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Stationary-state scattering theory for dissociative photodetachment on nonadiabatically coupled
potential surfaces as a probe of transition states
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We develop a stationary-state scattering theory of dissociative photodetachment in a transition-state region
for a system in which two or more potential surfaces are mutually coupled through the nonadiabatic interaction
in dissociative channels. Since the present phenomenon involves electron detachment and molecular dissocia-
tion dynamics, it is a doubly half collision in a three-body problem. We perform an asymptotic analysis for the
dissociative wave functions, which formally gives a closed form of the transition amplitude in which the pulse
shape and polarization of a pumping laser, the kinetic energy distribution of a detached electron, and the
product distribution are all correlated. The present formal theory thus provides a unified basis for the analyses
in the experimental and numerical studies. We revisit the mathematical role of the so-called in-going state for
general dissociation dynamics and, in particular, argue that the traditional interpretation of the ingoing wave
function due to Breit and Bethe is not necessarily vdl#il050-2947®7)03601-9

PACS numbgs): 34.10:+x, 33.80.Eh, 34.80.Gs, 34.50.Lf

I. INTRODUCTION has not yet been a formal derivation of the transition ampli-
tude for the present dynamics. In the present paper therefore
One of the most remarkable advances in the recent mowve develop astationary-state scattering theof photode-
lecular spectroscopic experiments is the so-called transitiortachment spectroscopy for an anion species in the transition-
state spectroscopit]. Several different kinds of experiments state region, covering more general cases in which the dis-
have been devised in order to observe “transition states’sociative potential surfaces cross each other due to, for
directly. The transition state was only a theoretical notioninstance, the nonadiabatic coupling and in which the pump-
before, but some of them are now identified experimentallying laser is significantly of nonstationafpulse nature.
Another impact of the transition-state spectroscopy is that it It has been proved by Lippmann and Schwingkt] that
provides a new chance of interplay between the spectroghe stationary-state scattering theory is equivalent to the
copy, electron scattering by molecules, and reaction dynantime-dependent one for a stationary collision phenomenon.
ics. On the other hand, a tough problem, among others, fdin a scattering event that is assisted or triggered by a nonsta-
an experimentalist to face is the analysis of the experimentalonary laser, though, the stationary-state scattering theory
results, since the experiments are conceptually new andoes not seem to be a natural way to describe the experimen-
hence there can be many results that can be difficult to urtal situation, since the effect of the shape and duration of the
derstand in terms of the analogy of the existing experimentgulse laser can cause essentially time-dependent phenomena.
Theoretical studied2] are highly demanded to identify In fact, Shapiro has developed a very extensive theory for the
which kind of physical processes lie behind the experimentseal-time dependency of laser-assisted chemical dynamics
and what are the relationships among the potentially obsensuch as photodissociatidi2]. Nonetheless we pursue the
able quantities. possibility of the stationary-state theory in the present paper.
On the other hand, the leading theoretical studies so fafhe effect of the shape of a pumping laser in time and/or
made have been focused on an individual process separatefyequency domains, which is usually neglected in the stan-
Typically, very accurate potential surfaces are calculated firsdlard treatment of stationary theory, is taken into account
[3]. Classical 4] or wave-packef5] dynamics based on the explicitly in our theoretical framework. The other reasons we
Franck-Condon approximation have been carried out on disdevelop a time-independent scattering theory are as follows.
sociative potential surfaces, in which empirical potentials aré'he theoretical and computational techniques for the stan-
usually adopted. Bowman and Gazf§], Schatz[7], and dard scattering situations such as electron-molecule colli-
Zhang and Miller[8] have calculated the stationary-state sions[13,14 and chemical reaction dynami¢®,3,6,7,§,
nuclear wave functions on the reactive potential surfacesvhich are relevant to the present dissociative photodetach-
without resorting to the wave packet dynamics. A full scat-ment, have been developed mostly in the stationary-state
tering calculation of the electron detachment has not yet beescheme. In addition, many of the scattering experiments are
done. Therefore a unified theoretical basis seems necessatgsigned to measure in the energy domainMoreover, the
in which to get all the individually studied quantities together stationary-theoretic framework can generally provide an
in order to comprehend the entire process. overall view of the physical situation and thereby facilitate a
As far as we are aware, however, a unified theory for thaunified understanding of the various observations such as the
dissociative photodetachment spectroscopy is given only oangular and kinetic energy distributions of an ejected elec-
a rather intuitive leve[2], which is formulated through an tron and the branching ratio of the product stafdsis, of
analogy from the photodissociation thed®;10], and there course, impossible though to observe all these quantities in a
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coincident experiment even with the most advanced techsions to a case in which two or more potential surfaces cross

nique to date. mutually. The paper concludes in Sec. VI with some re-
Once such a stationary-state theory is seteyen if itis ~ marks.

an approximate ongone can ask the following questions.

How do the above quantities correlate with each other? How Il. PREPARATION
does the shape of the laser pulse in the time domain affect OF BASIC THEORETICAL FRAMEWORK
the cross sections in the energy domain? What is the corre- OF PHOTODETACHMENT

lation among the possible rotations such as the differential

cross sections of the electron and the rotational distribution Suppose we have the following dissaciative photodetach-

. ment[1]:
of the molecules? They should also be correlated with the 1]
symmetry of the electronic wave function and the geometri- R+S+e” (channel A
cal shape of the transition state. The resonance arising from M~ +hv— T+U+e  (channel B,

the metastable “vibrational levels” formed in the transition-
[15,4—8. Probably one of the ultimate questions would be, is¢|ose to that of the transition state in a reaction
it possible in principle for spectroscopic data of the electron
kinetic energy and/or photon absorption to provide the scat- R+S—T+U (and T+U—R+YS).
tering data for the related reaction dynamics such as the re-
active cross sections? The stationary scattering theory wouldlthough the kinetic energy distribution of the detached
set a theoretical foundation to answer these questions. electron is measured in the energy domain, the above experi-

The dissociative photodetachment in a transition-state rement is essentially time dependent since a ph@as usu-
gion constitutes a tough challenge to the theory in that iglly provided by a pulse laser. Hence the treatment in time-
includes two half collisions in a three-body scattering prob-dependent scattering theory seems more suitable. It is well
lem consisting of an ejected electron and receding moleculeknown, on the other hand, that the stationary scattering
Accordingly two continua are involved with the dissociative theory is equivalent to the time-dependéntave-packetap-
boundary conditions, which makes a theoretical treatmenproach[11], which are mutually connected through the Fou-
much more difficult than in the ordinary photodissociationrier transform. However, these two approaches are quite dif-
[9,10|. We circumvent this difficulty in terms of the fixed ferent in practice, since a wave packet is a member of the
nuclei approximation and develop an asymptotic analysis obrdinary Hilbert space, while a time-independent scattering
the dissociativehalf collision) scattering wave functiofilt6] = wave function is not and has to satisfy certain specific
for the event of dissociative photodetachment. Anotheboundary conditions in the asymptotic regions. Accordingly
physical factor that introduces further complication is thatit is much harder to handle the time-independent scattering
the dissociativegreactive potential surfaces can cross eachtheory. In fact, an extensive time-dependent theory for pho-
other[17]. Hence we also present a transition amplitude intodissociation as well as Raman scattering has been devel-
which two or more dissociative potential surfaces cross eachped by Shapir12]. In order to obtain a closed form of the
other through the nonadiabatic and/or spin-orbit interactionscattering amplitude of photodetachment, however, the
[18]. Recently, Guo and Schafd9] and Bowman, May- stationary-state scattering theory has an indispensable advan-
rhofer, and Amatats{20] have treated the photodissociation tage as seen below. If the present theory is applied to photo-
dynamics on the nonadiabatically coupled potential surfaceslissociation dynamics, which is considerably simpler than
We shall verify that the very basic formulas they resorted tathe dissociative photodetachment, it will well complement
for the calculations of the transition amplitudes, which werethe relationship between Shapiro’s time-dependent theory
presented with neither derivation nor mathematical verificaf12] and the time-independent treatments by Guo and Schatz
tion, are essentially correct. [19] and Bowman, Mayrhofer, and Amatatg20].

