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Near-degeneracy effect on energy shifts in some highly charged few-electron Rydberg ions
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In view of recent high-precision measurements of transition energies between levels of berylliumlike Ryd-
berg ions of $2" and &** in (high-angular-momentupRydberg states, we introduce a modified polarization
model that allows one to estimate level energies even in the case of near degeneracy, that is, when an excitation
energy of the Rydberg electron is nearly equal but opposite to that of the ionic core. Estimates as well as
rigorous upper and lower bounds for the dominant second-order perturbation-theory dipole contributions to the
line shifts (with continuum states includedre given. Agreement with the measured line shifts is very much
improved over that of the usual polarization model, but the range of estimates remains, in many cases, rather
larger than the experimental uncertainty; our primary purpose is to assist experimentalists planning studies of
other Rydberg ions by providing estimates which are improeed which remain trivial to apply.
[S1050-294{@7)04005-5

PACS numbgs): 32.10.Dk, 31.10tz, 32.80.Rm

I. POLARIZATION MODEL Hamiltonian containing the interaction of the Rydberg elec-
tron and a nucleus, for berylliumlike ions, of effective charge
Rydberg transition energies of few-electron atoms andZ—3). The residual Coulomb interactidi of the Rydberg

ions between states of high angular momentum are oftealectron and the core is expanded into multipole operators,
well described in terms of the polarization properties of the
ionic core. While the standard polarization modle many %
papers on the subject includ&—4]) yields rather accurate W(ro.{riH=e2> _lvi_'
results for the helium atorf6] and heliumlike ions, it can =1Tg
fail for more complex ions. In particular, recent experiments
on the energy differences between some high-angular- - - 2 .
momentum Rydberg states of the berylliumlike ion€'S[6] wherero and{r;} (r=]r|) are the coordinates of the Ryd-

and O** [7] — using beam-foil and laser-stimulated recom- berg ellectron and the core electrons, respectively, and
bination spectroscopy, respectively, the latter leading to é(v[:EiriFﬁ(cos?io). Here B denotes the Legendre polyno-
considerable improvement in experimental accuracy — reMial Of orderl, and 6, denotes the angle between #ta
vealed substantial disagreement between the measured vGR'e electron and the Rydberg electron. Since the excitation
ues and those predicted by the polarization model. The fail€N€"dy of the § “2s state to the & “2p state for o+ is
ure of the standard polarization model can be traced to th@N!Y 12 eV(compared to 83 eV for thep3state and a com-
occurrence of near degeneracies between Rydberg levels Bfrable energy for thed3statg, we neglect all quadrupole
the overlapping series related to the 22s ground state and a_md higher multipole contributions and all dipole cont_rlbu—
the low-lying 1s 22p excited state of the lithiumlike core. tONS but that of the @ stzate ar;d make the one-term dipole
Other approaches such as multichannel quantum defe@PProximationW~Ww,=e le”o with W1:22izi - We intro-
theory (MQDT) [8] should one day give better results than duce the core energi¢i(1s “2s) andE(1s “2p), their dif-
polarization model approaches, but might, at present, not berence AE.=E(1s *2p)—E(1s ?2s), the ( averagej
useful, as sufficiently complete energy level data are not yelirac hydrogenlike Rydberg energi&s,, their nonrelativ-
available. For the studies of the ionic high-angular-istic counterpartsE,, and the differencesAE, ,=E,,
momentum Rydberg states in question, the modified polar=En. The energyEy, of the ion with a & *2s core and a
ization model to be presented appears particularly welRydberg electron in the stafal) is then E},=E(1s ?2s)
suited; little input data is required, the degree of numerical-E, + SE},, where the energy changsE}y, due to the in-
complexity is exceedingly low, and account is taken of neateraction potentialV; is approximated in one-term second-
degeneracies within interacting Rydberg series. order perturbation theory as

Transition energies of Rydberg electrons are usually ex-
plainable using second-order perturbation theory. We write - 2
H=H+Hgya+W, whereH, is the full Hamiltonian of the SE.— _i [(2s;n|Wy|2pp;n”)
core with nuclear charg&, while Hgyq is the screened ni AE.+AE,,

