eigenfunctions are not ene
eigenstates. Here we employ the nomenclature that has
come conventional in the physics literature, namely, eig
functions of a Schro¨dinger equation, where the energy
fixed and the coefficient of the potential is the eigenval
are called Sturmian eigenfunctions.

The advantages of Sturmian basis sets can be summa
as follows.~i! Sturmian basis sets are complete and squ
integrable for negative energies.~ii ! Sturmians functions can
be definedto satisfy appropriate physical boundary con
tions, e.g., bound-state boundary conditions for bound st
and outgoing~or incoming! boundary conditions at positiv
energies.~iii ! Sturmian functions diagonalize the potent
and therefore are superior to energy eigenstates for repre
ing waves in regions where the potential is strongest. In o
words, all Sturmian functions with a fixed energy are w
localized in the physically relevant region of the potenti
For this reason they often provide rapidly convergent exp
sions of wave functions for complex systems.~iv! Superior
localization of Sturmian basis sets can be effectively e
ployed to describe dynamic atomic and molecular syste
characterized by the electronic states that are initially kno
to be localized around one particular center of force. T
property can be especially useful when describing ato
collisions.

Despite their attractive features, these functions are
widely used. Most applications exploit elementary propert
of these states, namely, completeness and square integ
ity for negative energy@1#. Use of outgoing wave Sturmia
functions in nuclear physics has been reviewed by R
itscher@2#, and Shakeshaft@3# has discussed outgoing-wav
Sturmian functions for one-center Coulomb potentia
Shakeshaft has shown that more familiar negative ene
Sturmians can be analytically continued to positive energ
where they represent outgoing waves.

In all of these cases Sturmian functions were defined fo
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simple central potentialV(r ). Little is known about Sturmian
functions for more complicated potentials. Recently, St
mian functions for the two-center Coulomb potential ha
been employed to study ion-atom collisions@4#. Positive en-
ergy Sturmian functions were needed to represent ioniza
in such collisions. In this paper we consider the properties
two-center Sturmian functions and compare them with m
familiar Sturmian functions for central Coulomb potential

In Sec. II we review the standard Sturm-Liouville theo
on a finite interval and then consider Sturmian functions
semi-infinite intervals, which are much more relevant
physical applications. The properties of Sturmian sets
compared with sets of conventional energy eigenstates,
then we present a practical example of a one-center Coul
set.

Analytic and numerical techniques to calculate the St
mian functions for two-center Coulomb potentials are d
scribed in Sec. III. One of the remarkable features of th
Sturmian functions is the existence of a class of posit
energy Sturmians having no analytic continuation to nega
energy. This very interesting property has no analog in
one-center case. In Sec. III we present methods of ma
element calculations using the Sturmian functions for tw
center Coulomb potentials. These matrix elements have b
employed in Ref.@4# to calculate the spectra of electron
ejected in atomic collisions with very broad ranges of re
tive velocities. Atomic units are used throughout.

II. REVIEW OF STURMIAN THEORY

A. One-dimensional space

1. Sturmian theory on finite intervals

A Sturm-Liouville problem@5# is furnished by the follow-
ing differential system with two-point boundary conditions

@H0~q!1rnV~q!2v#Sn~v;q!50, ~2.1!

]Sn~v;q!

]q U
q5a

1aSn~v;a!50, ~2.2!

]Sn~v;q!

]q U
q5b

2bSn~v;b!50, ~2.3!

where
rs-
3605 © 1997 The American Physical Society
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H0~q!52
1

2 FK1~q!21
d

dq
K1~q!

d

dq
1K2~q!G . ~2.4!

Hamiltonians of the formH0 often result from variable sepa
ration of the Laplace equation in curvilinear coordinates. R
flecting wall Sn(v;a)50 and ‘‘zero momentum’’
]Sn(v;q)/]quq5a50 boundary conditions are special cas
of the homogeneous conditions, Eqs.~2.2! and ~2.3!, which
correspond toa5` anda50, respectively.

We assume thatV(q), K1(q), and K2(q) are real
piecewise-continuous functions ofq on the interval
a<q<b, are independent ofr, and V(q) is of one sign
throughout this interval. The coefficientsa and b and the
constantv can be complex. Then there exists an infinite
of eigenvaluesrn5rn(v), n50,1,2 . . . ,which has no limit
points, except forr5`. The corresponding Sturmian eige
functionsSn(v;q)5^quSn(v)& have exactlyn zeros in the
interval a<q<b and form a complete set on this interv
with the closure property

(
n

Sn~v;q!Sn~v;q8!52d~q2q8!/V~q!. ~2.5!

Sturmian eigenfunctions are normalized according to

^Sn~v!u2VuSn8~v!&52E
a

b

Sn~v;q!V~q!Sn8~v;q!dq

5dnn8. ~2.6!

