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Stationary-state scattering theory for dissociative photodetachment on nonadiabatically coupled
potential surfaces as a probe of transition states

Kazuo Takatsuka
Graduate School of Human Informatics, Nagoya University, Nagoya 464-01, Japan

~Received 27 November 1995; revised manuscript received 23 May 1996!

We develop a stationary-state scattering theory of dissociative photodetachment in a transition-state region
for a system in which two or more potential surfaces are mutually coupled through the nonadiabatic interaction
in dissociative channels. Since the present phenomenon involves electron detachment and molecular dissocia-
tion dynamics, it is a doubly half collision in a three-body problem. We perform an asymptotic analysis for the
dissociative wave functions, which formally gives a closed form of the transition amplitude in which the pulse
shape and polarization of a pumping laser, the kinetic energy distribution of a detached electron, and the
product distribution are all correlated. The present formal theory thus provides a unified basis for the analyses
in the experimental and numerical studies. We revisit the mathematical role of the so-called in-going state for
general dissociation dynamics and, in particular, argue that the traditional interpretation of the ingoing wave
function due to Breit and Bethe is not necessarily valid.@S1050-2947~97!03601-9#

PACS number~s!: 34.10.1x, 33.80.Eh, 34.80.Gs, 34.50.Lf
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I. INTRODUCTION

One of the most remarkable advances in the recent
lecular spectroscopic experiments is the so-called transit
state spectroscopy@1#. Several different kinds of experimen
have been devised in order to observe ‘‘transition stat
directly. The transition state was only a theoretical not
before, but some of them are now identified experimenta
Another impact of the transition-state spectroscopy is tha
provides a new chance of interplay between the spect
copy, electron scattering by molecules, and reaction dyn
ics. On the other hand, a tough problem, among others,
an experimentalist to face is the analysis of the experime
results, since the experiments are conceptually new
hence there can be many results that can be difficult to
derstand in terms of the analogy of the existing experime
Theoretical studies@2# are highly demanded to identif
which kind of physical processes lie behind the experime
and what are the relationships among the potentially obs
able quantities.

On the other hand, the leading theoretical studies so
made have been focused on an individual process separa
Typically, very accurate potential surfaces are calculated
@3#. Classical@4# or wave-packet@5# dynamics based on th
Franck-Condon approximation have been carried out on
sociative potential surfaces, in which empirical potentials
usually adopted. Bowman and Gazdy@6#, Schatz@7#, and
Zhang and Miller @8# have calculated the stationary-sta
nuclear wave functions on the reactive potential surfa
without resorting to the wave packet dynamics. A full sc
tering calculation of the electron detachment has not yet b
done. Therefore a unified theoretical basis seems neces
in which to get all the individually studied quantities togeth
in order to comprehend the entire process.

As far as we are aware, however, a unified theory for
dissociative photodetachment spectroscopy is given only
a rather intuitive level@2#, which is formulated through an
analogy from the photodissociation theory@9,10#, and there
551050-2947/97/55~1!/347~14!/$10.00
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has not yet been a formal derivation of the transition am
tude for the present dynamics. In the present paper there
we develop astationary-state scattering theoryof photode-
tachment spectroscopy for an anion species in the transit
state region, covering more general cases in which the
sociative potential surfaces cross each other due to,
instance, the nonadiabatic coupling and in which the pum
ing laser is significantly of nonstationary~pulse! nature.

It has been proved by Lippmann and Schwinger@11# that
the stationary-state scattering theory is equivalent to
time-dependent one for a stationary collision phenomen
In a scattering event that is assisted or triggered by a non
tionary laser, though, the stationary-state scattering the
does not seem to be a natural way to describe the experim
tal situation, since the effect of the shape and duration of
pulse laser can cause essentially time-dependent phenom
In fact, Shapiro has developed a very extensive theory for
real-time dependency of laser-assisted chemical dynam
such as photodissociation@12#. Nonetheless we pursue th
possibility of the stationary-state theory in the present pap
The effect of the shape of a pumping laser in time and
frequency domains, which is usually neglected in the st
dard treatment of stationary theory, is taken into acco
explicitly in our theoretical framework. The other reasons
develop a time-independent scattering theory are as follo
The theoretical and computational techniques for the s
dard scattering situations such as electron-molecule c
sions @13,14# and chemical reaction dynamics@2,3,6,7,8#,
which are relevant to the present dissociative photodeta
ment, have been developed mostly in the stationary-s
scheme. In addition, many of the scattering experiments
designed to measure in the energy domain@1#. Moreover, the
stationary-theoretic framework can generally provide
overall view of the physical situation and thereby facilitate
unified understanding of the various observations such as
angular and kinetic energy distributions of an ejected el
tron and the branching ratio of the product states.~It is, of
course, impossible though to observe all these quantities
347 © 1997 The American Physical Society
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348 55KAZUO TAKATSUKA
coincident experiment even with the most advanced te
nique to date.!

Once such a stationary-state theory is set up~even if it is
an approximate one!, one can ask the following question
How do the above quantities correlate with each other? H
does the shape of the laser pulse in the time domain a
the cross sections in the energy domain? What is the co
lation among the possible rotations such as the differen
cross sections of the electron and the rotational distribu
of the molecules? They should also be correlated with
symmetry of the electronic wave function and the geome
cal shape of the transition state. The resonance arising f
the metastable ‘‘vibrational levels’’ formed in the transitio
state region is well known as another important phenome
@15,4–8#. Probably one of the ultimate questions would be
it possible in principle for spectroscopic data of the elect
kinetic energy and/or photon absorption to provide the s
tering data for the related reaction dynamics such as the
active cross sections? The stationary scattering theory w
set a theoretical foundation to answer these questions.

The dissociative photodetachment in a transition-state
gion constitutes a tough challenge to the theory in tha
includes two half collisions in a three-body scattering pro
lem consisting of an ejected electron and receding molecu
Accordingly two continua are involved with the dissociati
boundary conditions, which makes a theoretical treatm
much more difficult than in the ordinary photodissociati
@9,10#. We circumvent this difficulty in terms of the fixe
nuclei approximation and develop an asymptotic analysis
the dissociative~half collision! scattering wave function@16#
for the event of dissociative photodetachment. Anot
physical factor that introduces further complication is th
the dissociative~reactive! potential surfaces can cross ea
other @17#. Hence we also present a transition amplitude
which two or more dissociative potential surfaces cross e
other through the nonadiabatic and/or spin-orbit interacti
@18#. Recently, Guo and Schatz@19# and Bowman, May-
rhofer, and Amatatsu@20# have treated the photodissociatio
dynamics on the nonadiabatically coupled potential surfa
We shall verify that the very basic formulas they resorted
for the calculations of the transition amplitudes, which we
presented with neither derivation nor mathematical verifi
tion, are essentially correct.

Various theoretical problems are also discussed on
way to our final expressions. In particular, we argue the
terpretation of the role of the so-called ingoing scatter
wave functions@11,21# that are usually utilized in the contex
of dissociation dynamics. We show rigorously in whic
mathematical context the necessity of the ingoing states a
and try to remove the dubious interpretation due to Breit a
Bethe@21#, which has been adopted traditionally in scatt
ing theory for a long time.

The structure of the present paper is as follows. Sectio
defines the basic framework which we are going to wo
with, including a transformation from the time to energy d
mains. In Sec. III we perform the asymptotic analysis
molecular dissociative wave functions. Some miscellane
but relevant issues, such as the interpretation of the rol
the ingoing state and a relationship of the stationary-s
theory to the time-dependent wave packet dynamics, are
cussed in Sec. IV. In Sec. V we extend the foregoing disc
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sions to a case in which two or more potential surfaces cr
mutually. The paper concludes in Sec. VI with some
marks.

