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Elastic collisions and rotational excitation in positron scattering from CO, molecules
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Full quantum calculations are carried out for the elagtitationally summepintegral and differential cross
sections in low-energy collisions of positrons with rigid rotor £@olecules. The interaction includes an
expansion of the exact Coulomb potential on a single-ce(&E and a parameter-free correlation-
polarization ¥ p) potential given in local form via density-functional thed®FT) with gradient corrections.
State-to-state rotationally inelastic cross sectigntegral and differentialare also presented and their behav-
ior is discussed in relation to what is known from similar experiments with electrons as projectiles. The
agreement found between computed and measured elastic integral cross sections is rather good and confirms
the realistic quality of a DFT treatment for short-range dynamical correlation effects.
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PACS numbsdis): 34.90+q, 34.10:+x

I. INTRODUCTION nuclear Coulomb forces tends to keep the low-energy posi-
trons, in a classical sense, outside the short-range region of
The low-energy scattering processes involving positronghe molecular target and therefore, in the interaction, the dy-
as projectiles and simple molecular targets in the gas phag@mical correlation effects from the intermediate-range re-
have gained a great deal of importance in the last ten years @ion are more important than the more conventional static
so because of the various areas of chemistry and physi@prrelation contributions as given by the well-known con-
where they are considered to be relevidng]. The variety of ~ figuration interaction(Cl) expansiong5]. This also means
processes for which such projectiles are studied parallel thabat the capability of the positrons to transfer their energy to
for electron collisions with molecular targets, where elasticinternal nuclear degrees of freedom, e.g., to molecular rota-
scattering excitations of molecular degrees of freedom, readions and vibrations, is going to be rather different from that
tions that alter the final nature of the molecular targets havéf the electrons for similar molecules and for similar ener-
been observed in increasingly greater ddtgjl In addition, ~ gies.
the possibility of positronium(Pg formation into various In the present study we therefore decided to carry out
excited states presents both experiments and theoretical mo#ch an analysis for the G@nolecular target and to apply a
eling with a further challenge and a new set of interestingcomputational scheme that we have already tested success-
final channelg4]. fully for atomic targetd6,7] and for simpler molecular tar-
Even when one limits the analysis to energies below the@ets[8]. In particular, we analyze below the effect of various
Ps formation and only studies elastic and inela@tidoreac- Ways to model the short-range correlation forces and the
tive) processes, the use of positrons as projectiles is able #ong-range polarization forces on the final, elastic integral
produce final cross sections that are markedly different frongross sections below the Ps formation threshold. We also
those observed and computed for electrons as projectiles amdalyze the elastic differential cross sections and both the
over a similar range of collision energies. Thus, it becomegntegral and differential cross sectio(@3CS) for rotationally
important to be able to complement the increasing qualitynelastic collisions. In the next section we briefly remind the
and variety of experimental data with a similar analysis fromreader of our theoretical model while in Sec. Il we see the
theoretical models and computational results. specific forms of the local correlation-polarization potentials
Within a theoretical context, in fact, positrons representemployed for the C@molecule. Section IV reports the elas-
on one hand simpler projectiles to handle from the point oftic integral cross sections while Sec. V describes the rotation-
view of their interactions with atomic and molecular sys-ally inelastic processes. Our general conclusions are summa-
tems, since the lack of the antisymmetry requirement for th&ized in Sec. VI.
total, fixed-nuclei(FN) wave functions eliminates the pres-
ence of nonlocal exchange interaction with the bound elec-
trons. On the other hand, they also pose a different type of
challenge when describing as best as possible the correlation When discussing the qguantum dynamics of positron colli-
and polarization effects coming from the response of the tarsions with molecular systems at energies below the threshold
get electronic density to the perturbation from the impingingfor positronium(Ps formation one needs to know the fol-
positrons. In this case, in fact, the repulsive nature of thdowing aspects of the whole proces8) the anisotropic
charge distribution of the molecular target and the corre-
sponding static interaction of it with tres” projectile; (i) the
*Author to whom correspondence should be addressed. FAXshort-range and long-range correlation forces between the
+39-6-49913305. Electronic address: FAGIANT@CASPUR.IT  bound electrons of the target and the impinging positid);