— o M o
*Permanent address. AE.+AE,,’
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where ﬁ=(n| m) ﬁ’z(n’ I"’m’), m, m’, and u are TABLE 1. Experimental line shifts&E:(éEnl|l—5En2|2)
angular-momentum projectionss?is understood, and®  ~ (8En;n,~ 6En,n,-1) among the fine-structure components of the

represents an average oveya sum ovel, and a sum over inter-Rydberg transitions fronm,=16 to n,=9,10 in O** and

bound states and an integration of continuum state§ome theoretical estimates, in units of £6eV. The line shift for
(n’,1”,m’), with I’=1+1. In the study ofsE,, it is suffi- the transition to the state of maximum angular momentum for the

cient to use nonrelativistic energies. givenn, has been taken as a reference lidE. and SE are lower

To estimatesE,, one can[2] start from Eq.(1), assume 2and upper bounds, respectively, 6B.
that |AE, n/AE¢<1 for the most significant excitations, —
and expand out the denominators in powers of 1

n, Il_ | 2 5E(exp0 a 6E(p0|) b 6E(B) c §E|E d 5E(av) e

AE,n/AE;. Retaining the first two terms, one obtains the1g_g g9_g 0.0 0.0 0.0 0/0.0 0.0
Well-known polarization .mod-el estimates for level shifts 8-7 0.302) 0.25 024 02D31 029
SE,, in the dipole approximationl,2,9| 7-6 1.092) 071 0.85 09A.14 1.05
6—5 5.043) 1.18 4.37 4.25.45 4.85

5E<po|)m_i M&ﬁ( _AEn/n) 16-10 10-9 0.0 00 00 0DO0 00

ni AEc AEC 9-8 0.1322) 0.09 0.09 0.0BD.lO 0.10

8—7 0.322 0.27 0.25 0.3@.33 0.31

_ @€ 138 e’ 7-6 0932 059 071 08099 0.89
2\rg/ TP 6-5 4683 086 412 3.9503 4.48

= 0B o+ OB 5 ) ZExpellrimgntaI line shifts, fron; Ref7]. ,

Polarization modelay=1.05g, B4=1.15%; [16].
‘Differences of bound state contributionsE.=12.092 eV[17].
9 ower and upper bounds ofE, |, — 6En, .
¢ad hocestimates §E + SE)/2.

by use of closure{A), denotes the expectation value Af
for the Rydberg staten(l), «4 is the static electric-dipole
polarizability of the core,

1. MODIFIED POLARIZATION MODEL
2

T AE,

(SIS zlp)

(<= zlp)

The primary reason for the failure of the polarization
model for O** lies in the occurrence of near degeneracies;
the expansion which enabled us to approximate (&g by

Bqis the coefficient of the lowest-order nonadiabatic contri-Ed. (2) is not then valid. We are therefore led to introduce a

bution, modified polarization model, one which provides a consider-
able improvement and which can be readily used by experi-

2\ 2 2 mentalists preparing to study similar ions. Before doing so,
e ; - .
Bd:(_) , we remark that the existence of near degeneracies and their
AE, significance has been noted previously on a humber of occa-
sions and, in particular, in Ref7], which is our primary
anda, the Bohr radius. The first term in E€R) describes the focus. The appearance of such degeneracies, accepted in that

usual adiabatic dipole polarization picture, where the RydPaper on the basis of experimental data, can be placed on a

berg electron deforms the core, and the induced dipole givedore general footing by a slight extension of a st{d} of

rise to an attractive potentiall/r§ on the Rydberg electron, theZ dependence of the various contributions to energy lev-

assuming that the motion of the Rydberg electron is suffi€ls of interest. The contributions studied in Rl |nc!uded

ciently slow for the dipole of the core to instantaneouslynot only theay and B4 terms of Eq.(2), but terms which, as
adjust its direction to the position of the Rydberg electron.noted above, could be largely ignored for the Rydberg states

