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Eikonal formula for tensor forces

J. Besprosvany
Instituto de Fı´sica, UNAM, Apartado Postal 20-364, Me´xico 01000 Distrito Federal, Mexico

~Received 24 April 1996!

The eikonal formula for the scattering amplitude is investigated for the most general local potential between
two spin one-half particles, i.e., that which includes a tensor interaction. The analysis isolates the main
contribution to high-energy scattering near the forward direction, constructs from it eikonal solution approxi-
mations, and indicates the way to obtain successive corrections. The method is also applied to include a
spin-orbit potential contribution. Closed-form expressions that depend on the potential components are given
for the Green’s function and the scattering amplitude for these approximations.@S1050-2947~97!07904-3#

PACS number~s!: 03.65.Nk, 24.10.2i, 34.50.2s
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I. INTRODUCTION

The eikonal formula is a useful approximation for thet
matrix or the Green’s function of a system involved in sc
tering characterized by a large energy as compared to typ
parameters of the system. This approximation has b
widely used in its scalar version but its extension to acco
for tensor forces has remained mostly unexplored. In f
the presence of spin among particles requires that te
forces be included in the description of their interaction, a
these play an important role for various physical systems

In atomic physics, a magnetic dipole force compon
between electrons is a relevant relativistic correction wh
has a tensor form@1#. In nuclear physics the tensor intera
tion is a necessary component in the description of
nucleon-nucleon force and even for quarks the relevanc
this effective component has been pointed out in relation
the problem of the spin carried by them@2#. The eikonal
formula has been investigated in the context of momen
expansions of the scattering amplitude@3# and it has been
successfully applied in the study of both high ener
nucleon-nucleon~NN! collision and that of hadron-nucleu
collisions where multiparticle collision events are accoun
for by the Glauber theory, which is based on summing tw
body contributions into a linearized formula@4#. Moreover,
as the Glauber approximation is approached in the h
energy and small angle limit, useful information is obtain
about general multiple scattering~whose single- and two
scattering contributions evaluated on-shell are equivalen
the eikonal approximation for a composite system! @5#. An
eikonal approach is also useful in various other areas suc
quantum field theory@6# and the response function at larg
momentum transfers@7,8#.

In recent years an increasingly comprehensive experim
tal study of spin observables in electron scattering of nu
and in NN collisions has produced data on the cross sec
at various energy ranges with more detailed information
spin correlations@9#. In addition, calculations of the respons
function of nuclear matter, whose values can be extrapola
from data on electron scattering on nuclei, point to the i
portance of accounting for spin degrees of freedom and
sor forces@10#. It is hence desirable to search for a mo
formal but practical way of describing these degrees of fr
dom, and to have a simple way to relate the potential inpu
551050-2947/97/55~5!/3539~8!/$10.00
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these observables. In the present study we derive an eik
formula providing for such a description, namely, one whi
accounts for spin degrees of freedom.

As a way of introducing the subject, we now turn to th
derivation of the scalar eikonal formula by considering
system of two particles interacting through a local potent
V(r ). The nonrelativistic expression for the Green’s functi
Ḡ with energy argumentv and relative coordinates in th
center of mass system and reduced massm ~we use\51) is
given by

Ḡ5
1

v2
p2

2m
2V1 i e

. ~1!

The t matrix can be expressed in terms of the Green’s fu
tion using

t5V1VḠV, ~2!

and it describes the scattering amplitude when evaluate
momentum space at on-shell momenta. Writing the ini
momentumk i and the final momentumk f as

k i5q2
1

2
D,

k f5q1
1

2
D, ~3!

we assumeq is large enough so thatD!q. For on-shell
scattering 2mv5uk i u25uk f u2 so D•q50, implying
v'q2/(2m). The eikonal approximation is obtained whe
essentially the potential in Eq.~1! is smooth enough on a
scale of 1/q so that relevant contributions to the Green
function come only from values of the momentum close
q @4#. Consequently, the resulting denominator in Eq.~1!
q22p252q•(q2p)2(q2p)2 is well approximated by its
linear contribution, which leads to the eikonal propagator

