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Eikonal formula for tensor forces
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The eikonal formula for the scattering amplitude is investigated for the most general local potential between
two spin one-half particles, i.e., that which includes a tensor interaction. The analysis isolates the main
contribution to high-energy scattering near the forward direction, constructs from it eikonal solution approxi-
mations, and indicates the way to obtain successive corrections. The method is also applied to include a
spin-orbit potential contribution. Closed-form expressions that depend on the potential components are given
for the Green’s function and the scattering amplitude for these approximaft®h@50-294®7)07904-3

PACS numbe(s): 03.65.Nk, 24.10-i, 34.50~s

I. INTRODUCTION these observables. In the present study we derive an eikonal
formula providing for such a description, namely, one which
The eikonal formula is a useful approximation for the accounts for spin degrees of freedom.

matrix or the Green’s function of a system involved in scat- As a way of introducing the subject, we now turn to the

tering characterized by a large energy as compared to typicgerivation of the scalar eikonal formula by considering a

parameters of the system. This approximation has beepystem of two particles interacting through a local potential,

widely used in its scalar version but its extension to accoun¥(r). The nonrelativistic expression for the Green'’s function

for tensor forces has remained mostly unexplored. In facts with energy argumeni and relative coordinates in the

the presence of spin among particles requires that tens@enter of mass system and reduced nmags/e usei=1) is

forces be included in the description of their interaction, andyiven by

these play an important role for various physical systems.

In atomic physics, a magnetic dipole force component — 1
between electrons is a relevant relativistic correction which G= 2 . @
has a tensor formil]. In nuclear physics the tensor interac- w— ﬁ—V'FiG

tion is a necessary component in the description of the
nucleon-nucleon force and even for quarks the relevance olt
this effective component has been pointed out in relation t
the problem of the spin carried by thef]. The eikonal

formula has been investigated in the context of momentum
expansions of the scattering amplitug® and it has been

successfully applied in the study of both high energy

het matrix can be expressed in terms of the Green’s func-
Qion using

t=V+VGV, )

and it describes the scattering amplitude when evaluated in

nucleon-nucleor{NN) collision and that of hadron-nucleus omentum space at on-shell momenta. Writing the initial
collisions where multiparticle collision events are accounted" P . : 9
momentumk; and the final momenturk; as

for by the Glauber theory, which is based on summing two-
body contributions into a linearized formul4]. Moreover, 1
as the Glauber approximation is approached in the high- ki=q— =A,
energy and small angle limit, useful information is obtained 2
about general multiple scatteringvhose single- and two-
scattering contributions evaluated on-shell are equivalent to 1
the eikonal approximation for a composite systdf]. An Ki=q+ EA’ ©)
eikonal approach is also useful in various other areas such as
quantum field theory6] and the response function at large we assumeq is large enough so thak<g. For on-shell
momentum transferg’,8. _ ~ scattering  nw=|kj|?’=|k{|> so A.-q=0, implying

In recent years an increasingly comprehensive experimen; ~ q2/(2m). The eikonal approximation is obtained when
tal study of spin observables in electron scattering of nuclegssentially the potential in Eq1) is smooth enough on a
and in NN collisions has produced data on the cross sectiogcgle of 1¢ so that relevant contributions to the Green’s
at various energy ranges with more detailed information ofynction come only from values of the momentum close to
spin correlation$9]. In addition, calculations of the response g 4], Consequently, the resulting denominator in Ed).
function of nuclear matter, whose values can be extrapolategz_ n2— 2. (q—p)— (q—p)? is well approximated by its
from data on electron scattering on nuclei, point to the iM+jnear contribution, which leads to the eikonal propagator
portance of accounting for spin degrees of freedom and ten-
sor forces[10]. It is hence desirable to search for a more 1
formal but practical way of describing these degrees of free- Gei=— _ ,
dom, and to have a simple way to relate the potential input to Vg—q-p—Viv+ie