Note that dual functions ^Sn(v)u are defined as
^Sn(v)uq&5Sn(v;q), and we do not take the complex co
jugate ofSn(v;q) in Eq. ~2.6!. The potential is diagonal in
the Sturmian representation. The Sturmian functions are
malized by Eq.~2.6! so that the diagonal matrix elemen
equal21. This choice for the normalization constant is e
ployed since the potentialsV(q) of interest are usually nega
tive definite. Normalizing the Sturmian potential matrix
21 ensures that the Sturmian functions are real for r
negative energiesv and real constantsa,b.

Contrary to energy eigenstate representations, the ove
matrix element in the Sturmian representation is not dia
nal. Since both the normalization and overlap matrix e
ments are needed in practical applications, methods to c
pute these quantities for two-center Coulomb Sturm
functions are presented in Sec. III.

Familiar energy eigenstate basis functions of the Ham
tonianH0(q) are particular cases of Sturm-Liouville eige
functions whenV(q)521 andv50. As will be seen below
such a correspondence between Sturmian and energy e
states bases can be established only on a finite interval.

2. Sturmian theory on semi-infinite intervals

In physical applications Sturm-Liouville problems o
semi-infinite intervals (a is finite andb→`), with functions
V(q) and K2(q) vanishing at infinity as 1/q or faster, are
common. In this case the boundary condition, Eq.~2.3!, is

]S~v;q!

]q
1kS~v;q!;0 as q→`. ~2.7!
-
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Because Eq.~2.7! must be satisfied at successive pointq, it
follows from Eq. ~2.1! that S(v;q)}exp(2kq) at largeq.
For real and negativev the differential equation~2.1! gives
k5A22v and the boundary condition~2.7! is equivalent to
Sn(v;q);0 asq→`. The Sturmian functionsSn(v) form a
complete set in the spaceLV of all piecewise-continuous
functions f (q)5^qu f & having finite matrix elements
^ f uVu f &.

Sturmian and eigenstate problems differ significantly
semi-infinite intervals because the assumptionV(q)→0 as
q→` contradictsV(q)521, which we used at the end o
Sec. II A 1 to transform Sturm-Liouville problems~2.1!–
~2.3! into eigenstate problems

H0~q!wn~q!5«nwn~q!, wn~a!50,

wn~q!;0 as q→`. ~2.8!

Energy eigenfunctions for«n,0 do not form a complete
set. For aK2(q),0 that vanishes faster than 1/q2 there is a
finite number of eigenstates, and ifK2(q),0 vanishes as
1/qk with 1<k<2 then there is an infinite number of eige
values«n (n50,1,2 . . . ) with a limit point limn→`«n50. In
either case a complete set of eigenstates includes both
crete («n,0) and continuum states («.0). The continuum
eigenstates are not related to Sturm-Liouville problems si
their asymptotic properties are determined completely by
Schrödinger equation~2.1! and cannot be chosena priori.

As far as Sturmians functions are concerned, one is fre
choose a basis set with an asymptotic behavior that is m
suitable in a particular physical situation. Thus, forv.0 we
define two complex conjugate sets of Sturmian functions.~i!
Outgoing Sturmian functions satisfying outgoing-wa
boundary conditions are obtained by analytic continuation
the boundary conditions~2.7! with k→2 ip(p5A2v),

]Sn
out~v;q!

]q
2 ipSn

out~v;q!;0 as q→`. ~2.9!

~ii ! Incoming Sturmian functions satisfying incoming wav
boundary conditions

]Sn
in~v;q!

]q
1 ipSn

in~v;q!→0 as q→` ~2.10!

are obtained by analytic continuation tov.0 of the bound-
ary conditions~2.7!, with k→ ip. For realv these two sets of
Sturmian functions are complex conjuga
rn
in(v)5@rn

out(v)#* andSn
in(v;q)5@Sn

out(v;q)#* .
Notice that both incoming and outgoing Sturmian fun

tions at positivev are analytic continuations of the same s
of Sturmian functions at negativev. For this reason
standing-wave boundary conditions cannot be used for S
mian functions on semi-infinite intervals.

For short-range potentials@whenV(q) andK2(q) vanish
at infinity faster than 1/q# the matrix elements
^Sn

in(v)u2VuSn8
out(v)& are finite and both sets remain com

plete in the spaceLV asb→` ~see Appendix A!. This means
that incoming waves can be expanded in terms of outgo
Sturmian functions. But from the physical point of view it
desirable to expand incoming waves in terms of incom
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55 3607POSITIVE ENERGY STURMIAN STATES FOR TWO- . . .
Sturmian functions and outgoing waves in terms of outgo
Sturmian functions. IfV(q) vanishes at infinity as 1/q, the
set of outgoing Sturmian functions is complete in the sp
LV
out of all piecewise continuous functionsf (q) from LV with

asymptotic behaviorf}qgexp(ipq) at q→`, wherep>0.