II. PREPARATION
OF BASIC THEORETICAL FRAMEWORK

OF PHOTODETACHMENT

Suppose we have the following dissociative photodeta
ment @1#:

M21hn→ H R1S1e2

T1U1e2

~channel A!
~channel B!,

in which the molecular configuration ofM2 happens to be
close to that of the transition state in a reaction

R1S→T1U ~and T1U→R1S!.

Although the kinetic energy distribution of the detach
electron is measured in the energy domain, the above exp
ment is essentially time dependent since a photon~s! is usu-
ally provided by a pulse laser. Hence the treatment in tim
dependent scattering theory seems more suitable. It is
known, on the other hand, that the stationary scatter
theory is equivalent to the time-dependent~wave-packet! ap-
proach@11#, which are mutually connected through the Fo
rier transform. However, these two approaches are quite
ferent in practice, since a wave packet is a member of
ordinary Hilbert space, while a time-independent scatter
wave function is not and has to satisfy certain spec
boundary conditions in the asymptotic regions. According
it is much harder to handle the time-independent scatte
theory. In fact, an extensive time-dependent theory for p
todissociation as well as Raman scattering has been de
oped by Shapiro@12#. In order to obtain a closed form of th
scattering amplitude of photodetachment, however,
stationary-state scattering theory has an indispensable ad
tage as seen below. If the present theory is applied to ph
dissociation dynamics, which is considerably simpler th
the dissociative photodetachment, it will well compleme
the relationship between Shapiro’s time-dependent the
@12# and the time-independent treatments by Guo and Sc
@19# and Bowman, Mayrhofer, and Amatatsu@20#.

A. Preliminary transformation from time to energy domains

Before developing the theory in detail, we look briefly b
rather generally at the relationship between time-depend
and -independent theoretical schemes from the viewpoin
scattering theory. First suppose we have a problem in wh
a time-dependent perturbation is applied to a station
Hamiltonian system as

ih
]

]t
f~ t !5@H1V~ t !#f~ t !. ~2.1!

According to the general prescription in quantum mechan
we consider the Fourier transform of Eq.~2.1! by defining

f̃~E!5 lim
T→`

1

2p\ E
2T

T

dt expS i\ EtDf~ t ! ~2.2!
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55 349STATIONARY-STATE SCATTERING THEORY FOR . . .
and its analog for the potential functionṼ(E). The Schro¨-
dinger equation now looks like

~E2H !f̃~E!5E
0

E

dE0Ṽ~E2E0!f̃~E0!5Ṽ* f̃ ~2.3!

in the energy domain. The rightmost expression denotes
convolution. Actually, Eq.~2.3! is only one of the counter
parts of the coupled equations for a continuous set
$f̃(E)%, with the energy being a parameter. The compl
knowledge over the entire set recovers all the information
the time domain.

In our photodetachment situation, we take a classical e
tromagnetic field under the weak-field approximation as
time-dependent potential for a pumping laser, which is c
ventionally written as@22#

V~ t !5\E
2`

`

dv F~v!exp~ ikW l•rW2 ivt !nW •pW

>\E
2`

`

dv F~v!exp~2 ivt !nW •pW , ~2.4!

wherekW l is the wave vector of light,nW is a unit vector per-
pendicular tokW l , andpW is the electronic momentum operat
which will be eventually transformed to the electronic dipo
operator. The near equality in Eq.~2.4! arises from the so-
called long-wavelength approximation. We have a distrib
tion of frequencyv, denoted byF~v!, which also includes
the constant factors likeeA0/(mc). F~v! in turn gives rise to
a time-dependent shape of the pulse laser. It is trivial to

Ṽ~E!5FSE\ DnW •pW . ~2.5!

In a case where the perturbation is not very strong,
first-order perturbation theory allows one to replacef̃ of the
right-hand side of Eq.~2.3! with an unperturbed counterpa
in such a way that

~E2H !f̃~E!5E
0

E

dE0Ṽ~E2E0!f̃unptbd~E0!5Ṽ* f̃unptbd,

~2.6!

wheref̃unptbd is the Fourier transform as in Eq.~2.2! of the
unperturbed wave function that satisfies

ih
]

]t
funptbd~ t !5Hfunptbd~ t !. ~2.7!

In our studied situation,funptbd(t) is supposed to represent a
initial bound state that is to be carried to a dissociative s
by the optical interactionV(t) in the remote future. Thus th
approximation of Eq.~2.6! has neglected the second-order
higher-order effects such as the Stokes-Raman scattering
can represent, for instance, a deactivation process fro
dissociative state to a bound state by emission of light. Ho
ever, as far as the cross section of the dissociative pro
associated with electron detachment is concerned, the pre
approximation should be quite reasonable.~See Shapiro@12#
for a comprehensive treatment of Stokes-Raman scatterin
photodissociation. See also@9d#.!
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Nonetheless Eq.~2.6! is not very simple, since we have
convolution in it. There are two extreme cases of decon
lution. One is the case of monochromatic light, namely,

F~v!5F0~v0!d~v2v0!, ~2.8a!

which is provided only by a perfectly tuned stationary optic
source, and results in

Ṽ~E!5\F0~v0!d~E2\v0!nW •pW [Ṽ0~\v0!d~E2\v0!.
~2.8b!

Note thatṼ(E) is dimensionless, whileṼ0~\v0! has the di-
mension of energy. We then have a deconvoluted inhomo
neous Schro¨dinger equation

~E2H !f̃~E!5Ṽ0~\v0!f̃unptbd~E2\v0!. ~2.9!

The other is the case in whichfunptbd(t) is a pure state,
namely,funptbd(t)5ukexp[(i /\)Ekt], whereuk is one of the
eigenfunctions of the HamiltonianH, which simply leads to

f̃unptbd~E0!5ukd~E02Ek!. ~2.10!

Here again, the physical dimensions off̃unptbd ~E0! anduk
are different. Equation~2.10! leads to another kind of de
convoluted equation,

~E2H !f̃~E!5Ṽ~E2Ek!uk . ~2.11!

Although Eqs.~2.9! and ~2.11! are both deconvoluted, thei
difference in the physical meaning is clear. Nonetheless,
quite interesting to note that the latter case, namely,
~2.11!, can hold for the instantaneous~ultrashort! pulse of a
white colored light as long as the initial state is an eigenfu
tion. This is the opposite extreme to the stationary source
Eq. ~2.8!. Incidentally, Shapiro has noted repeatedly that
popular wave-packet treatment due to Heller@23# does cor-
respond to the ultrashort pulse case, since a packet is evo
there on an excited potential surface after the instantane
transition. We further note that one should take care wh
the initial wave function is not an eigenstate.

If the laser source is not monochromatic, and if the init
state is not a pure state, one has to solve Eq.~2.6! with the
convolution remaining as it is. Suppose the wave packe
expanded in terms of the eigenfunctions$uk% such that
funptbd(t)5(ckukexp[(i /\)Ekt], with ck’s being the coeffi-
cients. The asymptotic component in Eq.~2.6! that describes
the transition amplitude of the energyE has contributions
from all the possible combinations of(kṼ(E2Ek)ckuk
[0<Ek<E], whereby the functional shapes both of the las
pulse @cf. Eq. ~2.5!# and the wave packet are coupled t
gether to affect the transition amplitude. In other words,
resultant cross section in the energy domain keeps
memory @12# of the laser shape. In what follows, we sha
retain the convolution term so as to treat the general cas

B. Fixed nuclei approximation

We now formulate the dissociation problem. To this en
we adopt the fixed nuclei approximation~adiabatic approxi-
mation! to separate the motions of electrons and nuclei. T
initial state is supposed to be prepared in a Bo
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350 55KAZUO TAKATSUKA
Oppenheimer stateF0(qW ;QW )x0(QW ), whereF0(qW ;QW ) is an
adiabatic electronic state as a function of the electronic
ordinates (qW ) with the nuclear coordinates (QW ) as param-
eters. It is thus an eigenfunction of the electronic Ham
tonianHel as

HelF0~qW ;QW !5e0~QW !F0~qW ;QW !, ~2.12!

wherebye0(QW ) defines the initial potential surface, usual
the ground state.x0(Q$ ) represents a wave function for v
brational and rotational motions, which does not necessa
have to be a pure state. Our starting equation is then
analog of Eq.~2.6!, that is,

~E2Hel2TN!CE~qW ,QW !