Various theoretical problems are also discussed on the
way to our final expressions. In particular, we argue the in- A. Preliminary transformation from time to energy domains
terpretation of the role of the so-called ingoing scattering
wave functiong11,21] that are usually utilized in the context
of dissociation dynamics. We show rigorously in which
mathematical context the necessity of the ingoing states ari
and try to remove the dubious interpretation due to Breit an
Bethe[21], which has been adopted traditionally in scatter-
ing theory for a long time.

The structure of the present paper is as follows. Section Il 9
defines the basic framework which we are going to work ih — ¢(t)=[H+V(t)]o(1). (2.1
with, including a transformation from the time to energy do- at

mains. In Sec. Ill we perform the asymptotic analysis forAccordin to the general prescription in quantum mechanics
molecular dissociative wave functions. Some miscellaneous 9 9 P P 9 !

but relevant issues, such as the interpretation of the role of consider the Fourier transform of H@-1) by defining

Before developing the theory in detail, we look briefly but
rather generally at the relationship between time-dependent
5aend -independent theoretical schemes from the viewpoint of
d;cattering theory. First suppose we have a problem in which
a time-dependent perturbation is applied to a stationary
Hamiltonian system as

the ingoing state and a relationship of the stationary-state _ 1 - i
theory to the time-dependent wave packet dynamics, are dis- &(E)= lim — dt exp(— Et) (1) (2.2
cussed in Sec. IV. In Sec. V we extend the foregoing discus- T 270 J -1 h
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and its analog for the potential functi&n(E). The Schre Nonetheless E(q2.6) is not very simple, since we have a
dinger equation now looks like convolution in it. There are two extreme cases of deconvo-
c lution. One is the case of monochromatic light, namely,
(E—H)(ﬁ(E):fo dEV(E-Eg)d(Eg)=V*¢ (2.3 F(w)=Fo(wo) 8(w— wy), (2.83

in the energy domain. The rightmost expression denotes th&hich is provided only by a perfectly tuned stationary optical
convolution. Actually, Eq(2.3) is only one of the counter- Source, and results in

parts of the coupled equations for a continuous set of —~ . L~
{$(E)}, with the energy being a parameter. The complete V(E)=7Fo(@0) S(E—fwo)i- p=V(fiwo) S(E—f o).
knowledge over the entire set recovers all the information in (2.8

the time domain. N . Note thatV(E) is dimensionless, Whilglo(ﬁwo) has the di-

o . L A Gnension of energy. We then have a deconvoluted inhomoge-
tromagnetic field under the weak-field approximation as the,, ;s Schiginger equation

time-dependent potential for a pumping laser, which is con-

Ventlona”y written as{22] (E_ H)E(E) :T/O(ﬁwO)'(Zunptb({E_ ﬁwO)' (29)
V(t):ﬁfx do F(w)exp(ik,-F—iwt)i-p The other is the case in which,,n{t) iS a pure state,
— namely, @ npindt) = Uxexp[(i/%2) Eyt], whereu, is one of the

eigenfunctions of the Hamiltoniad, which simply leads to

=] o F@eionna (@4 unpod Eo) =B Eo— Ey). 210

wherek, is the wave vector of lightfi is a unit vector per- Here again, the physical dimensions @4 (Eo) and u,
pendicular tk; , andp is the electronic momentum operator are different. Equatiorf2.10 leads to another kind of de-
which will be eventually transformed to the electronic dipole convoluted equation,
operator. The near equality in E.4) arises from the so- _ _
called long-wavelength approximation. We have a distribu- (E-H)$(E)=V(E—Ey)uy. (2.1)
tion of frequencyw, denoted byF(w), which also includes
the constant factors likeAy/(mc). F(w) in turn gives rise to  Although Egs.(2.9) and(2.11) are both deconvoluted, their
a time-dependent shape of the pulse laser. It is trivial to segifference in the physical meaning is clear. Nonetheless, it is
quite interesting to note that the latter case, namely, Eq.
~ . (2.112), can hold for the instantaneoqsltrashorj pulse of a
V(E)= F(ﬁ) n-p. (2.5 white colored light as long as the initial state is an eigenfunc-
tion. This is the opposite extreme to the stationary source of
In a case where the perturbation is not very_strong, théq. (2.9). Incidentally, Shapiro has noted repeatedly that the
first-order perturbation theory allows one to replgcef the  popular wave-packet treatment due to He[l28] does cor-
right-hand side of Eq(2.3) with an unperturbed counterpart respond to the ultrashort pulse case, since a packet is evolved
in such a way that there on an excited potential surface after the instantaneous
c transition. We further note that one should take care when
~ v ~ vt the initial wave function is not an eigenstate.
(E-H)$(E)= fo dEoV(E~Eo) Punpivd Eo) =V* unpiva If the laser source is not monochrgomatic, and if the initial
(2.6)  state is not a pure state, one has to solve (B with the
- convolution remaining as it is. Suppose the wave packet is
where ¢,npmgis the Fourier transform as in E2.2) of the  expanded in terms of the eigenfunctiofis,} such that

unperturbed wave function that satisfies Bunpiodt) = Zcu@xpl(i/4) E,t], with ¢,’s being the coeffi-
P cients. The asymptotic component in Ef.6) that describes
ih — tY=H t). 2. the transition amplitude of the enerdy has contributions

7t Punptd ) =H Sunpesd 1 @7 from all the possible combinations aE,V(E— E)c,uy

. ) . . 0<E,=<E], whereby the functional shapes both of the laser
In our studied situationg,npindt) iS SUpposed to representan e [cf. Eq. (2.5)] and the wave packet are coupled to-
initial bound state that is to be carried to a dissociative Stat%ether to affect the transition amplitude. In other words, the
by the pptiqal interactio(t) in the remote future. Thus the s itant cross section in the energy domain keeps the
approximation of Eq(2.6) has neglected the second-order Of memory[12] of the laser shape. In what follows, we shall

higher-order effects such as the Stokes-Raman scattering thakain the convolution term so as to treat the general cases.
can represent, for instance, a deactivation process from a

dissociative state to a bound state by emission of light. How-
ever, as far as the cross section of the dissociative process
associated with electron detachment is concerned, the presentWe now formulate the dissociation problem. To this end,
approximation should be quite reasonaltéee Shapirg12]  we adopt the fixed nuclei approximatig¢adiabatic approxi-
for a comprehensive treatment of Stokes-Raman scattering imation to separate the motions of electrons and nuclei. The
photodissociation. See al$6d].) initial state is supposed to be prepared in a Born-

