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Positive energy Sturmian states for two-Coulomb-center problems
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Properties of two-center Coulomb Sturmian basis sets are discussed. Analytic and numerical techniques to
calculate these functions and coupling matrix elements are developed. A class of Sturmian functions is found
that has no analytic continuation to negative energies and is not present in one-center potentials. Advantages of
Sturmian sets over conventional eigenstate sets are emphd$1680-294®7)06205-7

PACS numbes): 34.80.Dp, 34.20.Mq, 31.15p, 34.10+X

I. INTRODUCTION simple central potentiaf(r). Little is known about Sturmian
functions for more complicated potentials. Recently, Stur-

Most basis-set representations of wave functions fomian functions for the two-center Coulomb potential have
quantum systems employ energy eigenstates of some modeg¢en employed to study ion-atom collisidig. Positive en-
Hamiltonian. Sturmian representations are exceptional in thi§rgy Sturmian functions were needed to represent ionization
regard since the Sturmian eigenfunctions are not energip such collisions. In this paper we consider the properties of
eigenstates. Here we employ the nomenclature that has b&vo-center Sturmian functions and compare them with more
come conventional in the physics literature, namely, eigenfamiliar Sturmian functions for central Coulomb potentials.
functions of a Schidinger equation, where the energy is In Sec. Il we review the standard Sturm-Liouville theory
fixed and the coefficient of the potential is the eigenvalue0n a finite interval and then consider Sturmian functions on
are called Sturmian eigenfunctions. semi-infinite intervals, which are much more relevant in

The advantages of Sturmian basis sets can be summarizeflysical applications. The properties of Sturmian sets are
as follows. (i) Sturmian basis sets are complete and squaréompared with sets of conventional energy eigenstates, and
integrable for negative energig§) Sturmians functions can then we present a practical example of a one-center Coulomb
be definedto satisfy appropriate physical boundary condi-Set.
tions, e.g., bound-state boundary conditions for bound states Analytic and numerical techniques to calculate the Stur-
and outgoing(or incoming boundary conditions at positive mian functions for two-center Coulomb potentials are de-
energies.(iii) Sturmian functions diagonalize the potential Scribed in Sec. Ill. One of the remarkable features of these
and therefore are superior to energy eigenstates for represefturmian functions is the existence of a class of positive
ing waves in regions where the potential is strongest. In othegnergy Sturmians having no analytic continuation to negative
words, all Sturmian functions with a fixed energy are wellenergy. This very interesting property has no analog in the
localized in the physically relevant region of the potential.one-center case. In Sec. Ill we present methods of matrix
For this reason they often provide rapidly convergent expanelement calculations using the Sturmian functions for two-
sions of wave functions for complex systentis,) Superior ~ center Coulomb potentials. These matrix elements have been
localization of Sturmian basis sets can be effectively ememployed in Ref[4] to calculate the spectra of electrons
ployed to describe dynamic atomic and molecular systemsjected in atomic collisions with very broad ranges of rela-
characterized by the electronic states that are initially knowriive velocities. Atomic units are used throughout.
to be localized around one particular center of force. This

property can be especially useful when describing atomic Il. REVIEW OF STURMIAN THEORY

collisions. A. One-dimensional space
Despite their attractive features, these functions are not '

widely used. Most applications exploit elementary properties 1. Sturmian theory on finite intervals

of these states, namely, completeness and square mtegrabll—A Sturm-Liouville problen{5] is furnished by the follow-

ity fqr negative energy1]. L)se of outgoing wave Sturmian ing differential system with two-point boundary conditions:
functions in nuclear physics has been reviewed by Raw-

itscher[2], and Shakeshaf8] has discussed outgoing-wave [Ho(a)+ p,V(0)— ]S,(w;q) =0, 2.2
Sturmian functions for one-center Coulomb potentials.
Shakeshaft has shown that more familiar negative energy 9S,(w;q)
Sturmians can be analytically continued to positive energies, E— +aS,(w;a)=0, 2.2
where they represent outgoing waves. q q=a
In all of these cases Sturmian functions were defined for a
IS, (w;q)
———| —BS,(w;b)=0, 2.3
aq a=b
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1 d d Because Eq(2.7) must be satisfied at successive pajntit
Ho(@)=—5 Kl(q)ilﬁKl(q)ﬁ_FKZ(q) . (24  follows from Eq.(2.1) that S(w;q)>exp(—«q) at largeq.
For real and negative the differential equationi2.1) gives