5E
0

E

dE0Ṽ~E2E0!@F0~qW ;QW !x0~QW !#~E0!

5E
0

E

dE0Ṽ~E2E0!@F0~qW ;QW !x0$E0%#

5Ṽ* @F0~qW ;QW !x0~QW !#, ~2.13!

whereTN is the nuclear kinetic energy operator of the for
TN5( I P̂I

2/(2MI). @F0(qW ;QW )x0(QW )#(E0) is the component

of F0(qW ;QW )x0(QW ) of an energyE0. This component can be
produced by means of the Fourier transform of a wa
packet statex0(QW ) that is to be evolved in time on the po
tential surface generated byF0(qW ;QW ), namely,e0(QW ). Such
a component has been denoted byx0$E0% in Eq. ~2.13!. The
dissociating stateCE(qW ,QW ), which is our unknown function
could be expanded in the set of adiabatic electronic w
functions such that

CE~qW ,QW !5(
f
E dkW fF f kW f

~2 !
~qW ;QW !x f kW f

~QW !. ~2.14!

Here the electronic continuum wave functions satisfy

HelF f kW f

~2 !
~qW ;QW !5F ~kf\!2

2m
1e f~QW !GF f kW f

~2 !
~qW ;QW !, ~2.15!

wheree f(QW ) is the eigenvalue of the electronic Hamiltonia
for the neutral~photodetached! molecule and thereby dete
mines the excited-state potential surface. (kf\)

2/(2m) is the
kinetic energy carried away by the ejected electron from
anion molecule@24#. The boundary condition forF

f kW
(2)

is
~@11,21#, and see Sec. III!

lim
r→`

F f kW f

~2 !
5 Fexp~ ikW f•rW !F̃f1(

g
Tg f

~2 !~rŴ,kW f !
1
r

3exp~2 ikgr !F̃gG
5Af~rŴ,kW f !F1r exp~ ik f r !F̃f

2(
g

Sg f
~2 !~rŴ,kW f !

1
r
exp~2 ikgr !F̃gG,

~2.16!
-

-

ly
an

-

e

e

where

Af~rŴ,kW f !5
2p

kf
(
l ,m

i l21 expS 2 i
lp

2 DYlm~kŴ f !Ylm* ~rŴ !,

~2.17!

which has made use of an identity

exp~ ikW f•rW !5
2p

kfr
(
l ,m

i l21H expF i S kfr2
lp

2 D G
2expF2 i S kfr2

lp

2 D G JYlm~kŴ f !Ylm* ~rŴ !.

~2.18!

F̃ f andF̃g in Eq. ~2.16! denote the electronic states after t

detachment is completed. The hat symbol inrŴ denotes the
angular components of the scattered or detached elec

and similarly, we express a vector askW f5(kf ,kŴ f), which is
our practice throughout the present paper. The molec

frame is used throughout. This means thatAf(rŴ,kW f) and

Sgf
(2)(rŴ,kW f) are the functions of the molecular frameQW .
The boundary condition to be imposed on this doub

dissociating state is quite involved. It is assumed in our tre
ment that the electron detachment first carries an electron
away and then the molecular dissociation follows. Thus
should have

lim
r→`

CE~qW ,QW !5(
f
E dkfPf~kf ,rŴ,QW ! 1

r
exp~ ik f r !F̃f

~2.19!

at each given nuclear configurationQW . F̃f denotes the elec
tronic state after the detachment is completed. On the o
hand, it is never trivial to see whether the expansion in
~2.14! can materialize this asymptotic situation. Inserting t
second form of the boundary conditionF

f kW
(2)

in Eq. ~2.16!
into ~2.14!, and comparing with Eq.~2.19!, we should have

Pf~kf ,rŴ,QW !5E dkŴ fAf~rŴ,kW f !x f kW f
~QW ! ~2.20!

and

(
f
E dkW fAf~rŴ,kW f !F(

g
Sg f

~2 !~rŴ,kW f !
1

r

3exp~2 ikgr !F̃gGx f kW f
~QW !50. ~2.21!

The latter expression comes from a requirement that any
coming spherical waves should disappear in the asympt
region. As seen in Eqs.~2.20! and ~2.21!, x f kW f

(QW ) plays the
role of a coefficient for the total wave function to satisfy th
electronic boundary condition, Eq.~2.19!. A rigorous theory
that aims at the complete solution ofx f kW f

(QW ) should take
account of these boundary conditions~Kanfer and Shapiro
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55 351STATIONARY-STATE SCATTERING THEORY FOR . . .
have carried out a numerical study for the dissociative pho
ionization of H2 @25#!, but our approach bypasses this dif
cult issue.

The boundary condition for the molecular dissociation
to be extracted from the amplitude of the detachment, tha

lim
a→`

Pf~kf ,rŴ,QW !5(
a

Cfa~rŴ,QŴ !
1

Q
exp~ iK faQ!x̃ fa ,

~2.22!

wherex̃ fa denotes collectively the rovibrational states af
the dissociation is over, anda specifies the product channe
KW 5(K,K̂) is the wave number vector of the receding m
ecules.

Here care should be taken in representing the two bou
ary conditions at the same time~r→` andQ→`!, which
may look like

lim
r→`
Q→`

C~qW ,QW !5C~rŴ,QŴ !
exp~ ikr !

r
exp~ iKQ !

Q
F̃f x̃ f ,

~2.23!

However, the limitQ→` should be taken after the procedu
r→`. If not, the boundary condition for the simple phot
dissociation will be given.

We take one step further in the adiabatic approximat
for the detachment process as in the usual practice of
theory of photoionization. At each nuclear configuratio
which is given as a parameter, the molecule is suppose
eject an electron irrespective of the nuclear wave functi
This is equivalent to introducing an electronic wave functi
F f(qW ;QW ) for detachment such that

lim
r→`

F f~qW ;QW !5(
f
E dkfD f

0~kf ,rŴ,QW ! 1
r
exp~ ik f r !F̃ f .

~2.24!

The coefficientDf
0(kf ,rŴ;QW ) gives an amplitude of electroni

excitation at a given nuclear configurationQW . Again, at each
nuclear configuration,F f(qW ;QW ) should satisfy an effective
equation of motion for photodetachment,

S e f~QW !1
~\kf !

2

2m
2HelD uF f&5Ṽ~\v!uF0&. ~2.25!

Here\v is to be equated toE2E0 later ~see Fig. 1!. Equa-
tion ~2.25! brings out a very characteristic feature of t
adiabatic approximation. The energies for the electronic m
tion and for the photon do not seem to be consistent w
each other.@Notice thate f(QW )1(\kf)

2/(2m) is not equal to
the total energyE(5E01\v).# This is because the kineti
energy of the nuclear motion is removed from the total
ergy at each nuclear position, and thus the energy avail
to the electronic motion under the adiabatic approximatio
not subject to the conservation of the total energy.

Df
0(kf ,rŴ;QW ) in Eq. ~2.24! can be readily obtained resor

ing to Eq. ~2.25! with use of Eq. ~2.5!. First, define
Df(kW f ;QW ) as
-

s,

r

d-

n
he
,
to
.

-
h

-
le
is

Df~kW f ;QW ![^F f kW
~2 !uṼ~E2E0!uF0&

5FSE2E0

\ D im

\
~E2E0!^F f kW

~2 !unW •dW uF0&,

~2.26!

wheredW andm are the sum of the dipole operators and t
electron mass, respectively.~To see how the dipole operato
arises, consult Ref.@22#.! Then it follows that

Df
0~kf ,rŴ;QW !52

m

2p\2 Df~kW f ;QW !. ~2.27!

