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Approximate analytical solution for two electrons in the continuum
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In this work we construct a correlated double continuum wave function for the three-body Schro¨dinger
equation valid for large interparticle distances. Genuine three-body effects are considered by taking into
account a nondiagonal part of the Hamiltonian written in generalized parabolic coordinates. A solution is found
in terms of the confluent hypergeometric function of two variablesF2, with similar structure to the first-order
Faddeev approximation. The use of such a solution seems to introduce appropriately the interelectronic repul-
sion. @S1050-2947~97!06804-2#

PACS number~s!: 03.65.Nk, 34.50.Fa, 34.10.1x
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I. INTRODUCTION

The three-body Coulomb continuum problem is of fund
mental importance in atomic physics. There are sev
mechanisms leading to three unbounded particles in the
state, such as single ionization by electron impact, dou
photoionization, or double Compton. In all these cases
have to deal with two electrons in the continuum. Seve
approximate double continuum wave functions have b
used to compute the correspondent cross sections. The
simple approximation consists of neglecting one of the in
actions; namely, the electron-electron (e-e) repulsion. This
leads to a solution expressed in terms of a product of
Coulomb waves, the so-called C2 approximation. It produ
reasonable agreement with measured total cross sectio
double photoionization@1#, but it cannot describe electro
angular distributions because it does not consider the e
tronic correlation. To some extent, this correlation can
taken into account using momentum-dependent effec
charges as introduced by Rudge and Seaton@2#.

A more comprehensive approximation is found by n
glecting all mixed derivatives of the three-body Hamiltoni
written in generalized parabolic coordinates@3#. This wave
function is expressed in terms of a product of three Coulo
waves, the so-called C3 approximation@3–5#. Unlike the C2,
the C3 approximation tends to the exact solution of the pr
lem for large interparticle distances. However, this solut
underestimates by orders of magnitude the threshold of t
cross sections@6# because of an overestimation of the ele
tronic repulsion.

To avoid this defect it is necessary to find a wave funct
where the variables of the system are correlated so that
certain configurations, the repulsion between the electr
becomes shielded by the presence of the nucleus. In re
years, new correlated wave functions have been develo
These solutions have the same structure as the C3 app
mation, but with effective momenta@7# or charges@8# de-
pending ‘‘slowly’’ on the coordinates. In order to determin
to what extent this kind of approach introduces correlati
in Sec. II, we solve numerically a model Hamiltonian co
sidering two electrons in the field of a nucleus for a partic
lar configuration. We find that the use of effective mome
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does not provide a fully satisfactory answer to the proble
In Sec. III, we look for a solution beyond the C3 approxim
tion. We find a double continuum wave function in terms
the hypergeometric function of two variablesF2, which is an
exact solution for large interparticle distances. Finally in S
IV, we expose our main conclusions and outlook. Atom
units will be employed throughout this work.

II. THE THREE-BODY COULOMB EQUATION IN
GENERALIZED PARABOLIC COORDINATES

Let us consider two electrons in the Coulomb field of
heavy nucleus whose mass is considered infinite. The se
Jacobi coordinates are shown in Fig. 1. The nonrelativi
Hamiltonian of the three-body system is given by

S ¹1
21¹2

21
2Z1
r 1

1
2Z2
r 2

1
2Z3
r 3

2ED C̄50, ~1!

where Z15Z25Z is the nuclear charge,Z3521/2 repre-
sents the strength of thee-e repulsion, andE5k1

2/21k2
2/2 is

the total energy. It is convenient here to make two transf
mations. First, we remove the plane-wave asymptotic con
tion by writing

C̄5~2p!23exp~ ik1•r11 ik2•r2!C, ~2!

wherek1 (k2) is the momentum of the electron ‘‘1’’~‘‘2’’ !
with respect to the heavy nucleus, andk35(k12k2)/2 is the

FIG. 1. Set of Jacobi coordinates. When the nucleus mass t
to infinity, thenR1→r 2 andR2→r 1.
3518 © 1997 The American Physical Society
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55 3519APPROXIMATE ANALYTICAL SOLUTION FOR TWO . . .
e-e relative momentum. Second, we follow the work of Kl
@3# introducing the following generalized parabolic coord
nates:

j j5r j1r j• k̂ j , h j5r j2r j• k̂ j , j51,2,3. ~3!

