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Approximate analytical solution for two electrons in the continuum
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In this work we construct a correlated double continuum wave function for the three-bodydBgj@mo
equation valid for large interparticle distances. Genuine three-body effects are considered by taking into
account a nondiagonal part of the Hamiltonian written in generalized parabolic coordinates. A solution is found
in terms of the confluent hypergeometric function of two varialdlgs with similar structure to the first-order
Faddeev approximation. The use of such a solution seems to introduce appropriately the interelectronic repul-
sion.[S1050-2947®@7)06804-3

PACS numbg(s): 03.65.Nk, 34.50.Fa, 34.18x

[. INTRODUCTION does not provide a fully satisfactory answer to the problem.
In Sec. lll, we look for a solution beyond the C3 approxima-

The three-body Coulomb continuum problem is of funda-tion. We find a double continuum wave function in terms of
mental importance in atomic physics. There are severdhe hypergeometric function of two variablés, which is an
mechanisms leading to three unbounded particles in the fin&xact solution for large interparticle distances. Finally in Sec.
state, such as single ionization by electron impact, doubléV, we expose our main conclusions and outlook. Atomic
photoionization, or double Compton. In all these cases welnits will be employed throughout this work.
have to deal with two electrons in the continuum. Several
approximate double continuum wave functions have been II. THE THREE-BODY COULOMB EQUATION IN
used to compute the correspondent cross sections. The most  GENERALIZED PARABOLIC COORDINATES
simple approximation consists of neglecting one of the inter- i ) i
actions; namely, the electron-electroer€) repulsion. This Let us consider two electrons in the Coulomb field of a
leads to a solution expressed in terms of a product of tW(§1eavy_nucleu_s whose mass is c_0n3|_dered infinite. The sets of
Coulomb waves, the so-called C2 approximation. It producegaco_b' C(_)ordlnates are shown in Fig. _1. 'I_'he nonrelativistic
reasonable agreement with measured total cross section foy2miltonian of the three-body system is given by
double photoionizatiori1], but it cannot describe electron 27, 27, 27

istributi i i 1 2 3 —
angular distributions because it does not consider the elec- VZ4Vat —+—+ ——E|W¥=0, (1)
tronic correlation. To some extent, this correlation can be M ro Is
taken into account using momentum-dependent effective .
charges as introduced by Rudge and Se&#in whereZ,=272,=27 is the nuclear_chargi3= ;1/2 rzepr.e-

A more comprehensive approximation is found by ne-Sents the strength (_)f theee repulsmn, andE=ki{/2+k5/2 is
glecting all mixed derivatives of the three-body Hamiltonian the total energy. It is convenient here to make two transfor-
written in generalized parabolic coordinafé@. This wave ~Mmations. First, we remove the plane-wave asymptotic condi-
function is expressed in terms of a product of three Coulompion by writing
waves, the so-called C3 approximati@+5]. Unlike the C2, — 3 ) .
the C3 approximation tends to the exact solution of the prob- W=(2m) “expliky-ri+iksy-ro)W, 2
lem for large interparticle distances. However, this solution ) on Teenny
underestimates by orders of magnitude the threshold of totd¥N€reka (k2) is the momentum of the electron “1("2" )
cross section§6] because of an overestimation of the elec-With respect to the heavy nucleus, ang= (k,—kz)/2 is the
tronic repulsion.

To avoid this defect it is necessary to find a wave function
where the variables of the system are correlated so that, for
certain configurations, the repulsion between the electrons
becomes shielded by the presence of the nucleus. In recent
years, new correlated wave functions have been developed.
These solutions have the same structure as the C3 approxi-
mation, but with effective momentgZ] or charged 8] de-
pending “slowly” on the coordinates. In order to determine
to what extent this kind of approach introduces correlation,
in Sec. Il, we solve numerically a model Hamiltonian con-
sidering two electrons in the field of a nucleus for a particu- FIG. 1. Set of Jacobi coordinates. When the nucleus mass tends
lar configuration. We find that the use of effective momentao infinity, thenR;—r, andR,—r .
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e-e relative momentum. Second, we follow the work of Klar solution of Eq.(4). Therefore, any approximate double con-
[3] introducing the following generalized parabolic coordi- tinuum wave function should reduce to C2 whég=0.