B. Fixed nuclei approximation
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Oppenheimer stat®,(q; Q) xo(Q), where®y(G;Q) is an  Where
adiabatic electronic state as a function of the electronic co-

ordinates' @) with the'nuclear poordinateséo as param- Af(%,k)f): 2_77 E jl-1 exp( —i I_”) Y|m(ﬁf)YTm(%),

eters. It is thus an eigenfunction of the electronic Hamil- ke Tm 2

tonianH as (2.17
Hei®o(d;Q) = €o(Q)Po(; Q), (2.12  which has made use of an identity

whereb D) defines the initial potential surface, usuall - 2m . . |
y€o(Q) define P . Y expliky )= > il ex‘{'(kfr__”
the ground statey(Q) represents a wave function for vi- k 2
brational and rotational motions, which does not necessarily

have to be a pure state. Our starting equation is then an _ _-( _'_77 CoyvE (P
analog of Eq.(2.6), that is, exp{ H k= | [ Yim(Ke) Yim(F).
5 O 2.1
(E-Ha~Th)Ve(d,Q) (2.18

5f and5g in Eq. (2.16) denote the electronic states after the

detachment is completed. The hat symbol%inienotes the
angular components of the scattered or detached electron,

E —_~ i N
_ JO dEV(E—Eo)[@o(6:3) xo( D) 1(Eo)

E v > . 2
=J dEqV(E—Eg)[®0(G;Q) xo{Eo}] and similarly, we express a vector ks= (k¢ ,k;), which is

0 our practice throughout the present paper. The molecular
—V*[Do(G:0) xo(D)], (2.13  frame is used throughout. This means th#g(f,k;) and

S{(T k) are the functions of the molecular frarGe

! - > The boundary condition to be imposed on this doubly

Tn=3P{/(2M)). [Po(d; Q) x0(Q) 1(Eo) is the component  dissociating state is quite involved. It is assumed in our treat-
of ®4(6;Q) xo(Q) of an energyE,. This component can be ment that the electron detachment first carries an electron far
produced by means of the Fourier transform of a waveaway and then the molecular dissociation follows. Thus we

packet stateo(Q) that is to be evolved in time on the po- Should have

tential surface generated ld%(d;@), namely,eo(é). Such

whereTy is the nuclear kinetic energy operator of the form

a component has been denoted)g{E,} in Eq. (2.13. The rImWE(q,@)zz f dk:P;(k; ,7,Q) % explikr)®;
dissociating statd £(q§,Q), which is our unknown function, ! (2.19
could be expanded in the set of adiabatic electronic wave

functions such that at each given nuclear configuratiGh ®; denotes the elec-

tronic state after the detachment is completed. On the other

\pE(q,Q):Z f deq)(fEf)(d;@Xﬂzf(@' (2.14  hand, it is never trivial to see whether the expansion in Eq.

(2.14 can materialize this asymptotic situation. Inserting the
e (<)
Here the electronic continuum wave functions satisfy §econd form of the boﬂ‘”dar,y conditishy; " in Eq. (2.16
into (2.14), and comparing with Eq2.19, we should have

(kih)? -
5 el Q)

-

®(@Q), (219

Ha®l (6:Q)=

Pi(ki1.0) = [ dkA(F k)i (@) (220

whereef(d) is the eigenvalue of the electronic Hamiltonian

for the neutral(photodetachedmolecule and thereby deter- and
mines the excited-state potential surfadg#(?/(2m) is the 1
kln'etlc energy carried away by the ejecte.d. electro?_f)ro.m the E f dkaf(F,kf)[E Sg;)(F,IZf) <
anion molecule[24]. The boundary condition fob " is f r
([11,21], and see Sec. I

x exp(—ikgr)Pg | x4k (Q)=0. (2.20)

rmq)(f;f):{exp(naf)@ﬁ% T (Fkp L
The latter expression comes from a requirement that any in-
coming spherical waves should disappear in the asymptotic
region. As seen in Eq$2.20 and(2.21), xyx (Q) plays the

role of a coefficient for the total wave function to satisfy the
electronic boundary condition, ER.19. A rigorous theory

that aims at the complete solution f (Q) should take
(2.1 account of these boundary conditiotsanfer and Shapiro

xeer(—ikgr):f)g}
=Af(%, Ef){% exqikfr)&')f

—% SHIGAS % exp(—ikgr) Dy,
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have carried out a numerical study for the dissociative photo-

ionization of H, [25]), but our approach bypasses this diffi- €
cult issue. R
The boundary condition for the molecular dissociation is _ i
to be extracted from the amplitude of the detachment, that is, 5
£.(Q) €
. a1 f "
lim Pe(k,F,Q)=2 CralF,Q) 5 eXiK0Q) X0
a— o a Q h(l) F
2.2 Ae
223 | %%
wherey;, denotes collectively the rovibrational states after .
the dissociation is over, and specifies the product channel. gO(Q)
IZ:(K,K) is the wave number vector of the receding mol- E,
ecules.
Here care should be taken in representing the two bound-
ary conditions at the same time—~ and Q—~), which FIG. 1. A schematic diagram of the energy profiles of dissocia-
may look like tive photodetachment and the energy relations used in the text.
Wile Rlty
- KO ~ Di(K;Q)=(® ;. [V(E~Ep)|®o)
. R ~ explikr) exp(iK ~ AR fk 0/1%0
Jm ¥(@.Q=C(rQ ikn) exKQ) § % L
—®© —Ep m ) o =
(223 =F( - )7<E—Eo><<bi;)ln-d|®o>,
However, the limitQ—oc should be taken after the procedure (2.26
r—oo. If not, the boundary condition for the simple photo-
dissociation will be given. whered andm are the sum of the dipole operators and the

We take one step further in the adiabatic approximationsjectron mass, respectivelffo see how the dipole operator
for the detachment process as in the usual practice of thgiises consult Ref22].) Then it follows that

theory of photoionization. At each nuclear configuration,

which is given as a parameter, the molecule is supposed to o A A m L

eject an electron irrespective of the nuclear wave function. Di(ks.1Q)=— 57 Di(ke:Q). (2.27
This is equivalent to introducing an electronic wave function

®(G;Q) for detachment such that The angular directior is identified as that ok which is
specified byd)ii) of Eq. (2.26. [The method to get Eq.

lim ®,(G:6)=> fdka?(kf,%,Q) 1 explik,r) ;. (2.22) \ivill be discussed in %ec. M. In what follows,
r—o T r (2.24 D¢(ks;Q), rather tharD?(kf ,7;Q), plays an essential role.