B. Matrix elements

The matrix elementsM nn8(v,v8)5^Sn
out(v)uSn8

out(v8)&
and Mnn8(v,v8)5^Sn

in(v)uSn8
out(v8)& are important in

physical applications. Using the definition of Sturmian fun
tions ~2.1!, it is easy to show that, ifvÞv8, then

M nn8~v,v8!5
rn
out~v!2rn8

out
~v8!

v2v8
^Sn

out~v!u2VuSn8
out

~v8!&,

Mnn8~v,v8!5
rn
in~v!2rn8

out
~v8!

v2v8
^Sn

in~v!u2VuSn8
out

~v8!&.

~2.11!

The matrix elements

M nn8~v![M nn8~v,v!5^Sn
out~v!uSn8

out
~v!& ~2.12!

are of special interest since they couple different Sturm
states in physical problems. Using the obvious equality

KSn
out~v!U ]

]v
@H0~q!1rn

outV~q!2v#USn8
out

~v!L 50,

the Sturmian eigenvalue equations~2.1! and orthonormality
conditions,~2.6!, it is easy to show that

M nn8~v!5 KSn
out~v!U2V

]

]v USn8
out

~v!L @rn
out~v!2rn8

out
~v!#

2dnn8

drn
out~v!

dv
. ~2.13!

Since the matrix elements are symmetricM n8n(v)
5M nn8(v), coupling matrix elements ^Sn(v)u
2Vu (]/]v) Sn8(v)& are antisymmetric and the diagon
coupling matrix elements are equal to zero. IfV is either a
Coulomb potential or a harmonic-oscillator potential, th
M n8n(v) is a tridiagonal matrix.

The matrix elementsMnn8(v,v8) have a pole at
v5v8 and, if the^Sn

in(v)u2VuSn8
out(v)& are finite, then the

pole is of the first order with residue

Rnn8~v![ Res
v→v8

Mnn8~v,v8!

5@rn
in~v!2rn8

out
~v!#^Sn

in~v!u2VuSn8
out

~v!&.

~2.14!

The expansion of incoming Sturmian functions in terms
outgoing Sturmian functions is then
g

e

-

n

f

Sn
in~v,q!5(

n8

Rnn8~v!

rn8
in

~v!2rn
out~v!

Sn8
out

~v,q!, ~2.15!

which converges, but not absolutely.

C. Three-dimensional space

In three-dimensional cases, which we will consider fu
ther, we have

@H0~q!1rnV~q!#Sn
out~v;q!5vSn

out~v;q!, ~2.16!

where

H0~q!52
1

2
¹q
2 .

We also impose outgoing wave boundary conditions

]Sn
out~v;q!

]q
2 ipSn

out~v;q!;0 as q→` ~2.17!

and require that Sturmian functionsS(v;q) be regular at all
q. Normalization conditions, in this case, have the form

2E Sn~v;q!V~q!Sn8~v;q!d3q5dnn8. ~2.18!

III. TWO-COULOMB-CENTER STURMIANS

A. Sturmian eigenvalues

1. Calculation of Sturmian eigenvalues

Consider the time-independent Schro¨dinger equation of
two Coulomb centers

S 2
1

2
¹ r
22

Z1
r 1

2
Z2
r 2

Dwn~R;r !5En~R!wn~R;r !, ~3.1!

where r 15ur2 R/2 u, r 25ur1 R/2 u, andR is the distance
between two centers. Introducing the scaled variab
q5r /R, we obtain Eq.~3.1! in the form

F2
1

2
¹q
21RS 2

Z1
q1

2
Z2
q2

D Gwn~R;q!5En~R!R2wn~R;q!,

~3.2!

whereqi5r i /R.
The Sturmian basis set is defined by

F2
1

2
¹q
21rnS 2

Z1
q1

2
Z2
q2

D GSn~v;q!5vSn~v;q!.

~3.3!

It is known @7# that an infinite set of adiabatic eigenvalu
En(R) represents different sheets of the same analytic fu
tion «(R) on a multisheeted Riemann surface. A comparis
of Eqs.~3.2! and ~3.3! shows that the Sturmian eigenvalu
are solutions of the equation

E~r!r25v. ~3.4!

It follows that the Sturmian eigenfunctionsSn(v;q) are pro-
portional to the adiabatic functions atR5rn(v).

Following the work of Solov’ev@8#, which was in its turn
based on the work of Komarovet al. @9#, we obtain an
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algorithm for calculating the Sturmian eigenvalues. Us
prolate spheroidal coordinates defined by

j5q11q2 , h5q12q2 , f5arctanS xyD ,
1<j,`, 21<h<1, 0<f,2p,

wherex andy are the Cartesian coordinates, and substitut
the wave function

S~v;q!5A~v!G~j!F~h!exp~ imf! ~3.5!

into Eq. ~3.1!, gives the set of differential equations

F 1

j221

d

dj
~j221!

d

dj
2

lj

j221
1

v

2
1r

~Z11Z2!j

j221

2
m2

~j221!2GG~j!50, ~3.6!