Ḡeik5
1

v
1

q2q̂•p2V/v1 i e
, ~4!
3539 © 1997 The American Physical Society
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3540 55J. BESPROSVANY
with v5q/m. The latter equation allows for a closed fo
mula. Explicitly, the eikonal formula for the Green’s fun
tion in this case, expressed in coordinate space, and choo
the ẑ axis along theq̂ direction, withr5(b,z), is given by

^r 8uḠeikur &5
2 i

v
u~z82z!d2~b82b!expF iq~z82z!

2
i

vEzz8dzV~b,z ẑ!G . ~5!

For the case of spin one-half particles, the most gen
rotationally invariant, spin-dependent local interactionVNN
~which involves matrix components! of two particles labeled
1 and 2, can be shown to consist of

VNN~r !5Vc~r !1Vs8~r !s1•s21VS8~r !S12~ r̂ !

5Vc~r !1Vs~r !s1•s21VS~r ! r̂•s1r̂•s2 , ~6!

corresponding, respectively, to the scalar, spin, and te
components, where the tensor part S12( r̂ )
53r̂•s1r̂•s22s1•s2, and the second expression uses

Vs~r !5Vs8~r !2VS8~r !, VS~r !53VS8~r !. ~7!

While a simple extension of the eikonal formula has be
considered for a potential with a scalar spin compon
Vs(r ) and a spin-orbit term@11# ~by approximating a mo-
mentum operator with a constant term! and a spin-orbit ex-
tension has been treated more formally@12#, to our knowl-
edge this has not been the case for the tensor force. In
paper we shall analyzeḠeik in Eq. ~4!, generalizing it to the
case in which it includes the spin dependent interact
VNN in Eq. ~6!. In Sec. II we examine an expansion leadi
to the usual eikonal formula and we analyze its extension
the tensor case, from which we obtain a first approximat
valid near the forward direction. In Sec. III we find a rotatio
of coordinates which makes the formula useful for compu
tions. In Sec. IV we consider further corrections, whi
brings us to an improved formula applicable in a larger ran
of small angles around the forward direction. We also c
sider a spin-orbit additional component in the potential.
Sec. V we derive closed-form expressions for the scatte
amplitude and in Sec. VI we summarize this work.

II. TENSOR CONTRIBUTION

The possibility of giving the closed-form expression
Eq. ~5! to the nontensor propagatorḠeik in Eq. ~4! is both a
consequence of the fact that it satisfies an inhomogene
first order differential equation and the fact that the poten
commutes with itself at different points. In the tensor ca
we are interested in calculating

Geik5
1

v
1

q2q̂•p2VNN /v1 i e
, ~8!

and there is no simple explicit expression accounting for
terms as in Eq.~5!. To see this, we expandḠeik in a Born-
like series, from which Eq.~5! can be also derived,
ing
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Ḡeik5G01G0VG01G0VG0VG01•••. ~9!

In this equationG0 is the eikonal purely kinetic term

^r 8uG0ur &5
2 i

v
u~z82z!d2~b82b!exp@ iq~z82z!#.

~10!

If we pick up the third term on the right-hand side~rhs! of
Eq. ~9! we find that the equation

^r 8uG0VG0VG0ur &5E dz9dz-G0~z82z9!V~z9!

3G0~z92z-!V~z-!G0~z-2z!

5
2 i

2v
u~z82z!d2~b82b!exp@ iq~z82z!#

3F2
i

vEzz8dzV~b,z ẑ!G2 ~11!

~making explicit only the dependence of coordinates alo
ẑ in the first equality! is a consequence of the commutativi
of V(z) andV(z8), at anyz, z8. Considering nowGeik in Eq.
~8!, rather than repeating a similar Born-like expansion

Geik5G01G0VNNG01G0VNNG0VNNG01•••, ~12!

progress can be made if we partially resum Eq.~12! by ex-
panding Eq.~8! as

Geik5G081G08VSG081G08VSG08VSG081•••. ~13!