nates:

§j=rj+rj-kj, ﬂj:rj_rj'kj, j:1,2,3. (3)

After significant algebra, one can find that Ef) transforms
into

H\I’:(Hcg‘f'WCig)\P:O, (4)

whereH is the total Hamiltonian,

3
148 5
Hea= >, 25—2(H +H +Z)), (5)
« jzl §j+77j( e
H; = i i +ik i 6
H' i i +ik i (7)
. = e— . — I . P,
I "o, 7i an; 17 an;
2 2 2
1% J
l+1] 4= ¢— — i+
Wes ;1( Dbt 9&10&3 bk 9&1973
2 2
ity g : 8
' Bamags N B amans ®
and
=17k, j=123. (9)

If the term W3 is neglected, the solution dflo; with the

outgoing condition is the well-known C3 approximation, i.e.,

HcsW c3=0, where

1+6 5

HZ 2=—LH +2), 10
e 121 §j+7il( ) "o

3
‘I’Eazﬂl Ny Fj (1

=
Fi=1Fa(ia;1—ik&), (12
N; =exp(—ma;2)I' (1-ie)), (13

aj=—Z2;/k;,j=1,2,3 and,F, is the degenerate hypergeo-
metric function. In this work we will concentrate on the out-
going solution(similar structure is found for the incoming

solutionW £,). For large interparticle distance®,, tends to

The function¥ 5 is a solution of the uncorrelated differ-
ential operatoH 3. Our goal is to find an approximate so-
lution of Eq. (4) valid for large interparticle distances that
account for three-body effects beyond the C3 approximation.
In generalized parabolic coordinates, the correlation arises in
terms containing mixed derivatives. If we want to account
for all the crossing derivatives contained V3, the two
following problems occur:

(i) Today’'s computers prohibit solving a six-dimensional
differential equation of the type of Ed4) in all the vari-
ables, i.e.£q,&5,&3,m1, 12, @andns. On physical grounds we
will neglect the terms containing” 3/ 7; for the outgoing
boundary conditions. Two reasons can be put forward to sup-
port this approximation. First, at large distances one can ex-
pect thatk; is nearly parallel ta; and sot™ should vanish.

In addition, if we iterate¥ -5 thus all the terms containing
dn; will cancel since it depends only of). In conclusion
we write the outgoing approximation as

2 2

Wea=Wcs= 241 (=D -ty TEGEs

(15

If we are interested in the incoming boundary solution in-
stead, we should approximac;=W¢S,, i.e., we should
neglect all the terms containirtg d/&; .

(ii) The second problem arises when we try to express the
coefficientst, -t; as a function of the parabolic coordinates.
This task is quite cumbersome since we have to find the roots
of a quartic polynomial as shown in Appendix A. Therefore
we are forced to approximatg - t; , having in mind that the
solution should have the following properties: for large in-
terparticle distances it goes to Redmond'’s solution (&4),
it has a regular behavior at total breakup threshold, and the
two electrons are treated on equal footing.

A. The use of effective momenta

The wave function¥ -3 was designed to hold for large
interparticle separations;—, but in the semiasymptotic
regions, namely,

Qq: rqlry,—0, ry,rzg—oo,

Qz: r2/r1—>0, [q,f3—®, (16)
93: r3/R3—>0, Rg,rl,r2—>00

is not appropriated. In this section, we derive the wave func-

the proper asymptotic solution known as Redmond’s condilion developed by Alt and MukhamedzhangV] ¥y,

tion:

3
lim xlfggzjlz[l E . E =exgd—ian(kj&)]. (14

ri—o

J

The C2 approximation is obtained fro#i-; by neglect-
ing the e-e interaction to give‘lfgzznjzlej‘Fj‘, which

does not satisfy the Redmond’s conditions. Note that if the
e-e interaction is switched off, the C2 function is an exact

which is a correlated solution expected to be valid also in all
the semiasymptotic regions. To obtakt),, from our general
Eqg. (4) with the outgoing approximation Edq15), we take
the following steps. In the regiof; we take into account
only the mixed derivative??/9¢,0¢5 and approximate the

coefficientt, -t; by its projection in the directiok,, i.e.,

i1~ o~ -
r—lk1~(k3+r3).
1

ty -ty =(ty -ky) (kg t3)= 17)
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We look for a solution of the form B. A numerical test
e i In this section we explore how efficiently the effective
VB, B F(rg;éy), (18) momenta introduce correlation between coordinates. The

benchmark we pose here is an asymptotic Hamiltonian

wherer; is taken parametrically ifr. Further, forr;— oo, H.., in which we have assumed;=7,=7,=0, and so

we consider o :
t, -t3 =4k, ks to give
(92\If E-E- ia3 &F(I’3,§1) (19) 3 (92
—_—C = = y
0€1083 2 ry(1+kgety) 92 Z (H +2j)+ 4k, ksm
and then we arrive at enodifiedconfluent hypergeometric 92
equation iné;: —4kz'k3m- (27)
17 J , d . : P kel gm
SE b1 K €15+ 2 |F(rai6) =0, (20 If we write the series expansioll,, = mfi|,mé1€2¢3
§177 08 &1 one can obtain the following relatidri Q]
wherek; is an effective momentum defined by 0=[(k+1)%fy 1, 11+ (Zy+ikK) 1 1m1]
K1) =Kot a3 (kg+r3) 21 H(+ D)2y amo1+ (Zo ik fi gy mo1]
1\'3 1 PN .
r3 (1+ksrs) +2[(M+1)*f gy 11t (Zatikgm)fy gy 1]
Others asymptotes can be covered in a similar way with +R1- ngmfw_l,m—lzz I23Imfk_1v,'m, (28
momenta
which cannot be solved for all values of the subscripts. Three
, as (Kg+rs) poinEs can tze igferred. First, one can easily see that by set-
ka(rs)=kz— Ta RS (22 ting k; - ks=k5-k3=0, we obviously obtain the C3 function,
3 (1+ k3-l’3) ~ e
which satisfies
, ar  (ky+ry) ay (ky+ry) Z,+ikq.k
Ki(rg)=Kgt 5— ————————————. (23 — (Za+1kak) 29

2ry (14ky-ry)  2r2 (1+kyery) (k+1)2 “kbm
For large interparticle distancek; —k;, and the Red- and similar relations for the other variables. Secotid,

mond’s conditions are then satisfied. In this way, we obtain aends to the Redmond’s conditions. And third, the derivative

product of confluent hypergeometric functions as given byat the origin satisfies Kato’s cusp conditifhi]

Eq. (11

3 { 1 9 \If} =—Z (30
_ R W, 9& - - o
‘I'ASYM:jljl Nj Fj (29 & §=0
. , o ) which lets us initialize the numerical calculation. The Red-
with o =—Z;/kj , instead ofa; in Egs.(12) and(13). mond’s values at large distances and Kato's derivatives at
It should be noted that the momenta given by H@4)—  the origin lead us to a Dirichlet-Neumann mixed-boundary
(23) are not identical to those found by Alt and Mukhamed-condition problem. The determinant of the coefficients mul-
zhanov. These authors considered tiplying the second derivative terms is positive, and therefore
the differential equation is elliptic, as it is the original Eq.
(rs) =Ko+ asz (kg+12) 25 (1). . ' o
Ky am(ra) =Ky + l2 (1+Ks-Tp) The numerical solution of Eq27) is still quite cumber-

some. To reduce the problem we have considered

instead of Eq.(21), and replaced, by (r+r,+r3)/2 to  Ka-kg=0 and sok;-ks=2ks/k1. In this case, we write
avoid the singularity ag,—0. However, asr,—~ and V. =N;F,Gi5(£;,£3), whereGi, satisfies
r./r,—0 then
(92
ki am-T1—K] 11+ O(r2/r2). (26) £ (H T2t 7 (H +Zg)+ = k ELIEs