Hamiltonians of the fornH, often result from variable sepa- £=V— 2w and the boundary conditiof2.7) is equivalent to
ration of the Laplace equation in curvilinear coordinates. Res,(®;d) ~0 asq—. The Sturmian function§,(w) form a
flecting wall S, (w;a)=0 and “zero momentum” complete set in the spadey of ajl piecewise-continuous
dS,(;q)/39|q—a=0 boundary conditions are special casesfunctions f(q)=(alf) having finite matrix elements
of the homogeneous conditions, E@2.2) and (2.3), which (fIVIf). ) ) ) o
correspond tax=c anda=0, respectively. Sturmian Qnd eigenstate problems differ _S|gn|f|cantly on

We assume thatv(q), Ki(q), and K,(q) are real semi-infinite mtervals because .the assumpfigg) —0 as
piecewise-continuous  functions off on the interval d—% contradictsV(q)=—1, which we used at the end of
a<q=b, are independent of, and VV(q) is of one sign Sec. IIA1 to transform Sturm-Liouville problem&.1)—
throughout this interval. The coefficients and 8 and the (2.3 into eigenstate problems
constantw can be complex. Then there exists an infinite set Ho(q) @.(q) = (@) (2)=0
of eigenvalueg,=p,(»), v=0,12 ... ,which has no limit ol@Welq)=e,0:,40) ¢y :
points, except fop=o. The corresponding Sturmian eigen-
functionsS,(w;q) =(q|S,(w)) have exactlyr zeros in the

in.terval a=g=<b and form a complete set on this interval Energy eigenfunctions far,<0 do not form a complete
with the closure property set. For aK,(q) <0 that vanishes faster thang®/there is a
finite number of eigenstates, and Kf,(q) <0 vanishes as
2 S,(0:9)S,(0:q")=—8(q—q")IV(q). (2.5 1/g¥ with 1<k=<2 then thgre is_ar) infi.nite.number of eigen-
v valuese, (n=0,12 .. .) with a limit point lim,_,..e ,=0. In
either case a complete set of eigenstates includes both dis-
Sturmian eigenfunctions are normalized according to crete €£,<0) and continuum stateg 0). The continuum
eigenstates are not related to Sturm-Liouville problems since
their asymptotic properties are determined completely by the
Schralinger equatior(2.1) and cannot be chosenpriori.
As far as Sturmians functions are concerned, one is free to
=08, (2.6) choose a basis set with an asymptotic behavior that is most
) ] suitable in a particular physical situation. Thus, o0 we
Note that dual functions(S,(w)| are defined as define two complex conjugate sets of Sturmian functids.
(S,(w)|9)=S,(w;q), and we do not take the complex con- Outgoing Sturmian functions satisfying outgoing-wave
jugate ofS,(w;q) in Eq. (2.6). The potential is diagonal in  houndary conditions are obtained by analytic continuation of

the Sturmian representation. The Sturmian functions are Nokhe houndary condition€.7) with k— —ip(p=2),
malized by Eq.(2.6) so that the diagonal matrix elements

equal—1. This choice for the normalization constant is em- S w;q)
ployed since the potentialé(q) of interest are usually nega- T
tive definite. Normalizing the Sturmian potential matrix to

—1 ensures that the Sturmian functions are real for read”) |ncoming Sturmian functions Satisfying incoming wave

¢,(q)~0 asg—. (2.8

b
<Sv(w)| _Vlsv’(w)>: - ja Sv(qu)v(q)sv’(qu)dq

—ipS™(w;q)~0 asqg—x». (2.9

negative energie® and real constanta, . boundary conditions
Contrary to energy eigenstate representations, the overlap ‘
matrix element in the Sturmian representation is not diago- IS w;q)

nal. Since both the normalization and overlap matrix ele- +ipS,(w;0)—0 asg—» (2.10

ments are needed in practical applications, methods to com- g

pute these quantities for two-center Coulomb Sturmiaryre gptained by analytic continuation é0>0 of the bound-

functions are presented in Sec. lll. _ _ary conditions2.7), with x—ip. For realw these two sets of
Familiar energy eigenstate basis functions of the Hamil-gy,rmian functions are complex conjugate

tonianHy(q) are particular cases of Sturm-Liouville eigen- pi,[‘(w)=[p3“‘(w)]* and ST(w;q)=[S‘;“‘(w;q)]*.

functions wherV(q) = —1 andw=0. As will be seen below " ngiice that both incoming and outgoing Sturmian func-
such a correspondence between Sturmian and energy €ig&flng at positivew are analytic continuations of the same set
states bases can be established only on a finite interval. ¢ st rmian functions at negative». For this reason
standing-wave boundary conditions cannot be used for Stur-
mian functions on semi-infinite intervals.