=

4

1050-2947/97/56)/35398)/$10.00 55 3539 © 1997 The American Physical Society



3540 J. BESPROSVANY 55

with v =g/m. The latter equation allows for a closed for- Geix=Go+ GoVGy+ GoVGoVGy+ - - - 9)
mula. Explicitly, the eikonal formula for the Green’s func-
tion in this case, expressed in coordinate space, and choosing this equationG, is the eikonal purely kinetic term

the z axis along thei direction, withr=(b,z), is given by i
o i <r’|GO|r>=70(2’—2)52(b’—b)exp[iq(z’—z)].
(r’|Geik|r)=T 0(2’—2)62(b’—b)exr{iq(z’—z) (10)

If we pick up the third term on the right-hand sidis) of
. (5) Eq. (9) we find that the equation

i (2 ~
—;L d¢V(b,{z)

For the case of spin one-half particles, the most genera{r’IGoVGoVGo|r>=f dz'dz' Gy(z' —2")V(Z")
rotationally invariant, spin-dependent local interactdgy
(which involves matrix componentsf two particles labeled XGo(Z'=Z2")\V(2")Go(Z"—2)
1 and 2, can be shown to consist of

—_ r_ 2 r_ H r_
V(1) = V(1) + Vs (1) - 5+ Vg (1) S1a() ~2, T2 mhexdia(z ~2)]

=V (1) +V, (N oy o+ V(D) -y -0y, (6) 2

X (11

i [z ~
— [P arvine)

corresponding, respectively, to the scalar, spin, and tensor
components, where  the tensor  part S;,(r) (making explicit only the dependence of coordinates along
:3?.(,1?. o,— 0, 05, and the second expression uses z in the first equality is a consequence of the commutativity
of V(z) andV(z'), at anyz, z'. Considering nows in Eq.
Vo (r)=Vg(r)=Vg(r), Vs(r)=3Vg(r).  (7)  (8), rather than repeating a similar Born-like expansion

While a simple extension of the eikonal formula has been Geik=Go+ GoVNnGo+ GoVNNGoVNGo T+ - -, (12
considered for a potential with a scalar spin component

V,(r) and a spin-orbit ternil1] (by approximating a mo- progress can be made if we partially resum E) by ex-
mentum operator with a constant terand a spin-orbit ex- panding Eq(8) as

tension has been treated more formally2], to our knowl- ) , L, , )

edge this has not been the case for the tensor force. In this Geik=GotGoVsGot GoVsGoVsGot---. (13

paper we shall analyz8; in Eqg. (4), generalizing it to the Here Gy is written in terms of
case in which it includes the spin dependent interaction ©

Vyn in Eq. (6). In Sec. Il we examine an expansion leading 1 1
to the usual eikonal formula and we analyze its extension to Gy=— _ —, (14)
the tensor case, from which we obtain a first approximation U g—q-p—(VctVgy)lvtie

valid near the forward direction. In Sec. Ill we find a rotation ) ) )
of coordinates which makes the formula useful for computaVhich contains the commuting parts of the potential
tions. In Sec. IV we consider further corrections, which[Ve:Van]=0, — where Vi (r)=V,(r)o, o3, V(1)
brings us to an improved formula applicable in a larger range=Vs(r)r- o1r - o,. The tensor componentss do not com-
of small angles around the forward direction. We also conimute among themselves at different points; in fact, using the
sider a spin-orbit additional component in the potential. Informula for the product of Pauli matricesr-ao-b
Sec. V we derive closed-form expressions for the scatteringsa-b+iaxb- ¢, with a,b any vectors, one shows that
amplitude and in Sec. VI we summarize this work. 1
Il TENSOR CONTRIBUTION [Vs(ra),Vs(rp) 1= gVs(ra)Vs(ro)[ Siafa), SiArp)]
The possibility of giving the closed-form expression in :ZiVS(ra)VS(rb)Fa'FbFaXFb'(Ul+0'2)-
Eq. (5) to the nontensor propagat@y in Eq. (4) is both a
I ek ) (15
consequence of the fact that it satisfies an inhomogeneous
first order differential equation and the fact that the potential However, while the above expression iS nonzero in gen-
commutes with itself at different points. In the tensor Caseeraj, it can give us a clue as to f|nd|ng an initial approxima_

we are interested in calculating tion for the eikonal tensor solution. Equatigh5) implies