ThereforeW sy — W asywm » i-€., both solutions fall down to- XG13(§1'§3)=0- (31
gether in(),. In an analogous way, is easy to see that this is

also true in each semiasymptotic region. The use of effectivéVe have solved Eq31) by the finite difference method for
momenta was first introduced by Feld&] in the context of Ki1=1, k3=0.4, and sk, =0.6. Results are shown in Fig. 2
the Vainstein, Presnyakov, and Sobelman approximatiorivhere we represent the square modulu$éf in parabolic
which can be considered as the forerunner of the C3éhe coordinates.G; is compared with the C3 approximation
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FIG. 2. Upper figures displayG;4?, |F14?, and|F}4? as a function of/ =& (N—1)/&""i=1,3 fork;=1.0 a.u. andk;=0.4 a.u.
Lower figures display the corresponding contour plot. The number of nddeseach direction iN=50 and the maximum value &f;

(&) is €/ =15 a.u. €5 =65 a.u).

Fi3=N;N;F;F3; and the one having effective momenta lll. THE ®, APPROXIMATION
F15=NiNgF;Fg forrp=1. The effective momenta are now yye 100k for a wave function with the outgoing boundary
condition beyond the C3 approximation by taking into ac-

5 count the mixed derivatives. Let us write the exact expres-
kj=ky+ %(Rsﬂzz), sion of the coefficient, -t; :

(32
C2rEHrsEr I,
rra

- 26 A& ~

DB T (&t e) T (G m)
3 & g
+I2|-I23—é~(2r,1r3)+r—la-(nirg), (34)

ay (ki+Rs) oy (kotRy)
R1+k;-R; R 1+k,-Ry

where the uppeflower) sign corresponds tio=1 (I=2). We

R=1+ r1+ r3, a.nd R3: (I’llzl-i- |22)/2
here will consider just the first two terms

Some conclusions can be drawn. Fifsg does not differ
appreciably fromF 3. Similar conclusions can be inferred
also from the article of Jones and Madisdi®]; the inclu-
sion of effective momenta does not alter appreciably the
electronic distributions. By inspecting the contour plot we
can note that the enhancementd-g£, and even the ones of
F1s, are situated in aectangularform, while the ones of g give
G5 are slanted Also the shapes of the enhancement have
different forms(similar features have been found also for
others values ok;). The effective momenta method does not

2§ 4¢3

W= G T @9

ey 2o P2
c3— corr_(§l+ 1) 0610€3  (Ex+ mp) d€20€3

seem to be a satisfactory solution of the problem. In the next
section we introduce an alternative approximation that, we
think, may be a good candidate to tackle the double con-

tinuum problem.

4¢, 92 4¢, 32

T Gt 1) 961085 | (Gt mp) 06adEs O
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As we shall see, the approximati¢®6) does not alter the
Redmond’s condition. Considering Egd5 and (36) we
can reduce Eq-(4) as H;orrquorr:(H63+W;orr)lpgorr:01
where

~ ~ 7
Heor™ (g7 70 {Hl Tt aflafs}

_ 7
1 Hy + 221 &5 afzaéj

&+ 1)
92 92
& €105 e (7§2f9§3}.
(37)

A closed form of ¥, is not known to us. The nearest
solved case is the fully symmetric system

Hy +Z3

T &t m)

32 92

H;+Zj+§k(9§k(7§j té 23143

d=0, (38

with j#k#1=1,2,3 whose solution is the degenerate hyper-

geometric  function  of three variables [13]
(I)=CI>2(ial,iaz,ia3;1;—ik1§1,—ik2§2,—ik3§3),Where