Il. THE THEORETICAL MODEL
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the actual couplings between the motion of the projectile The asymptotic expression for such a field is independent
within the interaction region and the nuclear degrees of freeef the sign of the impinging charge and, for the simpler
dom of the molecular targdtotations and vibrationsEach  spherical component, is given by the well-known second-
of the above ingredients obviously plays an important role inorder perturbation expansion formula
defining the size and behavior of the final total cross sec-
tions, integral and differential, and it is therefore important to A=0 e i a,q° o
realize that different levels of approximation for each of Vee (rp)rp%xvpm(fp)—/:l 27 2
them have to be carefully compared and assessed. We will
start by assuming the usual fixed-nuclei approximationwherer, represents the positron coordinaets charge, and
(FNA), whereby the vibrational motion and the rotational the a, are the multipolarhere geometry-dependerstatic
degrees of freedom are factored out during the dynaf8its polarizabilities of the targefl7]. In most scattering treat-
and it is assumed that the corresponding cross sections caments[18] only the lowest-order term is usually kept in the
be obtained by considering the molecular geometry as botbxpansion(2), thereby viewing the distortion of the target
fixed in space and nonvibrating during the scattering time. Aelectrons as chiefly resulting from the induced dipole that
more detailed study on the vibrational-rotational motion andeads to the familiar ;* asymptotic form of\/f)%% with the
on its effect on total cross sections will be discussed elsemolecular dipole polarizabilityrp as its only coefficient in
where[9] but will be considered for the moment outside thethe sum on the right-hand side of E®).
scope of the present paper. The main drawback of this equation, however, is that it
The first two points mentioned above, on the other handiails to correctly represent the true short-range behavior of
still need to be taken into account and we have carried ouhe full interaction and does not contain any effect from both
the actual evaluation of the static interactddg(r,), by ex-  static and dynamical correlation contributiofi®]. In order
panding the self-consistent-fie{l@CH wave function of the to correct for such failures we have proposed a while ago
molecule at its equilibrium geometRaround the molecu- [20,21] the use of a local density functional approximation
lar center of mas$CM) whereby the dynamic correlation effects that dominate the
short-range behavior of thé-(r ) for closed-shell molecu-
Amax lar targets can be treated via a gradient-corrected density
Vsl(Ip,7iReg = > W s Reg Pr(COSY), (1) functional formula[22], which globally depends on the an-
r=0 isotropic charge density of this bound molecular electron.
o Such an approach, for the details of which we refer to our
where y=arccoR. r, within the body-fixedBF) frame of  earlier paper$20,21], has turned out to work rather well for

reference with the molecular axis being chosen azthes.  low-energy electron-molecule scattering procesiszs24

In the present case the above expansion only involves eved has also provided good results for positron scattering
values of\ and the electronic wave function was expandedfom H, and N, molecules[8,9].

beforehand around the same CM, using a number of terms at It is important to point out that the density-functional
least equa| to‘maX! as we shall describe more extensive|y in theory(DFT) formulation of the Short-range correlation ef-
the next section, while an even larger number of terms wafects within theVcg(r,,) is employed within the range of the
used for the nuclear part of the static interaction. Below thdarget electronic density and produces an analytic expression
threshold of Ps formation, the most serious of the question# local form that is energy independent in terms of the scat-
about the above pointii) concerns the clarification of the tering process. However, because of the special choice of the
role played by long-range polarization forces and by shortcorrelation factorf. in the expression of the correlation en-
range correlation effects: the models employed to treat po£rgy [6], E. is given by

itron scattering, in fact, turn out to yield final cross sections g

that are sensitive to the detailed handling of both the above r

contributions, especially at collision energies below a few eV Ec(N)=— Ef P(H2F>(r,R)fC(r,R) 2 )
[10,11).

The more direct numerical approach is to employ an exgne introduces implicitly nonadiabatic effects in the correla-
tensive C_I expansion of Fhe target elgctronl'c wave function; o, energy[25]. HereP,(fF’ is the second-order Hartree-Eock
over a sitable set of excited electronic configurations and tQein matrix without SpinR= (1 +r,), r=(r,—r,), and
|mp|em_ent It via HyIIera_as-type_ functions that can descrl_berlyrz refer to the coordinates of the correlated bound elec-
th_e positron wave function within the moleculgr charge dIS_trons. The factoff.(R,r) deals with the dynamic correlation
tribution [12]. On the other hand, such expansions are ofte nd assumes that, to begin with, the bound electron system is
very energy dependent a}nd converge usually too slowly to bﬁ/ell described by a single determinaf®D), Hartree-Fock
a useful tool for general |mplementgt|0n to complex mO|ecu'wave function. Furthermore, the DFT formulation for the
lar targets, where truncated expansions could be too sm_all Bhove factor is equally applicable to electrons and positrons
be regl|st|c[13_]. As a consequence, the“? has been _con5|der6-ls perturbing projectiles since it deals solely with correlation
able |ntere§t in recent years in develop_lng alternative treatéffects caused by thi bound electrons at a given point in
ments, which generate global modelings of correlatlon—space
polarization (CP) forces that do not depend on empirical
parameters but can be implemented more easily via some P
simplified local representation of thé-p(r,) interactions DFT(p y—
ety P cTp) VE(rp)= o5 Eelon(rp) @
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within the short-rang€SR) interaction region. A simpler approach to the evaluation of the short-range
Such a choice, on the other hand, implies that it is plaucorrelation effects, on the other hand, can also come from
sible to define a local functional form for the correlation treating the impinging positron in the SR region as being
potential without introducing the distinctions between thejmmersed in a free-electron gas from tNebound electrons
nonadiabatic effects that electrons and positrons have as prghat can in turn provide a direct analytic form of the
below that in the present full formulation of théce(rp)  the FEG correlation-polarization potential. In the case of
interaction the long-rangé-R) region is obtained rather sim-  qjtron projectiles, it was further pointed out that the FEG
ply by directly finding a specific radial value,, outside of ¢, jation should be modified to account for the attractive
which the interaction is given by the,, expression of EQ.  giaic effects that the latter projectile experiences within the
(2) for each of the contributing mult_|polar terms of BQ). volume of the bound electrof80,31] and therefore the FEG
In other words, thg p_resent_modellng Utw(rp) over t_he form can be further corrected into the positron correlation
whole range of action is obtained by the DFT formulation of al(PCO ion for th i . .
Eq. (4) in the nonadiabatic SR region and by the Iowestp.Otem'a( P expression for the prese ee(rp) interac .
perturbative contributions to E@2) in the LR region. Since t'ﬁn' As \?’e S?]a” se? tt.)elow,la.cotmpans;)n t(')fl the rglactjlved
this is done for each multipolar coefficient, different ze?piz ct)ossuece r(:]oorrr: Slzlec;r;l_pct)haenﬁc;gtnerf)%stri]vg fngzgl:z e:f
crossing radii are found depending on the functional formSUCF;] forces for low-energy gositron scattering off more cgm-