The angular directionrŴ is identified as that ofkW which is
specified byF

f kW
(2)

of Eq. ~2.26!. @The method to get Eq
~2.27! will be discussed in Sec. III.# In what follows,

Df(kW f ;QW ), rather thanDf
0(kf ,rŴ;QW ), plays an essential role

We simply writeDf(kf ,rŴ,QW )5Df(kW ;QW ) from now on.~The

suffix f of kW f andkŴ f will be omitted unless any confusion i
expected.!

The various energies to be taken into account are sum
rized as follows ~see Fig. 1!: Eph5\v, photon energy;
ek5(\kf)

2/(2m), the asymptotic kinetic energy of the ele
tron; er , the relative kinetic energy of the receding mo
ecules;Def is the energy difference between the excited p
tential surface and the ground one in the dissociation lim
The last two are determined only by specifying the exit ch
nels. The energy conservation requires

E5E01\v5e f~QW !1ek1T~QW !5De f1ek1e r . ~2.28!

Since eitherek or er is not determined independently, whic
is characteristic of the two continuum experiment, the co
volution is necessary in a certain experiment~see Sec. III D!.
This can be important in an experiment detecting the ang
distribution of the electron, and so on.

C. Equation of motion for dissociation dynamics

Under the above conditions, we can determine the eq
tion of motion for the unknown functionx f kW(QW ) that is to

FIG. 1. A schematic diagram of the energy profiles of dissoc
tive photodetachment and the energy relations used in the text
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represent dissociation dynamics. We first~and in Sec. III!
concentrate on a problem of a single dissociative poten
surface. Thus the suffixf in F

f kW
(2)

has none to distinguish bu
a single dissociative state. Operating an electronic continu
wave function^F f kW

(2)u on Eq.~2.13!, we have

@E2ek2e f~QW !2TN#ux f kW&

5E
0

E

dE0^F f kW
~2 !uṼ~E2E0!uF0x0$E0%&

5E
0

E

dE0FSE2E0

\ D im

\
~E2E0!

3^F f kW
~2 !unW •dW uF0&ux0$E0%&

5E
0

E

dE0Df~kW ;QW !ux0$E0%&, ~2.29!

where the curly bracket specifies the energy component
in Eq. ~2.13!. We rewrite Eq.~2.29! simply as

~E2ek2Hf !ux f kW&5uDf~kW ;QW ! ^ x0&, ~2.30!

which defines the convolution̂ , and

Hf5TN1e f~QW ! ~2.31!

is the Hamiltonian for the excited~reactive! potential sur-
face. Note thate f(QW ) does not approach zero in the diss
ciation limit, but

e f~QW !→De f ~dissociation limit!. ~2.32!

See Fig. 1. In order to get the left-hand side of Eq.~2.29!, we
have used the following adiabatic approximation:

E dkW8^FkW
~2 !uTNuF

kW8
~2 !

&ux f kW8&>E dkW8^FkW
~2 !uF

kW8
~2 !

&TNux f kW8&

5TNux f kW&, ~2.33!

where the following orthonormalization@11# has been
adopted:

^FkW1

~2 !uF
kW2

~2 !
&5d~kW12kW2!. ~2.34!

III. ASYMPTOTIC ANALYSIS
OF MOLECULAR DISSOCIATION

A. Boundary condition for dissociation dynamics

We now resume with the inhomogeneous Schro¨dinger
equation of Eq.~2.30!. Band, Freed, and Kouri have treate
their inhomogeneous Schro¨dinger equation for photodisso
ciation in terms of the Green function@26#. We take a dif-
ferent and simpler approach. Before proceeding, we nee
specify channels for the dissociation. For example, in
case of IHI2, we have two channels,

I1HI2
21hn→ H I11HI21e2 ~channel A!

I1H1I21e2 ~channel B!.
al

m

as

to
e

For these channel arrangements, we have again the en
conservation

De fA1ekA1e rA5De fB1ekB1e rB5E. ~3.1!

x f kW in Eq. ~2.30! should bear only the outgoing waves in th
asymptotic region that are specified in terms of the chann
namely,

lim
QA→`

x f kW~QW !5 (
aPA

CE~Na ,Ka ,QŴ A ;kW ,dW !
exp~ iK aQA!

QA

3x̃Na
~Q̃A!,

lim
QB→`

x f kW~QW !5 (
tPB

CE~Nt ,Kt ,QŴ B ;kW ,dW !
exp~ iK tQB!

QB

3x̃Nt
~Q̃B!, ~3.2!

and

x f kW~QW !→0 ~QA→0 or QB→0!. ~3.3!

Here,QA is the distance between the centers of masses o
two dissociating molecules. Since the difference of masse
the individual asymptotic regions introduces a considera
complication, it is quite convenient to scale the coordina
to the so-called mass-weighted coordinates so that all
relevant masses are set to unity. In particular, we set
reduced masses in the individual channels to unity.Ka is the

wave number in the relative motion.QŴ A represents the angu
lar parts of the relative coordinatesQW A , while Q̃A is the
collective notation of all the other internal coordinates, a
x̃Na

designates the rotational and vibrational states of
product molecules in a given channel with the collecti
quantum numbersNa . We thus have another energy relatio

1
2 ~\Ka!21E~Na!5E2ek , ~3.4!

whereE(Na) is the energy ofx̃Na
.

B. Transition amplitude

It is the coefficientsCE of Eq. ~3.2! that represent the
transition amplitude of the present photodetachment sp
troscopy. This provides a body-frame amplitude.~The trans-
formation to the laboratory frame as well as a comprehens
analysis of the rotational distribution were made by Bali
Kurti and Shapiro@27#.! We now extend the method of as
ymptotic analysis for half collision@16# to the present prob-
lem. First, we assume that the following scattering wa
functions are already available, that is,

~E2ek2Hf !ul~2 !~Na ,KW a!&50

~for all the open channels). ~3.5!

These eigenfunctions are supposed to have the ing
boundary condition in such a way that
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lim
QA→`

l~2 !~Na ,KW a!5exp~ iKW a•QW A!x̃Na
~Q̃A!

1 (
bPA

T~2 !~NbKbQŴ A ;NaKW a!

3
exp~2 iK bQA!

QA
x̃Nb

~Q̃A!,

~3.6!

lim
QB→`

l~2 !~Na ,KW a!5 (
tPB

T~2 !~NtKtQŴ B ;NaKa!

3
exp~2 iK tQB!

QB
x̃Nb

~Q̃B!,

and are regularized at the origin, for example, as

l~2 !~Na ,KW a!→0 as QA→0. ~3.7!

As is seen above, the set (Na ,KW a) designates the pure an
plane-wave state.

Operate the bra vector^l (2)(Na ,KW a)u on Eq.~2.30! such
that

^l~2 !~Na ,KW a!u~E2ek2Hf !ux f kW&

5^l~2 !~Na ,KW a!uDkW ^ x0&, ~3.8!

whereDkW is the abbreviation ofDf(kW ;QW ). From this expres-

sion, one can extract the coefficientCE(Na ,Ka ,QŴ A ;kW ,dW ) of
Eq. ~3.2!. In what follows, arbitrary functionsa and b are
said to be interchangeable if they satisfy

^au~e2Hf !ub&5^bu~e2Hf !ua&* , ~3.9!

where the symbol* indicates the complex conjugate. Now,
the two functions in the left-hand side of Eq.~3.8! were
interchangeable, that is, if it happened that

^l~2 !~Na ,KW a!u~E2ek2Hf !ux f kW&

5^x f kWu~E2ek2Hf !ul~2 !~Na ,KW a!&* ,

~3.10!