F 1

12h2

d

dh
~12h2!

d

dh
1

lh

12h2 1
v

2
1r

~Z12Z2!h

12h2

2
m2

~12h2!2GF~h!50, ~3.7!

whereA(v) is a normalization factor andl is a separation
constant. Upon choosing the expansions

G~j!5S j11

2 D s21

eiA2v~j21!/2(
s50

`

gsS j21

j11D
s1m/2

,

~3.8!

F~h!5eiA2v~11h!/2(
s50

`

csPs1m
~m! ~h!, ~3.9!

where

s52 i
r~Z11Z2!

A2v
~3.10!

and Ps1m
(m) (x) are the associated Legendre polynomials,

differential equations~3.6! and ~3.7! can be replaced by re
cursion relations for the coefficientsgs andcs

asgs112bsgs1gsgs2150, ~3.11!

rscs112xscs1dscs2150, ~3.12!

with

as5~s11!~s1m11!, ~3.13!

bs52s~s1m112 iA2v2s!2~s21!~m11!

1 iA2v~s2m21!1lj , ~3.14!

gs5~s1m2s!~s2s!, ~3.15!
g

g

e

rs5
~s12m11!@r~Z12Z2!1 iA2v~s1m11!#

2~s1m!13
,

~3.16!

xs5~s1m!~s1m11!2lh , ~3.17!

ds5
s@r~Z12Z2!2 iA2v~s1m!#

2~s1m!21
. ~3.18!

We impose the boundary conditions

uG~61!u,`, uF~1!u,`, F~j!1
i

A2v

]F~j!

]j
→

j→`

0,

~3.19!

which implies that the expansion terminates for negativs
values, i.e.,

g2150, c2150. ~3.20!

Then we find that for larges, gs , and cs we have the
asymptotic forms

gs5~21!sexp@22~8v!1/4Ais#, ~3.21!

cs5S v

2 D s/2 i ss! . ~3.22!

The recursion equations~3.11! and ~3.12! can be written
as infinite continued fractions Dj5g21 /g` and
Dh5c21 /c` ,

Dj~l,r,v!52
1

g0
S b02

a0g1

b12

a1g2

b22

a2g3

b32
••• D , ~3.23!

Dh~l,r,v!52
1

d0
S x02

r0d1
x12

r1d2
x22

r2d3
x32

••• D . ~3.24!

Finally, taking into account the boundary condition~3.19!
and the restriction~3.20!, we obtain two transcendental equ
tions

Dj~lj ,r,v!50, ~3.25!

Dh~lh ,r,v!50. ~3.26!

Equations~3.25! and~3.26! are solved forlj5lj(r,v) and
lh5lh(r,v), respectively. The Sturmian eigenvalu
rn(v) are then calculated to any desired accuracy by solv
the equation

lj~r,v!5lh~r,v! ~3.27!

numerically, using the properties of continued fractions@6#.
WhenZ15Z2 Eqs.~3.25! and~3.26! are uncoupled since

Dh(l,v) is independent ofr. In this case we determine
lh5lh(v) from, the now real, Eq.~3.26! and substitute
lh(v) into Eq. ~3.25!, obtainingDj„lh(v),r,v…50. The
roots of this are eigenvaluesrn5rn(v).
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B. Wave functions and matrix elements

1. Quasiangular wave functions

For convenience, in the calculations of matrix eleme
we use an alternative expansion ofG(h) in Eq. ~3.7!:

F~h!
eimf

A2p
5 (

s5m

`

f sYlm~h,f!, ~3.28!

whereYlm(h,f) are spherical harmonics. Truncating the e
pansion~3.28! (s5m, ...,Kh), we calculate the eigenvecto
f5@ f mfm11••• f Kh

# corresponding to the eigenvalueln as a
solution of the matrix equation

F f5lnI f, ~3.29!

whereI is a unit (Kh2m11)-dimensional matrix andF is a
symmetric (Kh2m11)-dimensional matrix, of which the
nonvanishing matrix elements are

Fs,s52s~s11!1
v

2
2

v

2 S 2s212s22m221

~2s13!~2s21! D ,
Fs,s115Fs11,s52rn~Z12Z2!A~s1m11!~s2m11!

~2s11!~2s13!
,

Fs,s125Fs12,s

52
v

2~2s13!

3A~s1m11!~s2m11!~s1m12!~s2m12!

~2s11!~2s15!
.

~3.30!