We simply writeD ;(k¢ ,%,(j) = Df(IZ;@) from now on.(The

- 0 > AY ni ; i i - I . o
The coefficienDy (k.15 Q) gives an amplitude of electronic  suffix f of k; andk; will be omitted unless any confusion is
excitation at a given nuclear configuratign Again, at each expected.

nuclear configurationd;(G;Q) should satisfy an effective The various energies to be taken into account are summa-

equation of motion for photodetachment, rized as follows(see Fig. 1 E,=fiw, photon energy;
€= (7ik;)?/(2m), the asymptotic kinetic energy of the elec-

) tron; ¢, the relative kinetic energy of the receding mol-
€ (O)+ (7iky) “Hy|® >=V(ﬁw)|® ). (2.25 ecules;A¢; is the energy difference between the excited po-
f 2m el [T AN tential surface and the ground one in the dissociation limit.
The last two are determined only by specifying the exit chan-
Herefiw is to be equated t& — E, later (see Fig. 1L Equa- nels. The energy conservation requires
tion (2.25 brings out a very characteristic feature of the R R
adiabatic approximation. The energies for the electronic mo- E=Ey+Aw=¢€;(Q)+ e+ T(Q)=Ae;+e+€, . (2.28
tion and for the photon do not seem to be consistent with . _ _ _ _
each other[Notice thate;(Q)+ (%k)2/(2m) is not equal to _Smce e|ther_ek or € is not determ_med |ndeper_1dently, which
the total energyE(=E,+%w).] This is because the kinetic IS chgragterlstlc of tht_e two contlnuum 'experlment, the con-
energy of the nuclear motion is removed from the total enolution is necessary in a certain experimesge Sec. Il D.
ergy at each nuclear position, and thus the energy availabl _h|s_can be important in an experiment detecting the angular
to the electronic motion under the adiabatic approximation ilistribution of the electron, and so on.
not subject to the conservation of the total energy.
D?(kf ,F:Q) in Eq. (2.24 can be readily obtained resort-
ing to Eqg. (2.29 with use of Eq.(2.5. First, define Under the above conditions, we can determine the equa-
D¢(k;;Q) as tion of motion for the unknown functiony;(Q) that is to

C. Equation of motion for dissociation dynamics
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represent dissociation dynamics. We fitahd in Sec. 1l For these channel arrangements, we have again the energy
concentrate on a problem of a single dissociative potentiatonservation

surface. Thus the suffikin CIDEE) has none to distinguish but
a single dissociative state. Operating an electronic continuum Aeipt egpat ea=A€sgt+ g+ €,g=E. (3.9
wave function(d)ig) on Eq.(2.13, we have

Xxik In EQ. (2.30 should bear only the outgoing waves in the
[E— e— &(Q)— Tl xrid ﬁzﬁ]n;?;otlc region that are specified in terms of the channels,
E
Rty
:f dEo<q)ﬂ2 IV(E—Eo)|®oxo{Eo}) A :
’ Jim, xit@= 3, Ce(N, K, Qaik d) SEGA)

E E—E,)| im A A
:fodEoF( no) w (EF X xn,(Qa),

e 3
X(@ - '|A-d[@o)| xo{Eo}) _ - 2~ - . exniK
Jm (@)= 3, CelN,.K,, Qg k,d) ZEE L)
E .. B— 7eB QB
= | dEyD¢(k; Eqb), 2.2 ~ =
JO oD+( Q)|XO{ O}> (2.29 XXNT(QB)r (3.2
where the curly bracket specifies the energy components ad
in Eq. (2.13. We rewrite Eq.(2.29 simply as
(E-e—Hplxw =Dk Qexo),  (2:30 X Q=0 (Qa=0 0r Qg=0). (33
which defines the convolutios, and Here,Q, is the distance between the centers of masses of the
two dissociating molecules. Since the difference of masses in
Hi=Ty+€(Q) (2.3)  the individual asymptotic regions introduces a considerable

complication, it is quite convenient to scale the coordinates
is the Hamiltonian for the excitereactive potential sur- to the so-called mass-weighted coordinates so that all the

face. Note thatsf((j) does not approach zero in the disso- relevant masses are set to unity. In particular, we set the
ciation limit. but reduced masses in the individual channels to utityis the
wave number in the relative motio(ﬁA represents the angu-
lar parts of the relative coordinatééA, while Q, is the
collective notation of all the other internal coordinates, and
}'Na designates the rotational and vibrational states of the

product molecules in a given channel with the collective
guantum numbersl,,. We thus have another energy relation

e(Q)—Ae (dissociation limif. (2.32

See Fig. 1. In order to get the left-hand side of E29, we
have used the following adiabatic approximation:

k() ) S\ 2 ) ) -
| ki@ el Y= [ aki@l ol i)

=Talxse), (2.33 7(AK)?+E(N,) =E— ¢, (3.9
where the following orthonormalizatioill] has been WhereE(N,) is the energy ofn,
adopted:
(=) (=) . B. Transition amplitude
<q)‘21 |q>l22 )= 0k —ky). (234 It is the coefficientsCg of Eq. (3.2 that represent the
transition amplitude of the present photodetachment spec-
IIl. ASYMPTOTIC ANALYSIS troscopy. This provides a body-frame amplitu@iEhe trans-
OF MOLECULAR DISSOCIATION formation to the laboratory frame as well as a comprehensive
analysis of the rotational distribution were made by Balint-
A. Boundary condition for dissociation dynamics Kurti and Shapird27].) We now extend the method of as-

We now resume with the inhomogeneous Sdimger ymptotic analysis for half collisiofil6] to the present prob-
equation of Eq(2.30. Band, Freed, and Kouri have treated lem. First, we assume that the following scattering wave
their inhomogeneous Schiimger equation for photodisso- functions are already available, that is,
ciation in terms of the Green functidi26]. We take a dif-

ferent and simpler approach. Before proceeding, we need to (E— ec—H)IN (N, ,K))=0
specify channels for the dissociation. For example, in the
case of IHI', we have two channels, (for all the open channels). (3.5
I;+HIl,+e~ (channel i i ingoi
IHL, ™ +hy— 1 2 ( A These eigenfunctions are supposed to have the ingoing

I4H+1,+e~ (channel B. boundary condition in such a way that
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i (=)  Y=exn(iK .-O)%n (O ..~ 3
Qurgw M 7(Ng Ky =expliK .- Qa) xn, (Qa) <6X|O(iKB'QA)XNB(QA) (e—H)|Ce(Qp)
- 2A TN gQn iNaKo) exp(iK,Qa) —~ =
Ae ) X Q XNQ(QA)>
x S Ka) 7, (@, g
B A
S (3.6 = 2757 CinYim(Ko) Sug
Jim AN, K= 2 TONKQsiNKL) "
° reB 2 expiK.,Qa) ~ ~
exp—iK,Qg) ~ = +{ Ce(Qn) ——a——"Xn,(Qu)| (e—Hp)
X Q XNB(QB)v QA
B *
and are regularized at the origin, for example, as XeXQiKB.(jA)’);N (aA)> , (3.12
B

AN, ,K,)—0 0. 3.
(N Ka)= as Qa— S which basically arises from the Wronskian relations, and the

proof is given in the Appendix. In Ed3.12), e=E—¢,, and
ey=exp(X) is a modified exponential function so as to ap-
proach zero at the origin to satisfy the boundary condition of
Eq. (3.3). See Eq(A2) in the Appendix. This kind of modi-
fication of the long-range functions such as the Bessel func-
_ > tions and plane waves can be readily materialized without
(=) — e — -
(NN KB = e Hpxno loss of generality using the short-rangé?) functions
— /3 (5) 2 N [29(b)]. C\,,'s are the coefficients of the following single
(AN Ko IDk@ xo), 3.8 center expansion in the standard spherical harmonics

As is seen above, the sem,g,lza) designates the pure and
plane-wave state.