After significant algebra, one can find that Eq.~1! transforms
into

HC5~HC31WC3!C50, ~4!

whereH is the total Hamiltonian,

HC35(
j51

3

2
11d j ,3

j j1h j
~Hj

21Hj
11Zj !, ~5!

Hj
25

]

]j j
j j

]

]j j
1 ik jj j

]

]j j
, ~6!

Hj
15

]

]h j
h j

]

]h j
1 ik jh j

]

]h j
, ~7!

WC35(
l51

2

~21! l11F t l2•t32 ]2

]j l]j3
1t l

2
•t3

1
]2

]j l]h3

1t l
1
•t3

2
]2

]h l]j3
1t l

1
•t3

1
]2

]h l]h3
G , ~8!

and

t j
65 r̂ j7 k̂ j , j51,2,3. ~9!

If the termWC3 is neglected, the solution ofHC3 with the
outgoing condition is the well-known C3 approximation, i.
HC3CC3

2 50, where

HC3
2 5(

j51

3

2
11d j ,3

j j1h j
~Hj

21Zj !, ~10!

CC3
2 5)

j51

3

Nj
2F j

2 , ~11!

F j
251F1~ ia j ;1;2 ik jj j !, ~12!

Nj
25exp~2pa j /2!G~12 ia j !, ~13!

a j52Zj /kj , j51,2,3 and1F1 is the degenerate hyperge
metric function. In this work we will concentrate on the ou
going solution~similar structure is found for the incomin
solutionCC3

1 ). For large interparticle distances,CC3
2 tends to

the proper asymptotic solution known as Redmond’s con
tion:

lim
r j→`

CC3
2 5)

j51

3

Ej
2 , Ej

25exp@2 ia j ln~kjj j !#. ~14!

The C2 approximation is obtained fromCC3
2 by neglect-

ing the e-e interaction to giveCC2
2 5P j51

2 Nj
2F j

2 , which
does not satisfy the Redmond’s conditions. Note that if
e-e interaction is switched off, the C2 function is an exa
,

i-

e
t

solution of Eq.~4!. Therefore, any approximate double co
tinuum wave function should reduce to C2 whenZ350.

The functionCC3
2 is a solution of the uncorrelated differ

ential operatorHC3. Our goal is to find an approximate so
lution of Eq. ~4! valid for large interparticle distances tha
account for three-body effects beyond the C3 approximat
In generalized parabolic coordinates, the correlation arise
terms containing mixed derivatives. If we want to accou
for all the crossing derivatives contained inWC3, the two
following problems occur:

~i! Today’s computers prohibit solving a six-dimension
differential equation of the type of Eq.~4! in all the vari-
ables, i.e.,j1 ,j2 ,j3 ,h1 ,h2, andh3. On physical grounds we
will neglect the terms containingt1]/h j for the outgoing
boundary conditions. Two reasons can be put forward to s
port this approximation. First, at large distances one can
pect thatk j is nearly parallel tor j and sot1 should vanish.
In addition, if we iterateCC3

2 thus all the terms containing
]h j will cancel since it depends only onj j . In conclusion
we write the outgoing approximation as

WC3>WC3
2 5(

l51

2

~21! l11t l
2
•t3

2
]2

]j l]j3
. ~15!

If we are interested in the incoming boundary solution
stead, we should approximateWC3>WC3

1 , i.e., we should
neglect all the terms containingt2]/j j .

~ii ! The second problem arises when we try to express
coefficientst l

2
•t3

2 as a function of the parabolic coordinate
This task is quite cumbersome since we have to find the ro
of a quartic polynomial as shown in Appendix A. Therefo
we are forced to approximatet l

2
•t3

2 , having in mind that the
solution should have the following properties: for large i
terparticle distances it goes to Redmond’s solution Eq.~14!,
it has a regular behavior at total breakup threshold, and
two electrons are treated on equal footing.

A. The use of effective momenta

The wave functionCC3
2 was designed to hold for larg

interparticle separationsr j→`, but in the semiasymptotic
regions, namely,

V1 : r 1 /r 2→0, r 2 ,r 3→`,

V2 : r 2 /r 1→0, r 1 ,r 3→`, ~16!