HereGeik is written in terms of

G085
1

v
1

q2q̂•p2~Vc1Vs!/v1 i e
, ~14!

which contains the commuting parts of the potent
@Vs,VNN#50, where Vs(r )5Vs(r )s1•s2, VS(r )
5VS(r ) r̂•s1r̂•s2. The tensor componentsVS do not com-
mute among themselves at different points; in fact, using
formula for the product of Pauli matricess•as•b
5a•b1 ia3b•s, with a,b any vectors, one shows that

@VS~ra!,VS~rb!#5
1

9
VS~r a!VS~r b!@S12~ r̂a!,S12~ r̂b!#

52iVS~r a!VS~r b! r̂a• r̂br̂a3 r̂b•~s11s2!.

~15!

However, while the above expression is nonzero in g
eral, it can give us a clue as to finding an initial approxim
tion for the eikonal tensor solution. Equation~15! implies
VS(ra) andVS(rb) commute if we chooser̂a , r̂b either par-
allel or orthogonal among themselves. Now, our assump
for values of the momentum withD!q and intermediate
values up2qu!q translates inr space to relevant value
b@uzu, b@uz8u, corresponding to a mostly parallel range
configurations. This suggests commutators as in Eq.~15! can
be neglected in a first approximation to Eq.~8!. Under this
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55 3541EIKONAL FORMULA FOR TENSOR FORCES
assumption we sum only over terms such as those in
~11!, and the resulting termGeik

(0) in coordinate space is

^r 8uGeik
~0!ur &52

i

v
uz8,zdb8,be

iq~z82z!ei ~xc1xss1•s2!eitS,

~16!

whereuz8,z5u(z82z),

xk~b,z8,z!52
1

vEzz8dzVk~b,z ẑ!, k5c,s, ~17!

we use the definitions of the potential in Eq.~7!, and we
define

tS52
1

vEzz8dzVS~b,z ẑ!. ~18!

Curiously, we note that forb50, Geik
(0) in Eq. ~16! be-

comes a representation of the exact solution ofGeik in Eq.
~8!, which containsVNN . We also note that contributions t
the linear spin operators as in Eq.~15! start with at least an
O(1/v) lower as compared to bilinear terms, which w
shortly show enter Eq.~16!. In addition, terms linear in the
spin operators give a vanishing contribution to the forwa
amplitude and hence to the total cross section@13#. We ex-
pect then thatGeik

(0) should give a very good account of th
relevant components in the Green’s function and the sca
ing amplitude, at least at small angles, and perhaps eve
wider angles.

III. COORDINATE CHANGE

The contribution of the tensor part of the potential in E
~18! is

tS5txxs1xs2x1tyys1ys2y1tzzs1zs2z

1txy~s1xs2y1s1ys2x!1txz~s1xs2z1s1zs2x!

1tyz~s1ys2z1s1zs2y!, ~19!

where thet terms are given by

txx5cf
2xS,0~b,z8,z!,

tyy5sf
2xS,0~b,z8,z!,

tzz5xS,2~b,z8,z!,

txy5cfsfxS,0~b,z8,z!,

txz5cfxS,1~b,z8,z!,

tyz5sfxS,1~b,z8,z!, ~20!

with

xS,l~b,z8,z!52
b22 l

v E
z

z8
dz

z l

b21z2
VS~b,z ẑ!, l50,1,2,

~21!

andcx5cos(x), sx5sin(x), b5b(cf ,sf).
q.

d

r-
at

.

An inspection of the tensor contributiontS in Eqs. ~19!
and ~20! shows that it contains new terms beyond those
pearing inVNN(r ) in Eqs.~6! and~7!. Although noncommut-
ing terms appear to make the expression forGeik

(0) in Eq. ~16!
intractable, we now show thattS in Eq. ~19! can in fact be
written in terms of rotated Pauli matrices~or similarly, one
can rotate the coordinates! in such a way that it can be
brought into the form

tS85m•s1m•s21n•s1n•s21k•s1k•s2 , ~22!

where the vectorsv5m, n, andk are taken orthogonal, so
that the different operatorsv•s1v•s2 commute among
themselves. By obtaining such vectors we will be able
write Geik

(0) in terms of scalar quantities multiplying matri
operators.