Some nonadiabatic corrections, with the misalignment oPf O*". These latter contributions are af/rg term, where

Rydberg electron and dipole axis leading to a weakening oftq iS the static quadrupole polarizability of the core, and a

the attractive potential, are accounted for by the second ternpenetration contributiok,. We wish to contrast ionic cores

(These are not relativistic retardation corrections, whichwhich demandntershelltransitions — when the transition of

would be significant only for much larger valuesrfThey ~ an electron in a given shell to a virtual excited state in the

are nonrelativistic corrections whose origin is the simple facsame shell is not allowed — with ionic cores which allow
that the core electrons have inerti&urther contributions to  intrashelltransitions. To simplify the discussion we consider

Eq. (2) that involve core transitions to different principal heliumlike cores(for lithiumlike Rydberg ions, with & to

core quantum numbers are of negligible size, as stated abovép dipole transitions and lithiumlike cores(for beryllium-

Equally, effects due to penetration of the core by the Rydlike Rydberg ions, with & to 2p dipole transitions Since a

berg electron are very small for the higtRydberg states length scales as Z/ we are led to the results in the second

discussed here. In the third column of Table I, we reproduc€olumn of Table II, valid for either type of corg§We note

the measured fine-structure splittingg| for the Rydberg that «q is proportional to the square of off-diagona)

states of @™ for transitionsn; =16 ton,=9, 10 for various matrix element of 2, andW, is proportional to thediago-

values ofl, andl,=I,—1. They are evidently in serious nal) element of Iy, for ro<r;.] We now turn to thezZ
disagreement with the results of E@) listed in the fourth dependence oAE.. For heliumlike coresAE. scales as
column. Z2. For lithiumlike cores, however, we have
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TABLE Il. Z dependence of various contributions to the energy (B) M= -
level for ionic cores which do not allow virtual transitions to elec- SE® = — > —tr (39)
tronic states within a partially occupied shell — heliumlike cores, AE+AEq,
for example — and ionic cores that do allow such transitions —
lithiumlike or beryllium cores, for example. SEK — _ Ky Mgy (3b)
i AEA+AE,
Contribution ~ General expression He-like core Li-like core
gl Z2IAE, 20 2 The bognd—sta}t? contributiodE(® can be evaluated di-
BylrS Z9IAE, 20 72 rectly, sinceM;; and AE,,, can be expressed anal_ytlcally
w18 72/ AE 20 20 fqr bound states. We summed thﬁe terms umte-50; the
V\? 0 - ¢ 2 2 higher terms fall off roughly asn() 2 and can be neglected
P

to the numerical precision listed. It should be emphasized
that the near-degeneracy terms can strongly dominate the
bound-state contributions. Fom()=(10,5) in O*" the

AE=— (Z—0p)° +(Z—Uzs)2 (n’,1")=(5,4) term represents=74% of the bound-state
¢ 8 8 contribution. The bound-state contribution differences, listed
) ) in the fifth column of Table I, give results that are substan-
_ Z(92p— 0329 L T2~ T tially better than the polarization result of E(), but the
4 8 ' significance of that fact is not clear since the continuum con-

tribution has not yet been estimated. Note also that the

; ibutionse® vi -
where theo’s are screening factorsyE, is then linear in bound-state contribution8E},;’ yield upper bounds on single

: ; P, B

Z, and therefore, for largg, proportional toZ. For a4, the level shifts 5Ey,, but the |nequalltleséEnl|l<5Eﬁlfl and
transition is intershell for both cores, and we arrive at thedE,,,<SE provide neither an upper nor lower bound on
results in columns three and four of Table(For some ionic  the line shiftSE,, | — SE
cores, such as those in as #2s ?2p ©3s? configuration Lt
which allow a 3 to 3d transition, AE; would be propor-
tional toZ, rather tharZ?2.) The above results were all stated
previously[3], and the point was made that Rydberg ions of
large Z with lithiumlike cores should prove to be good test-
ing grounds for the existence of trﬁa/rg term, for which
there was little experimental evidence at the time. The sligh
extension of the above study relates to the validity of th
AE, ,/AE. expansionAE,,, is proportional to