Eq. ~3.8! led to an incorrect result,

^l~2 !~Na ,KW a!uDkW ^ x0&50, ~3.11!

because of Eq.~3.5!. The fact is that the kinetic operators
the Hamiltonian induce the surface terms and prevent
~3.10! from holding.

Incidentally, the noninterchangeability among the lon
range functions that extend in the asymptotic regions sets
theoretical foundation of the Kohn-type variational pri
ciples for quantum scattering theory@28,29,8#. One of the
greatest advantages of the Kohn principle and its analog
that the variational functional can give the first-order corr
tion to theK matrix @28#. Takatsuka and Gordon have show
that this noninterchangeability is also essential to the asy
totic analysis of the half-collision wave functions, and pr
posed a variational correction formula for the linewidth a
branching ratio in photodissociation dynamics@16#.

That Eq.~3.10! does not hold comes from the followin
identity:
q.

-
he

is
-

p-
-

K exp~ iKW b•QW A!x̃Nb
~Q̃A!U~e2Hf !UCE~QŴ A!

3
exp0~ iK aQA!

QA
x̃Na

~Q̃A!L
522p\2(

lm
ClmYlm~KŴ a!dab

1 KCE~QŴ A!
exp0~ iK aQA!

QA
x̃Na

~Q̃A!U~e2Hf !U
3exp~ iKW b•QW A!x̃Nb

~Q̃A!L * , ~3.12!

which basically arises from the Wronskian relations, and
proof is given in the Appendix. In Eq.~3.12!, e5E2ek , and
e0
x5exp0(x) is a modified exponential function so as to a

proach zero at the origin to satisfy the boundary condition
Eq. ~3.3!. See Eq.~A2! in the Appendix. This kind of modi-
fication of the long-range functions such as the Bessel fu
tions and plane waves can be readily materialized with
loss of generality using the short-range~L2! functions
@29~b!#. Clm’s are the coefficients of the following singl
center expansion in the standard spherical harmo

Ylm(QŴ A) as

CE~QŴ A![CE~Na ,Ka ,QŴ A ;kW ,dW !5(
l

(
m

ClmYlm~QŴ A!.

~3.13!

The similar identity holds for the asymptotic channel in t
coordinatesQW B . Only those terms like Eq.~3.12! hamper Eq.
~3.10!. All the other combinations between the asympto
and short-range~L2! functions are interchangeable as far
^l~2!u’s are concerned~see below!. For instance, we have

K T~2 !
exp0~2 iK bQA!

QA
x̃Nb

~Q̃A!U~e2Hf !U
3CE~QŴ A!

exp0~ iK aQA!

QA
x̃Na

~Q̃A!L
5 KCE~QŴ A!

exp0~ iK aQA!

QA
x̃Na

~Q̃A!U~e2Hf !U
3T~2 !

exp0~2 iK bQA!

QA
x̃Nb

~Q̃A!L * . ~3.14!

Further, all the combinations between the asymptotic fu
tions belonging to the different channel coordinatesQW A and
QW B are simply interchangeable.

By the way, the identity in Eq.~3.14! is particularly im-
portant in that it constitutes the essential reason why we h
operated̂l~2!u rather than̂l~1!u or ^l~0!u ~the standing-wave
solution! in Eq. ~3.8!. For example, if we applŷl~1!u, the
outgoing spherical wave should be considered in place of
spherical incoming wave in the bra vector in the left-ha
side of Eq.~3.14!. Then an additional surface term arises th

leaves a cross term betweenCE(QŴ A) and theT matrix be-
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hind and makes it hard to single outCE(QŴ A). However, on
the other hand,l~2!, l~1!, andl~0! are all mutually connected
through linear relations in terms of theS or K matrix @11#,

and henceCE(QŴ A) can also be represented inl~1! andl~0!.
In fact, it is the standing-wave functionl~0! that we worked
with before@16#.

By means of the above identities and others, we have

^l~2 !~Na ,KW a!u~E2ek2Hf !ux f kW&

522p\2(
lm

ClmYlm~KŴ a!

1^x f kWu~E2ek2Hf !ul~2 !~Na ,KW a!&*

522p\2(
lm

ClmYlm~KŴ a!. ~3.15!

The last quantity can be readily transformed back to the C
tesian representation as

(
lm

ClmYlm~KŴ a!5CE~Na ,Ka ,KŴ a ;kW ,dW !5CE~Na ,KW a ;kW ,dW !

~3.16!

@cf. Eq. ~3.13!#. It is clear why the angular coordinatesQŴ A of

Eq. ~3.13! are now replaced withKŴ a in Eq. ~3.16!. Hence the
direction of the molecular dissociation, which was treated

the angular components of the asymptotic coordinatesQŴ A in

Eq. ~3.2!, should be identified withKŴ a in the integral expres-
sion Eq.~3.15!. Thus we finally have
er
r

at

-
ve
r-

s

CE~Na ,Ka ,KŴ a ;kW ,dW !

52
1

2p\2 ^l~2 !~NaKW a!uDf~kW ;QW ! ^ x0&.

~3.17!

C. Electronic kinetic energy distribution

If one is interested only in the kinetic energy distributio
of the detached electron, all the other information is in
grated in such a way that

GE~kW !

5(
a

E dKŴ auCE„Na~Ea!,Ka~E2Ea2ek!,KŴ a ,kW ,dW …u2,

~3.18!

whereKa(E2Ea2ek), for example, means the wave num

ber corresponding to the energyE2Ea2ek , anddKŴ a is an
infinitesimal volume element in the angular coordinates

cluding the Jacobian factor, for instance,dKŴ a
5sinuaduadwa in the usual spherical coordinates. The abo
summation overa is to be taken subject to the energy co
servation Eq.~3.4!. The number of the possible quantu
states participating in this summation can be large when
rotational states of the individual product molecules a
taken into account.

If, on the other hand, only the angular distribution ofKW

andkW are to be observed, one needs a convolution, since
present dissociative photodetachment process includes
continua, and their kinetic energy distributions are not de
mined uniquely. The observed quantity should be written
GE~KŴ a ,kŴ !5(
a

E dekuCE„Na~Ea!,Ka~E2Ea2ek!,KŴ a ,kW~ek!,dW …u2, ~3.19!
the
oing
e

this
in

he

or

n
ile
e
-
ly,
where, as usual,kŴ5(k,k̂).

IV. MISCELLANEOUS

A. On the interpretation of the role
of the ingoing scattering wave function

l „2…

„Na ,K¢ a… and F
k¢
„2…

It is interesting to take a detour to think about the int
pretations of l~2! and F

kW
(2)

. Let us consider a facto

^F f kW
(2)

l (2)(Na ,KW a)unW •dW uF0x0$E0%& which is involved in
Eq. ~3.17! @see also Eq.~2.29!#. This kind of integral is often
interpreted to represent a transition from the initial st
uF0x0$E0%& to the final stateuF

f kW
(2)

l (2)(Na ,KW a)& due to the

interaction dW . Let us call this interpretation I. The time
dependent scattering theory presents this view in a con
tional way @11#. Breit and Bethe@21# have explained in the
-

e

n-

context of the stationary-state scattering theory how
phase interference between the plane wave and ing
spherical waves in, say,l~2! gives rise to a controlled stat
~plane wave! in the ‘‘remote future,’’ which is to be identi-
fied as the final state. However, the argument leading to
kind of interpretation is very intuitive and is not rigorous
any mathematical sense. We further note thatF

f kW
(2)

l (2) is
not the final wave function that is to be produced by t
interactiondW . Remember that neitherl~2! nor F

kW
(2)

satisfies
the correct boundary conditions for the half collisions. F
example, compare Eqs.~3.2! and~3.6!. l~2! is an eigenfunc-
tion of the full-collision problem and its boundary conditio
consists of both incoming and outgoing waves, wh
x f kW(QW ) of Eq. ~3.2! must include only the outgoing wav
asymptotically. Moreover,l~2! is determined under the equa
tion in which the physical origin of the dissociation, name
dW , is absent@compare Eqs.~2.30! and ~3.5!#. Consequently,
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even if some other interactionX, which is different fromdW ,
had caused a transition, the expression ofCE(Na ,KW a ;kW ,dW )
in Eq. ~3.17! still holds only by replacingdW with X, but l~2!

does not have to be altered.
We again emphasize that the asymptotic analysis for

inhomogeneous Schro¨dinger equation~2.30! requiresl~2! to
single outCE(Na ,KW a ;kW ,dW ) from the surface term as state
in the discussion following Eq.~3.14!. We also would like to
confirm thatl~0! andl~1! can be utilized as well to represe
CE(Na ,KW a ;kW ,dW ), but onlyl~2! can bring about the so-calle
Fermi golden-rule-type expression, Eq.~3.17!. If l~1! or l~0!

is adopted@16#, the final form of the amplitude should b
accompanied by some additional coefficients that arise f
the linear relations among$l~1!,l~0!,l~2!%. Nevertheless, it is
still true that the transition amplitude can be represented
terms ofl~1! or l~0! correctly.