The orthogonality condition among the Pauli matrix com
ponents ofs is kept if we apply a rotation transformation t
each of the Pauli matrices operating on particles 1 and
namely

m•s5CmR
21sxR, n•s5CnR

21syR,

k•s5CkR
21szR, ~23!

whereCm , Cn , Ck are, respectively, the lengths of the ve
torsm, n, andk. Writing the componentsv5(vx ,vy ,vz) for
each of the vectorsv we demandtS in Eq. ~19! to be equal to
tS8 in Eq. ~22!, using Eq.~23!. We arrive at a system of six
equations for the six unknowns: the three angles in the r
tion matrixR and the lengthsCm , Cn , Ck ,

Cm
2 m̂i

21Cn
2n̂i

21Ck
2k̂i

25t i i , i5x,y,z ~24!

and

Cm
2 m̂xm̂y1Cn

2n̂xn̂y1Ck
2k̂xk̂y5txy , ~25!

and the two other similar equations forxz and yz. These
equations can be solved analytically, for at least five of
six unknowns, three angles inR, and the magnitudes
Cm , Cn , Ck .

Further simplification can be attained when we real
that the tensor term gives contributions totSwith projections
of s’s along the plane spanned byb̂ andẑ. Explicitly, tS can
be written

tS5xS,0b̂•s1b̂•s21xS,2ẑ•s1ẑ•s2

1xS,1~s1b̂s2ẑ1s1ẑs2b̂!. ~26!

Our rotation then simplifies to trying to writetS in the
form

tS95s2ŝ•s1ŝ•s21t2t̂•s1t̂•s2 , ~27!

where the new orthogonal vectorss, t have components

s5~Arb̂,Ah ẑ!, t5l~2Ahb̂,Ar ẑ!. ~28!

Vectorss and t are determined by matchingtS9 in Eq. ~27!,
with tS in Eq. ~26!, which leads to the equations
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3542 55J. BESPROSVANY
r1l2h5xS,0 ,

l2r1h5xS,2 ,

Arh~12l2!5xS,1 . ~29!

These have the solution

r5
xS,0Am1xS,0

2 12 xS,1
2 2xS,0 xS,2

2Am
,

h5
xS,2Am1xS,2

2 12xS,1
2 2xS,0xS,2

2Am
,

l25
xS,01xS,22Am

xS,01xS,21Am
, ~30!

where

m5xS,0
2 14xS,1

2 22 xS,0 xS,21xS,2
2 , ~31!

and we have the dependencer5r(b,z8,z), h5h(b,z8,z),
l5l(b,z8,z). Any of the other three solutions of thes
equations can be equally used.

An explicit expression for the spin components forGeik
(0) in

Eq. ~16! can now be obtained by considering

^r 8uGeik
~0!ur &52

i

v
uz8,zdb8,be

iq~z82z!eit
~0!
, ~32!

with

t~0!5xc1xsŝ•s1ŝ•s21x t t̂•s1t̂•s21xuû•s1û•s2 ,
~33!

whereû5b̂3 ẑ ( ŝ3 t̂ is collinear to vectorû, and the direc-
tion here is immaterial!,

xs5xs1r1h5xs1
xS,01xS,21Am

2
,

x t5xs1l2~r1h!5xs1
xS,01xS,22Am

2
,

xu5xs , ~34!

and we have omitted in the notation the fact thatxs , x t , and
xu depend onb, z8, andz through the functionsx i . Since
s, t, andu are chosen orthogonal, the components oft(0) in
Eq. ~33! commute among themselves. Using this fact,
equation

exp~ iy l̂•s1 l̂•s2!5cos~y!1 i sin~y! l̂•s1 l̂•s2 ~35!