L L Vg(ra) andVy(r,) commute if we choose, fy either par-
Gej=— _ — (8) allel or orthogonal among themgelves. Now, our assu.mptlon
Vgq—q-p—Vnn/vtie for values of the momentum withh<q and intermediate

values |p—q|<q translates inr space to relevant values
and there is no simple explicit expression accounting for a|b>|z|, b>|z’'|, corresponding to a mostly parallel range of
terms as in Eq(5). To see this, we expan@. in a Born-  configurations. This suggests commutators as in(Eg).can
like series, from which Eq(5) can be also derived, be neglected in a first approximation to E§). Under this
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assumption we sum only over terms such as those in Eq. An inspection of the tensor contributiory in Egs. (19)

(11), and the resulting ter%) in coordinate space is
eik

i o : .
(1|GQIY =~ B 1By o7 DN Ao i
(16)

where 8, ,= 0(z' —z),

1(z ~
Xk(b,Z'.Z)=—;L d{Vi(b,{2), k=c,o, (17)

we use the definitions of the potential in EJ), and we
define

1(z ~
TSZ—EJ; d¢Vs(b,{2). (18)

Curiously, we note that fob=0, G{) in Eq. (16) be-
comes a representation of the exact solutiorGgj, in EqQ.

(8), which containsVyy . We also note that contributions to
the linear spin operators as in E45) start with at least an
O(1/v) lower as compared to bilinear terms, which we
shortly show enter Eq16). In addition, terms linear in the
spin operators give a vanishing contribution to the forward

amplitude and hence to the total cross secfibd]. We ex-

pect then thaG'%) should give a very good account of the
relevant components in the Green'’s function and the scatte
ing amplitude, at least at small angles, and perhaps even 3¢

wider angles.

Ill. COORDINATE CHANGE

The contribution of the tensor part of the potential in Eq.

(18) is

Ts= TyxO 1x0 2x T TyyO1y0 oyt 77,071,072,
+ Ty T1xT 2y + 0190 24) + Ty A T 1402+ T1,02)
+ Ty O1y0 2t 01,02y), (19
where ther terms are given by
Txx™ CiXS,O(biz, Z),
Tyy= S(ZszS,O( b,z',z),
7,7~ Xs20,2',2),
Tyy= CySeXs0(b,2',2),
Txz™ C¢XS,1(va’ \2),
Ty2=Sexs1(b,2',2), (20)

with

2—1 |
XSJ(b,z’,z):—TJZ dggzi—gzvs(b,gi), 1=0,1,2,
(21

andc,=cos), s,=sin(x), b=b(c,,S,).

and (20) shows that it contains new terms beyond those ap-
pearing inVyn(r) in Egs.(6) and(7). Although noncommut-
ing terms appear to make the expressionGé?,? in Eq. (16)
intractable, we now show that in Eq. (19) can in fact be
written in terms of rotated Pauli matricésr similarly, one
can rotate the coordinatesn such a way that it can be
brought into the form

T5=M-oyM- o, +n-on- o+ k-ok-05, (22
where the vectors=m, n, andk are taken orthogonal, so
that the different operatory- oqv- o, commute among
themselves. By obtaining such vectors we will be able to
write G{%) in terms of scalar quantities multiplying matrix
operators.

The orthogonality condition among the Pauli matrix com-
ponents ofo is kept if we apply a rotation transformation to
each of the Pauli matrices operating on particles 1 and 2,

namely

m-o=C,R oyR, n.-o= Canla'yR,

k-o=CR 1o,R, (23
whereC,,, C,, Cy are, respectively, the lengths of the vec-
torsm, n, andk. Writing the components= (v, ,vy,v,) for
re_ach of the vectorg we demandrs in Eq. (19) to be equal to
s in EqQ. (22), using Eq.(23). We arrive at a system of six

equations for the six unknowns: the three angles in the rota-
tion matrix R and the length€,,,, C,,, Cy,

Cﬁ]r’hlz'i‘ C%ﬁlz'i‘ CﬁRlz: Tii »

i=XxY,z (24

and

Cam,m,+ Can,n,+ Cik.k,= 7y, (25)

and the two other similar equations faz and yz. These
equations can be solved analytically, for at least five of the
six unknowns, three angles iR, and the magnitudes
Cm, Chn, Cy.