UPPY
The continuum contributionSE((" cannot be evaluated
directly, but can be bounded above and below by using
bounds on—1/(AE .+ E,,— E,), modifying a procedure de-
scribed, for example, ifil0]. The idea is to use the inequali-
ties—1<—1/(1+x)<—1+x for x>0 to derive bounds on
the energy denominator in the integral compongff? of
Eq. (3b), and, hence, on the integral. However, instead of
eusingAEn,n/AEc as the expansion parametefas is done
to obtain the usual polarization model prediction E). of
the level shiff, it is more advantageous to let
x=E, [(AE,—E,) (in particular, for continuum energies
) ) E, =0). Thus, since the continuum energigs are positive

1
n
(and theE, are negativg we let AE., ,=AE.+|E,| and

1
AEn’n“(Z_Zc)Z(HZ_ 2

write
where Z.. is the number of electrons in the core, for both
types of cores. For heliumlike cores, withE xZ?, —M,;,r;< My _ M E,
AE,n/AE, is small compared to unity over a wide range of AEc., AEen+En  AEci, 1- AEc., 4

Z, whereas for lithiumlike cores, witAE xZ, the stronger

Z dependence ofAE, ,/AE. can compensate for the in the terms under the integral compondtf) of Egs.(3),
(1/n?—1/n'?) factor. One then findérather largg values of  and thereby obtain lower and upper bounds for the con-
n’ for which —AE,, can be of comparable size &E.. In  tinuum integral[11]. In each of the formal bounds thereby
O**, for example AE.~ 12 eV whileAE,,,~ —10 eV for  obtained, we rewritg ) asf—®). We use closure fof
n=10 andn’=5, which leads to an energy denominator of as in the polarization model discussed above — the sums to
~2 eV. Partial account of the effect of near resonances obe evaluated by closure are the same as those which arose
SE, can be taken by the analysis of bound-state contributhere — while the bound-state suB(® is evaluated di-
tions in a detailed treatment of the configuration interactionsgectly. This yields lower and upper bounds for the continuum

in the interlacing Rydberg series £2snl and 1s ?2pn’l’.  contribution SEX) < SEX < SEX) that are given by
However, continuum contributions must also be accounted —
for, and we will now show how to at least estimate the effect (B)
of continuum contributions, in a form which is trivial to ap- SEM=(1—9)6Ep o+ —=—2 Mii, (5)
ply, given a few pieces of data, to other berylliumlike Ryd- - @ ABcin
berg ions. — K 5 )

We begin by splitting the second-order sum of Et). OB =(1—n%)0En o+ (1= 1)°0Ey g
into a sum=(® over bound states and an integration denoted (B)
by ™) over continuum states, and, hence, decompose the + z M*ﬁ(l— En ) (6)
shift into 6E,,= 6E& + sE{V , where AEcin "N AEcks)’
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TABLE Ill. Specific contributions to the estimates of the single transition ling,l;)=(16,6) to
(nz,15)=(9,5), in units of 102 eV. sE, , and 5En|,‘s give the adiabatic and nonadiabatic contributions,
respectively SEB” is their sum, see Ed2), and 6E'®'=E,,— E, is the relativistic correctionsE{ is the
bound-state contributionsE() | SE!) and SE,,,, SE,, give lower, upper bounds on the continuum contri-
bution SE{) and on the Tevel shifsE,,, respectively; see Eq6), (5).