for y a c number andl̂ any unit vector, and Eq.~A2! in the
Appendix, we obtain for the exponential term in our appro
mate Green’s function in Eq.~32!

et~0!
5G0c1G0sŝ•s1ŝ•s21G0t t̂•s1t̂•s21G0uû•s1û•s2

~36!
e

-

and

G0c5eixc~csctcu1 issstsu!,

G0s5eixc~csstsu1 issctcu!,

G0t5eixc~ssctsu1 icsstcu!,

G0u5eixc~ssstcu1 icsctsu!, ~37!

where we use the notationcs5cos(xs), ss5sin(xs), etc.

IV. FURTHER CORRECTIONS

A. Corrections to order VS
2

Equation~36! impliesGeik contains only four of the ex-
pected five terms which are needed in the description of
scattering amplitude of a system of two spin one-half p
ticles ~we show below how this information is obtained fro
the Green’s function!. In the following we improve the ap-
proximation by looking at the lowest order correcting term
that we have so far discarded.

Indeed, the first term not accounted for inGeik
(0) in Eq. ~16!

is given by the commutator of the potentialVS with itself at
different points, in the third term of the expansion ofGeik in
Eq. ~13!,

^r 8u@G08VSG08VSG08#comur &

52
i

v
uz8,zdb8,be

iq~z82z!ei ~xc1xss1•s2!tr , ~38!

where

tr52
1

2v2E dz9dz-u~z82z9!u~z92z-!u~z-2z!

3@VS~z9!,VS~z-!#. ~39!

tr contributes to the fifth type of term in the amplitude as,
using Eq.~15!, one shows it is of the form

tr5 ix r û•~s11s2!, ~40!

where

x r52
2b

2v2E dz9dz-uz8,z9uz9,z-uz-,z~z-2z9!~b21z9z-!

3
VS~z9!VS~z-!

~b21z92!~b21z-2!
. ~41!

B. Analysis of series

Further analysis of the series allows us to find the diff
ent operators participating in it, several of its simplifyin
properties, and the next correction terms in our approxim
tion.

A simple extension of the analysis performed so far
the third term in expansion~13! shows that each term o
given order inVS can be separated into
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55 3543EIKONAL FORMULA FOR TENSOR FORCES
~permutations ofVS!1~commutators ofVS!, ~42!

and whereas we have taken in our first approximation in
~16! all permutation terms, Eqs.~38!–~41! describe the first
contribution to the second type of term.

In the Appendix we calculate the products among all
nonorthogonalized operators appearing in Eqs.~33! and~40!,
which are derived from products of the potentialVNN in Eq.
~6! at different points. We deduce that the multiplication
all terms lead to the same ones, that is, the algebra is clo
In particular,tr in Eq. ~40! anticommutes with the first two
non-trivial components int(0) in Eq. ~33! and commutes
with the others. From this information and following the e
ample ofGeik

(0) we shall assume the conjecture~valid locally!
that the general solution to the tensor eikonal formula can
expressed in terms of an exponential,

^r 8uGeik
~T!ur &52

i

v
uz8,zdb8,be

iq~z82z!eit
~T!
, ~43!

with t(T) of the form

t~T!5xc81xu8û•s1û•s21xs8ŝ8•s1ŝ8•s21x t8 t̂8•s1t̂8•s2

1x r 8û•~s11s2!, ~44!

that is,t(T) contains the set of specific operators spanned
those contained int(0) in Eq. ~33! and tr in Eq. ~40! ~for
some new orthogonalized vectorss8, t8 and coefficients
xc8, xu8, xs8, x t8, x r 8, which are functionals of the poten
tial!.