used for thef ;. factor of Eq.(3) [8]. Since such choices turn ! ,
out to be different for electrons and positrditd, one may plicated molecular targets. The resulting cross sections, and

argue that the present model has a built-in way to correct fof1€ir comparison with the existing experiments, are in fact a
the necessary differences betweshande™ as projectiles rather sensitive test on the quallty of such models.
when describing SR correlation effects. The bound electron density for the ground state was ob-

To give more specific examples of such differences wédained for a fixed nuclear geometry Bf=2.1944@, and
therefore discuss in the following section the possibleoPtained from an SCF calculation over an extended set

choices for the positron interaction with the €@olecule. ~ ©f Slater-type orbitals [32]. The total energy of
—187.70366 eV was rather close to the Hartree-Fgtk)
limit. The further single-center expansion of the occupied
molecular orbitals was carried out as described bef8ie
and the maximum value retained in the single-center expan-
sion (SCBE evaluation was,,=16. The highest multipolar
In the DFT formulation of the short-range correlation coefficient of Eq.(1) that was kept in the calculations was
forces[21], the f., factor in Eq.(4) requires the choice of an thereforex p,,=16.
exponent,3(r,), which is related to the excluded volume of  The long-range static contribution for=2 yielded a
the bound electrony,. The latter quantity describes that value of the molecular quadrupole ef3.63 &3, which com-
spatial region where the electron-electi@ositron correla-  pares well with the experimental value ef3.90&\a§. The
tion functions are appreciably different from zero and is re-values of the dipole polarizabilities that we employed in the
lated, in the DFT treatment, to the total electron density ofpotential of Eq.(2) were those given in Ref33]: 17.933 for
the target system: ag and 9.193 for a,. These are the same values employed
in a model calculation carried out earlier on positron,CO
. 32 scattering[34]. To make the comparison visually less diffi-
_ R2e 2\ 24— sl cult, we report in Fig. 1 only the lowest two coefficients of
Ve 47Tfo exp(— fTr)rrdr B3 kp. ® the expansion for th¥cg(r,,) interaction, i.e., the.=0 and
N =2 coefficients of Eq(1). In the upper part of the figure
Here k represents the average number of electrons withifve show the spherical term, while the quadrupolar term is
Ve [27]. One could therefore further write that shown in the lower part of the same figure. The following
comments could be readily made by examining the various
forms of Vce(r,) potentials:(i) the r. values of the inner-
_ 13_ 4 113 6 most crossings between short-range correlation potentials
Bre) k- 1BP ap ©) and long-range polarization potentials are all very similar
and are located aroundag, in keeping with earlier values
The factorg can now be obtained from the exact two- for polyatomic system$35] interacting with electronsgii)
electron correlation energy in the He atdi8,22. This the LYP and CC potentials from the gradient-corrected DFT
choice will be described in our work as the Lee-Yang-Parrformulation go rapidly to a “damped” finite value at the
[22] (LYP) form of the Ve(rp,) interaction. On the other origin and are rather close to each other both in size and
hand, it was also suggested that it may be more realistic tbehavior and for both the =0 and thex =2 contributions;
select the correlation energy of the excited states of the sami@i) the correlation-polarization models, which employ the
atomic systen{29] and therefore a different value of the simpler free-electron gas approach, the FEG and PCOP po-
factor g could be obtained. Since we have also tried such a@entials, are both going to a finite value, gs—0, much
choice in the present calculations, we shall call it themore slowly than the former potentials. The PCOP is seen
Carravetta-Clemen(i29] (CC) form of the Vcg(r,) interac-  here to be by far the strongest correlation potential model in
tion. the inner region(iv) the DFT modeling used here treats the