(BB N(B ) Xy x™

(Vk+1+m K1t mt

<I>z(/3,ﬁ’ﬂ”;7;x,y,2)=k§”)n

ki1t mt
(39

Note that this solution considers a teeff 9&,9¢,, which is
missing in our starting Eq(37). Consequently, by setting
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(B)m( B i X™ ¥
q) ’ ,; ; ’ = - i 43
BB YXY) =2 Z = (49
Afterwards, the correlated solution of Eqg40)—(42) is
W13=N; Fo Ny Py s, (44)
O =Pl ian; 1, =ik, —iKném), (45)

andN; , is the factor to resume the Redmond’s conditions
(see Appendix B for details
N n=exd —7(a+ a2l (1-ie—iay). (46

In similar way, another solution can be obtained accounting
9% 9&,0€5 and neglecting’®/ 9&,9és:
Was=Ny F1 Ny a®ys. (47)

Considering the asymptotic behavior®f , andF; showed
in Appendix B, is easy to see that fof— o

Heor?13=O(r; %),

Heor® 25=O(r; %), (48)
Heor cs=O(r; ?).

At this point is interesting to look for a solution given by

W =aN; Fy N, @, s+ bN, Fo N P g+ cWs. (49

We founda=1,b=1 andc=—1 is the unique solution

Z;=0, it does not reproduce the C2 approximation, and ithat (i) satisfies Redmond’s condition as— o, (ii) treats
should be lied aside. However, E39) should be considered both electrons on equal footing, afid) get one order more
an appropriate wave function for a three equal-mass systelccuracy as;— o, since

of particles. Next we will find an approximation of E7)
valid for large distances.
To start, we correlate only the variablgsandé,, i.e., we

discardd?/ 9¢,9&,. This restriction allows us to separate Eq.
(387) as
! [H; +Z5]G5(&,)=0 (40
(&t mp) - 2 TR
! [H‘+Z +& ” }G (€1,€3)=0, (41)
(Etm) | b T PR ag 0k, R Se3 ’
2 [H+Z +& ” G13(€1,63)=0. (42
(&3t ma)| 3 T3 Slagrags) RSV
The solution of this system of equation is

G,(£,)G13(€1,€3). Note that it depends only ofy ,&,, and

HeonrVE = (ri73) (50

where

We=Ny FiNys®s gt Ny Fo Ny 4Py 5= Vs, (51

We can easily “read” Eq(51); the first term of the right-
hand side containg?/9¢,0&; to all orders, the second con-
sidersd?/9&,0¢5, and the third corrects the double counting.
Further, if we setx3=0 in Eq.(51), the C2 approximation is
recovered, as it is expected. We have used the subscript “F”
because Eq51) has a structure very similar to the first order
Faddeev solution found by Macé¢k4] and Briggs[15]. In
fact, we can derive it considering the Green function of
Hc; instead of the free Green function used in the Faddeev
equations  [16], and taking Vi3==[2§/(&;
+ m3) +4&31(&+ 1) ]0%1 9€,0€3, 1=1,2 as the components
of the perturbed potential.

&5 even though we have not imposed any condition on the

variables#q, ., and ;.
The solution of Eq(40) is simply a confluent hypergeo-
metric function; G,(&,)=N; F, . Equations(41l) and (42)

Threshold behavior and normalization factors

The cross section of an ionization process is strongly de-

form a system of partia| differential equations studied bytermined by the behavior at small interparticle Separations of

Appell and Kampede Feiet [13]. A solution of this system

the final-state wave function. In the C3 approximation the

is a generalization of the confluent hypergeometric functionormalization constant isWc4(§=0)=Nc3=N; N, N3,