To propose an improved approximation to second orde
VSwe recall that a first useful separation was made when
realized that the first two terms in Eq.~6! commute with the
tensor part, and the tensor contribution was partially resum
in terms of an exponential, which led toGeik

(0) in Eq. ~16!. We
now suggest

^r 8uGeik
~1!ur &52

i

v
uz8,zdb8,be

iq~z82z!eit
~1!
, ~45!

with all five terms included in exponentialeit
(1)
, where

t~1!5t~0!1x r û•~s11s2!. ~46!

In this construction we have improved the previous appro
mation Geik

(0) by taking into account the contributiontr in
Eqs. ~40!, ~41!, and our approximation is valid to orde
VS

2. The exponential form in Eq.~45! is suggested since i
containsGeik

(0) , it simulates the conjectureGeik
(T) , and it also

reproduces some aspects of the exact solution as it sums
some terms in the series. For example, to order (VS)

3 we
have cancellations of some commutators ofVS in Eq. ~42!,
some of which are reproduced by the putative anticomm
tive property of the components oft(1).

To obtain an explicit expression forGeik
(1) in terms of sca-

lar functions we separate the arguments oft(1) in Eq. ~46!, in
such a way that we divide the exponential in Eq.~45! into
one part containing the commuting terms with coefficie
xc andxu , and another one with the others@t(0) is given in
Eq. ~33!#. The latter exponential can be expanded using
q.

e

f
ed.

e

y

in
e

d

i-

ver

a-

s

e

anticommutativity of thex r term with thexs , x t terms, us-
ing the product relations in the Appendix, and collecti
terms around the two projection operators

Pu15
1

2
~11û•s1û•s2!, Pu25

1

2
~12û•s1û•s2!.

~47!

We get

et~1!
5Gc1Guû•s1û•s21Gsŝ•s1ŝ•s21G t t̂•s1t̂•s2

1G r û•~s11s2!, ~48!

where

Gc5
eixc

2
~eixucd1e2 ixucf !,

Gu5
eixc

2
~eixucd2e2 ixucf !,

G r5 iei ~xc1xu!sdx r /d,

Gs5
ieixc

2
@eixusd~xs2x t!/d1e2 ixusf~xs1x t!/ f #,

G t5
ieixc

2
@2eixusd~xs2x t!/d1e2 ixusf~xs1x t!/ f #,

~49!

and

d5~4x r
21xs

21x t
222x txs!

1/2,

f5~xs
21x t

212x txs!
1/2. ~50!

We observe that this procedure can similarly be applied
obtain an explicit expression forGeik

(T) in Eq. ~44!, or any
other expression of this form. In theGeik

(T) case, the five in-
dependent functions of Eq.~48! prove the eikonal solution
can be expressed in the form of Eq.~43!, at least locally.

C. Spin-orbit term

The spin-orbit~SO! term is also an important contributio
in the nuclear force, beyond the six local parts already c
sidered in Eq.~6!. This has the form

VSO~r !5VSO~r !L•~s11s2!5VSO~r !r3p•~s11s2!.
~51!

In the context of the eikonal formula the spin-orbit part
the potential can be approximated by dropping the mom
tum dependence when, after writingp5q1(p2q), we
eliminate the lower order contribution inq. The eikonal for-
mula that includes both parts of the potential can then
written
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Geik8 5
1

v
1

q2q̂•p2@VNN1VSO~r !bqû•~s11s2!#/v1 i e
,

~52!

where we have usedr3q5b3q5bqû.
The same procedure can be followed as to arrive to

~16! by expanding the Green’s function in Eq.~52! in terms
of G08 . Similarly, we need to examine the commutator b
tween the expanded potential operators which enter the
pansion series as in Eq.~13!:

@VS~ra!1VSO
q ~ra!,VS~rb!1VSO

q ~rb!#, ~53!

with VSO
q 5VSO(r )bqû–(s11s2). This commutator is com-

posed of the contribution in Eq.~15! and the remaining term

@VS~ra!,VSO
q ~rb!#1@VSO

q ~ra!,VS~rb!#

52iqbF2bSVS~r a!VSO~r b!

b21za
2 za

2
VS~r b!VSO~r a!

b21zb
2 zbD ~ tbb2tzz!