For Z1ÞZ2 the matrixF is a pentadiagonal matrix. Obvi
ously, for the case (Z15Z2), the off-diagonal matrix ele-
mentsFs,s11 vanish@Eq. ~3.30!#. The matrixF can be tele-
scoped to an effective tridiagonal matrix by an appropri
relabeling of its elements. We normalize the vectorf by the
condition

E
21

1

F2~h!dh51, ~3.31!

which is equivalent to

(
s5m

Kh

f s
251. ~3.32!

2. Quasiradial wave functions

The matrix equation related to Eq.~3.6!, when we trun-
cate the expansion~3.8! (s50,...,Kj), has the form

Gg5lnIg, ~3.33!

whereg5@g0g1•••gKj
# is a (Kj11)-dimensional vector and

G is a tridiagonal (Kj11)-dimensional matrix, the nonvan
ishing matrix elements of which are
s

-

e

Gs,s52s~s1m112 iA2v2s!2~s21!~m11!

1 iA2v~s2m21!,

Gs,s115~s11!~s1m11!,

Gs11,s5~s112s!~s1m112s!. ~3.34!

The vectorg is normalized by the condition

E
1

`

G2~j!dj51. ~3.35!

Inserting the expansion~3.9! into Eq. ~3.35! and making the
substitutionj52t21 we obtain

2(
k50

Kj

I k1m~2s,2A2v!Bk51,

I k~a,x!5E
1

`

ta22S t21

t D keix~ t21!dt5k!U~k11,a,2 ix !,

Bk5(
s50

k

gsgk2s , ~3.36!

where U(a,b,z) is the confluent hypergeometric functio
@6#. If a5k12, then

I k~k12,x!5~ ix !2k21k!,

I k11~k12,x!5~k11!! e2 ixG~2k21,2 ix !, ~3.37!

otherwise, to evaluate the integralsI k(a,x), it is convenient
to use the recurrence formula

I k11~a,x!5
1

k122a
@~2k122a2 ix !I k~a,x!

2kIk21~a,x!#, ~3.38!

which enables us to reduce the integralsI k(a,x) to the inte-
grals withk50 andk51

I 1~a,x!5
1

22a
@~22a2 ix !I 0~a,x!21#,

I 0~a,x!5e2 ix~2 ix !12aG~a21,2 ix !, ~3.39!

whereG(a,z) is the incomplete Gamma functions@6#. We
find that for largek, I k(a,x) has the asymptotic form:

I k~a,x!'exp~22Aixk! ~3.40!

and, if x.0, converges ask→`.

3. Normalization factors

To determine the normalization factor in Eq.~3.5!, we
consider the Sturmian normalization relation@Eq. ~2.18!#,
which, after substituting

V522
~Z11Z2!j1~Z12Z2!h

j22h2 ,
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d3q5
1

8
~j22h2!dj dhdf

and integrating overf, becomes

1

4
An
2~v!E

1

`E
21

1

@~Z11Z2!j

1~Z12Z2!h#Gn
2~j!Fn

2~h!dj dh51.

~3.41!

Taking into account Hellman-Feynmann properties@Eqs.
~B1! and ~B3!# we obtain

A2~v!54S ]lj~r,v!

]r
2

]lh~r,v!

]r D 21

54
dr

dv S ]lj~r,v!

]v
2

]lh~r,v!

]v D 21

.

~3.42!

The asymptotic form of the wave functions at largeq is

Sn~q!;Cn~v!qsn21eiA2vqFn~cosu!exp~ imf!,
~3.43!

where

Cn~v!5An~v!e2 iAv/2 (
s50

Kj

gs . ~3.44!

4. Orthogonality

The orthogonality relations have the form

1

4
An~v!An8~v!E

1

`E
21

1

@~Z11Z2!j

1~Z12Z2!h#Gn~j!Gn8~j!FnFn8~h!dj dh5dnn8.

~3.45!

Using same manipulations as for evaluating normalizat
constants one obtains

1

2
An~v!An8~v!H ~Z11Z2!Dnn8

~0! (
k50

Kj

@2I k1m~sn1sn8

11,2A2v!2I k1m~sn1sn8,2A2v!#Bnn8
k

1~Z1

2Z2!Dnn8
~1! (

k50

Kj

I k1m~sn1sn8,2A2v!Bnn8
k J 5dnn8,

~3.46!

where

Bnn8
k

5(
s50

k

gs
ngk2s

n8 , Dnn8
~k!

5E
21

1

hkFn~h!Fn8~h!dh.

~3.47!

Since theFn(h) are expanded in terms of spherical harmo
ics the integration overh is easily performed:
n

-

Dnn8
~0!

5 (
s5m

Kh

f s
n f s

n8 ,

Dnn8
~1!

5 (
s5m

Kh21

~ f s
n f s11

n8 1 f s11
n f s

n8!A~s1m11!~s2m11!

~2s11!~2s13!
,

Dnn8
~2!