®, of two variables, which is expressed as

and it is well known that the use o¥.; leads to cross
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— T — IV. SUMMARY
10% |N'F|2 3 In this work, we present a correlated wave function for
F 3 the three-body Coulomb problem valid for large interparticle
. distances. Unlike other workg,8] where the correlation is
10* 3 3 introduced parametrically, here we consider the contribution
F 3 of the mixed derivatives. Let us resume the three steps to
10° _ _ obtain W : (i) from the full Hamiltonian, we take the out-
o going approximation, i.e Wc;=Wc; as in Eq.(15); (ii) we
% [ ] further approximatdV_;=W_,, as in Eq.(36) by consider-
5 10?2 | 3 ing the first two terms of Eq34) as stated in Eq35); and
c 3 3 (iii) finally, we approximate the solution of ER7) by using
g - the first order of the Faddeev expansion as in (&d).
s 10" £ 3 In this way, we found a genuine many-variable wave
5 F ] function W, which treats the electrons on equal footing and
g o 1 it seems to correct the overestimation of the interelectronic
5 0F 3 repulsion of W,. Other systems can be treated in similar
Z i 1 way, e.g., the problem of an electron in the field of two
10tk - nuclei[17].
It is important to remark that the solutiob¢ is not valid
[ ] in the semiasymptotic regions. If we want such a solution,
102 3 3 we could introduce effective momenitd] (as shown in Sec.
F ] II) or effective charge$8] (using the coordinate system of
109 T o I the reference
10° 102 10" 10° 10" Further work is being carried out to compute transition

matrices. A numerical calculation using the hypergeometric
function of two variablesb, presents several difficulties due
to the complexity of the problem.

k, (a.u)

FIG. 3. Square moduleiNc,?, |Ngg?, and|Ng |3, for ky=1
a.u. as a function ok, so thatk, is parallel tok;.
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i.e., in the Wannier regio19]. The origin of this failure 5 nhumerical methods.

arises from the overestimation of tieee repulsion given by
the Coulomb factoN; . It decreases exponentially for small
decreasing excess energy. Figure 3 shows the square modu-  APPENDIX A: CHANGE OF COORDINATES

lus of thel\lc3 normalizatioAn factor fok;=1 as a function of In Eq. (3) we posed the generalized parabolic transforma-
kz so thatk, is parallel tok;. It presents a divergence when tion (ry,r,)—(&1,&,,€3,71,72,73); in this appendix we
k,=0 known as the Coulomb cusp and an exclusion holejook for the inverse transformation. We write
the so-called Coulomb depth, which is the footprint of ther,=(x,,y,,z),! =1,2k;=(Kix .Kjy .k»),j=1,2,3, and for
e-e repulsion. To some extent the range of this hole is exaggonvenience we choose; parallel to k; (ie., k;
gerated and is responsible for the failure to describe the ky,=0). Introducing the variables Y
threshold of the double ionization cross section. We include

also the normalization factor of the wave function

— _ — 2
W (§=0)=Ng,=N;N,, which describes reasonably o= (&= m)l2, op= (62t 71)°/4, (A1)
well the total cross section at the threshdldl It presents the
Coulomb cusp but not the Coulomb depth. In Fig. 3 the 03=(E— )12, 04=(&+ 1,)24, (A2)
normalization factor of¥'¢ is also shown:

NF =N3 Nzs+N7 N7 53— N7 N N3, (52) o5=(&3—79)12,  06=(&3+ 75)%/4, (A3)
which has the best of both worlds. The Coulomb cusp re- To= 2yt 0am o) (Ad)
mains the same, the exclusion hole is also present, and, more 0 2A 2 M4 Teh
important, its range is largely diminished. Moreover, as
ko—ONg has the same order of magnitudeNs,. There- B Kooz Kzos Kaoq _k203
fore, we can expect that produces similar double photo- P1= Kay kay N kay p2= Koy (AS)
ionization cross sections t¥ ., in the Wannier threshold
region[19]. In this way, the undesirable exponential decreas- K K K
ing of W, in the threshold may be removed. A complete 7 8x _ T2 Tp=— o2 (AB)

study of such a cross section is planned to publish elsewhere. Kay Koy’
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we find the value ok, is the solution of the following quar- 3. Wannier’s condition
tic equation This is the case when the electrons recede from each
2 5 2 o other; thusy,=—r, and sox,= — ¢4 [19]. Under these cir-
0=[oa=01=(p1t+ T1X)"ll0a= X5~ (p2+ 72%2)7] cumstances onlythree variables are independent, for ex-
—[0o— T1Xa— (p1+ T1X2) (ot ToXo)]. (A7) ample &,,¢,, and 7, and the rest of the coordinates are