Ill. THE INTERACTION POTENTIAL

1/2



3494 F. A. GIANTURCO AND P. PAIOLETTI 55

0

-0.01F

-0.02

-103

— -0.04
]
2
= -(L.0S
]
= 0def
2
=007
0.08F
-0.0Y
'()'l - : : : . . .
it 2 4 6 8 m FIG. 1. Computed correlation-polarization po-
r ( 4 tentials for the present system. Upper pafg,
p \units of a'U) component of Eq(1); lower part,V, component
of Eq. (1). The labels of the DFT forms are dis-
0.02 cussed in the main text.
0.m 1
0
< -om
LY
| S
T -002t
8
= oo |
2
> 004 :
-0.05
-0.06 1
-0.07 _

-0.08
1)

Tp (units of ag)

dynamic correlation effects from positrons in the same wajythe stronger static interaction of the positron with the nuclei
as that for electrons, while the differences are introduced bynd the bound electrons, in the plots reported in Fig. 3. The
different choices for the values produced by long-range lower part of the figure shows that the different choices for
polarization[6], as we shall discuss below. the correlation factor within the DFT formulation of the

It is, in fact, important to note that the two forms of DFT short-range correlation forces lead to fairly small differences
correlation models differ in another aspect when combinedetweenV g(r,) potentials. By selecting the inner cutoff
with the long-range polarization potential. This is shown ininto the polarization region the two models, in fact, show
Fig. 2, where both coefficients of Fig. 1 are reported on arvery similar forms for the lowest two multipolar coefficients
enlarged energy scale. We see thatXke0 components of of expansion(1), with the larger differences appearing in the
the LYP and the CC forms show a similar inner crossinganisotropic term. Thus, we expect that they will in turn affect
with the polarization potential aroundad, but they also little the behavior and values of the final cross sections.
show secondary outer crossings that are, however, very dif- The upper part of the same figure shows, for the LYP
ferent: the outer LYP value is aroundad i.e., not much model, the effect of selecting the outer crossing of the DFT
different from the inner one, while the outer CC value hascorrelation potential into the polarization region of E@).
moved to about &. The expanded exclusion volume of the For this specific form oV¢(r,) we now find that the two
CC form appears therefore to affect the strength of the dyerossing points are rather close to each other and make little
namic correlation by making it larger, ag increases, than difference in the strength of the spherical term. The aniso-
that from the LYP form. The same features are found for theropic interaction, on the other hand, becomes stronger in the
A\ =2 coefficients of the lower part in Fig. 2. “well” region as expected from the behavior of Fig. 2. In

These differences of behavior can be seen, combined withther words, we see that the selection of either of the cross-
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ing radii (determined by the interplay between short-range The FNA Hamiltonian is now invariant under the linear
DFT correlation and values of the molecular dipole polariz-molecule rotation§18] and therefore the continuum solu-
abilities) makes a difference in the angular strength of cor-tions for each molecular geometR/ can be expanded over
relation and its effects on the final cross sections, as we shadiigenfunctions of the? and £, angular momentum opera-
see in the next section, can help us to better understand iters, at the chosen collision enerfy and the corresponding
role for positron projectiles as opposed to its effects for elecradial coefficients can be obtaingt] from the familiar set
tron scattering processes, where the inngrvalues were of coupled equations

always chosef23,24].

a2  /(/+1) £
IV. INTEGRAL AND DIFFERENTIAL CROSS SECTIONS th 2—r§ —(E—Eyp) ,u/’/o(rp)

. P
For nonpolar molecules the scattering of low-energy pos-

itrons from molecular targets can be treated within the famil- A EA _
o : o2 . + E V, (IR r,)=0, 7
iar fixed-nuclei approximation even more safely than in the o (ryl YA 0
case of electron projectild$6,37. In this instance, in fact,

to consider the rigid molecule as being fixed in space during _ _ _
the scattering process may be more valid at low collisiorivhere/\ is the allowed eigenfunction of, along the mo-

energies than for electron projectiles since the latter penetratecular bond axis for eack value, E, is the reference en-
more deeply into the molecular target charge distributiongrgy equal tok3/2, andE the actual collision energy. The
and therefore experience longer interaction times. corresponding coupling potential can be written as
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V(IR =2 Vi(rpiR)