Further simplification can be attained when we realize
that the tensor term gives contributionsapwith projections

of o’s along the plane spanned byandz. Explicitly, 75 can
be written

Ts= Xsob: 010 02+ x5 2 012 0,
+ xs1( 015025+ 01302p). (26)

Our rotation then simplifies to trying to writeg in the
form

(27)
where the new orthogonal vectast have components
s=(pb,\n2), t=X(=\7b,\p2).

Vectorss andt are determined by matchind; in Eq. (27),
with 75 in Eq. (26), which leads to the equations

’T,S,: Szg' 0'1%' 02+tzf' (T]_f' gy,

(28)
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p+N2n=xs0,
Np+n=Xxs2,

Vpn(1=A2)=xs1.

These have the solution

(29

XS,O\/;+ X%,o+ 2 X%,l_ Xs0 Xs,2
p= ’

2\u

2 2
_ Xs,z\/;"‘ X521t 2X51™ Xs0Xs,2

2\ ’

)\2:Xs,o+Xs,2_ Vi
Xsot Xs2+ i

n

(30

where

,U«:Xé,o"‘ 4X§,1_ 2 xs0 Xs2t Xéz’ (31

and we have the dependenge p(b,z’,z), n=7(b,z',2),
A=\(b,z’,2). Any of the other three solutions of these
equations can be equally used.

An explicit expression for the spin components @@E’k) in
Eg. (16) can now be obtained by considering

i o .
<r’|Gfe(i)k)|r>:_;02’,25b’,belq(z 7Z)e|710)1 (32)
with

T(O):Xc"_)(sg' 0'1§- 0'2+th- 0'1E~ 0'2+Xufj- Ull]~ oy,
(33

whereu=bx z (sxt is collinear to vecton, and the direc-
tion here is immateria)

Xsot Xs2t \/;

Xs=Xotpt 77=XU+—2 )
Xsot Xs2— \/;
X=Xt N (pt m) = Xt =

Xu=Xo> (34

and we have omitted in the notation the fact that x;, and
xu depend orb, z', andz through the functiony;. Since
s, t, andu are chosen orthogonal, the components‘8f in

Eqg. (33) commute among themselves. Using this fact, the

equation
exp(iyl- oql- o,)=cogy) +i siny)i-oyl- o, (35

for y ac number and any unit vector, and EqA2) in the

Appendix, we obtain for the exponential term in our approxi-

mate Green’s function in Eq32)

0) ~ ~ ~ ~ ~ ~
eT( :F0C+ I‘OSS' 0'13' O'2+ FOtt' Ult' (72+FOUU' O'lU' (23]

(36)
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and
Loc= eixc(csctcu+ iSsStSu),
Ios= eiXC( CsStSyT1SsCiCy),
T oy=eXe(5sCiSy +iCsSiCy),
[y =€X(SsSiCyFiCsCiSy), (37)

where we use the notatiay=cos(ys), Ss= Sin(y), etc.

IV. FURTHER CORRECTIONS
A. Corrections to order V3

Equation(36) implies G, contains only four of the ex-
pected five terms which are needed in the description of the
scattering amplitude of a system of two spin one-half par-
ticles (we show below how this information is obtained from
the Green’s function In the following we improve the ap-
proximation by looking at the lowest order correcting terms
that we have so far discarded.

Indeed, the first term not accounted forG?) in Eq. (16)
is given by the commutator of the potent\ag with itself at
different points, in the third term of the expansion@f;, in
Eq. (13),

(r'I[GoVsGoVsGoleom 1)

=——0, ,0p ,€'97 "Dl (XcTXeO1 02 1 (39
p V220,
where
1 ! " ! " " " "
Tf:_ﬁj dz'dz"6(z' -2")6(z"'—2")6(Z" — 2)
X[Vs(Z"),V«(Z")]. (39

7, contributes to the fifth type of term in the amplitude as, by
using Eq.(15), one shows it is of the form

7=ixU- (o1 + 0y), (40)

where

2b
Xr=— ZZJ’ dZ"d Zm 62’,2” qu‘zm HZW‘Z(Z'"— Z”)(b2+ Z”Zm)

y Vs(Z")Vs(Z")
(b2+Z//2)(b2+Zm2) .