In physical applications Sturm-Liouville problems on  For short-range potentialsvhenV(q) andK,(qg) vanish
semi-infinite intervals 4 is finite andb— ), with functions at infinity faster than 1] the matrix elements
V(q) andKy(q) vanishing at infinity as I or faster, are  (SM(w)|—V|S)()) are finite and both sets remain com-
common. In this case the boundary condition, EQj3), is plete in the spack, asb— o (see Appendix A This means

that incoming waves can be expanded in terms of outgoing
IS(w;q) Sturmian functions. But from the physical point of view it is
aq desirable to expand incoming waves in terms of incoming

2. Sturmian theory on semi-infinite intervals

+kS(w;q)~0 as q—o. (2.7
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Sturmian functions and outgoing waves in terms of outgoing 0 R,, ()
Sturmian functions. IV(q) vanishes at infinity as @/ the S(w,q)=2 (@)= p%(w)
set of outgoing Sturmian functions is complete in the space v Py Py

L™ of all piecewise continuous functiori§q) from Ly with  \which converges, but not absolutely.
asymptotic behaviof «q”exp(pq) at q— o, wherep=0.

S2w,q), (2.19

C. Three-dimensional space

B. Matrix elements In three-dimensional cases, which we will consider fur-
The matrix elementsM,, (w,0')=(S"(0)|S%(w")) ther, we have
and M,,/(0,0')=(S)(0)|S),(»’)) are important in [Ho(@) +p, V() IS (@;0) = S (w;q),  (2.16)
physical applications. Using the definition of Sturmian func-
tions (2.1), it is easy to show that, ibb# w’, then where
ou out, 1
po(w)=p) (@) __Zy2
Mw'(w,w'): o <Sgut(w)|_V|S]O}l’JI(w/)>, HO(Q) qu

We also impose outgoing wave boundary conditions

in out,
, pr(@)=p, (o) out, z?SOUt(w' )
My (0,0") = ——————(S](w)| - V|S}(")). VTﬂ_ipsgut(w;@No asgqow (217
(2.11
and require that Sturmian functio®w;q) be regular at all
The matrix elements g. Normalization conditions, in this case, have the form
M, (0)=M,, (0,0)=(S0)|S%(w) (212 - f S(@;Q)V(Q)S, (w;q)d%q=45,,.  (2.18
are of special interest since they couple different Sturmian I1l. TWO-COULOMB-CENTER STURMIANS

states in physical problems. Using the obvious equality _ .
A. Sturmian eigenvalues

J " 1. Calculation of Sturmian eigenvalues
a—w[Ho(Q)'*‘PguV(Q)— o]

<S‘3”‘<w> S‘;‘ft<w>> =0, . oy . .
Consider the time-independent Sclirgger equation of

two Coulomb centers

the Sturmian eigenvalue equatiof’s1) and orthonormality

conditions,(2.6), it is easy to show that ( - 1V2_ Z_ é) @, (RiN=E,(R)¢,(Rr), (3.1

(9 _ _ _ . .
_ [ cou v 9 | cout out, _ out wherer;=|r— R/2|, r,=|r+ R/2|, and R is the distance
Muy (@) <S” (@) Vaw SV’(w)>[p” (@)= py{w)] between two centers. Introducing the scaled variables
=r/R, we obtain Eq(3.1) in the form
dp;"(w) a 3

T e 249 { - 2+R( = 22” (Riq)=E,(R)IR?,(R;q)

2 q ql q2 (PV ’q 14 (PV ’q 1
(3.2

Since the matrix elements are symmetrigl, ()

=M, (), coupling matrix  elements (S,(w)| whereq;=r;/R.

—V|(9/dw) S,/(w)) are antisymmetric and the diagonal The Sturmian basis set is defined by

coupling matrix elements are equal to zeroVlfis either a

Coulomb potential or a harmonic-oscillator potential, then _ 1V2+ (_ é_ é

- - - qt Py

M, (w) is a tridiagonal matrix. 2 aq: d»
The matrix elementsM,,/(w,0’) have a pole at (3.3

=o' and, if the(S"(w)|—V|S ' (w)) are finite, then the

S,(w;q)=wS,(w;q).

