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Algebraic variational approach to atomic and molecular photoionization cross sections:
Removing the energy dependence from the basis
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We describe a variational method for calculating photoionization cross sections from a matrix element of the
resolvent operator. Scattering boundary conditions are enforced by expanding the resolvent in a basis of
square-integrablé_?) and outgoing wave continuum basis functions. By employing several continuum basis
functions, with overlaps defined by a suitable analytic continuation, we can, in a single calculation, express the
cross section over a continuous range of energies without explicitly resolving the variational equations at each
desired energy. The method is illustrated by calculation of the photoionization cross section of atomic Be in the
autoionizing region between thes®s and 1s°2p states of B&. [S1050-294@7)02301-9

PACS numbg(s): 32.80.Fb, 33.80.Eh

[. INTRODUCTION cult to apply in such cases. The Stielties moment method
essentially averages the energy dependence of the cross sec-

Advances in theory, combined with the power providedtion over an underlying, discrete pseudospectrum. In practi-
by today’s high-end computers, have contributed signifi-cal applications, it is difficult to make this spectrum dense
cantly to our ability to accurately evaluate photoionizationenough to resolve very sharp energy features, effectively
cross sections from first principles. In the case of atomidimiting the method to cases where the cross section varies
targets, numerous methods are available for obtaining accismoothly with energy. The method can be modified via the
rate electron-ion continuum wave functions by direct nu-use of projection operators to study the case of isolated reso-
merical integration of the Schdinger equation and a variety nanced 7], but the technique is ill suited to energy regions
of techniques, such as the multiconfiguration Hartree-Focklominated by many autoionizing states. The same is true of
method[ 1], are available for incorporating correlation effects the method of complex basis functions. While the latter is
into the calculated cross sections. Nevertheless, there agiite useful in direct calculations of resonance energies and
many cases in which difficulties associated with direct nudifetimes[8], these parameters generally depend rather sen-
merical computation of electron-ion scattering wave func-sitively on the basis and a careful optimization of the non-
tions by numerical integration of the close-coupling equadinear parametergrotation angle is generally required to
tions makes analytic expansion methods a practicahchieve accurate results. In photoionization applications, it
alternative for theab initio calculation of photoionization may be difficult to tune a single basis to provide both an
cross sections, particularly for molecular targets. Several apaccurate representation of the background continuum as well
proaches have been developed. One category includes a vas a series of sharp resonang@k
riety of “ L2 methods,” which attempt to avoid the explicit Of the variational methods, the matrix [4] is particu-
imposition of scattering boundary conditions and employlarly well suited to the kind of problem we have in mind,
only square-integrable basis functions. The most widely apsince it provides a method for rapid evaluation of the cross
plied methods of this type are the Stielties moment theonsection at any energy once all tRematrix eigenvalues have
approach[2] and the rotated coordinate or complex basisbeen determined. In the standard Schwinger and Kohn meth-
function method 3]. On the other hand, there are a numberods, the variational equations must be resolved at each en-
of variational methods that have been extensively developedrgy. This may be computationally intensive in situations
and applied over the past decade to electron-molecule collivhere many points are needed to resolve a highly structured
sion problems. These include tfematrix method[4], the  cross section. In this paper we describe a modification of the
multichannel Schwinger methd&], and the complex Kohn complex Kohn approach that shares the desirable feature of
variational method6]. In these methods, scattering bound- R-matrix theory of allowing for rapid calculation of the cross
ary conditions are enforced either through a matching procesection at any energy after a single diagonalization of the
dure (R matrix), through the use of variational expressionsHamiltonian. UnlikeR-matrix theory, however, the method
based on the Lippman-Schwinger equati¢8chwinger does not require basis functions to be normalized over a
method, or through the use of continuum functions in the sphere of finite volume, which complicates the evaluation of
trial function (complex Kohn. Hamiltonian matrix elements, particularly for polyatomic tar-

The problem we wish to address here is the comparativgets. In the next section, we describe our theoretical ap-
ability of these methods to treat the energy dependence gfroach for computing the total photoionization cross section.
the photoionization cross section in regions dominated byn Sec. Ill we present some results for the case of atomic Be.
autoionization peaks. Stieltjes imaging is notoriously diffi- Section IV contains some concluding remarks and a discus-
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sion of the modifications necessary to obtain partial cros$ore, there is nothing to be gained by diagonalizing the

sections and angular distributions. Hamiltonian in order to compute the resolvent. Second, we
note that free-free matrix element is well defined in spite of
Il. METHOD the fact that¢, is not normalizable, since the quantity