5 (
s5m

Kh

f s
n f s

n8F2s212s2112m2

~2s13!~2s21! G
1 (

s5m

Kh22

~ f s
n f s12

n8 1 f s12
n f s

n8!

3A~s1m11!~s2m11!~s1m12!~s2m12!

~2s11!~2s15!~2s13!2
.

~3.48!

5. Matrix elements

Now we consider the matrix elementsM nn8(v). After
integration overf it becomes

M nn8~v!5
1

8
An~v!An8~v!E

1

`E
21

1

~j22h2!

3Gn~j!Gn8~j!Fn~h!Fn8~h!dj dh.

~3.49!

Using the same arguments as when calculating the norm
ization constants we obtain

M nn8~v!5
1

4
An~v!An8~v!F ~Dnn8

~0!
2Dnn8

~2!
!(
k50

Kj

I k1m~sn

1sn8,2A2v!14Dnn8
~0! (

k50

Kj

I k1m11~sn1sn8

12,2A2v!Bnn8
k G . ~3.50!

IV. RESULTS AND DISCUSSION

According to the general Sturm-Liouville theory, whe
v,0, the Sturmian eigenvalues and eigenfunctions are
and the number of notes of quasiradial wave functions (nj)
and quasiangular wave functions (nh) are conserved when
the parameterv varies. In classification of Sturmian func
tions we will use united-atom spherical quantum numb
n5(n,l ,m) (1ss, 2ss, 2ps, 2pp, ...!. These numbers are
related tonj andnh by

n5nj1nh1m11, l5nh1m ~4.1!

and are determined byrn(v) and ln(v) in the limit
v→0,

rn~v!5
A22vn

Z11Z2
1O~v3/2!, ln~v!5 l ~ l11!1O~v!.

~4.2!
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Our computations reveal two different types of Sturmi
functions atv.0, which we callT- and S-type Sturmian
functions. Together, these two types of Sturmian functio
form a complete set, but they otherwise have rather differ
properties, which we consider below.

TheT-type Sturmian functions are analytic continuatio
of the negative energy Sturmian functions and therefore e
for all v. They have the valuern

T(0)50 at v50 and are
similar to the one-Coulomb-center Sturmian functions, es
cially whenv'0. In the classification ofT-type Sturmian
functions we will use spherical quantum numbe
n5(n,l ,m)T (1ssT, 2ssT, 2psT, 2ppT, . . . ! in the limit
v→0:

rn
T~v!5

iA2vn

Z11Z2
1O~v3/2!, ln

T~v!5 l ~ l11!1O~v!.

~4.3!

Figure 1 shows trajectories of Sturmian eigenvalues as fu
tions ofv for Z15Z251.

The quasiradial equation~3.6! is only slightly different
from the one-Coulomb-center radial equation at sm
q5j21. But this slight difference brings different feature
to the Sturmian spectrum, namely,S-type Sturmian eigen-
functions. In contrast to theT-type Sturmian functions, the
S-type Sturmian function are defined only forv.0 and
rn
S(0)Þ0. In the caseZ15Z2 the solutions of Eq.~3.7! are
generalized Legendre polynomials andln

S(v)→ l ( l11), as
v→0, and the value ofrn

S(0) can be calculated from th
semiclassical quantization equation

2

p
@r~0!~Z11Z2!1l#1/2HKS r~0!~Z11Z2!2l

r~0!~Z11Z2!1l D
2ES r~0!~Z11Z2!2l

r~0!~Z11Z2!1l D J 56S k1
m11

2 D ,
~4.4!

where K(x) and E(x) are complete elliptic integrals
k50,1,2,...,km , and thekm’s are determined from the con

FIG. 1. Trajectories of the Sturmian eigenvalues as a functio
v for Z15Z251. The dashed curve are the trajectories of
S-type Sturmian functions defined only forv.0. The solid are the
trajectories of theT-type Sturmian functions.
s
nt

st

e-

c-

ll

ditions Rern
S(0).0. A series expansions of the elliptic in

tegrals in Eq.~4.4! gives the following approximate solution
for rn

S(0):

rn
S~0!'

~ l11/2!2

Z11Z2
expF ip~2k1m11!

2l11 G2
1

2
. ~4.5!

From Eq.~4.5! we see thatkm, 1
2 ( l2m21/2). In the clas-

sification ofS-type Sturmian functions we will use the qua
tum numbersl , m, andn5 l1k11. Then the set ofS-type
Sturmian functions is 2psS, 3dsS, 3dpS, 4fsS, 4fpS,
4 fdS, 5fsS, 5gsS, 5gpS, 5gdS, . . . .