It is known [7] that an infinite set of adiabatic eigenvalues

pole is of the first order with residue E,(R) represents different sheets of the same analytic func-
tion e(R) on a multisheeted Riemann surface. A comparison
R, (w)= ResM, (w,0") of Egs. (3.2 and (3.3) shows that the Sturmian eigenvalues
P— are solutions of the equation
=[pi(@) =3 (@) (SP(@)| = VIS (). E(p)p?*=o. (3.9

(214 |t follows that the Sturmian eigenfunctios(w;q) are pro-

portional to the adiabatic functions Bt=p,(w).
The expansion of incoming Sturmian functions in terms of Following the work of Solov’e\8], which was in its turn
outgoing Sturmian functions is then based on the work of Komaroet al. [9], we obtain an
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algorithm for calculating the Sturmian eigenvalues. Using (s+2m+1)[p(Z,—Z,) +iv2w(s+m+ 1)]
prolate spheroidal coordinates defined by pPs= 2(stm)+3
X (3.1@
§=01T02, 7=01— 0z, ¢:arCta’E_ ,
y Xs=(s+m)(s+m+1)—\,, (3.17
1$§<00, _1$7]$1, 0$¢<27T, S[P(Zl_ZQ)_i 2w(8+m)]
s™ 2(s+m)—1 (318
wherex andy are the Cartesian coordinates, and substituting (s+m)
the wave function . .
We impose the boundary conditions
S(w;0) =A(w)G(£)F(n)expime) (3.5 PR
: . . : . G(xl)|<oo, |F(1)|<oo, F — 0,
into Eq. (3.1), gives the set of differential equations G(=1)] [F(1)] &)+ \/_w ag to
3.1
PP I aaL o
g dé d¢ & -1 2 P -1 which implies that the expansion terminates for negative
> values, i.e.,
m G(£€)=0 3.6
@ 179070 3.9 9.1=0, c_;=0. (3.20
d 5 ” ® (Z,—Zy) 7 Then we find that for larges, g5, and cs we have the
1——7]25(1_77 )E+1_7]2+5+P1_—7]2 asymptotic forms
2 — S 1/4 [;
=(—1)%xl —2(8w)Y\is], (329
- W}F(n)ZO, 3.7
K s/2 is
. L . . Cs=|=| —. (3.22
whereA(w) is a normalization factor anil is a separation 2/ sl

constant. Upon choosing the expansions
The recursion equation8.11) and(3.12 can be written

()= E+1\0°1 o T 1) /22 £—1\stm2 as infinite continued fractions D,=g_,/g.. and
2 54_1 ’ D,=c_,/c.,
(3.9 1
apYy1 d1Y2 a7Y3
. Dg()\,p,w)=——(,80— — — — “), (323
o Yo B1— B2— Bs
F()=e 2023 cPdln(m), (3.9
=0 1 P01 p162 p263
Dn(?\,P,w)I—g(Xo——_—_—_“'>- (3.29
where 0 X1~ X27 X3
(Z,+2,) Finally, taking into account the boundary conditi¢®19
—j pPeaimsa) (3.10 and the restrictior(3.20), we obtain two transcendental equa-
V2w tions
and PgT)m(x) are the associated Legendre polynomials, the De(Ng,p,0)=0, (3.29
differential equation$3.6) and (3.7) can be replaced by re-
cursion relations for the coefficientg andcg D,(\,,p,w)=0. (3.26
as0s+1~ BsOst ¥s9s-1=0, (3.1)  Equations(3.25 and(3.26) are solved foi ;=\ (p,w) and
N,=N\,(p,»), respectively. The Sturmian eigenvalues
PsCsi1— XsCst 6sCs—1=0, (3.12 p,(w) are then calculated to any desired accuracy by solving
the equation
with
Ne(p,0)=N\,(p,w) (3.27)
as=(s+1)(stm+1), (3.13
numerically, using the properties of continued fractip@k
Bs=2s(s+m+1—i\2w—0)—(c—1)(m+1) WhenZz,=27, Egs.(3.295 and(3.26 are uncoupled since
D,(\,o) is independent of. In this case we determine
+iv2w(o—m—1)+X,, (3149  \,=\,(w) from, the now real, Eq(3.26 and substitute

\,(w) into Eq. (3.29, obtainingD(\ ,(w),p,w)=0. The
vs=(s+tm—o)(s—a), (3.15 roots of this are eigenvalugs,=p (o).
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B. Wave functions and matrix elements gs,s: 2s(s+m+1—i \/Z_ o)—(o—1)(m+1)
1. Quasiangular wave functions 4 \/Z(a— m—1),
For convenience, in the calculations of matrix elements
we use an alternative expansion®(#) in Eq. (3.7): Gss+1=(s+1)(s+tm+1),
img = Gst1s=(st1—o)(s+tm+1—o). (3.39
F(n)—==2 fYin(7.4), (3.29 _ _ -
V27 s=m The vectorg is normalized by the condition
whereY,(7,¢) are spherical harmonics. Truncating the ex- c
pansion(3.28 (s=m, ... K,), we calculate the eigenvector L G(§dg=1. (3.39
f={fmfms1 “fKn] corresponding to the eigenvalug as a
solution of the matrix equation Inserting the expansiof8.9) into Eg. (3.35 and making the
substitutioné=2t—1 we obtain
F =N, lf, (3.29 ‘
- - ¢
wherel is a unit (K,,— m+ 1)-dimensional matrix and is a 220 lkem(20,2V20)B=1,