On the other hand, the naive interpretation~I! will come
to a deadlock in a case where the photodetachment and
sociation take place via the multiple potential surfaces wh
mutually interact due to, say, the nonadiabatic coupling.
will derive the correct expressions of the transition amp
tudes for these cases in Sec. V.

Finally, it is easy to understand why Eq.~2.26! is neces-
sary to solve the inhomogeneous Schro¨dinger equation
~2.25!. Apply the same argument developed in Sec. III to E
~2.25!. So, ifF

kW
(1)

is directly used in place ofF
kW
(2)

without
any additional coefficients, it would represent the elect
attachment in the related conditions. Similarly, one can a
consider associative detachment and associative attach
irrespective of their actual possibility.
e

m

in

is-
h
e
-

.

n
o
ent

B. Relationship between the kinetic energy distribution
of electron and wave-packet dynamics for dissociation

So far, the stationary-state scattering theory has been
veloped. We now turn our attention to its relation to t
time-dependent wave-packet dynamics for the correspon
dissociative motion. A photoelectron spectrum, namely,
kinetic energy distribution of the detached electron in
grated over the entire direction, sometimes has relativ
sharp structures@1–8#. In order to understand these feature
a wave-packet~or classical! dynamics on the neutral reactiv
potential surface have been carried out to assign the pea
the~reactive! resonances formed in the transition-state reg
@4,5#. Although the analogy from the study of photoexcit
tion spectrum of vibrational states@30,23# suggests use of the
wave-packet dynamics, the validity of the time-depend
dynamics in the case of the photodetachment is not trivia
is expected that the ejected electron should have gone
apart from the molecular area before the dissociation dyn
ics takes place. Thus an attempt to interpret the kinetic
ergy distribution in terms of the time-dependent dissociat
dynamics does not seem to be in accord with the causa
We therefore should check under which situation this pro
dure is verified.

Let us go back to the kinetic energy distribution E
~3.18!. But, noting that the wave-number vectors (kW ) are nec-
essarily observed with some finite width due to the expe
mentally limited resolution, we defineGE(kW6DW ) that is, the
distribution for a detached electron to have the wave num
in the range@kW2DW ,kW1DW # such that
GE~kW6DW ![(
a

E dKW auCE„Na~Ea!,Ka~E2Ea2ek!,KŴ a ,kW ,dW …u2

5
1

~2p\2!2 (
a

E dKW a^Df~kW ! ^ x0ul~2 !~NaKW a!&^l~2 !~NaKW a!uDf~kW ! ^ x0&, ~4.1!
m

the
where the integration and summation overKW a anda, respec-
tively, should be taken so that they materialize@kW2DW ,kW

1DW #. Here we note a relation

E
e2DE

e1DE

ded~e2Hf !

5
1

~2p!6
E
e2DE

e1DE

de(
a,b

E dKW adKW bul~2 !~NaKW a!&

3^l~2 !~NaKW a!ud~e2Hf !ul~2 !~NbKW b!&

3^l~2 !~NbKW b!u

5
1

~2p!3
E
e2DE

e1DE

de(
a

E dKŴ aul~2 !~NaKW a!&

3d~e2Ea
0 !^l~2 !~NaKW a!u, ~4.2a!
where~2p!3 is required to satisfy the normalization

^l~2 !~NaKW a!ul~2 !~NbKW b!&5~2p!3dabd~KW a2KW b!.
~4.2b!

The energyEa
0 in Eq. ~4.2a! is given by Eq. ~3.4!, and

[e2DE,e1DE] corresponds to the interval for the spectru
of Hf that brings about@kW2DW ,kW1DW #. It immediately turns
out from Eq.~4.2a! that

(
a

E dKŴ aul̂~2 !~NaKW a!&^l̂~2 !~NaKW a!u

5~2p!3E
e2DE

e1DE

de d~e2Hf ! ~4.3!

can be regarded as a projection operator that specifies
continuum states with the energye5E2Ea2ek , since
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356 55KAZUO TAKATSUKA
l (2)(NaKW a)’s are the eigenfunctions of the HamiltonianHf ,
as required in Eq.~3.5!. Thus we have

GE~kW6DW !5
2p

\4 E
e2DE

e1DE

de^DkW ^ x0ud~e2Hf !uDkW ^ x0&.

~4.4!

As usual, the standard relation

d~e2Hf !5
1

2p\ E
2`

`

expS i\ ~e2Hf !t Ddt ~4.5!

can rewrite Eq.~4.5! such that

GE~kW6DW !5
1

\5 E
e2DE

e1DE

de

3E dtKDkW ^ x0UexpS 2
i

\
Hft D UDkW ^ x0L

3expS i\ et D . ~4.6!

Thus we can make use of the autocorrelation function fo
‘‘wave packet’’ DkW ^ x0 and its Fourier transform in this
manner.

Incidentally, the projection operator, which we ha
called the energy-screening operator,

E
e2DE

e1DE

deE dt expS 2
i

\
~e2Hf !t D , ~4.7!

has distinguished advantages both in eigenvalue probl
and the calculation of scattering wave functions. The det
have been reported elsewhere@31#.

V. PHOTODETACHMENT VIA THE
MULTIPLE POTENTIAL SURFACES

So far, we have treated only a two potential-surface s
tem having one ground and one excited electronic sta
However, Yamashita and Morokuma@17# carried out anab
initio calculation for the potential surfaces in the process
ClHCl21hn→Cl1HCl1e2, and found out that two disso
ciative potential surfaces of Cl1HCl→ClH1Cl, namely,2S
and2P states, participate in the dynamics and moreover t
cross each other in the experimentally relevant energy
gion. We therefore extend our discussion to the case of
ground and two excited electronic states. Further exten
to four and more potential cases is straightforward.~Inciden-
tally, the theories for multisurface photodissociation ha
been discussed briefly by Shapiro@32#.!
a

s
ls

s-
s.

f

y
e-
ne
n

e

A. Asymptotic analysis

We begin with

CE~qW ,QW !5(
f51

2 E dkW F f kW
~2 !

~qW ;QW !x f kW~QW !. ~5.1!

There are basically three types of physical situations to
considered.~i! The two excited states do not cross ea
other. ~ii ! The two surfaces cross mutually, but the initi
optical pumping induces a transition to only one of the e
cited states, but the crossing is encountered independent
the course of dissociation.~iii ! The two cross, and both ar
optically allowed at the outset. In the case of~i!, nothing new
happens and the two transition amplitudes are calculated
dependently according to Eq.~3.17!.

The latter two cases,~ii ! and ~iii !, are treated almost on
the same basis. The basic equations of motion are the d
extension of Eq.~2.30! as

(
f51

2 H FE2
1

2m
~\kf !