1SVS~r a!VSO~r b!

b21za
2 ~za

22b2!

2
VS~r b!VSO~r a!

b21zb
2 ~zb

22b2! D tbzG , ~54!

where we have expressed the spin operators with the he
the definitions in Eq.~A1! of the Appendix. Recalling our
argument that relevant values of the coordinates areb@uzu,
b@uz8u, so thatr a;r b , Eq. ~54! suggests that it can be dis
carded in a first approximation. An analytic approximat
expression is consequently obtained for the Green’s func
Geik8 in Eq. ~52! by summing permutation contribution

which now include terms withVSO(r )bqû•(s11s2). Using
the previously developed formalism, an expression forGeik8
is obtained by taking now for the last term in Eq.~46!

x r→x r 95x r2
bq

v E
z

z8
dzVSO~b,z ẑ!, ~55!

and using the corresponding expressions in Eqs.~45!–~50!.

V. ON-SHELL SCATTERING AMPLITUDES

The scattering amplitude is related to thet matrix by the
equation f52(m/2p)t, and its on-shell elements conta
direct information on the differential cross section. It is po
sible to use a simple prescription to obtain thet matrix cor-
responding to theG approximations that we have propose
To find this prescription we consider the expansion of
eikonalt, similarly to that ofGeik in Eq. ~12!, we evaluate it
at on-shell momenta, and we compare it with an express
that can be derived forGeik .

We first use Eq.~2!, which gives thet matrix in terms of
G and we evaluate in momentum space
q.

-
x-

of

n

-

.
e

n

^k f uteikuk i&5E d2bexp~2 iD•b!E dzVNN~z!

3F11E dz8Geik~z,z8!VNN~z8!G ~56!

~in its generalization to the spin case!, where the definitions
for the momenta in Eq.~3! were used, and only thez part of
the coordinate arguments were written. When we substi
Eq. ~12! into Eq.~56!, a Born-like expansion oft is obtained,
of the form

^k f uteikuk i&5^k f uVNN1VNNG0VNN

1VNNG0VNNG0VNN1•••uk i&. ~57!

We now realize that series~57! in momentum space is repro
duced when in the formal expression forGeik in Eq. ~12! in
coordinate space, one setsz8→`, z→2` ~which cancels
the two external theta functions!, subtracts the zero orde
term inVNN , multiplies by (iv)

2, and Fourier transforms by
integrating over theb variable, with the transverse momen
tum D as argument.

Applying this to the expression forGeik
(T) in Eq. ~43!, for

example, we get

^k f uteik
~T!uk i&5 ivE d2bexp~2 iD•b!@eit

~T!
21#. ~58!

In fact, similar expressions can be obtained forteik
(0) , teik

(1) by
choosingt(0), t(1), respectively, with the prescription forz,
z8 above, or any other possiblet term describing an approxi
mation to the solution.

We consider the scattering amplitude fromteik
(1) , for which

we uset(1) in Eq. ~46!. We find that among the differen
coefficient components oft(1) in Eqs.~33! and ~34!, xS,1 in
Eq. ~21! vanishes because of the symmetry in the potentia
that we no longer need to rotate thes’s, and we have
ŝ5b̂, t̂5 ẑ. The final expression for the on-shell scatteri
amplitude corresponding toteik

(1) is

f eik
~1!~u,q!5a1bn̂•s1n̂•s21gn̂•~s11s2!

1dD̂•s1D̂•s21eq̂•s1q̂•s2 , ~59!

where we usen̂5D̂3q̂ and

a52
iq

2pE db2exp~2 iD•b!@Gc
on~b!21#, ~60!

b52
iq

2 E0
`

db b$@J0~Db!1J2~Db!#Gs
on~b!

1@J0~Db!2J2~Db!#Gu
on~b!%,

e52
iq

2pE db2exp~2 iD•b!G t
on~b!,
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d52
iq

2 E0
`

db b@J0~Db!2J2~Db!#Gs
on~b!