symmetric K, —m+1)-dimensional matrix, of which the
nonvanishing matrix elements are

l(a x)—ft“(t_l
25?4+ 2s—2m?—1 K 1 t
(2s+3)(2s—1) /)’

k
eXt=Ddt=klU(k+1a,—ix),

w

w
.7:5’5:_3(34‘1)4‘5—5

k
Bk=§0 9k-s (3.36

(stm+1)(s—m+1)
~7:S,S+l:~7:s+l,sz _pv(zl_ZZ (23+ 1)(25+3) '

where U(a,b,z) is the confluent hypergeometric function

6]. If a=k+2, then
Fs,s+2:~7:s+2,s [ ]

l(k+2x)=(ix) "% kI,

w
2(2s+3) Lerr(k+2x)=(k+1)! e *I'(—k—1,—ix), (3.39
y \/(s+m+ 1)(s—m+1)(s+m+2)(s—m+2) otherwise, to evaluate the integralga,x), it is convenient
(2s+1)(2s+5) ' to use the recurrence formula
(3.30

1
| ax)=———r(2k+2—a—ix)l(a,x
For Z,#Z, the matrix F is a pentadiagonal matrix. Obvi- cra(@x) k+2—a[( Nd@x)

ously, for the cqseZl=Zz), the off—diag_onal matrix ele- Kl 1(a%)] (3.38
mentsF; ;1 vanish[Eq. (3.30]. The matrixF can be tele- k=11 D

scopeq to an effective tridiagonal mqtrix by an appropriateynich enables us to reduce the integriala, x) to the inte-
relagi?ilg;]g of its elements. We normalize the vedtduy the grals withk=0 andk=1

con

1
hi(a,x)=5—[(2—a=ix)l(a,x)—1],

1
f F(mdy=1, (3.3)
-1
o , lo(a,x)=e X(—ix)1 3 (a—1,—ix),  (3.39
which is equivalent to
whereI'(a,z) is the incomplete Gamma functiof§]. We

~

7 find that for largek, I,(a,x) has the asymptotic form:
-1, (3.32 gek, Iy(a,x) ymp
s=m I (a,x)~exp—24ixk) (3.40
2. Quasiradial wave functions and, if x>0, converges ak— .

The matrix equation related to E¢B.6), when we trun- o
cate the expansiof8.9) (s=0,... K,), has the form 3. Normalization factors
To determine the normalization factor in E(.5, we

gg=A\,lg, (3.33  consider the Sturmian normalization relatifBq. (2.18],
o B . . which, after substituting

whereg=[gq0:1" ~—gK§] is a (K¢+ 1)-dimensional vector and

g is a tridiagonal K.+ 1)-dimensional matrix, the nonvan- Ve _2(21+22)§+(Zl_22)7l

ishing matrix elements of which are £yt :
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1
6% = 5 (£ 77)d¢ drdgs

and integrating ovet), becomes

1, (=(t
ZAy<w>fl L[(zl+zz>é

+(Z,-Zy) n]GE(€)F2(n)dé dp=1.
(3.41)

Taking into account Hellman-Feynmann propertigsgs.
(B1) and(B3)] we obtain

INg(p,®) I\, (pw)|?
2 _ 3 _ Ihy
A (w)—4( p p
_ d_P ahg(pvw)_5)\7](pvw) -1
do dw dw '
(3.42
The asymptotic form of the wave functions at langés
S,(q)~C,()q” *e"2°9F (cos f)exp(imd),
(3.43
where
C(w)=A,(0)e P 2 Os- (3.44

4. Orthogonality
The orthogonality relations have the form

© (1
Pw(w)'“\yr(w)f1 f_l[(ZﬁZz)i

(21— Z) 7]G(6)G, (§F,F, (n)dE dn=46,,.

(3.495

Using same manipulations as for evaluating normalization

constants one obtains
K¢
(Z1+2)D},) 2 [2liem( 0yt 0

EAV(w)AV’(w)

+1,2\/2w)—|k+m(0',,+ov/,Z\/Zw)]B:V,-I—(Zl
~7,)D'Y) E Lm0yt 00,202 )BW}—

(3.4
where
k

— Eo

Dk _

, 1
9sOk-s Doy f_lﬂ"FV( mF, (7)d7.