constrained to hold

The inverse transformation is thep= o4, and the rest of

the variables are related g through the relations m2= &t m &

Y1=p1tT1Xo, Ya=pat mXo, (A8) Ky Kz

E3=&6 it 2_k3(§l_ 71)+ 2_k3(2§2—§1_ 71),
z,=[0,= 07— (p1+ T1%2)?]*2, (A9) (A16)
2,=[ 04— X5— (pa+ To%p)?]M2 (A10)

ki ks
_ , _ o 3=t = 5 (6 m)— 5 (26— 6~ m)
This procedure to obtain the inverse transformation is quite 3 3
tedious due to the discrimination of the different roots. Next,

we will study some particular cases. If, in addition, we consider Crother's condition, i.d,
parallel tor,, for I=1,2 (or equivalentlyn,= 7,=0), then
1. The Crothers’s condition we find 73=0,£,= §1, and§3=2¢;.

This is the case wheky is parallel tor,, for 1=1,2[18].
In terms of the generalized parabolic coordinates, it can be APPENDIX B: ASYMPTOTIC BEHAVIOR

expressed ag; =7, =0, thus In order to show the asymptotic behavior of the function

- §i+ gg_ (E3+ 73)2 D,(B8,B8";v;X,y) asx—x andy— o, we start by expressing

X (A11) @, inits integral form
4¢,
The cancellation ofy, , constrains the values af; and , I'(y)
" Tz % Do(B.B';yi%y)= NF(o—B—g
73 t0 LTI (y=p-4")
&)_(drg-2neke k) % [ [ dudvexpux+oypus e 1
73 2 - )
o X(1—u—yp)? FF -1 (B1)
kZ—kq-ky
N=&N+&Noy Ni= 4kgk, (AL3)  \here the integral is taken over the triangular region

u=0p=0, and I-u—v=0. Using the integral form of the
andl=1,2. It is concluded then that the wave function de-confluent hypergeometric functid21]
pends on onlytwo variables:&; and &,.

F +v,\U)= Putw)
2. Peterkop’s condition 1Fi(v,u+v,hu)= F(M)F(V)ulqrv
This is the case when the three position vectqrare "
parallel tok;, for j=1,2,3, and son,;= 7,=13=0 [20]. xf ds¢ Yu—s)» 1es, (B2)
Thus, 0

G+6-8 ingle i
_51 52 3 (A14) Wecan reduce EdB1) to a single integral:

2T g
1
Therefore onlyoneparameter is the independent variable d,(g,8": y:x,y)= 'y J duexp(ux)up—1
and the following constraint is observed: F(BT(y=B)Jo
: ; X(1=u)"" P HF (B y— B, (1—w)y).
1 2
= — — = — — 83
[1-(ko-kg)? 1" [1-(ky-kg)?]M? (3
~ & AL5) Since the limit agz|—« of ;F; for Re(b)>0 is
[1-(ky-ko)?]™ I(b)
N —iema,—a
wheret is a parameter that can be seen as the time. 1F1(a,b,2) I'(b—a) € Z5 (B4)
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e=sgrIm(z)], then we find

' T'(») .
Do(B.B" YiX,Y)— mexp(— i exB)

. . T
q)2(|a1,|ag,l,—lklfl,—|k3§3)—>N_13E1E3 (B6)

with
xexp(—ieywﬁ’)x‘ﬁy‘ﬁ',

N, s=exp(— ma/2)exp( — masz/2) [ (1-ia;—iaj)

as X,y— o (B5) (B7)

with e,=sgrfIm(x)], and e,=sgriIm(y)]. Therefore, the and similar expressions for any other pair of correlated par-
asymptotic behavior o ;5 in Eq. (44) is given by ticles.
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