(41)

B. Analysis of series

Further analysis of the series allows us to find the differ-
ent operators participating in it, several of its simplifying
properties, and the next correction terms in our approxima-
tion.

A simple extension of the analysis performed so far for
the third term in expansiolil3) shows that each term of
given order inVg can be separated into
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(permutations ofVg) + (commutators o¥/g), (42 anticommutativity of they, term with theyg, x; terms, us-
ing the product relations in the Appendix, and collecting
and whereas we have taken in our first approximation in Eqterms around the two projection operators
(16) all permutation terms, Eq$38)—(41) describe the first
contribution to the second type of term. 1 A L
In the Appendix we calculate the products among all the  Pu+=5(1+u-oyu-03), Py-=5(1-u-o1u-0oy).
nonorthogonalized operators appearing in E§8) and(40), 47)
which are derived from products of the potendg|y in Eq.
(6) at different points. We deduce that the multiplication of
all terms lead to the same ones, that is, the algebra is closed.
In particular, 7, in Eq. (40) anticommutes with the first two A1
non-trivial components in® in Eq. (33) and commutes €
with the others. From this information and following the ex-

e get

) A~ A A A~ A A
=T+Tu-oqu- 05+ TS 04qS o+ Tt ot - 0

; : +T,0- (o + 0y), 48
ample ofG{%) we shall assume the conjectusalid locally) u- (ot o) “8)
that the general solution to the tensor eikonal formula can be
. ; Where
expressed in terms of an exponential,
i iXc
. ’ (T i —j
(r'|ng)|r>= - ;gzryz5b/‘belq(z _Z)eIT( ), (43) l—‘C: 2 (eIXUCd+e IXUCf)y
with 77 of the form gixc _
~ ~ ~ ~ N ~ FU: 2 (e'Xqu_e*U\/ucf),
T(T):XC’_FXU’U' U'J_U' 0'2+XS/S’ . 0'15’ . 0'2+ Xt’t’ . (Tlt, Oy
+Xr’a'(0'1+0'2)a (44) 1_‘r:iei()(chX”)str/d’
that is, 2™ contains the set of specific operators spanned by ieixe _
those contained in{® in Eq. (33) and 7, in Eq. (40) (for Ty=——[eXusy(xs—x)/d+e sy (st xo) /],
some new orthogonalized vectoss, t' and coefficients
Xc's Xu's Xs's Xt'» Xr» Which are functionals of the poten- s
tial). _lee o iy
To propose an improved approximation to second order in T'= 2 [—e"sg(xs—xo/d+e us(xst xo/ ],
Vg we recall that a first useful separation was made when we (49

realized that the first two terms in E¢G) commute with the

tensor part, and the tensor contribution was partially resumednd

in terms of an exponential, which led &) in Eq. (16). We

now suggest d=(4xZ+ x5+ xt— 2xxs) Y2

’ | . ’_ i (1)
(|GUIN == =0, 10 o€ 2™, (45) f= (Xt +2xx9) ™ (50

We observe that this procedure can similarly be applied to
obtain an explicit expression faB{}) in Eq. (44), or any
V=704 ¥ G- (o + o). (46)  other expression of this form. In tH8{}) case, the five |n
dependent functions of Eq48) prove the eikonal solution
In this construction we have improved the previous approxi€an be expressed in the form of H¢3), at least locally.
mation G} by taking into account the contribution in
Egs. (40), (41), and our approximation is valid to order C. Spin-orbit term

V2. The exponential form in Eq45) is suggested since it : . : . o
containsG© it simulates the conjectur@m and it also The spin-orbiSO) term is also an important contribution

eik » eik 1 . in the nuclear force, beyond the six local parts already con-
reproduces some aspects of the exact solution as it sums OV8Hered in Eq(6). This has the form

some terms in the series. For example, to ordég)? we

have cancellations of some commutatorsvafin Eq. (42), Vso(r)=Vsor)L- (014 05) =V Xp-(o,+ 0).
some of which are reproduced by the putative anticommuta- (51
tive property of the components ef%).