(3.47

Since theF ,(#) are expanded in terms of spherical harmon-
ics the integration ovew is easily performed:

OVCHINNIKOV AND J. H. MACEK

D(O)

E e

K,—1

e (stm+1)(s—m+1)
SEm (P2 + 2, )

(2s+1)(2s+3)

D<2>—z i1
-2

(stm+1)(s—m+1)(s+m+2)(s—m+2)
(2s+1)(2s+5)(2s+3)2

2524+ 25— 14 2m?
(25+3)(2s—1)

s+2+ fs+2f )

(3.48

5. Matrix elements

Now we consider the matrix elemenid,  (w). After
integration overg it becomes

o (1
AdorAs ) [ @)
(3.49

Using the same arguments as when calculating the normal-
ization constants we obtain

Mvv'(w)zg

Ke

1
ZAUL©A ()| (D D‘V?)E lkem(o

MVV’(w):

K
3
0
+o,,2\20)+ 4D(W>,k20 lismae2(op+ 0y

+ 2,2@)5';,}. (350

IV. RESULTS AND DISCUSSION

According to the general Sturm-Liouville theory, when
<0, the Sturmian eigenvalues and eigenfunctions are real
and the number of notes of quasiradial wave functiamg (
and quasiangular wave functions,)) are conserved when
the parametemw varies. In classification of Sturmian func-
tions we will use united-atom spherical quantum numbers
v=(n,l,m) (1so, 2so, 2po, 2pm, ..). These numbers are
related ton, andn,, by

n=ng+n,+m+1, I=n,+m 4.1
and are determined by,(w) and A (w) in the limit
w—0,

N

3/2
7.7, ————+0(w”),

plw)= N(w)=I(1+1)+0O(w).

4.2
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FIG. 1. Trajectories of the Sturmian eigenvalues as a function of gl(? 2. Resugs of Fhefnumgrical calcfulatiqns|bffu(w)| [Eq.
o for Z;=Z,=1. The dashed curve are the trajectories of the(4' )] for T-type Sturmian functions as a function &

S-type Sturmian functions defined only far>0. The solid are the s . ] o
trajectories of thel-type Sturmian functions. ditions Re;(0)>0. A series expansions of the elliptic in-

) _ ~ tegrals in Eq(4.4) gives the following approximate solutions
Our computations reveal two different types of Sturmiang,, p3(0):

functions atw>0, which we callT- and S-type Sturmian
functions. Together, these two types of Sturmian functions s (1+1/2)2 im(2k+m+1)
form a complete set, but they otherwise have rather different p(0)~ 7 17 F{ 211
properties, which we consider below. 12

The T-type Sturmian functions are analytic continuationsfFrom Eq.(4.5 we see thak,,<2(I—m—1/2). In the clas-
of the negative energy Sturmian functions and therefore exisiification ofS-type Sturmian functions we will use the quan-

for all . They have the valug;(0)=0 atw=0 and are tum numberd, m, andn=1+ x+1. Then the set 0S-type
similar to the one-Coulomb-center Sturmian functions, espeSturmian functions is Bo>, 3doS, 3dnS, 4fcS, 4f#S,

cially when o~0. In the classification off-type Sturmian  4f S 5f¢S, 5g0°, 5g7°, 5965, ... .
functions we will use spherical quantum numbers The asymptotic Sturmian eigenvalues(w) for suffi-

1
-5 45

v=(n,l,m)" (1so’, 2s0’, 2po’, 2pnT, ...) inthe limit  ciently large positivew are just those of uncoupled harmonic
w—0: oscillators oné and » coordinates and for;=Z, have the
form
iV2wn
T, \_ 3l T\
pulw)=7 5 +0(w %, M(@)=1(1+1)+0(w). w1
(4.3 plO)== 7 7 7,

Figure 1 shows trajectories of Sturmian eigenvalues as func- ®
tions of w for Z,=2,=1. X \/;[2“;7"‘ 1+i\/§(2nf§+ m+1)]+0(1),

The quasiradial equatiofB.6) is only slightly different
from the one-Coulomb-center radial equation at small
g=&—1. But this slight difference brings different features __ @ \/E ,
to the Sturmian spectrum, namel$;type Sturmian eigen- M) 2 - 2(2n7]+1)+0(1), 4.6
functions. In contrast to th&-type Sturmian functions, the
Stype Sturmian function are defined only fex>0 and Wheren;=0,1,... andn;=0,1,... are theguasiradial and
pS(0)#0. In the caseZ,;=2Z, the solutions of Eq(3.7) are quasiangular quantum numbers of harmonic oscillators, re-
generalized Legendre polynomials an{(w)—I(1+1), as  SPectively, and related tw, andn,, by
w—0, and the value obf’(O) can be calculated from the

; ; o . 1 1

semiclassical quantization equation n;=ng+Int E( | —m— 5) , n,=n,, 4.7
2 p(0)(Z1+2Z3) =\
—[p(0)(Zy+ 22)+)\]1’2( K p(0)(Z,5Z,) TN where Infx] is the integer part oX.