Operate the bra vectgh(7)(N,,K,)| on Eq.(2.30 such
that

whereDy, is the abbreviation ob¢(k; Q). From this expres- Y,,(Q,) as

sion, one can extract the coefficie@t(N,, K, ,Qx;k,d) of

Eqg. (3.2. In what follows, arbitrary functiong andb are CE(éA)ECE(Na,Ka,éA;E,a)zz > CImYIm(éA)-
said to be interchangeable if they satisfy I m 313

The similar identity holds for the asymptotic channel in the
where the symbd! indicates the complex conjugate. Now, if coordinateﬁB. Only those terms like Eq3.12 hamper Eq.
the two functions in the left-hand side of E(B.8) were  (3.10. All the other combinations between the asymptotic
interchangeable, that is, if it happened that and short-rangéL?) functions are interchangeable as far as

) (\"7)'s are concernedsee below. For instance, we have
<)\(7)(Na !Ka)|(E_ € Hf)|Xf|€>

. _ exp(—iKgQa) -~
= (xiil (E= e HDIN (N, R )%, <T< e n(Qa)
(3.10

(al(e—Hyp)|b)=(b|(e—Hy)|a)*, (3.9

(e—Hy)

x> exp(iK,Qp) .~
Eq. (3.8) led to an incorrect result, X Ce(Qn) Qa XNLY(QA)
AN, K )|De® xo) =0, 3.1 s exp(iK,Qp) - <
(NG Ko)IDee o) (310 =<cE<QA> S QW (=)
because of Eq3.5. The fact is that the kinetic operators in
the Hamiltonian induce the surface terms and prevent Eq. oexm(—iKgQa) .~ \ ¥
(3.10 from holding. xT) On Xng(Qa) ) - (314

Incidentally, the noninterchangeability among the long-
range functions that extend in the asymptotic regions sets theurther, all the combinations between the asymptotic func-
theoretical foundation of the Kohn-type variational prin- tions belonging to the different channel coordina@;@and
ciples for quantum scattering theof28,29,9. One of the = . .
QB are simply interchangeable.

greatest advantages of the Kohn principle and its analogs ) A : . ..
that the variational functional can give the first-order correc- By the Whay,' the |d¢nt|ty 'E Eq(3.14)_ IIS partlcuIaLIy im h
tion to theK matrix[28]. Takatsuka and Gordon have shown portant in that it constitutes the essential reason why we have

(=) (+) 0 inA-
that this noninterchangeability is also essential to the asympqperated)\ | rather than(A ™| or (\"7 (the standing-wave

ion | - (+)
totic analysis of the half-collision wave functions, and pro-f)altug?r? |Sn Egr.iéilS\?\}al\:/grsﬁ)éiT;pgz C':;r\:\é? d:z)é)% Itufgi)f the
posed a variational correction formula for the linewidth and going sp P

: L . L spherical incoming wave in the bra vector in the left-hand
branching ratio in photodissociation dynamjds]. ; » :
That Eq.(3.10 does not hold comes from the following side of Eq.(3.14). Then an additional surface term arises that

identity: leaves a cross term betweélt,g(Q]) and theT matrix be-
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hind and makes it hard to single 0Gg(Q,). However, on
the other hand\™, A, and\© are all mutually connected
through linear relations in terms of tt&or K matrix [11],

and henceCg(Q,) can also be represented if” and\©.
In fact, it is the standing-wave functiod® that we worked
with before[16].

By means of the above identities and others, we have

(NN K)I(E— ec—Hp) | xsi)
==2mh2, CipYim(Ky)
Im
+ (Xl (E— = H)INT(N, K ))*

:—277-}12'2: C,mY|m(lAZa). (3.15

Ce(N, K, K, :K.d)

1 R > =
=5 (NTI(NLK L) |D(K; Q) ® xo).
(3.17)

C. Electronic kinetic energy distribution

If one is interested only in the kinetic energy distribution
of the detached electron, all the other information is inte-
grated in such a way that

T'e(k)

:2 f dl’\za|CE(Na(Ea)!Ka(E_Ea_ ék)lﬁa ,E,a)|2,

(3.18

whereK ,(E—E_,—¢,), for example, means the wave num-

The last quantity can be readily transformed back to the Camer corresponding to the ener§y-E,— €, anddIAZa is an

tesian representation as

>

2 C|mY|m(|’\Za):CE(Na !Ka!Ka;lz:a):CE(Na ||Za;kyd)
Im

[cf. Eq.(3.13]. It is clear why the angular coordinat%\ of
Eq. (3.13 are now replaced witK , in Eq. (3.16). Hence the

infinitesimal volume element in the angular coordinates in-

cluding the Jacobian factor, for instanced Ra
=sin6,d6,de, in the usual spherical coordinates. The above
summation ovew is to be taken subject to the energy con-
servation EqQ.(3.4). The number of the possible quantum
states participating in this summation can be large when the
rotational states of the individual product molecules are
taken into account.

direction of the molecular dissociation, which was treated as |f: on the other hand, only the angular distribution Kof

the angular components of the asymptotic coordiné:gsi;n

Eq. (3.2, should be identified witl , in the integral expres-
sion EQ.(3.15. Thus we finally have

0

Ie(

where, as usuaﬁ= (k,ﬁ).