Xf Y;’A(Fp)Y)\O(Fp)Y//\(Fp)de, 8

out to 14@, at the lowest energies and by numerically sta-
bilizing the integral by testing several step choi¢88§]. In
particular, we have employed Newton-Coates quadrature for-
mulas in the region where all interaction is far from its
asymptotic value while further on asymptotic forms were
used for the lowesk- coefficients(0 and 3. The higher val-

where the coefficients outside the angular averaging ard€s were given by fitting the static interaction to the usual

multipolar forms

those discussed before and given by the expar(dipriFrom
the usual boundary conditions imposed on ,tkﬁaf/o(rp) ra-
dial solutiong 18] one recovers the BF matrix, which is in
turn related to the red® matrix by the usual expression

Convergence of the final cross sections were tested by vary-
iNg I maxs Amax» @andr

T=[1+RI[1-iR]" 9

Ci
N+1-
p

Vi(rp) = (10)

r

max

p  values. The set of values that gave

the best converged results welkg,,=20, \,,,=16, and

The solutions of the radial equatiofi7) are therefore

rp=140m,. The included/\ contributions involved the

searched for by solving the corresponding integral equationd ¢, 2, I14, II,, Ay, andA, components. No higher val-
over the range of action of the potential, i.e., by integratingues of/\ contributed simplificantly to the cross sections.
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The usual adiabatic nuclei-rotatigANR) approach sug- scattering amplitudé within the quadrature of Eq11) re-
gested long ag$39,4Q evaluates the transition amplitude fers also to a space-fixed reference frame but has been ob-
between initial and final rotational states of a linear rigid-tained from scattering parameters evaluated in the BF frame
rotor molecule, I';=(j;,m;) and I't=(j;,m¢), from the of referencg40]. The corresponding DCS can therefore be
guadrature written as

frr (Q'|E)=(T[f(Q",E[R,B)|T). 11 2
do .. __ T (i )
_ ' o o m(h*h)—mg AT(E)P (cos ),
The solid angl€)’ defines here the direction of scattering in !
a space-fixedSPH frame of reference ang labels the three
Euler anglesB=(«,B,7y), which specify the molecular ori-

entationR with respect to the space-fixed frame. Thus, thewhere

(12

ALIE) = () L+ D@5+ D(@2) 1) X (M N2/ D2+ D27+ D2+ D]

/7
/i /i/ L /f /f, L A A n ji jf n 2 /l /f n
X(o 0 0)(0 0 0 T/i/fT/i’/f’; (=Dl 5 o/ [h =x 0
/i, /; n /| /i, L 13
X .
N o/l s 3

The 34, 6-j, and 94§ coefficients have the usual meaning The computed elastic integral cross secti@mgationally
[18] and theT-matrix elements are those evaluated in the BFsummed are then obtained directly from the BFmatrix
frame of reference by solving the set of coupled equationsalculationg 18] of Eq. (9) and are shown in Fig. 4 in com-
(7). Another quantity of interest related to the above DCS isparison with various experimental data. What is shown there
the momentum-transfer cross section given by the followings the result of the present calculations carried out using dif-
expressior(in the FNA approximation ferent forms of the correlation part for the modeling of the
Vcel(rp) interaction in the scattering problem. Thus, CC la-
bels the DFT calculations using one type of correlation fac-