When w—0 the functionCI(w) associated withT-type
m-+ 1) Sturmian functions converges t6,(w) associated with

B <p<0)<zl+zz)—x

=*|\ Kkt —— i i i i
p(0)(Z+Z5)+\ 2 united-atom one-Coulomb-center Sturmian function. Figure
(4.4) 2 shows the ratio o€ [Eq. (3.44] andC,, [Eq. (D4)]
T
where K(x) and E(x) are complete elliptic integrals, C(w)

NI(p)= (4.9

x=0,1,2...,x,, and thex,,'s are determined from the con-

Cni(@)’
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1.00

(3do7 3d 0%) (1807, 2s67)

{1s07, 3d %)

0.10 - (2507, 3dcT)

(2307, 3do®)

M,(@)

N° (@)

(1s07,3d 6"

(2pc”, 2p o%)

0.01

0.1 1.0 10.0 ®

) . FIG. 4. Coupling matrix elementM ,, ()| [Eq. (3.50] as a
FIG. 3. Results of the numerical calculations |df,(®)| [EQ.  f,nction of w.

(4.10] for T-type Sturmian functions as a function eof
V(q)=0 for g>qy. Then, according to the Sturm-Liouville

for T-type Sturmian functions as a function ef theorem, both setsS!9(w) and SI¥(w) defined by the
For S-type Sturmian functions the normalization factors poyndary conditior(2.V3), ’

Cf(w) diverge asw—0 and have the form

4S9 (w;q)
. B S (wib)=0 (A1)
CS(w) = 2mexd ou(w)— ()| 2] [+ 0w A g
14 14 14 2\/% Ll
and
p(w)(Z1+7Z,) PISCION
o ()= —i 4.9 v (@:9) by
(o) e (4.9 e q:b—pgﬁ(w,b)—o (A2)
To present the results of numerical calculations we introduce, complete in the spads, on the intervala<q<b. The
the regularized normalization facto®(w) defined by linear combination of the two sets®'=S© +is® also
) forms a complete set and the boundary conditiorgatb
NS(p) = t CS(w)ex —0',,(0))+0',,(w)|n( lo,(w) ' becomes the outgoing-wave boundary conditi@:9)
V2 22w ut
(4.10 IS, (w;0)

—ipSM{w;b)=0. (A3)
g=b

. L , 9q
The regularized normalization factole(p) as functions of
o are shown in Fig. 3. At large positive the normalization  The limit g,—b exists sinceb is finite. Then the matrix
factorsC,(w) asymptotically behave as elements

C . n+(m+1)/2. 4.1 b
()~ "t (4.11 <Sy(w)(a))|V|SV,(a))>l!im Lsy(w;q)V(q)SV,(w;q)dq

The coupling matrix elements between=(nlm) and

v'=(n+1Jm) have pole singularities ab=0. All other =8, <® (A4)
coupling matrix elements are small. Figure 4 shows the cou-
pling matrix elementsM .- (w)| [Eqg. (3.50]. are finite and the outgoing Sturmian functions form a com-
plete set in the spads, . In this case incoming waves can be
ACKNOWLEDGMENTS expanded in terms of outgoing Sturmian functions.

As an example consider the Sturm-Liouville problem
This work has been supported by the U.S. DOE OBES2.1) with V(q) =exp(—2q), K;(q)=1, andK,(q)=0 in in-
through a grant to the Oak Ridge National Laboratory whichterval 0<q<o with the outgoing-wave boundary condition
is managed by Lockheed Martin Energy Research Corp. un2.9). Then Sturmian functions have the form
der Contract No. DE-AC05-960R22464.
Sv(p,Q)sz( pveiq)i (AS)

where J;,(x) is a Bessel function. The eigenvalups are
determined by the equation

Let us consider the short-range potentidl§q) and

Ky(q). If b is finite andb>1 we introducegy<b and set Jip(\/ﬁ)=0.