_ _ (H—E) ¢y vanishes asymptotically.
. In flrst-order_ pe_rturbatlon theory, the Fotal phOtO&bSOFp- We want to consider genera”zing the approach by em-
tion cross section is related to the negative frequency conploying several complex continuum functions, with different

ponent of the dipole polarizability values ofk, in a single calculation, so as to be able to span a
1 range of energies with a single basis. This idea is not new. In
—( N i fact, we suggested it some time ago in the context of com-
a (@) !|Ln0<‘lf0 A —Ep—w—ie M"PO> @) puting theT matrix and found that the combination of a set
of L2 functions with several continuum functions provides a
through the relatio10] reasonable way of calculating phase shifts over a range of
energieq 13]. The subtlety that requires special attention in
o(w)=(4rmwlc)imla” (w)], (20 the case when several continuum functions are used or, for

. o o that matter, even one function wh&wk?2, is how to de-
whereH is the Hamiltonian of the target in initial stat®,  fine the overlap and kinetic energy matrix elements. The an-
with energyE,, w is the photon energy, and is the dipole  swer of course is that the matrix elements must be defined by
operator. Equatiori2) is easily verified by inserting a spec- analytic continuation from the upper halfplane. If the ma-
tral expansion of into Eq.(1) and evaluating the residue at trix elements are given by analytic formulas, the analytic
z=w+ie. Many basis set techniques proceed by approXitontinuation from Imk)>0 is given simply by those formu-
mating the resolvent las. When the continuum functions are only known numeri-

cally, as is generally the case in our current implementation

G*(E)=lim _ ?) of the Kohn method14], another procedure must be found.
.0 H—E—le The only matrix elements that need special attention are
the free-free kinetic energy and overlap integrals, which are
in the generic form simple one-body elements that can be reduced to single ra-

dial integrals. These radial integrals could be carried out by
_ performing the integration numerically on a rayrigiven by
G+(E)~i§;f |¢i>(<¢i|H_E|¢J>) l<¢i|’ (4) re'’. 0<#<m/2, along which the free function falls off ex-

’ ponentially for realk [15]. However, this requires that the
where {¢} is some set of basis functions and free functions be generated for complex arguments, which
((¢|H—E| ;) L is theijth element of the inverse of the May prove inconvenient. A simpler procedure is to use “ex-
matrix ( ;|H— E|¢;). The basic attraction of these methods terior complex scaling’[16], that is, to carry out the radial
is that scattering calculations are reduced to matrix elemeriftegration along the real axis from 0 R, and then switch
evaluation and linear algebra. Of course, the simplesto @ rotated contour given B+ (r —R.)e'’. If R. is suffi-
approximation—choosing¢,} to be a set of real, square- ciently large, we can replaag, by its asymptotic form, thus
integrable functions—does not work for real energies, beavoiding the need for numerically generating the free func-
cause it fails to incorporate the proper outgoing wave boundtions for complexr values.
ary conditions, producing instead an approximation to Itis amusing to note that these same elements can also be
G (E) marked by a series of poles at the real eigenvalues ofetermined without any complex integration simply from the
(¢ilH|¢;). To address this problem, several methods havé&ondition that the matrix representation of the Hamiltonian
been proposed, including the use of analytic continuatiode complex symmetric. Lap, and ¢, be free functions cor-
[11] and complex-scaled basis functiof8. We focus here responding to energieB andE’. We write the correct ki-
on the complex Kohn approadii2], which in the present netic energy element as
context amounts to picking a real set of functions{¢},

i=1,...N, and augmenting it with a single complex, outgo- (0" | Tlpo)=(bo* |T—E|do) + E(bo* | ho)

ing wave continuum functioig, to produce a representation N ,

of (#i|H|#;), i=0,...N that is complex, symmetric and =(¢5Tl¢o)

generally has only complex eigenvalues. By construction, the = (G5 T—E'| ¢ty +E' (b | do), (5)

complex functiong, behaves like an outgoing free wave, or
in the case of ion scattering, an outgoing Coulomb wave. It
serves to impose the proper asymptotic boundfry conditiol’
so that Eq.(4) is a meaningful approximation 16" (E). L% * o
Consider the free-free matrix elemerfips |H—E| o). (B5* | bo) = (¢o"|IT—E[¢o) —E(¢5|T—E |¢0>_ 6)
(Note that the matrix element is defined without complex 0 170 E'-E
conjugation, which is why the functiofi¢§| replaces the
usual bra state.Two points are to be noted. First, it is the The quantity T—E) ¢, goes to zero for large, so Eq.(6)
case that the eigenvalues ldfwill depend on energy since provides a means for determininggy*|¢o), and then
the functiong, connects the wave vectarto E. (In the case  ($(*|T|¢o) from Eqg. (5), without the need for performing
of potential scattering, we have the relatirr k%2.)) There- any complex integrations. Equatiof6) is undefined for

hich we can use to solve fdkpy* | po):




344 T. N. RESCIGNO, A. E. OREL, AND C. W. McCURDY 55
E=E’, but we can apply I'Hospital’'s rule numerically in that ~ TABLE |. Gaussian basis sets used in Be photoionization cal-
case to get the diagonal elements. culations.