IV. MISCELLANEOUS

A. On the interpretation of the role
of the ingoing scattering wave function
AN, ,K,) and (I’(E_)

It is interesting to take a detour to think about the inter-
pretations of A\’ and <I>f{). Let us consider a factor
(@ NN, K ,)[A-d|®oxo{Eo}) which is involved in
Eq.(3.17 [see also Eqg(2.29]. This kind of integral is often

andk are to be observed, one needs a convolution, since the
present dissociative photodetachment process includes two
continua, and their kinetic energy distributions are not deter-
mined uniquely. The observed quantity should be written as

K= fdeklcE<Na<Ea>,Ka(E—Ea—ekxﬁaﬁ(ek),&)lz, (3.19

context of the stationary-state scattering theory how the
phase interference between the plane wave and ingoing
spherical waves in, say ™ gives rise to a controlled state
(plane wave in the “remote future,” which is to be identi-
fied as the final state. However, the argument leading to this
kind of interpretation is very intuitive and is not rigorous in

any mathematical sense. We further note t@ég))\(‘) is
not the final wave function that is to be produced by the
interactiond. Remember that neithed ™ nor CD(I{) satisfies

the correct boundary conditions for the half collisions. For
example, compare Eq.2) and(3.6). A" is an eigenfunc-
tion of the full-collision problem and its boundary condition

interpreted to represent a transition from the initial stateconsists of both incoming and outgoing waves, while
; (2 (— ’ = . .
|PoxolEo}) to the final statdd '\ T)(N, ,K,)) due to the . «(3) of Eq. (3.2 must include only the outgoing wave

interactiond. Let us call this interpretation I. The time- asymptotically. Moreoven” is determined under the equa-
dependent scattering theory presents this view in a converion in which the physical origin of the dissociation, namely,
tional way[11]. Breit and Bethd21] have explained in the d, is absenfcompare Eqs(2.30 and(3.5]. Consequently,
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even if some other interactiax, which is different fromd, B. Relationship between the kinetic energy distribution
had caused a transition, the expressiorCafN K Kk &) of electron and wave-packet dynamics for dissociation

in Eq. (3.17) still holds only by replacingi with X, but A"

So far, the stationary-state scattering theory has been de-
does not have to be altered.

) ; . . veloped. We now turn our attention to its relation to the
. We again empha3|_ze that the_asymptotlc qnaly(sg for thfﬁme-dependent wave-packet dynamics for the corresponding
|r.1homogeneous Sf:hdg]ger equatior(2.30 requiresh” " to dissociative motion. A photoelectron spectrum, namely, the
single outCg(N,,K,;k,d) from the surface term as stated |jnetic energy distribution of the detached electron inte-
in the discussion following E¢3.14. We also would like to  graie4 over the entire direction, sometimes has relatively
confirm that\® and\""’ can be utilized as well to represent sharp structureEL—8]. In order to understand these features
Ce(N, K, ;k,d), but only\™ can bring about the so-called 3 wave-packetor classical dynamics on the neutral reactive
Fermi golden-rule-type expression, B§.17. If \™ or A\ yotential surface have been carried out to assign the peaks to
is adopted[16], the final form of the amplitude should be ¢ (reactive resonances formed in the transition-state region
accompanied by some add(lil)o%a)l c((z()efﬂuents that arise fromy 5 - Although the analogy from the study of photoexcita-
th_e linear relations am_o_ng A .’)‘ ;. Nevertheless, it is .tion spectrum of vibrational stat¢30,23 suggests use of the
still true tpgt the(é)ransmon amplitude can be represented "Qvave-packet dynamics, the validity of the time-dependent
terrgﬁ tor% otr?ér)\har?grrti(t:aﬂ%aive interpretatiohwill come ijnamics in the case o_f the photodetachment is not trivial. It
' is expected that the ejected electron should have gone far

to a deadlock in a case where the photodetachment and di o f th lecl before the di iation d
sociation take place via the multiple potential surfaces whicifiPart from the molecular area betore the dissociation dynam-

mutually interact due to, say, the nonadiabatic coupling. WeCS t@kes place. Thus an attempt to interpret the kinetic en-
will derive the correct expressions of the transition ampli-€"9Y distribution in terms of the time-dependent dissociation
tudes for these cases in Sec. V. dynamics does not seem to be in accord with the causality.

Finally, it is easy to understand why E.26) is neces- We therefore should check under which situation this proce-
sary to solve the inhomogeneous Schinger equation dure is verified. o S
(2.25. Apply the same argument developed in Sec. lll to Eq. L€t us go back to the kinetic energy distribution Eq.

it b i di i ) i (3.18. But, noting that the wave-number vectoks @re nec-

(2.29. So, if®, " is directly used in place ob, * without - BUL gths =T ) ]
any additional coefficients, it would represent the electrorSSarly opsgrved with .some f'n'te_ W'dtt‘ dl;'e to the expert-
attachment in the related conditions. Similarly, one can alsénentally limited resolution, we definég(k+A) that is, the
consider associative detachment and associative attachméfgtribution for a detached electron to have the wave number
irrespective of their actual possibility. in the rangd k—A,k+A] such that

FE(Ei&)EE f d}zalCE(Na(Ea)vKa(E_ Ea_ ek)véa 1E16)|2

1 . - 5 > -
= G222 fdKa<Df<k>®xO|M*)<NaKa>><M*>(NaKa>|Df<k>®xO>, (CRY

where the integration and summation o¥er anda, respec- Where(2m)® is required to satisfy the normalization
tively, should be taken so that they materialide— A,k

+A]. Here we note a relation (NONLK D INTHNGK )y = (27)38,50(K ,— K ).

(4.2b

e+AE
f ded(e—Hy) The energyE® in Eq. (4.29 is given by Eq.(3.4), and
e-AE [e—AE,e+ AE] corresponds to the interval for the spectrum

1 [e+AE o of H; that brings aboufk—A,k+A]. It immediately turns
=(277)6f EdfaEﬁ deadKﬁp‘ (NoKa)) out from Eq.(4.23 that

e—A
X(NTUNGK ) 8(e=HINTI(NGK p)) D fd|A2a|f\(*)(Naﬁa)xf\(f)(NaIZaH
XO\(_)(NBKB” ' fe+AE
1 e+AE N . =(2m)3 de 6(e—Hy) (4.3
= - o
_(271_)3 fefAE dEZ« dealx( (NaKa)> AE

0N/ (o) R can be regarded as a projection operator that specifies the
X (e—E )N TH(NKQ)I, (428 continuum states with the energg=E—E,—¢,, since
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A()(NK,)'s are the eigenfunctions of the Hamiltonikip , A. Asymptotic analysis

as required in Eq(3.5. Thus we have We begin with
N 2T e+AE L= 2 N (=) = = N
FE(kiA)=Ff N de(Di® xol 8(e—H¢)|D® xo)- ‘I'E(q,Q)=fEl Jdk ¢ (G xk(Q). (5.1
e— =
(4.9

There are basically three types of physical situations to be
As usual, the standard relation considered.(i) The two excited states do not cross each
other. (i) The two surfaces cross mutually, but the initial
1 ° i optical pumping induces a transition to only one of the ex-
Sle—Hp)=5+ f_m exp(% (e— Hf)t)dt (4.5 cited states, but the crossing is encountered independently in
the course of dissociatioiiii) The two cross, and both are

can rewrite Eq(4.5) such that optically allowed at the outset. In the casg(iof nothing new

happens and the two transition amplitudes are calculated in-
. 1 (e+AE dependently according to E¢B3.17).