The asymptotic Sturmian eigenvaluesrn(v) for suffi-
ciently large positivev are just those of uncoupled harmon
oscillators onj andh coordinates and forZ15Z2 have the
form

rn~v!52
v

2~Z11Z2!
1

1

Z11Z2

3Av

2
@2nh8111 iA2~2nj81m11!#1O~1!,

ln~v!52
v

2
1Av

2
~2nh811!1O~1!, ~4.6!

where nj850,1,... andnh850,1,... are thequasiradial and
quasiangular quantum numbers of harmonic oscillators,
spectively, and related tonj andnh by

nj85nj1IntF12 S l2m2
1

2D G , nh85nh , ~4.7!

where Int@x# is the integer part ofx.
Whenv→0 the functionCn

T(v) associated withT-type
Sturmian functions converges toCnl(v) associated with
united-atom one-Coulomb-center Sturmian function. Fig
2 shows the ratio ofCn

T @Eq. ~3.44!# andCnl @Eq. ~D4!#

Nn
T~p!5

Cn
T~v!

Cnl~v!
, ~4.8!

f FIG. 2. Results of the numerical calculations ofuNn(v)u @Eq.
~4.8!# for T-type Sturmian functions as a function ofv.
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for T-type Sturmian functions as a function ofv.
For S-type Sturmian functions the normalization facto

Cn
S(v) diverge asv→0 and have the form

Cn
S~v!5A2pexpFsn~v!2sn~v!lnS isn~v!

2A2v
D G1O~v1/2!,

sn~v!52 i
r~v!~Z11Z2!

A2v
. ~4.9!

To present the results of numerical calculations we introd
the regularized normalization factorsCn

r (v) defined by

Nn
S~p!5

1

A2p
Cn
S~v!expF2sn~v!1sn~v!lnS isn~v!

2A2v
D G .

~4.10!

The regularized normalization factorsNn
S(p) as functions of

v are shown in Fig. 3. At large positivev the normalization
factorsCn(v) asymptotically behave as

Cn~v!;vnj1~m11!/2. ~4.11!

The coupling matrix elements betweenn5(nlm) and
n85(n11,lm) have pole singularities atv50. All other
coupling matrix elements are small. Figure 4 shows the c
pling matrix elementsuM nn8(v)u @Eq. ~3.50!#.
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APPENDIX A: COMPLETENESS
OF OUTGOING STURMIANS

Let us consider the short-range potentialsV(q) and
K2(q). If b is finite andb@1 we introduceq0,b and set

FIG. 3. Results of the numerical calculations ofuNn(v)u @Eq.
~4.10!# for T-type Sturmian functions as a function ofv.
e

u-

S
h
n-

V(q)50 for q.q0. Then, according to the Sturm-Liouville
theorem, both setsSn

(c)(v) and Sn
(s)(v) defined by the

boundary condition~2.3!,

]Sn
~c!~v;q!

]q
U
q5b

1pSn
~c!~v;b!50 ~A1!

and

]Sn
~s!~v;q!

]q
U
q5b

2pSn
~s!~v;b!50 ~A2!

are complete in the spaceLV on the intervala<q<b. The
linear combination of the two setsSn

out5Sn
(c)1 iSn

(s) also
forms a complete set and the boundary condition atq5b
becomes the outgoing-wave boundary condition~2.9!

]Sn
out~v;q!

]q
U
q5b

2 ipSn
out~v;b!50. ~A3!

The limit q0→b exists sinceb is finite. Then the matrix
elements

^Sn~v!~v!uVuSn8~v!& lim
b→`

E
a

b

Sn~v;q!V~q!Sn8~v;q!dq

5dnn8,` ~A4!

are finite and the outgoing Sturmian functions form a co
plete set in the spaceLV . In this case incoming waves can b
expanded in terms of outgoing Sturmian functions.

As an example consider the Sturm-Liouville proble
~2.1! with V(q)5exp(22q), K1(q)51, andK2(q)50 in in-
terval 0<q,` with the outgoing-wave boundary conditio
~2.9!. Then Sturmian functions have the form

Sn~p;q!5Jip~Arne
2q!, ~A5!

whereJip(x) is a Bessel function. The eigenvaluesrn are
determined by the equation

Jip~Arn!50. ~A6!

FIG. 4. Coupling matrix elementsuM nn8(v)u @Eq. ~3.50!# as a
function ofv.
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The Sturmian expansion of the incoming Sturmian funct
J2 ip„Arnexp(2q)… in terms of the outgoing Sturmian func
tions has the form

J2 ip~Arn* e
2q!5(

n8
Ann8~p!Jip~Arn8 e

2q!, ~A7!

Ann8~p!5E
0

`

Sn~2p;q!V~q!Sn8~p;q!dq

5E
0

1

tJ2 ip~Arn* t !Jip~Arn8t !dt

5
2

uG~11 ip !u2
1

rn*2rn8
. ~A8!

For largen8, Ann8(p)}1/n8 and the summation in Eq.~A7!
converges, but not absolutely.