do
om(E)= f aq (1 cos9dQ. @4 forin Eq. (6) [29], while LYP uses the same factor as that
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employed in Ref[22]. At the same time, the curves labeled similar value ofr is causing the behavior of the scattering
“inner” refer to the smaller values of ; that connect the cross sections to remain essentially the s&iiii¢.The PCOP
correlation potential with the LR dipole polarization interac- potential within the free-electron-gas model produces the
tion, while those labeled “outer” use the largervalues for  smallest cross sections, in agreement only with the experi-
this connection. We see that the differences between the LYPents of Ref.[42] but markedly smaller than those from
and CC models of correlation factors play a rather small roleRefs.[41] and[43]. This is at variance with the earlier results
compared with the selection of a differentvalue: the latter for atomic system§6], where the integral cross sections that
choice invariably produces larger correlation effects, espewere obtained from the PCOP model potentials were much
cially at the lower collision energies. larger than the other cross sections at all energies below Ps
Thus, considering the rather large spread of the availablérmation. It is worth noting, however, that all the DFT cal-
experimental pointsf41-43 one can conclude that the culations shown here are to our knowledge the first attempt
present calculations reproduce at best the measured valuescompute cross sections fraeii scattering from C@since
when using the LYP correlation potential and its inner radialthe earlier empirical model of Ref34] was employed. The
connection values with the long-range dipole polarizationpresent results clearly indicate, as already seen foaht
forces. Interestingly enough, this was also the result foundN,, that this modeling of the/cp interaction without any
for electron scattering from similar targef$], where only  adjustment to experiments produces a rather good descrip-
the weaker correlation-polarization potential was deemed ttion of the short-range correlation forces with a very limited
be more realistic. computational cost. It therefore becomes useful to extend
A further comparison with experiments of the computedtheir use to the evaluation of the ANR differential cross sec-
elastic(rotationally summepintegral cross sections is shown tions following Eq.(12) and over the same range of collision
in Fig. 5, where we also report the results obtained using thenergies examined by the FNA integral cross sections.
DFT model in its simpler version of a free-electron-gas ex- The results reported in Fig. 6 show, in the upper part of
pression for the correlation-polarization potential: the FEGthe figure, the behavior of the rotationally summed angular
calculations use the analytic form applicable to electronglistributions as a function of collision energy, going from 1
[15] while the PCOP calculations include the local correctionup to 7 eV across the range examined by the integral cross
for a positron as a perturbing project{ld0,31]. Finally the  sections of Figs. 4 and 5. We clearly see from the calcula-
earlier calculations of Ref34] are also reported and labeled tions that the forward scattering region dominates at the
“Darewych” in the figure. They correspond to FNA calcu- lower collision energies where our results suggest the first
lations in the BF frame of reference using a parametric cutoffew only scattering angles to be relevant for maximum pos-
of the polarization potential, adjusted to give agreementtron flux. On the other hand, as the collision energy in-
withmeasurements at 5 eV. We see the following from thecreases and the projectile samples the inner region of the
shown comparison(i) As expected the LYP, FEG, and interaction we see that the maximum scattered flux moves
PCOP behave similarly at low collision energies, where thenow at larger scattering angles, thus making its detection
polarization part of th&/p potential dominates but differ as experimentally easier in a different range of angular distri-
the collision energy increases because the short-range part loditions.
the correlation becomes more important during collisions.
(i) The LYP and FEG formulations produce very similar
results over the whole range of energies in spite of their
different shapes at short distances seen in Fig. 1. Obviously It is well known that the natural extension of FNA calcu-
such differences are made less important by the dominarations to what is called the ANR approximatiga4,45
static interaction, while the fact that both potentials show amerely implies a transformation from a body to a space

V. ROTATIONALLY INELASTIC COLLISIONS

60 T T T T T T
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: +

s0 | o { o Baperiment
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FIG. 5. Comparison of measured and com-
puted elastic integral cross sections. The calcula-
tions are Darewych, from Reff34]; LYP, present
results with correlation form of Ref22]; FEG,
present results with correlation form of RgL5];
and PCOP, present results with correlation form
of Ref.[31]. The experiments are the same as in
Fig. 4.
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frame of reference without changing the dynamics of thescattering features observed before in the total DCS. On the
collision problem. Thus, if the physical approximation of an other hand, the (8:0) cross sections show here a strong
interaction timer shorter that the rotational timeis valid at  forward peak, which also persists at the higher collision en-
the considered energies, then one can simply use for thergy (lower diagrams in Fig. 7 Thus, we can see that any
state-to-state differential cross sections associated to rotgow-energy forward scattering mostly comes from the elastic
tional excitations the eXpI’eSSion. giVen by E]]Z) in Wthh Component(ii) Of the inelastic processes, the_ém) exci-
the BF-FNA results for thd matrix are transforme_q,wa the tation is the only one that is comparable in size with the
SF-ANR approximatiof45]|. Thereby making theA(L“ ) co-  elastic DCS: all other excitations with highar transitions
efficients now dependent on the initial and final rotationalare much smaller by various orders of magnitudes. This fea-
states of the target through the SFmatrix elements that ture persists even at the higher collision energies. We can
appear in it and that come from a simple geometricatherefore say that rotational excitation by positron scattering
(BF— SF) transformatio40,46|. is a rather inefficient process due to the little penetration
Examples of such partial differential cross sections areéperturbation caused by the latter projectile into the molecu-
shown in Fig. 7 at two different collision energies: at 1 eV lar volume.
(upper part of the figupeand at 5 eV(lower part of the The dependence of the partial cross section maximum
figure). The range of intensity values is so large that they arevalue on the chosen collision energy could be seen more
presented on a logarithmic scale for transitions involving ex<learly in the lower part of Fig. 6. We report there, as a
citations from the ground rotational level. We can readilyfunction of collision energy, the maximum values of the
notice the following points(i) The inelastic transitions, at state-to-state DCS in order to indicate which deflection
the lower collision energies, are not showing the forwardangles would be more amenable to detection. Thus, the elas-
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tic DCS maxima are seen to always peak in the forwardvhere theT-matrix elements are now given in the SF frame
direction over the whole range of examined energies. Thef reference[47]. The corresponding momentum transfer
inelastic DCS, on the other hand, are localized within a morejuantities are also obtained in terms of #e coefficients:
narrow angular cone of “maximum flux” over the whole
energy range. Thus, the inelastic maxima now vary only by
about 2 orders of magnitude from the elastic DCS and may
be more amenable to detection within each particular angular
range.