V3 : r 3 /R3→0, R3 ,r 1 ,r 2→`

is not appropriated. In this section, we derive the wave fu
tion developed by Alt and Mukhamedzhanov@7# CAM

2 ,
which is a correlated solution expected to be valid also in
the semiasymptotic regions. To obtainCAM

2 from our general
Eq. ~4! with the outgoing approximation Eq.~15!, we take
the following steps. In the regionV1 we take into account
only the mixed derivative]2/]j1]j3 and approximate the
coefficientt1

2
•t3

2 by its projection in the directionk̂1, i.e.,

t1
2
•t3

2>~ t1
2
• k̂1!~ k̂1•t3

2!5
j1
r 1
k̂1•~ k̂31 r̂3!. ~17!
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3520 55P. A. MACRI et al.
We look for a solution of the form

C2}E2
2E3

2F~r3 ;j1!, ~18!

where r3 is taken parametrically inF. Further, forr 3→`,
we consider

]2C

]j1]j3
}E2

2E3
2

ia3

r 3~11 k̂3• r̂3!

]F~r3 ;j1!

]j1
, ~19!

and then we arrive at amodifiedconfluent hypergeometric
equation inj1:

F ]

]j1
j1

]

]j1
1ık18~r3!j1

]

]j1
1Z1GF~r3 ;j1!50, ~20!

wherek18 is an effective momentum defined by

k18~r3!5k11
a3

r 3

~ k̂31 r̂3!

~11 k̂3• r̂3!
. ~21!

Others asymptotes can be covered in a similar way w
momenta

k28~r3!5k22
a3

r 3

~ k̂31 r̂3!

~11 k̂3• r̂3!
, ~22!

k38~r3!5k31
a1

2r 1

~ k̂11 r̂1!

~11 k̂1• r̂1!
2

a2

2r 2

~ k̂21 r̂2!

~11 k̂2• r̂2!
. ~23!

For large interparticle distances,k j8→k j , and the Red-
mond’s conditions are then satisfied. In this way, we obta
product of confluent hypergeometric functions as given
Eq. ~11!

CASYM
2 5)

j51

3

Nj8
2F j8

2 , ~24!

with a j852Zj /kj8 , instead ofa j in Eqs.~12! and ~13!.
It should be noted that the momenta given by Eqs.~21!–

~23! are not identical to those found by Alt and Mukhame
zhanov. These authors considered

k1,AM8 ~r3!5k11
a3

r 2

~ k̂31 r̂2!

~11 k̂3• r̂2!
, ~25!

instead of Eq.~21!, and replacedr 2 by (r 11r 21r 3)/2 to
avoid the singularity asr 2→0. However, asr 2→` and
r 1 /r 2→0 then

k1,AM8 •r1→k18•r11O~r 1
2/r 2

2!. ~26!

ThereforeCAM→CASYM
2 , i.e., both solutions fall down to

gether inV1. In an analogous way, is easy to see that this
also true in each semiasymptotic region. The use of effec
momenta was first introduced by Felden@9# in the context of
the Vainstein, Presnyakov, and Sobelman approximat
which can be considered as the forerunner of the C3 one@4#.
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B. A numerical test

In this section we explore how efficiently the effectiv
momenta introduce correlation between coordinates.
benchmark we pose here is an asymptotic Hamilton
H` , in which we have assumedh15h25h350, and so
t l
2
•t3

254k̂ l• k̂3 to give

H`5(
j51

3

2
11d j ,3

j j
~Hj

21Zj !14k̂1• k̂3
]2

]j1]j3

24k̂2• k̂3
]2

]j2]j3
. ~27!

If we write the series expansionC`
25Sklmf k,l ,mj1

kj2
l j3

m ,
one can obtain the following relation@10#

05@~k11!2f k11,l21,m211~Z11 ik1k! f k,l21,m21#

1@~ l11!2f k21,l11,m211~Z21 ik2l ! f k21,l ,m21#

12@~m11!2f k21,l21,m111~Z31 ik3m! f k21,l21,m#

1 k̂1• k̂3kmfk,l21,m2 k̂2• k̂3lm fk21,l ,m , ~28!

which cannot be solved for all values of the subscripts. Th
points can be inferred. First, one can easily see that by
ting k̂1• k̂35 k̂2• k̂350, we obviously obtain the C3 function
which satisfies

f k11,l ,m52
~Z11 ik1k!