To obtain an explicit expression f@.}) in terms of sca- In the context of the eikonal formula the spin-orbit part of
lar functions we separate the arguments‘éfin Eq.(46),in  the potential can be approximated by dropping the momen-
such a way that we divide the exponential in E45) into  tum dependence when, after writing=q+(p—q), we
one part containing the commuting terms with coefficientseliminate the lower order contribution op The eikonal for-

Xc andy,, and another one with the othdrg® is given in  mula that includes both parts of the potential can then be
Eqg. (33)]. The latter exponential can be expanded using thevritten

with all five terms included in exponentiai’il), where
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=

1 .

L= ——= - , <kf|teik|ki>:j dzbexﬂ_lA'b)J’ dzVyn(2)
U g—q-p—[Vnnt VsdHbau-(o1+0,)]/lv+ie

(52)

X 1+f dZ' Gei(z,2")Van(Z') (56)
where we have usedx q=bxq=bqu.

The same procedure can be followed as to arrive 0 Eqgy jt5 generalization to the spin casevhere the definitions

(16) by e>.<p§mding the Green's funcFion in BG2) in terms for the momenta in Eq3) were used, and only threpart of
of Go. Similarly, we need to examine the commutator be-yhe coordinate arguments were written. When we substitute

tween the expanded potential operators which enter the e’Eq.(lZ) into Eq.(56), a Born-like expansion dfis obtained,
pansion series as in E4LJ): of the form

[Vs(ra) + VEdra). Ve(ro) + Vedro)l, ®3 (Kl teidki) = (k¢ Vnt VNGoVin

with Vd=Vgsq(r)bqu- (o4 + o). This commutator is com- +VunGoVanGoVant - - - ki), (B7)
posed of the contribution in EqL5) and the remaining terms

We now realize that serig§7) in momentum space is repro-

[Vs(ra),Vedrp) 1+ [Vddra),Vs(rp)] duced when in the formal expression 8g in Eq. (12) in

Ve(r)VadTp) coordinate space, one seztS—_wo, z— —o (which cancels

:2iqb[2b<5—a252_bza the two external theta functiopssubtracts the zero order
b*+z; term inVyy, multiplies by (v)?, and Fourier transforms by
integrating over thé variable, with the transverse momen-

_ wzb) (top—t52) tum A as argument.
b*+2, Applying this to the expression faB{}) in Eq. (43), for
VoraVeds) , example, we get
T e (%P
a
ke tR ki) =i fdzb —iA-b)[e”~1]. (58
_Vs(rb)Vso(ra)(Zz_bz) t 50 (Keltei ki) =iv exp(—i )[e ]. (58
b%+z; b bz/:

In fact, similar expressions can be obtained 8}, t{}) by
where we have expressed the spin operators with the help ehoosing#®, #1), respectively, with the prescription far
the definitions in Eq(Al) of the Appendix. Recalling our z' above, or any other possibteerm describing an approxi-
argument that relevant values of the coordinatesbaréz|, = mation to the solution.
b>|z'|, so thatr,~r,,, Eq.(54) suggests that it can be dis-  We consider the scattering amplitude frofy , for which
carded in a first approximation. An analytic approximatedwe use#® in Eq. (46). We find that among the different
expression is consequently obtained for the Green’s functioggefficient components of®) in Egs.(33) and (34), xs; in
Gy in EQ. (52 by summing permutation contributions Eq.(21) vanishes because of the symmetry in the potential so
which now include terms witVs(r)bqu- (o, + ). Using  that we no longer need to rotate thes, and we have

the previously developed formalism, an expressionG@s  s=b, t=z. The final expression for the on-shell scattering

is obtained by taking now for the last term in E¢6) amplitude corresponding ) is
bg (= 5 (D00 q)= at BR- o h -
X=X =X~ d¢Vsdb,(2), (55) sik(0,9)=a+ Bn-o1N- o+ yn- (o1 + 0)
z
+6A- 1A 05+ €q- 01 0, (59

and using the corresponding expressions in E45~(50).