22e f~QW !2TNG ux f kW&dg f

2E dkW8^FgkW
~2 !uTNuF f kW8

~2 !
&Ux f kW8L ~12dg f!%

5uDg~kW ! ^ x0& ~g51,2!, ~5.2!

where we have used the approximation

E dkW8^F f kW
~2 !uTNuF f kW 8

~2 !
&ux f kW8&>TNux f kW& ~ f51,2!.

~5.3!

The nonadiabatic effect has thus been taken into acco
between the two different states. The convolution denoted
^ is defined as in Eqs.~2.29! and ~2.30!. If the stateg is
optically forbidden, the right-hand side in this equation
simply zero.

Further, we note that the nonadiabatic transition betw
the two excited potential surfaces has nothing direct to
with the detached electron, since the crossing is due to
neutral molecular system which is left behind the ejec
electron. For the same reason, it is quite unlikely that
scattering orbital for the ejected electron depends strongly
the nuclear geometry at the crossing point. Thus the nuc
kinetic energy operatorTN is expected not to have a signifi
cant effect on the scattering orbits, and we thus can ass

^FgkW
~2 !uTNuF f kW8

~2 !
&>d~kW2kW8!^F̃guTNuF̃f&, ~5.4!

whereF̃ f ~f51,2! are the correspondingneutral electronic
wave functions that are responsible for the nonadiabatic t
sition. The final form of the coupled equations of motion
now
S E2
1

2m
~\k1!

22e1~QW !2TN 2^F̃1uTNuF̃2&

2^F̃2uTNuF̃1& E2
1

2m
~\k2!

22e2~QW !2TN
D S ux1kW&

ux2kW&
D 5S uD1kW ^ x0&

uD2kW ^ x0&
D . ~5.5!
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The asymptotic analysis we have carried out in Sec.
has made use of the surface terms that arise from the nu
kinetic operators. The kinetic energy operators in
off-diagonal terms in Eq. ~5.5! drastically complicate
the analysis. Hence we transform from the adiabatic to
te

s

i-
as

u

II
ear
e

i-

abatic representations such that (f ,g)5~1,2!→(F,G), lead-
ing the off-diagonal terms to simple scalar functio
as 2VFG and 2VGF . The assignments of the asymptot
states are accordingly altered. In this way, Eq.~5.5! is
transformed to
S E2
1

2m
~\kF!22eF~QW !2TN 2VFG

2VGF E2
1

2m
~\kG!22eG~QW !2TN

D S uxFkW&

uxGkW&
D 5S uDFkW ^ x0&

uDGkW ^ x0&
D . ~5.6!
ing
is
In the case where the crossing is due to the spin-orbit in
action, Eq.~5.6! is identified as the starting equations.

The boundary condition forxFkW is essentially the same a
before with a slight modification as

lim
QA→`

xFkW~QW !5 (
aPA

~F !

CE~Na
F ,Ka

F ,QŴ A ;kW ,dW !

3
exp~ iK a

FQA!
QA

x̃Na

F ~Q̃A!

lim
QB→`

xFkW~QW !;~similar to the channel forQA!. ~5.7!

The summation by((F) is to be carried out only on the
potential surfaceF. xGkW(QW ) has the similar boundary cond
tion. In order to extract the coefficients such

CE(Na
F ,Ka

F ,QŴ A ;kW ,dW ), we prepare the following solutions:

S eF2HF 2VFG

2VGF eG2HG
D S ulF

~2 !~Na
F ,KW a

F!&

ulG
~2 !~Na

F ,KW a
F!&

D 5S 0
0
D ,

~5.88!

whereeF5E2(\kF)
2/(2m), HF5TN1eF(QW ), and so on.

The boundary conditions to be imposed on this pair sho
be

lim
QA→`

lF
~2 !~Na

F ,KW a
F!5exp~ iKW a

F
•QW A!x̃Na

F~Q̃A!

1 (
gPA

~F !

T~2 !~Ng
FKg

FQŴ A ;Na
FKW a

F!

3
exp~2 iK g

FQA!
QA

x̃Ng

F ~Q̃A!, ~5.9!
r-

ld

lim
QB→`

lF
~2 !~Na

F ,KW a
F!5 (

tPB

~F !

T~2 !~Nt
FKt

FQŴ B ;Na
FKW a

F!

3
exp~2 iK t

FQB!
QB

x̃Nt

F ~Q̃B!

and

lim
QA→`

lG
~2 !~Na

F ,KW F
!5 (

gPA

~G!

T~2 !~Ng
GKg

GQŴ A ;Na
FKW a

F!

3
exp~2 iK g

GQA!
QA

x̃Ng

G ~Q̃A!,

~5.10!
lim

QB→`
lG

~2 !~Na
F ,KW a

F!5 (
tPB

~G!

T~2 !~Nt
GKt

GQŴ B ;Na
FKW a!

3
exp~2 iK t

GQB!
QB

x̃Nt

G~Q̃B!.

It should be noted that this pair of functions has the ingo
boundary conditions with the only one plane wave that
prepared in the state (Na

F ,KW a
F) on the F surface. lG

(2)

3(Na
F ,KW a

F) is the component on theG surface after the
‘‘collision event’’ of Eq. ~5.88! is over. Similarly we have
another pair of solutions as

S eF2HF 2VFG

2VGF eG2HG
D S ulF

~2 !~Nb
G ,KW b

G!&

ulG
~2 !~Nb

G ,KW b
G!&

D 5S 00D , ~5.89!

for which the roles ofF andG are mutually exchanged in
their boundary conditions Eqs.~5.9! and ~5.10!, that is, the
plane wave is prepared in the state (Nb

G ,KW b
G) on theG sur-

face.
Now, operating the row vector as
(^lF
~2 !~Na

F ,KW a
F!u^lG

~2 !~Na
F ,KW a

F!u!S eF2HF 2VFG

2VGF eG2HG
D S uxFkW&

uxGkW&
D 5(^lF

~2 !~Na
F ,KW a

F!u^lG
~2 !~Na

F ,KW a
F!u!S uDFkW ^ x0&

uDGkW ^ x0&
D ,
~5.11!
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we interchange the column and row vectors as in Eq.~3.15!,
which leads to

22p\2CE~Na
F ,KW a

F ;kW ,dW !

5(^lF
~2 !~Na

F ,KW a
F!u^lG

~2 !~Na
F ,KW a

F!u&S uDFkW ^ x0&

uDGkW ^ x0&
D

~5.12a!

Similarly, we have

22p\2CE~Nb
G ,KW b

G ;kW ,dW !

5(^lF
~2 !~Nb

G ,KW b
G!u^lG

~2 !~Nb
G ,KW b

G!u!S uDFkW ^ x0&

uDGkW ^ x0&
D ,

~5.12b!

in which we have made use of Eqs.~5.88! and ~5.89!. As
before, only the plane-wave parts can contribute to the
face terms thanks to the ingoing boundary conditions a

^lF
(2)(Na

F ,KW a
F)u. Equations~5.12a! and~5.12b! are our final

results.

B. On the interpretation of the transition amplitudes

Suppose that the optical transition is allowed only to
surfaceF but forbidden toG, in which DGkW50 in Eqs.
~5.12a! and ~5.12b!. Then an amplitude for the state to b
found on the potential surfaceF is given by

CE~Na
F ,KW a

F ;kW ,dW !52
1

2p\2 ^lF
~2 !~Na

F ,KW a
F!uDFkW ^ x0&.

~5.13a!

This expression is rather easy to understand, since it is
actly what we saw in the case of the single dissociative s
face, namely, Eq.~3.17!. On the other hand, an amplitude
find the state in (Nb

G ,KW b
G) on the surfaceG is given by

CE~Nb
G ,KW b

G ;kW ,dW !52
1

2p\2 ^lF
~2 !~Nb

G ,KW b
G!uDFkW ^ x0&.

~5.13b!