Fe(kxA)= 75 f de The latter two casesji) and (iii), are treated almost on

e-AE the same basis. The basic equations of motion are the direct
i extension of Eq(2.30 as
i 21 HE_%(hkf)z_Ef(Q)_TN | x1&) O
xex;{% et). (4.9

, | - f dR (@ Ty @) xfg/><1—6gf)}
Thus we can make use of the autocorrelation function for a

“wave packet” D; ® and its Fourier transform in this -
mannerl.3 e =[Dg(K)®x0) (9=1.2), (5.2

Incidentally, the projection operator, which we havewhere we have used the approximation
called the energy-screening operator,

etAE i f dE’<(D(fE) TN|CD(fEr)>|XﬂZ'>ETN|XﬂZ> (f=1,2.
f*AE def dt ex;{—%(e—Hf)t>, (4.7 (5.3

e

The nonadiabatic effect has thus been taken into account

has distinguished advantages both in eigenvalue problenigyyeen the two different states. The convolution denoted by
and the calculation of scattering wave functions. The detailg; s defined as in Eqs2.29 and (2.30. If the stateg is

have been reported elsewhéBd]. optically forbidden, the right-hand side in this equation is
simply zero.
V. PHOTODETACHMENT VIA THE Further, we note that the nonadiabatic transition between
MULTIPLE POTENTIAL SURFACES the two excited potential surfaces has nothing direct to do

with the detached electron, since the crossing is due to the
neutral molecular system which is left behind the ejected
Blectron. For the same reason, it is quite unlikely that the
cattering orbital for the ejected electron depends strongly on
he nuclear geometry at the crossing point. Thus the nuclear

So far, we have treated only a two potential-surface sys
tem having one ground and one excited electronic state
However, Yamashita and Morokunj&7] carried out arab
initio calculation for the potential surfaces in the process o

CIHCI” +h»—CI+HCl+e", and found out that two disso- kinetic energy operatory, is expected not to have a signifi-

C|at|;/e potential su_rf_aces .Of EEIHCI—>CI_H+CI, namely,"% cant effect on the scattering orbits, and we thus can assume
and“II states, participate in the dynamics and moreover they

cross each other in the experimentally relevant energy re- <q)(i)|TN|q)(?,)>55(|Z_ |2r)<€f) |-|-N|Ef>f> (5.4)
gion. We therefore extend our discussion to the case of one _ ok fk g ’

ground and two excited electronic states. Further extensiowhere ®; (f=1,2) are the correspondingeutral electronic

to four and more potential cases is straightforwéhociden-  wave functions that are responsible for the nonadiabatic tran-
tally, the theories for multisurface photodissociation havesition. The final form of the coupled equations of motion is

been discussed briefly by Shap(ig2].) now
1 5 o ~ ~ R .
E— 5 (k) — (Q)— Ty —(Dy| Ty D,) | x10) D1k ® xo0)
B B 1 = . (5.5
— (D, Ty|Py) E— 5= (fiky)?— €2(Q)— Ty | x2i) |D2k © xo)

2m
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The asymptotic analysis we have carried out in Sec. lllabatic representations such th&ig)=(1,2—(F,G), lead-
has made use of the surface terms that arise from the nuclemng the off-diagonal terms to simple scalar functions
kinetic operators. The kinetic energy operators in theas —Vgg and —Vge. The assignments of the asymptotic
off-diagonal terms in Eq.(5.5 drastically complicate states are accordingly altered. In this way, E{.5 is
the analysis. Hence we transform from the adiabatic to ditransformed to

-

)?—€r(Q)— Ty

.
- 2m

In the case where the crossing is due to the spin-orbit inter-

action, Eq.(5.6) is identified as the starting equations.
The boundary condition foggy is essentially the same as
before with a slight modification as

F ~
Jim_ xee(Q)= ﬁA Ce(NF K, Qa sk, d)

. F .
X eXFx IgAaQA) QA)

QIim XFQ(Q)~(simiIar to the channel foiQ,). (5.7)
B—®

XNa(

The summation by=(") is to be carried out only on the

potential surface-. XGE(Q) has the similar boundary condi-
tion. In order to extract the coefficients such as

Ce(NF KF ,5A;IZ,&), we prepare the following solutions:

e

where er=E— (ikg)?/(2m), He=Ty+ €:(Q), and so on.
The boundary conditions to be imposed on this pair shoul
be

Jim NED(NG KE) = expliKE- Q) Xne(Qw)
A—)OC (4%

0
0

er—He  —Vee | [ INE(NGKD))

~Ver  €s—Hg/ | NG (N KE))

/

§ 2 .
+ TONEKEQAINEKE)

yeA

—_ikF _ o~
X SRISR L Q. 69

—Ves

ec—Hg

N N —H
(<x%‘>(NZ,KI)I<A<G‘>(NZ,KI)I)(efv " )(
GF

~Vee

(hkg)?—ec(Q)—Ty

IxFi) IDEk © Xxo)

(5.6

Ixci DGk ® xo)

| XFi)
|xck)

F R
dim_ NG RE)= 3, TONKES NERD)
B—* TeB

S EXB=iKEQp)

% ¥R.(Qg)

and

G ~
lim NG(NE,KF)= g TO(NSKSQaNEKS)
Qa—x vyeA
exp(—iK®Q,) ~ ¢, =
X SRR 76 @,
A

e . 610
Jm_ SN K= 3 TOINSKE G iNEK,)
B—%® TeB

exp( —iK$Qg)
8 Qs

It should be noted that this pair of functions has the ingoing
boundary conditions with the only one plane wave that is

prepared in the stateN{,K") on the F surface.\§’
X(NF KF) is the component on th& surface after the
“collision event” of Eq. (5.8) is over. Similarly we have
another pair of solutions as
0 8
, 5.8
0 (5.8)

for which the roles ofF and G are mutually exchanged in
their boundary conditions Eq¢5.9) and (5.10), that is, the
plane wave is prepared in the statég‘(,lzﬁe) on theG sur-
face.

Now, operating the row vector as

X2 (Qa).

d

INE(NG LKD)
ING (NG KS))

er—Hg
—Ver

—Veg
ec—Hg

IDEk @ xo)
|Dgk ® Xxo)
(5.11

)=(<>\<F‘>(NZKI)IO\(@‘)(NZKI)I)<
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we interchange the column and row vectors as in(Bd.5), diabatic interaction does not induce a sufficiently large
which leads to MEI(NG K ) in the domain of Deg® xo), the possibility to
find the final state on th& surface is accordingly small.