~k11!2
f k,l ,m , ~29!

and similar relations for the other variables. Second,C`
2

tends to the Redmond’s conditions. And third, the derivat
at the origin satisfies Kato’s cusp condition@11#

F 1

C`
2

]

]j j
C`

2G
j j50

52Zj , ~30!

which lets us initialize the numerical calculation. The Re
mond’s values at large distances and Kato’s derivatives
the origin lead us to a Dirichlet-Neumann mixed-bounda
condition problem. The determinant of the coefficients m
tiplying the second derivative terms is positive, and theref
the differential equation is elliptic, as it is the original E
~1!.

The numerical solution of Eq.~27! is still quite cumber-
some. To reduce the problem we have conside
k̂2• k̂350 and so k̂1• k̂352k3 /k1. In this case, we write
C`

25N2F2G138 (j1 ,j3), whereG138 satisfies

F 2j1 ~H1
21Z1!1

4

j3
~H3

21Z3!1
8k3
k1

]2

]j1]j3
G

3G138 ~j1 ,j3!50. ~31!

We have solved Eq.~31! by the finite difference method fo
k151, k350.4, and sok250.6. Results are shown in Fig.
where we represent the square modulus ofG138 in parabolic
coordinates.G138 is compared with the C3 approximatio
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FIG. 2. Upper figures displayuG138 u2, uF13u2, and uF138 u2 as a function ofj i85j i(N21)/j i
MAX i51,3 for k151.0 a.u. andk350.4 a.u.

Lower figures display the corresponding contour plot. The number of nodesN in each direction isN550 and the maximum value ofj1
(j3) is j1

MAX515 a.u. (j3
MAX565 a.u.!.
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F135N1N3F1F3 and the one having effective momen
F138 5N18N38F18F38 for r 251. The effective momenta are no

k185k11
2a3

R
~ k̂31 k̂2!, ~32!

k385k31
a1

R

~ k̂11R̂3!

11 k̂1•R̂3

2
a2

R

~ k̂21R̂3!

11 k̂2•R̂3

, ~33!

R511r 11r 3, andR35(r 1k̂11 k̂2)/2.
Some conclusions can be drawn. First,F138 does not differ

appreciably fromF13. Similar conclusions can be inferre
also from the article of Jones and Madison@12#; the inclu-
sion of effective momenta does not alter appreciably
electronic distributions. By inspecting the contour plot w
can note that the enhancements ofF13, and even the ones o
F138 , are situated in arectangular form, while the ones of
G138 are slanted. Also the shapes of the enhancement ha
different forms ~similar features have been found also f
others values ofki). The effective momenta method does n
seem to be a satisfactory solution of the problem. In the n
section we introduce an alternative approximation that,
think, may be a good candidate to tackle the double c
tinuum problem.
e

e

t
xt
e
-

III. THE F2 APPROXIMATION

We look for a wave function with the outgoing bounda
condition beyond the C3 approximation by taking into a
count the mixed derivatives. Let us write the exact expr
sion of the coefficientt l

2
•t3

2 :

t l
2
•t3

256
2j l

~j31h3!
6

4j3
~j l1h l !

7
2r l

21r 3
27r l•r3
r l r 3

1 k̂ l• k̂32
k̂ l
r 3
•~2r l7r3!1

k̂3
r l
•~r l7r3!, ~34!

where the upper~lower! sign corresponds tol51 (l52). We
here will consider just the first two terms

t l
2
•t3

2>6F 2j l
~j31h3!

1
4j3

~j l1h l !
G ~35!

to give

WC3
2 >Wcorr

2 5
2j3

~j11h1!

]2

]j1]j3
1

2j3
~j21h2!

]2

]j2]j3

1
4j1

~j31h3!

]2

]j1]j3
1

4j2
~j31h3!

]2

]j2]j3
. ~36!
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As we shall see, the approximation~36! does not alter the
Redmond’s condition. Considering Eqs.~15! and ~36! we
can reduce Eq.~4! as Hcorr

2 Ccorr
2 5(HC3

2 1Wcorr
2 )Ccorr

2 50,
where

Hcorr
2 5

1

~j11h1!
FH1

21Z11j3
]2

]j1]j3
G

1
1

~j21h2!
FH2

21Z21j3
]2

]j2]j3
G

1
2

~j31h3!
FH3

21Z31j1
]2

]j1]j3
1j2

]2

]j2]j3
G .

~37!