This expression can cause a little confusion, sin
lF
(2)(Nb

G ,KW b
G) in Eq. ~5.13b! is a function that has only an

asymptotic form on theF surface and the plane-wave com
ponent is not included.@See Eq.~5.10! and interchange the
symbolsF andG with each other in it.# More specifically,
lF
(2)(Nb

G ,KW b
G) consists of only ‘‘incoming’’ components

that are generated on theF surface by the nonadiabatic b
furcation from the ‘‘initial’’ plane wave prepared on theG
surface.~This interpretation is a little confusing, since th
ingoing boundary condition seems as if it broke the cau
ity. An alternative and usual description is that the incom
waves are prepared both on the surfacesF andG and they
are controlled to a plane waveafter all the ‘‘scattering
events’’ including the nonadiabatic interaction. In any ca
one should note that the time variable is already not inclu
here, although the terms ‘‘after,’’ ‘‘before,’’ ‘‘remote fu-
ture,’’ and ‘‘remote past’’ are frequently used in the tim
independent scattering theory@11#.! If, therefore, the nona-
r-
in

e

x-
r-

e

l-
g

,
d

diabatic interaction does not induce a sufficiently lar
lF
(2)(Nb

G ,KW b
G) in the domain ofuDFkW ^ x0&, the possibility to

find the final state on theG surface is accordingly small
Now, we stress again thatlF

(2)(Nb
G ,KW b

G) does not have the
plane-wave component on theG surface, and hence this can
not be the final wave function to which the state should
For the same reason, there is no interference betwee
ingoing and a plane wave that is essential in the argumen
Breit and Bethe@21# to generate a ‘‘controlled plane wave
in the remote future. Thus it seems certain that the conv
tional interpretation~I! discussed in Sec. IV A for the role o
the ingoing states and the explanation by Breit and Be
@21# could not apply to the present case.

VI. CONCLUDING REMARKS

We have developed a stationary-state scattering theory
dissociative photodetachment spectroscopy in the trans
region. The asymptotic analysis has been extended to a
eral case in which two or more reactive potential surfa
cross each other, the final result being Eq.~5.12!. We stress
again that all our results have been extracted from the
ymptotic analysis of the wave functions that are the solutio
of the inhomogeneousSchrödinger equations having th
source terms. The effect of the shape of a pumping la
pulse, which essentially brings a time dependence into
scattering problem, has been taken into account explicitly
the convolution between the frequency distribution of t
pulse laser and the initial wave function. This effect can
quite important if the initial rovibrational wave function be
fore excitation is in a wave-packet state, namely, not
eigenfunction.

It is interesting to note that formulas analogous to o
final expression Eq.~5.12! have appeared before in the li
erature of photodissociation. With the simple dipole mat
element between ground and excited bound electronic st
used in place ofDFkW for Eq. ~5.12!, a formula essentially
equivalent to Eq.~5.12a!, without the convolution though
has been used by Bowman, Mayrhofer, and Amatatsu@20#.
Also, Guo and Schatz@19# have applied an expression that
also analogous to Eq.~5.13a!, again with no convolution, in
their calculation of the cross sections for photodissociati
Despite the central role of their formulas in their theoretic
calculations, nothing has been discussed about derivatio
validity. Here in the present paper therefore we have verifi
as a direct consequence of our theory, that their approa
based on the surprisingly clear intuitions are indeed corr
We emphasize, however, that the role of the mathemat
and theoretical development of the general theory is cruc
when one wants to extend the theory and when the vali
of the theory is examined.

The theory discussed in the present paper seems to
set a foundation of the numerical calculations of actual pr
lems such as the dissociative detachment of IHI2 and
ClHCl2. In particular, we have clarified the relationship b
tween the stationary-state theory and wave-packet dynam
the numerical application of which is in fact under way
our laboratory based on Eq.~4.6!. Furthermore, a scheme fo
the calculation of electronic scattering wave functionsF~2!

for polyatomic molecules has been devised based on
multichannel Schwinger variational principle@13,14#, and
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the numerical calculations are actually being carried ou
collaboration with McKoy and co-workers@33#.
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APPENDIX: PROOF OF THE IDENTITY „3.12…

Define

I[^exp~ iKW b•QW A!x̃Nb
~Q̃A!u~e2H !

3UCE~QŴ A!
exp0~ iK aQA!

QA
x̃Na

~Q̃A!L , ~A1!

whereCE(QŴ A)[CE(Na ,Ka ,QŴ A ;kW ,dW ), and the modified ex-
ponential function exp0( iK aQA) has the following boundary
conditions:

exp0~ iK aQA!; Hexp~ iK aQA! ~QA→`!

0 ~QA→0!. ~A2!

The last one is required to regularize it at the origin. It
obvious thatI vanishes ifaÞb. We hence consider only th
case ofa5b. To prove the identity, it would be most con
venient to perform the single center expansion for the
evant quantities such as
ve
la

c
hi
n

d
on
y

ety
t

l-

CE~QŴ A!5(
l

(
m

ClmYlm~QŴ A! ~A3!

and

exp~ iKW a•QW A!54p(
l

(
m

i l j l~KaQA!Ylm~QŴ a!*Ylm~QŴ A!,

~A4!

where j l(KaQa) is the Bessel function that has an asym
totic form

j l~KaQA!;F 1

KaQA
sinSKaQA2

l

2
p D G

QA→`

. ~A5!

Equation~A4! together with Eq.~A3! is brought back to Eq.
~A1!, giving

I54p(
l

(
m

(
L

(
M

E ~2 i ! l j l~KaQA!Ylm~KŴ a!

3Ylm~QŴ A!* x̃Na
~Q̃A!* ~e2H !CLMYLM~QŴ A!

3

exp0S iK aQA2 i
L

2
p D

QA

3expS i L2 p D x̃Na
~Q̃A!dQW AdQ̃A . ~A6!

From the kinetic energy involved in~e2H!, the term~\2/2!
(d2/dQA

2) arises, which leads to the surface term. We th
concentrate our attention on
J54p(
l

(
m

(
L

(
M

E ~2 i ! l j l~KaQA!Ylm~KŴ a!Ylm~QŴ A!* x̃Na
~Q̃A!*QAF\2

2

d2

dQA
2 GQACLMYLM~QŴ A!

3

exp0S iK aQA2 i
l

2
p D

QA
i Lx̃Na

~Q̃A!dQAdQŴ AdQ̃A . ~A7!
ing
The twoQa’s sandwiching the second-order derivative ha
come from the Jacobian in the transformation to the po

coordinates anddQŴ A is assumed to include the Jacobian fa
tor for the angular parts. With the orthogonal relations, t
integral turns out to be

J52p\2(
l

(
m

ClmYlm~KŴ a!E
0

`

QAj l~KaQA!
d2

dQA
2

3exp0F i SKaQA2
lp

2 D GdQA . ~A8!

We take a further look at the integral in Eq.~A8! by defining
r

-
s

J0[E
0

`

QAj l~KaQA!
d2

dQA
2 exp0F i SKaQA2

lp

2 D GdQA .

~A9!

It is at this point that the surface term appears in integrat
Eq. ~A9! by parts such that

J05E
0

`

exp0F i SKaQA2
lp

2 D G
3

d2

dQA
2 @QAj l~KaQA!#dQA21. ~A10!
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Here the asymptotic form of the Bessel functions Eq.~A5!
and the boundary conditions Eq.~A2! have been used explic
itly. Bringing all these materials back into Eq.~A1!, we ob-
tain

I522p\2(
lm

ClmYlm~KŴ a!dab1I int , ~A11!

with
em
.

e

he

.

o-

re

.

s

,

J.
.
,

I int5 KCE~QŴ A!
exp0~ iK aQA!

QA
x̃Na

~Q̃A!U~e2H !

3uexp~ iKW b•QW A!x̃Nb
~Q̃A!&* , ~A12!

which completes the proof.
s.

m.

nd
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