where we use=Axq and
V. ON-SHELL SCATTERING AMPLITUDES

The scattering amplitude is related to thenatrix by the a=— ﬂJ db?exg —iA-b)[T(b)—1] (60)
equationf=—(m/27)t, and its on-shell elements contain 2w ¢ '

direct information on the differential cross section. It is pos-

sible to use a simple prescription to obtain thmatrix cor-

i o0
responding to th& approximations that we have proposed. B=- ?qf db b{[Jo(Ab)+J,(Ab)]T"(b)
To find this prescription we consider the expansion of the 0
eikonalt, similarly to that ofG,; in Eq. (12), we evaluate it +[Jo(Ab) = J(Ab) T b)}
u 1

at on-shell momenta, and we compare it with an expression
that can be derived foB g - ]
We first use Eq(2), which gives the matrix in terms of _1a

€=

2 —_iA. on
G and we evaluate in momentum space 2 dbexp(—iA-D)T (),
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5=— | "db bag(ab)~3,(ab) T END)
0

+[Jo(Ab)+J(Ab)IT'F(b),

y=-a] db ba,ABITID).

components itV and an additional spin-orbit contribution.
From the formalism developed it should be possible to obtain
further corrections systematically.

While we have argued in this paper that the approxima-
tions should be valid in the high energy, small angle regime,
it would be interesting to consider the outcome of this ap-
proximation for a given potential with an exact solution with
realistic parameters and try to compare them with data as, for

In the last integrals we have taken into account the deper@Xample, the case of high energy nucleon-nucleon interac-

dence ofu on b and we have used the Bessel functions
i )
Jn(2)= 7f de e’z coqné), (61)
0

and now
iXc

2

I"=——(e'Xocy +e Xogy)),

iXc

2

on_
I','=

(eiX"'Cd/_eiiX"’Cf/),

Iit=iexexosy, x, 1d’,

i ch X
re'= 2 [e'Xosg (xso— xs2)/d’

+e Xosg (s ot xs2t 2x,)/ '],
ielxe
> [—eXesy (xso— xs2)/d’

on_
ri"=

+e ' Xosg (xs ot Xs2t 2x0) /'], (62
with

, 2, .2 2
d’=(4x;{+ X80+ X2~ 2Xs2Xs0 ™2

]1/2.
(63

2 2 2
f'=[ x50t X52F 2xs2Xs0T 4Xo(Xs0t Xs2) T 4X,

For the on-shell'{" we takexs = xs;(b,%,— ), with the
notation of Eq.(21), and similarly fory,, x., andy, [or its
generalization to the spin-orbit potentigls in Eq. (55)].

VI. SUMMARY

tion, for which one can establish the threshold and ranges of
validity of this approximation. This work is currently in
progress.
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APPENDIX

We present here the operators that are generated from a
local tensor potential, which appear in the eikonal formula.
By displaying their products, we show that they form a
closed algebra. The list of the relevant operators is

tbb=6- 0'16' oy,

tzz=2- 0'12' oy,
th;= 0150221 013025

tuu=l]-01l]-02,

Su=U-(oy+ 0). (A1)

These operators appear, for example, in E86) and (44)
and they commute or anticommute among themselves. The
products among commuting operators are

toulzz= 2 Ap0= — tuu,
tyutop=topluu= ~ 17z,
t,Auu=tuutzz= —too,
L= Sutuu=Su,
thtuu=tuutoz=1thz, (A2)

and those for anticommuting ones are

In this work we have investigated the structure of the
eikonal solution for tensor forces, and this has led us to con-
struct approximated solutions suited to the high energy re-
gime. We have used the fact that the relevant configurations

in this regime are found at values of the coordinates %)

with || <b, implying a nearly parallel set of configurations,
and the resulting solution leads to analytical expressions in
terms of the potentiaV/y in Eq. (6), valid in the forward
direction and nearby angles. The main result of this paper is
a closed-form eikonal approximated formula for the scatter-

—thpSu= Sytpp=itpz,
—,5= Sity7= — ity

- Sute =1, S, =2i(typ—1,,),
~toatbn= toptn= 1Sy,

— o=t A= —1S,.

ing amplitude, which is given in Eq$59)—(63), with the
coefficientsy defined in Eqs(17), (21), and (41). The ex-

The operators described above generate a

u(1)x u(1)x su(2) algebra, as can be seen by considering

pression contains information for each of the five expectedhe combinations,,+t,,, t,,, which commute with all, and
spin amplitudes as a function of the three local potentiat,,, S,, t,,—t,,, Which form an s(2) algebra.
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