. From the previous equation we know that the corresponda g can be readily computed from the ANR transformation
ing state-to-state integral partial cross sections can be ORjiscssed before. Both the above quantities will be a mea-

kaz
2j+1

TN S
o (E) =gy | A - 3AY ﬂ (17

tained ag46] sure of the general efficiency of positron projectiles in bring-
ing about the rotational excitation of the G@rget.
k2 In the upper part of Fig. 8 we therefore report the energy
a j G.i" . . .
oj_j(E)= T 1AOJ'J (15 dependence of the partial integral cross sections for the elas-
J tic and the two largest inelastic excitation processes,

k2 (0—2) and (0—4). We see that the elastic process clearly
=1 z (23+1)|Tj{/, j /|2, (16) dominates the collisional encounters, with the lowest two
2j+1 o excitations being 1 and 2 orders of magnitude smaller. Fur-

N4
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thermore, their energy dependence within the observed intespan 4 orders of magnitude and are at all energies much
-val appear to be rather weak and show an increase of largemaller than the elastic process. Thus, if one now defines the
A; inelasticity asE increases. average energy transfer in rotational excitation processes as

J .
The same general behavior is shown by re-  given by

=N

ported in the lower part of Fig. 8. The solid line shows also

the total o, of Eq. (14), which clearly appears to nearly Jiix o AEn
coincide with the elastic cross section. Here again one sees ot 0—jr =0y
that the inelastic contributions increase with increasing col- (Erdo=—T2 (18
lision energy. 2 oo )
A more expanded view of the behavior of the inelastic o 0=

cross sections could be had by the calculations shown in Fig.

9. The upper part of the figure reports, at different collisionfor collisional heating of the molecules out of the 0 level,
energies, the values of the inelastic cross sections Wjth one can represent the above quantity as a function of colli-
values up to 12, i.e., with very large values of energy transsion energy to get some idea about the efficiency of the col-
ferred during collisions. As expected, such cross sectionisional excitation. The results from the present calculations
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are shown in the lower part of Fig. 9, where (&, values ecule. The computational approach has been that of using an
as plotted over the range of energy below the Ps thresholdb initio, nonempirical modeling of correlation-polarization
One clearly sees there that the amount of energy being tranferces and of treating both the FNA and ANR dynamics
ferred is really very small and drops very rapidly, because ofvithin a single-center-expansion development. The results of
the increase withe of the elastic process, in the low-energy the present calculations show the followin@. The elastic
range while slowly increasing ds reaches the 7-eV thresh- integral cross section§otationally summed agree rather
old. In other words, the positron projectiles are indeed fafvell with available experiments and suggest that the DFT
less efficient than electrons for the excitation of rotationalmodeling of correlation forces provide, with a limited com-
levels in this system since the latter projectile shows muctpuytational effort, a realistic description of the scattering pro-
larger values of such cross sections at the same energies agks (i) The nature of the positron-molecule static interac-
indicates the strong influence of the resonant procdgils  tjon is such that the SCE expansion yields converged cross
in producing inelastic probabilities. sections more rapidly than in the case of electron scattering
with the same systef@9]. (iii) The angular distributions are
dominated by the forward-scattering elastic component,
while inelastic DCS show maximum values only within lim-
VI. SUMMARY AND CONCLUSIONS ited angular cones away from the sméllregion. (iv) The
In the present work we have reported a detailed study ofize of the inelastic cross sections is generally very small and

the collision of low-energy positror®elow the threshold of strongly decreases with increasing energy transfer, thus indi-
Ps formation with a linear polyatomic target, the G@nol-  cating that positrons are much less efficient projectiles than
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electrons at the same collision energjd8], in producing is presently under study and will be discussed elsewhere
molecular heating in the gas. [50].

In conclusion, we have presented a more detailed picture
of both elastic and inelastic collisions at low energies of ACKNOWLEDGMENTS
positrons with a polyatomic target. In this picture the present The financial support of the Italian National Research
interaction model appears to yield results that are in reasor€ouncil (CNR), of the Italian Ministry for University and
ably good accord with the available experiments. The extenResearch(MURST), and of the Research funds from the

sion of the ANR approach to vibrationally inelastic processedJniversity of Rome are gratefully acknowledged.

[1] Positron Interactions with Atoms, Molecules and Clustekrs
C. Baltzer AC, Science Publishers, Singapore, 1994

[2] Positron (Electron) Gas Scatteringdited by W. E. Kauppila,
T. S. Stein, and J. M. Wadhef&Vorld Scientific, Singapore,
1986.

[3] Electron Collisions with Molecules, Clusters and Surfacss
ited by H. Ehrhardt and L. A. MorgafPlenum, New York,
1994).

[24] F. A. Gianturco and N. Stoecklin, J. Phys.28, 5903(1994).