1@J0~Db!1J2~Db!#Gu
on~b!,

g52qE
0

`

db bJ1~Db!G r
on~b!.

In the last integrals we have taken into account the dep
dence ofû on b̂ and we have used the Bessel functions

Jn~z!5
i2n

p E
0

p

du eizcos~u!cos~nu!, ~61!

and now

Gc
on5

eixc

2
~eixscd81e2 ixscf 8!,

Gu
on5

eixc

2
~eixscd82e2 ixscf 8!,

G r
on5 iei ~xc1xs!sd8x r /d8,

Gs
on5

ieixc

2
@eixssd8~xS,02xS,2!/d8

1e2 ixssf 8~xS,01xS,212xs!/ f 8#,

G t
on5

ieixc

2
@2eixssd8~xS,02xS,2!/d8

1e2 ixssf 8~xS,01xS,212xs!/ f 8#, ~62!

with

d85~4x r
21xS,0

2 1xS,2
2 22xS,2xS,0!

1/2,

f 85@xS,0
2 1xS,2

2 12xS,2xS,014xs~xS,01xS,2!14xs
2 #1/2.

~63!

For the on-shellG i
on we takexS,l5xS,l(b,`,2`), with the

notation of Eq.~21!, and similarly forxs , xc , andx r @or its
generalization to the spin-orbit potentialx r 9 in Eq. ~55!#.

VI. SUMMARY

In this work we have investigated the structure of t
eikonal solution for tensor forces, and this has led us to c
struct approximated solutions suited to the high energy
gime. We have used the fact that the relevant configurat
in this regime are found at values of the coordinates (b,z ẑ)
with uzu!b, implying a nearly parallel set of configuration
and the resulting solution leads to analytical expression
terms of the potentialVNN in Eq. ~6!, valid in the forward
direction and nearby angles. The main result of this pape
a closed-form eikonal approximated formula for the scat
ing amplitude, which is given in Eqs.~59!–~63!, with the
coefficientsx defined in Eqs.~17!, ~21!, and ~41!. The ex-
pression contains information for each of the five expec
spin amplitudes as a function of the three local poten
n-

n-
-
ns

in

is
r-

d
l

components inVNN and an additional spin-orbit contribution
From the formalism developed it should be possible to obt
further corrections systematically.

While we have argued in this paper that the approxim
tions should be valid in the high energy, small angle regim
it would be interesting to consider the outcome of this a
proximation for a given potential with an exact solution wi
realistic parameters and try to compare them with data as
example, the case of high energy nucleon-nucleon inte
tion, for which one can establish the threshold and range
validity of this approximation. This work is currently in
progress.
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APPENDIX

We present here the operators that are generated fro
local tensor potential, which appear in the eikonal formu
By displaying their products, we show that they form
closed algebra. The list of the relevant operators is

tbb5b̂•s1b̂•s2 ,

tzz5 ẑ•s1ẑ•s2 ,

tbz5s1b̂s2ẑ1s1ẑs2b̂ ,

tuu5û•s1û•s2 ,

Su5û•~s11s2!. ~A1!

These operators appear, for example, in Eqs.~26! and ~44!
and they commute or anticommute among themselves.
products among commuting operators are

tbbtzz5tzztbb52tuu ,

tuutbb5tbbtuu52tzz,

tzztuu5tuutzz52tbb ,

tuuSu5Sutuu5Su ,

tbztuu5tuutbz5tbz , ~A2!

and those for anticommuting ones are

2tbbSu5Sutbb5 i tbz ,

2tzzSu5Sutzz52 i tbz ,

2Sutbz5tbzSu52i ~ tbb2tzz!,

2tbztbb5tbbtbz5 iSu ,

2tbztbz5tzztbz52 iSu . ~A3!

The operators described above generate
u(1)3 u(1)3 su(2) algebra, as can be seen by consider
the combinationstbb1tzz, tuu , which commute with all, and
tbz , Su , tbb2tzz, which form an su~2! algebra.
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