A closed form ofCcorr
2 is not known to us. The neares

solved case is the fully symmetric system

FHj
21Zj1jk

]2

]jk]j j
1j l

]2

]j l]j j
GF50, ~38!

with jÞkÞ l51,2,3 whose solution is the degenerate hyp
geometric function of three variables @13#
F5F2( ia1 ,ia2 ,ia3 ;1;2 ik1j1 ,2 ik2j2 ,2 ik3j3), where

F2~b,b8b9;g;x,y,z!5(
klm

~b!k~b8! l~b9!m
~g!k1 l1m

xk

k!

yl

l !

xm

m!
.

~39!

Note that this solution considers a term]2/]j1]j2, which is
missing in our starting Eq.~37!. Consequently, by setting
Z350, it does not reproduce the C2 approximation, and
should be lied aside. However, Eq.~39! should be considered
an appropriate wave function for a three equal-mass sys
of particles. Next we will find an approximation of Eq.~37!
valid for large distances.

To start, we correlate only the variablesj1 andj3, i.e., we
discard]2/]j2]j3. This restriction allows us to separate E
~37! as

1

~j21h2!
@H2

21Z2#G2~j2!50, ~40!

1

~j11h1!
FH1

21Z11j3
]2

]j1]j3
GG13~j1 ,j3!50, ~41!

2

~j31h3!
FH3

21Z31j1
]2

]j1]j3
GG13~j1 ,j3!50. ~42!

The solution of this system of equation
G2(j2)G13(j1 ,j3). Note that it depends only onj1 ,j2 , and
j3 even though we have not imposed any condition on
variablesh1 ,h2, andh3.

The solution of Eq.~40! is simply a confluent hypergeo
metric function;G2(j2)5N2

2F2
2 . Equations~41! and ~42!

form a system of partial differential equations studied
Appell and Kampe´ de Fériet @13#. A solution of this system
is a generalization of the confluent hypergeometric funct
F2 of two variables, which is expressed as
-

it

m

e

n

F2~b,b8;g;x,y!5(
km

~b!m~b8!k
~g!m1k

xm

m!

yk

k!
. ~43!

Afterwards, the correlated solution of Eqs.~40!–~42! is

C13
2 5N2

2F2
2N1,3

2 F1,3
2 , ~44!

F l ,m
2 5F2~ ia l ,iam ;1;2 ik lj l ,2 ikmjm!, ~45!

andNl ,m is the factor to resume the Redmond’s conditio
~see Appendix B for details!

Nl ,m
2 5exp@2p~a l1am!/2#G~12 ia l2 iam!. ~46!

In similar way, another solution can be obtained account
]2/]j2]j3 and neglecting]2/]j1]j3:

C23
2 5N1

2F1
2N2,3

2 F2,3
2 . ~47!

Considering the asymptotic behavior ofF l ,m
2 andF j

2 showed
in Appendix B, is easy to see that forr i→`

HcorrC135O~r i
22!,

HcorrC235O~r i
22!, ~48!

HcorrCC35O~r i
22!.

At this point is interesting to look for a solution given b

C25aN1
2F1

2N2,3
2 F2,3

2 1bN2
2F2

2N1,3
2 F1,3

2 1cCC3
2 . ~49!

We founda51,b51 andc521 is the unique solution
that ~i! satisfies Redmond’s condition asr i→`, ~ii ! treats
both electrons on equal footing, and~iii ! get one order more
accuracy asr i→`, since

HcorrCF
25~r i

23! ~50!

where

CF
25N1

2F1
2N2,3

2 F2,3
2 1N2

2F2
2N1,3

2 F1,3
2 2CC3

2 . ~51!

We can easily ‘‘read’’ Eq.~51!; the first term of the right-
hand side contains]2/]j2]j3 to all orders, the second con
siders]2/]j1]j3 , and the third corrects the double countin
Further, if we seta350 in Eq.~51!, the C2 approximation is
recovered, as it is expected. We have used the subscript
because Eq.~51! has a structure very similar to the first ord
Faddeev solution found by Macek@14# and Briggs@15#. In
fact, we can derive it considering the Green function
HC3 instead of the free Green function used in the Fadd
equations @16#, and taking Vl356@2j l /(j3
1h3)14j3 /(j l1h l)#]

2/]j l]j3, l51,2 as the component
of the perturbed potential.