APPENDIX A: COMPLETENESS
OF OUTGOING STURMIANS

(AB)
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The Sturmian expansion of the incoming Sturmian function
J_ip(Vp,exp(=0)) in terms of the outgoing Sturmian func-

tions has the form

1ip(Npie =3 AP (Vo €79, (A7)

A, (p)= fo S,(—p;a)V(a)S, (p;q)dq

1
=f0 t3-ip(Vpy DJip(Vp, dt

2 1
IT(1+ip)[* pk—p,:

For largev’, A,,/(p)><1/v' and the summation in E4A7)
converges, but not absolutely.

If V(q) vanishes at infinity as &/ the set of outgoing
Sturmian functions is complete in the spad}' of all piece-
wise continuous function$(q) on L, with asymptotic be-
havior f «q®exp(pq) atq—, andp=0. For this reason it is
appropriate to use outgoingincoming) wave Sturmian
functions to expand outgoingncoming waves even for
short-range potentials. Both sets are essential wheril/q
as for Coulomb potential.

(A8)

APPENDIX B: HELLMAN-FEYNMANN PROPERTIES

The Hellman-Feynmann properties of E¢3.6) and(3.7)
are

* 2 _a)\f(p!w) * 2
Jl (Z1+2Z5)EF7(§)dé= e L Fe(§)d¢,

I

N (pw) (1
(Zl_ZZ)WGZ(n)dn__Tf1G2(77)d771
* ‘”‘g(P,w) *

Jl (52—1)F2(§)d§=2TL F2(&)d¢,

1 N (p,w) (1L
L(l‘ 72)G(n)dn= —Z$LGZ( 7d7,
(81)

where the derivativesd\;/dp, J\,ldp, INgldw, and
d\,/dw are given by

D¢\, o)
dp dD¢(\,p,w)’
2N
&Dn()\,p,w)
I\ , @ J
(P P 82
ap 5D,]()\,p,w)
N

and

3613
IDg(N,p,w)
INe(p,w) B ow
do dD¢(\,p,®)’
2N
dD ,(\,p,w)
2N , W Jw
hPe) . (83)
dw D ,(\,p,w)
2N
APPENDIX C: THE CALCULATION OF Iy(a,x)
The functionl y(a,x) is determined by
lo(a,x)=e*(—ix) 3T'(a,ix). (CY
The recurrence formula
lo(a—1x)=a ixlg(a,x)—1] (C2)

enables us to reduca. To calculately(a,x) we use the
infinite continued fraction representation of the incompléete
function

1 1-a 1 2—-a 2
iXx+ 1+ ix+ 1+ ix+

lo(a,x)= (C3

If x>0 the infinite continued fraction is convergent.

APPENDIX D: ONE-COULOMB-CENTER STURMIANS

Outgoing-wave Coulomb Sturmian functions are obtained
by solving Eq.(2.16 with V(q)= —Z/q. The general solu-
tion is well known to be a linear combination of Coulomb
functionsF, and G, [6]. Imposing outgoing-wave boundary
conditions selects the combinatién+iG, and the require-
ment that the solution is regular at the origin gives the Stur-
mian eigenvalues

pn(w)=i¥, p=y2w, n=12,.... (D1

The explicit form of the corresponding outgoing-wave Cou-

lomb Sturmian functions normalized according to E318
are[3]

o 2'"1ip \/W,
Sr1'(“"q)_(2|+1)! (n—1-11z'

—n,2+2;-2ipq) Y m(Q)

(n—=1-1)! ) i
=V iz 2 lip(paePILi

)ePaF (I+1

X(=2ipa)Yim(Q), (D2)
where Y,,(q) are the spherical harmonics a ,'T,li are
generalized Laguerre polynomidi8].

The asymptotic form o5,(w;q) at largeq is
Sni ;@) ~Cri(w;q)q" e, (D3)
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where

(_1)|+1
(n+H!l(n=I1-1)1Z

(—2pi)"Y(Q).
(D4)

Cnl(w;a): \/

The outgoing-wave Coulomb Sturmian functions are polyno-

mials (Laguerre polynomia)sin q. The low-order functions
(Z=1) are

Sio@;0)=2ipePIYy(q),

Syl ;) = V/8ipePd(1+ipq) Yoo q),

2 L
Sa(w;q)=2 \[gipzqe'qulo(q)- (D5)
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The matrix elements of the Sturmian functions are readily
evaluated using recurrence relations for Laguerre polynomi-

als. For alln the matrix element,,(p) and M. 1(p),
Eq. (2.13 have poles ap=0,

n
Mnn(p):_z_pa

vn+l+1

Mins1(P)= 2Zp

vn+I1
Mnn—l(P)ZTp.

M, (p)=0 otherwise. (D6)
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