If V(q) vanishes at infinity as 1/q, the set of outgoing
Sturmian functions is complete in the spaceLV

out of all piece-
wise continuous functionsf (q) on LV with asymptotic be-
havior f}qaexp(ipq) atq→`, andp>0. For this reason it is
appropriate to use outgoing-~incoming-! wave Sturmian
functions to expand outgoing~incoming! waves even for
short-range potentials. Both sets are essential whenV→1/q
as for Coulomb potential.

APPENDIX B: HELLMAN-FEYNMANN PROPERTIES

The Hellman-Feynmann properties of Eqs.~3.6! and~3.7!
are

E
1

`

~Z11Z2!jF
2~j!dj5

]lj~r,v!

]r E
1

`

F2~j!dj,

E
21

1

~Z12Z2!hG
2~h!dh52

]lh~r,v!

]r E
21

1

G2~h!dh,

E
1

`

~j221!F2~j!dj52
]lj~r,v!

]v E
1

`

F2~j!dj,

E
21

1

~12h2!G2~h!dh522
]lh~r,v!

]v E
21

1

G2~h!dh,

~B1!

where the derivatives]lj /]r, ]lh /]r, ]lj /]v, and
]lh /]v are given by

]lj~r,v!

]r
52

]Dj~l,r,v!

]r

]Dj~l,r,v!

]l

,

]lh~r,v!

]r
52

]Dh~l,r,v!

]r

]Dh~l,r,v!

]l

~B2!

and
n

]lj~r,v!

]v
52

]Dj~l,r,v!

]v

]Dj~l,r,v!

]l

,

]lh~r,v!

]v
52

]Dh~l,r,v!

]v

]Dh~l,r,v!

]l

. ~B3!

APPENDIX C: THE CALCULATION OF I 0„a,x…

The functionI 0(a,x) is determined by

I 0~a,x!5eix~2 ix !2aG~a,ix !. ~C1!

The recurrence formula

I 0~a21,x!5a21@ ixI 0~a,x!21# ~C2!

enables us to reducea. To calculateI 0(a,x) we use the
infinite continued fraction representation of the incompleteG
function

I 0~a,x!5
1

ix1

12a

11

1

ix1

22a

11

2

ix1
•••. ~C3!

If x.0 the infinite continued fraction is convergent.

APPENDIX D: ONE-COULOMB-CENTER STURMIANS

Outgoing-wave Coulomb Sturmian functions are obtain
by solving Eq.~2.16! with V(q)52Z/q. The general solu-
tion is well known to be a linear combination of Coulom
functionsFl andGl @6#. Imposing outgoing-wave boundar
conditions selects the combinationFl1 iGl and the require-
ment that the solution is regular at the origin gives the St
mian eigenvalues

rn~v!5 i
np

Z
, p5A2v, n51,2,... . ~D1!

The explicit form of the corresponding outgoing-wave Co
lomb Sturmian functions normalized according to Eq.~2.18!
are @3#

Snl~v;q!5
2l11ip

~2l11!!
A ~n1 l !!

~n2 l21!!Z
~pq! leipq1F1~ l11

2n,2l12;22ipq!Ylm~ q̂!

5A~n2 l21!!

~n1 l !!Z
2l11ip~pq! leipqLn2 l21

~2l11!

3~22ipq!Ylm~ q̂!, ~D2!

whereYlm(q̂) are the spherical harmonics andLn2 l21
(2l11) are

generalized Laguerre polynomials@6#.
The asymptotic form ofSnl(v;q) at largeq is

Snl~v;q!;Cnl~v;q̂!qn21eipq, ~D3!
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where

Cnl~v;q̂!5
~21! l11

A~n1 l !! ~n2 l21!!Z
~22pi !nYnl~ q̂!.

~D4!

The outgoing-wave Coulomb Sturmian functions are poly
mials ~Laguerre polynomials! in q. The low-order functions
(Z51) are

S10~v;q!52ipeipqY00~ q̂!,

S20~v;q!5A8ipeipq~11 ipq!Y00~ q̂!,

S21~v;q!52A2

3
ip2qeipqY10~ q̂!. ~D5!
un
-

The matrix elements of the Sturmian functions are read
evaluated using recurrence relations for Laguerre polyno
als. For alln the matrix elementsMnn(p) andMnn61(p),
Eq. ~2.13! have poles atp50,

Mnn~p!52
n

Zp
,

Mnn11~p!5
An1 l11

2Zp
,

Mnn21~p!5
An1 l

2Zp
,

Mnn8~p!50 otherwise. ~D6!
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@8# E. A. Solov’ev, Zh. Éksp. Teor. Fiz.81, 1681 ~1981! @ Sov.
Phys. JETP54, 893 ~1981!#.

@9# I. V. Komarov, L. I. Ponomarev, and S. Yu. Slavyanov,Sphe-
roidal and Coulomb Spheroidal Functions~Nauka, Moscow,
1976!, p. 56ff.