Threshold behavior and normalization factors

The cross section of an ionization process is strongly
termined by the behavior at small interparticle separation
the final-state wave function. In the C3 approximation t
normalization constant isCC3

2 (j i50)5NC3
2 5N1

2N2
2N3

2 ,
and it is well known that the use ofCC3

2 leads to cross
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sections that underestimate experimental data by order
magnitude@6# in the threshold of double photoionization
i.e., in the Wannier region@19#. The origin of this failure
arises from the overestimation of thee-e repulsion given by
the Coulomb factorN3

2 . It decreases exponentially for sma
decreasing excess energy. Figure 3 shows the square m
lus of theNC3

2 normalization factor fork151 as a function of

k2 so thatk̂2 is parallel tok̂1. It presents a divergence whe
k250 known as the Coulomb cusp and an exclusion ho
the so-called Coulomb depth, which is the footprint of t
e-e repulsion. To some extent the range of this hole is ex
gerated and is responsible for the failure to describe
threshold of the double ionization cross section. We inclu
also the normalization factor of the wave functio
CC2

2 (j i50)5NC2
2 5N1

2N2
2 , which describes reasonab

well the total cross section at the threshold@1#. It presents the
Coulomb cusp but not the Coulomb depth. In Fig. 3 t
normalization factor ofCF

2 is also shown:

NF
25N2

2N1,3
2 1N1

2N2,3
2 2N1

2N2
2N3

2 , ~52!

which has the best of both worlds. The Coulomb cusp
mains the same, the exclusion hole is also present, and, m
important, its range is largely diminished. Moreover,
k2→0,NF

2 has the same order of magnitude asNC2
2 . There-

fore, we can expect thatCF
2 produces similar double photo

ionization cross sections toCC2
2 in the Wannier threshold

region@19#. In this way, the undesirable exponential decre
ing of CC3

2 in the threshold may be removed. A comple
study of such a cross section is planned to publish elsewh

FIG. 3. Square modulesuNC2
2 u2, uNC3

2 u2, and uNF
2u2, for k151

a.u. as a function ofk2 so thatk̂2 is parallel tok̂1.
of

du-

,

-
e
e

-
ore
s

-

re.

IV. SUMMARY

In this work, we present a correlated wave function f
the three-body Coulomb problem valid for large interpartic
distances. Unlike other works@7,8# where the correlation is
introduced parametrically, here we consider the contribut
of the mixed derivatives. Let us resume the three step
obtainCF

2 : ~i! from the full Hamiltonian, we take the out
going approximation, i.e.,WC3>WC3

2 as in Eq.~15!; ~ii ! we
further approximateWC3

2 >Wcorr
2 as in Eq.~36! by consider-

ing the first two terms of Eq.~34! as stated in Eq.~35!; and
~iii ! finally, we approximate the solution of Eq.~37! by using
the first order of the Faddeev expansion as in Eq.~51!.

In this way, we found a genuine many-variable wa
functionCF , which treats the electrons on equal footing a
it seems to correct the overestimation of the interelectro
repulsion ofCC3

2 . Other systems can be treated in simil
way, e.g., the problem of an electron in the field of tw
nuclei @17#.

It is important to remark that the solutionCF
2 is not valid

in the semiasymptotic regions. If we want such a soluti
we could introduce effective momenta@7# ~as shown in Sec.
II ! or effective charges@8# ~using the coordinate system o
the reference!.

Further work is being carried out to compute transiti
matrices. A numerical calculation using the hypergeome
function of two variablesF2 presents several difficulties du
to the complexity of the problem.
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APPENDIX A: CHANGE OF COORDINATES

In Eq. ~3! we posed the generalized parabolic transform
tion (r1 ,r2)→(j1 ,j2 ,j3 ,h1 ,h2 ,h3); in this appendix we
look for the inverse transformation. We writ
r l5(xl ,yl ,zl),l51,2,k j5(kjx ,kjy ,kjz), j51,2,3, and for
convenience we choosexW1 parallel to k1 ~i.e., k1y
5k1z50). Introducing the variables

s15~j12h1!/2, s25~j11h1!
2/4, ~A1!

s35~j22h2!/2, s45~j21h2!
2/4, ~A2!

s55~j32h3!/2, s65~j31h3!
2/4, ~A3!

s05
1
2 ~s21s42s6!, ~A4!

r15
k2s3

k2y
1
k3s5

k3y
2
k3xs1

k3y
, r25

k2s3

k2y
, ~A5!

t15
k3x
k3y

2
k2x
k2y

, t252
k2x
k2y

, ~A6!
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we find the value ofx2 is the solution of the following quar
tic equation

05@s22s1
22~r11t1x2!