(n.h) Ene  Emg SERY  SERY  SERY  SEN)  GEN)  E. O,
(16,6 -0.28 0.08 -0.20 -0.01 -0.24 -0.13 -0.04 -0.37 -0.28
(9,5 -3.34 1.74 -1.60 -0.06 -4.83 -1.12 -0.02 -5.95 -4.86

where we have writtem=|E,|/(AE.+|E,|). The lower and have some convenient starting point. A possible starting
upper bounds onSE,, are thensE,=dE{) +sE{) and  point is given by the averagsE@= (SE, + 5E,)/2 of the
EngEgEf)jLng) (see Table 1Il. Before discussing the two bounds. Thisad hoc prescription works unreasonably
numerical values obtained from the above expressions, weell for the O** line shifts considere¢to better than 5% for
make two comments. First, our procedure comprises threeight of the nine cases listgdee the last column of Table I.
improvements over the usual polarization model procedure With respect to &* (1s ?2s8k—1s ?2s7i), the bound-
discussed above(i) We have determined thédominan  state sumsE( yields 1126.24 A, which is to be compared
bound-state contribution téE,, exactly. (i) We have ob- to a measured transition energy corresponding to
tained rigorous upper and lower bounds on the single level126.4115) A [6]. This estimate lies within a standard de-
shifts 6E,; these immediately provide rigorous upper andviation of the experimental value, and it may well account
lower bounds on the resulting line shiftsii) The expansion for the measurement. In particular, we again get a consider-
parameteiE,, /(AE.+|E,|) is smaller, often much smaller, able improvement over the value of 1126.90 A predicted by
than the usual expansion parametgy, (+|E,|)/AE.. Sec- the polarization model. The bounds on the energy shift ob-
ond, when the expansion in powers|&fE, ,|/AE. is pos- tained by using Eqg5) and(6) yield 1125.69 A and 1126.72
sible, we find that the first two terms of the expansion can b, and the estimate found by averaging corresponds to
expressed as an expectation valig, ,~ SEF=(V), ofa  1126.25 A.

local potential While the transition energy for’3" can be reproduced to
within the experimental errof6] by multiconfiguration
Dirac-Fock (MCDF) calculations using the GRASP atomic
structure packagEl2], this approach fails for the more pre-
cise O*" transition energies in Table[F]. The MCDF cal-
culations, in general, appear to be hampered by the large
. spatial extension of the high-angular-momentum Rydberg
with V(ro) independent ofn andl. The simple form of wave functions as compared to the small size of the ionic
V(ro) arose by the use of closure. However, the boundore. As concerns MQDT, which was applied to low and
SE,, and 5E,, cannot be expressed in terms of a local po-intermediate-angular-momentum Rydberg levels of neutral

tential since neitheﬁEn',a) nor 5E§1||<)1 separately, is a sum Be [13], the extension of this method to the high-angular-
over a complete set. momentum ionic Rydberg states may warrant additional

studies. However, no routine method seems to be at hand for
calculating the energy shifts considered here to the precision
ll. APPLICATION TO O #* AND S?2* obtained in the experiments.

) ) ) ) ) We note that if there are a few values of (1), namely,
The resulting bounds on the line shifts are listed in the(n_/ 17y with i =1 to N, for which|AE,,,/AE is not small
L ’ n’n cl '

: : : : i
sixth column _of Tgble l. AII _experlmental electric fine- one can obtain the simple estimatet a boung
structure splittings lie well within the calculated bounds, and
the width of the bounding interval is reasonably small. It

. ag€? e?
V(rg)= > r—4+3Bdaor—6.
0 0

must be emphasized that the boundsrreon SE}, but on AE, N2 My,
the SE, of Eq. (1). To obtain better estimates 6E},, one SE, = SERI > ( i ) i ’
could consider effects such as retardation, the reduced mass i AE, AEc*‘AEni’n

effect, relativistic kinematic effects, and higher-order pertur-

bations. These can, in principle, lead to significant shifts of

individual levels, but the resulting corrections to the energywhich can be given an interpretation in terms of nonadiabatic

differencesconsidered here should be negligible. However,wave functiond 14]. Work in progress aims at a similar in-

the inclusion of an additional term in the expansion of theterpretation of the main formulas of this paper.

dominator in Eq(1) should lead to a better lower bound. The substantial improvement in the agreement between
In an experimental search for transition lines, it can betheory and experiment for the two ions considered strongly

helpful to know the range of possible values of the lines shiftsuggests that the modified polarization model can be used to

— provided here by the upper and lower bounds — and taletermine energy differences for many other highly charged
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