_ 2 FgF.C 3 <
2mh"Ce(Ny K ik, d) Now, we stress again that:'(N§,K %) does not have the

. . IDE¢ @ xo) plane-wave component on ti&surface, and hence this can-
=(<)\(F)(N';,KQF)K)\(G)(N';,KQF)D( Do not be the final wave function to which the state should go.
Dk @ xo) For the same reason, there is no interference between an

(5.123  ingoing and a plane wave that is essential in the argument of
Breit and Bethd21] to generate a “controlled plane wave”

Similarly, we have in the remote future. Thus it seems certain that the conven-
) G 2G.0 4 tional interpretatior{l) discussed in Sec. IV A for the role of
—2mh Ce(Ng Ky k,d) the ingoing states and the explanation by Breit and Bethe
IDei ®x0) [21] could not apply to the present case.
=((\e (NG KDING (NG Kgm( ,
[Dsi ®xo0) VI. CONCLUDING REMARKS
(5.12H

We have developed a stationary-state scattering theory for
in which we have made use of Eq&.8) and (5.8'). As  dissociative photodetachment spectroscopy in the transition
before, only the plane-wave parts can contribute to the suregion. The asymptotic analysis has been extended to a gen-
face terms thanks to the ingoing boundary conditions as irral case in which two or more reactive potential surfaces
(NE)(NE K F)|. Equations(5.128 and(5.121 are our final ~ ¢ross each other, the final result being E512. We stress
results. again that all our results have been extracted from the as-
ymptotic analysis of the wave functions that are the solutions
of the inhomogeneousSchralinger equations having the
source terms. The effect of the shape of a pumping laser

Suppose that the optical transition is allowed only to thepulse, which essentially brings a time dependence into the
surfaceF but forbidden toG, in which Dgg=0 in Egs.  scattering problem, has been taken into account explicitly in
(5.129 and (5.12h. Then an amplitude for the state to be the convolution between the frequency distribution of the

B. On the interpretation of the transition amplitudes

found on the potential surfade is given by pulse laser and the initial wave function. This effect can be
1 quite important if the initial rovibrational wave function be-
CE(NCF,,IZ(,F;IZ,a):— . (kf:_)(Ni,KaFHDFIE ® Yo)- fqre excitgtion is in a wave-packet state, namely, not an
2mh eigenfunction.
(5.133 It is interesting to note that formulas analogous to our

final expression Eq(5.12 have appeared before in the lit-

This expression is .rather easy to undgrstanq, since 1L 1S X ature of photodissociation. With the simple dipole matrix
actly what we saw in the case of the single dissociative sur-

; element between ground and excited bound electronic states
face, namely, Eq(3.17). On the other hand, an amplitude to used in place oD, for Eq. (5.12, a formula essentially

find the state in i ,K 5°) on the surfacés is given by equivalent to Eq(5.123, without the convolution though,
1 has been used by Bowman, Mayrhofer, and Amatf2€l.
Ce(NG K5 ;K,d)=— o (N(NS K )[Dei ® xo)- Also, Guo and SchatzZl9] have applied an expression that is

also analogous to Ed5.133, again with no convolution, in

(5.13B  their calculation of the cross sections for photodissociation.
This expression can cause a lile confusion SinceDespite'the centrgl role of their fprmulas in their thelore.tical

(D) 2 Gy ) ) ' caI_CL_IIatlons, r_lothlng has been discussed about derlvatl_o_n or
Mg '(Ng,Kg") in Eq. (5.130 is a function that has only an ygjidity. Here in the present paper therefore we have verified,
asymptotic form on thé surface and the plane-wave com- a5 3 direct consequence of our theory, that their approaches
ponent is not included.See Eq.(5.10 and interchange the pased on the surprisingly clear intuitions are indeed correct.
symbolsF and G with each other in if. More specifically, e emphasize, however, that the role of the mathematical
)\(F’)(N[?,KBG) consists of only “incoming” components and theoretical development of the general theory is crucial,
that are generated on tlte surface by the nonadiabatic bi- when one wants to extend the theory and when the validity
furcation from the “initial” plane wave prepared on th@  of the theory is examined.
surface.(This interpretation is a little confusing, since the  The theory discussed in the present paper seems to have
ingoing boundary condition seems as if it broke the causalset a foundation of the numerical calculations of actual prob-
ity. An alternative and usual description is that the incominglems such as the dissociative detachment of " IHind
waves are prepared both on the surfa€eand G and they  CIHCI. In particular, we have clarified the relationship be-
are controlled to a plane wavafter all the “scattering tween the stationary-state theory and wave-packet dynamics,
events” including the nonadiabatic interaction. In any casethe numerical application of which is in fact under way in
one should note that the time variable is already not includedur laboratory based on E.6). Furthermore, a scheme for
here, although the terms “after,” “before,” “remote fu- the calculation of electronic scattering wave functicbis’
ture,” and “remote past” are frequently used in the time- for polyatomic molecules has been devised based on the
independent scattering theof¥1].) If, therefore, the nona- multichannel Schwinger variational principle3,14], and
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the numerical calculations are actually being carried out in N A
collaboration with McKoy and co-worke(83]. CE(QA):Z % CimYim(Qa) (A3)
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APPENDIX: PROOF OF THE IDENTITY (3.12 J1(KoQa)~ K.On sin K,Qa— > ) . (A5)
Aaac
Define . . .
Equation(A4) together with Eq(A3) is brought back to Eq.
IE<eXF(iK)B'Q_)A)S(JN (Qa)|(e—H) (A1), giving
> eXR)(IKaQ ) = —ii %
X|Ce(Qn) Q—AAXN (QA) (A1) | 477'2' % ; % (=)' 1(KaQa)Yim(Ky)
whereCe(G) = Ce(N, K. Ga:K,d), and the modified ex- XYin(Qa)* T, (Qn)* (€= H)CLmYim(Qn)
ponential function exffiK ,Q4) has the following boundary
conditions: eXFb(lKaQA i — 77)
. exp(iK,Qa) (Qa—>)
eXR)(|KaQA)~[O (QA—>A0) A (A2)
I
The last one is required to regularize it at the origin. It is XeXF{' 5 7T)XNQ(QA)O'QAdQA- (A6)

obvious thatl vanishes ifa# 8. We hence consider only the
case ofa=g. To prove the identity, it would be most con- From the kinetic energy involved ite—H), the term(%%/2)
venient to perform the single center expansion for the rel{d?/dQ3) arises, which leads to the surface term. We thus

evant quantities such as concentrate our attention on
o > ~ 2 d?
I=am2 2 2 2 | (CDKQa)Yin(Ka)Yin(Qu) ¥, (Qw)* QA 5 gz 7| QACLMYLm(Q)
I
exp| iIK,Qa—i > 77) R
X Ox i“Xn,(Qa)dQadQadQa- (A7)
|
The twoQ,’'s sandwiching the second-order derivative have S d? | 77
come from the Jacobian in the transformation to the polar Jo= JO Qali(KaQn) aaz expy | ( KaQa— 7) dQa.
coordinates and QA is assumed to include the Jacobian fac- (A9)

tor for the angular parts. With the orthogonal relations, this
integral turns out to be
It is at this point that the surface term appears in integrating

42 Eqg. (A9) by parts such that
J=2mh?2 > CinYim(K.) f Qui1(KaQn) 57
dQa
J fx il K IW”
= exp|i - =
X expy i ( KaQa— ) dQa. (A8) 07 Jo B[ K77
2
. . - 402 [Qaji(KaQa)]dQa—1. (A10)
We take a further look at the integral in Ed\8) by defining Qa
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Here the asymptotic form of the Bessel functions E&H)
and the boundary conditions E@2) have been used explic-
itly. Bringing all these materials back into EGA1), we ob-
tain
|= =272 CinYim(Ka) Saptlin,  (ALD)
Im

with
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2 iK, - =~
=1 Ce(0) %AQA) Tn,(Qn)] (e~ H)
X |exp(i KB' QA)}NB(aA»* , (A12)

which completes the proof.
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