2#@s42x2
22~r21t2x2!

2#

2@s02s1x22~r11t1x2!~r21t2x2!#. ~A7!

The inverse transformation is thenx15s1, and the rest of
the variables are related tox2 through the relations

y15r11t1x2 , y25r21t2x2 , ~A8!

z15@s22s1
22~r11t1x2!

2#1/2, ~A9!

z25@s42x2
22~r21t2x2!

2#1/2. ~A10!

This procedure to obtain the inverse transformation is q
tedious due to the discrimination of the different roots. Ne
we will study some particular cases.

1. The Crothers’s condition

This is the case whenk l is parallel tor l , for l51,2 @18#.
In terms of the generalized parabolic coordinates, it can
expressed ash15h250, thus

x25
j1
21j2

22~j31h3!
2

4j1
. ~A11!

The cancellation ofh1,2 constrains the values ofj3 and
h3 to

F j3

h3
G5

~j1
21j2

222j1j2k̂1• k̂2!
1/2

2 F1

2
GN, ~A12!

N5j1N11j2N2 , Nl5
kl
22 k̂1• k̂2
4k3kl

, ~A13!

and l51,2. It is concluded then that the wave function d
pends on onlytwo variables:j1 andj2.

2. Peterkop’s condition

This is the case when the three position vectorsr j are
parallel to k j , for j51,2,3, and soh15h25h350 @20#.
Thus,

x25
j1
21j2

22j3
2

4j1
. ~A14!

Therefore onlyoneparameter is the independent variab
and the following constraint is observed:

t5
j1

@12~ k̂2• k̂3!
2#1/2

5
j2

@12~ k̂1• k̂3!
2#1/2

5
j3

@12~ k̂1• k̂2!
2#1/2

, ~A15!

wheret is a parameter that can be seen as the time.
te
,

e

-

3. Wannier’s condition

This is the case when the electrons recede from e
other; thus,r152r2 and sox252s1 @19#. Under these cir-
cumstances onlythree variables are independent, for ex
ample j1 ,j2, and h1, and the rest of the coordinates a
constrained to hold

h25j11h12j2 ,

j35j11h11
k1
2k3

~j12h1!1
k2
2k3

~2j22j12h1!,

~A16!

h35j11h12
k1
2k3

~j12h1!2
k2
2k3

~2j22j12h1!

If, in addition, we consider Crother’s condition, i.e.,k l
parallel tor l , for l51,2 ~or equivalentlyh15h250), then
we findh350,j25j1, andj352j1.

APPENDIX B: ASYMPTOTIC BEHAVIOR

In order to show the asymptotic behavior of the functi
F2(b,b8;g;x,y) asx→` andy→`, we start by expressing
F2 in its integral form

F2~b,b8;g;x,y!5
G~g!

G~b!G~b8!G~g2b2b8!

3E E dudvexp~ux1vy!ub21vb821

3~12u2v !g2b2b821, ~B1!

where the integral is taken over the triangular regi
u>0,v>0, and 12u2v>0. Using the integral form of the
confluent hypergeometric function@21#

1F1~n,m1n,lu!5
G~m1n!

G~m!G~n!u12m2n

3E
0

u

dssn21~u2s!m21els, ~B2!

we can reduce Eq.~B1! to a single integral:

F2~b,b8;g;x,y!5
G~g!

G~b!G~g2b!
E
0

1

duexp~ux!ub21

3~12u!g2b21
1F1„b8,g2b,~12u!y….

~B3!

Since the limit asuzu→` of 1F1 for Re(b).0 is

1F1~a,b,z!→
G~b!

G~b2a!
e2 i epaz2a, ~B4!
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e5sgn@ Im(z)#, then we find

F2~b,b8;g;x,y!→
G~g!

G~g2b2b8!
exp~2 i expb!

3exp~2 i eypb8!x2by2b8,

as x,y→` ~B5!

with ex5sgn@ Im(x)#, and ey5sgn@ Im(y)#. Therefore, the
asymptotic behavior ofC13

2 in Eq. ~44! is given by
A

96
F2~ ıa1 ,ıa3,1,2 ik1j1 ,2 ik3j3!→
1

N1,3
E1

2E3
2 ~B6!

with

N1,35exp~2pa1/2!exp~2pa3/2!G~12 ia12 ia3!
~B7!

and similar expressions for any other pair of correlated p
ticles.
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