[25] R. Colle and O. Salvetti, Theor. Chim. Ac8%, 329 (1975.

[26] M. Morrison, inPositron (Electron) Gas Scatterin@ref. [2]),
p. 100.

[27] E. P. Wigner and F. Seitz, Phys. Re\8, 804 (1933.

[28] R. Colle and O. Salvetti, J. Chem. Ph@8, 534(1990.

[29] V. Carravetta and E. Clementi, J. Chem. Phgg, 2646
(1984).

[4] For example, see F. A. Gianturco and R. Melissa, Europhys[30] E. Boronski and R. M. Nieminen, Phys. Rev. 8!, 3820

Lett. 33, 661(1996.
[5] H. D. Meyer, J. Phys. B5, 2657(1992.

(1986.
[31] A. Jain, Phys. Rev. A1, 2437(199).

[6] F. A. Gianturco, A. Jain, and J. A. Rodriguez-Ruiz, Phys. Rev.[32] A. D. Mc Lean and M. Yoshimine, IBM J. Res. De¥2, 206

A 48, 4321(1993.

[7]1 F. A. Gianturco and D. De Fazio, Phys. Rev. 59, 4819
(1994.

[8] A. Temkin and K. Vasavada, Phys. Re\60, 109 (1967); F..

(1968.
[33] M. A. Morrison, N. F. Lane, and L. A. Collins, Phys. Rev. A
15, 2186(1977).
[34] M. Horbatsch and J. W. Darewych, J. Physl® 4059(1983.

A. Gianturco, P. Paioletti, and J. A. Rodriguez-Ruiz, Z. Phys.[35] F. A. Gianturco, Europhys. Letf.2, 689 (1990.

D 36, 51 (1995.
[9] F. A. Gianturco and T. Mukherjee, Phys. Rev.55, 1044

(1999.

[10] M. A. Morrison, Phys. Rev. A5, 1445(1982.

[11] T. L. Gibson, J. Phys. B3, 767 (1990.

[12] For example, see E. A. G. Armour, Phys. R&p9, 1 (1988.

[13] R. N. Hewitt, C. J. Noble, and B. H. Bransden, J. Phy23
557 (1992.

[14] M. A. Morrison, Adv. At. Mol. Phys.24, 51 (1988.

[15] J. K. O’'Connell and N. F. Lane, Phys. Rev2&, 1893(1983.

[16] F. A. Gianturco and D. De Fazio, Phys. Rev. 59, 4819
(1994.

[17] For example, see A. D. Buckingham, Adv. Chem. PHy3.
107 (1967.

[18] N. F. Lane, Rev. Mod. Phy&2, 29 (1980.

[19] H. D. Meyer, Phys. Rev. A0, 5605(1989.

[20] F. A. Gianturco and J. A. Rodriguez-Ruiz, Phys. Rev4A
1075(1993.

[21] F. A. Gianturco and J. A. Rodriguez-Ruiz, J. Mol. Stru2#,
99 (1992.

[22] C. Lee, W. Yang, and R. G. Parr, Phys. Re\3B 785(1988.

[36] A. Jain and F. A. Gianturco, Phys. Rev.28, 2387(199)).

[37] T. L. Gibson and M. A. Morrison, Phys. Rev. R9, 2497
(1984.

[38] W. N. Sams and D. J. Kouri, J. Chem. Ph§4, 4809(1969.

[39] A. Temkin and K. V. Vasavada, Phys. Red60, 109 (1967.

[40] A. Temkin and F. H. M. Faisal, Phys. Rev. 3 520 (1971J.

[41] K. R. Hoffmann, M. S. Dababneh, Y.-F. Hsieh, W. E. Kaup-

pila, V. Pol, J. H. Smart, and T. S. Stein, Phys. Rev2%
1393(1982.

[42] M. Charlton, T. C. Griffith, G. R. Heyland, and G. L. Wright,
J. Phys. B16, 323(1983.

[43] O. Sueoka and S. Mori, J. Phys. Soc. Jp8,.2492(1984).

[44] F. A. Gianturco, A. Jain, and L. C. Pantano, J. Phy20B571
(1986.

[45] D. M. Chase, Phys. Re\l04, 838(1956.

[46] N. Chandra, Phys. Rev. A6, 80 (1977.

[47] A. M. Arthurs and A. Dalgarno, Proc. R. Soc. London2A6,
540(1960.

[48] F. A. Gianturco and T. Stoecklin, Phys. Rev. 35, 1937
(1997).

[49] F. A. Gianturco and T. Stoecklin, J. Phys.2B, 3933(1996.

[23] F. A. Gianturco, N. Sanna, and J. A. Rodriguez-Ruiz, Phys[50] F. A. Gianturco and T. Mukherjee, Phys. Rev.(#& be pub-

Rev. A52, 1257(1995.

lished.