We can now meaningfully approximate (o) as

Type Exponent Coefficiefit
*
a_(w)zz <‘PO|M|‘Di><q’i |M|‘1’o>' 7) Target basis
i Ei—Eo—w s 3630.0 0.000839
S 532.3 0.006735
whereE; and ®, are the complex eigenvalues Hf in the s 117.8 0.035726
combined basis of “ and continuum functions. S 32.66 0.138635
We mentioned that the idea of combining several con- s 10.48 0.385399
tinuum functions into a smgle_ varlgtlonal basis was origi- s 3.668 0.547688
nally suggested13] in connection with the computation of A 5TAAN
the T ix f | . hich tak he f S 3.668 0.213406
e T matrix for electron scattering, which takes the form S 1354 0.814692
_ B s 0.389 1.0
T=(Pol(H=B)|®o) s 0.1502 1.0
| ® S 0.05241 1.0
—lim H-E) m———— (H—-
8ﬂ0< ol E) H—E—is (H=E)|®g), (8 p 2.6 1.0
p 0.5 1.0
where® is the unperturbed wave function, that is, an eigen- P 0.10 1.0
p 0.032 1.0

function of Hy, whereH=H,+V andV is the interaction
potential. The Green’s function in E@8) can be approxi- Supplemental scattering basis
mated by a spectral expansion of the same form we just s 0.03 1.0

outlined, but, in contrast to the photoabsorption expressions s 0.015 10
given by Eqs(7) and(2), the presence ob, in the T matrix s 0.0075 10
expression both in the Born and scattered wave terms on the S 0.003 10
right-hand side of Eq(8) requires the explicit calculation of s 0.001 10
free-free matrix elements at each energy. For this reason, a o 1000 10
spectral expansion d&*(E) is far less useful than in the 406 1'0
present case of photoabsorption, where the energy depen- P 10‘0 1'0
dence of the working equations is particularly trivial once the P X '
eigenvalues and eigenvectorskéfhave been determined. P 5.0 1.0
The foregoing discussion outlines a procedure for com- P 1.0 10
puting the total photoabsorption cross section via(2y.We P 0.22 1.0
will illustrate the procedure in the following section and then P 0.057 1.0
remark on the modifications needed to compute partial cross p 0.016 1.0
sections and angular distributions. p 0.008 1.0
d 0.3 1.0
d 0.015 1.0

Ill. APPLICATION

To illustrate the procedure outlined above, we have cal-aU nderlines separate contracted basis functions.

culated the photoionization cross section for atomic Be from
threshold(w=9.32 e\j to 13 eV. The cross section in this tion on the ground state of Be. The use of &nd X ion
region [17] is dominated by a series of extremely narrow orbitals provides a good description of the final ionized
doubly excited (pnd),'P Be* resonances and a broader states, while the correlating natural orbitals provide the flex-
series of (dng),'P states, both converging to the ibility needed to give a reasonable description of the initial
(1s?2p),2P state of Bé at w=13.28 eV. state. The target Cl wave function we calculated has an en-
The ground state of Be was represented by a simplergy of —14.6138 a.u., while the full Cl value in this basis is
configuration-interaction(Cl) wave function constructed —14.6158 a.u.
from a set of Gaussian-type orbitals. The orbital parameters For the final ionized state calculations, the target basis
are listed in Table I. The contraction coefficients for thewas augmented with additional, p-, andd-type Gaussian
s-type functions are those of Dunninfl8]. The self- functions, which are also listed in Table I. THe final states
consistent field SCPH energy of Be in this target basis is were built from terms of the form (£2s np), (1s*2s'2p),
—14.5725 a.u. A & orbital was obtained from a SCF calcu- (1s2p ns), and (1s2p nd). Two independent computa-
lation on B€ (Egcr=—14.2769 a.y.and was doubly occu- tions of the photoabsorption cross section were carried out.
pied in all initial- and final-state configurations. The ground-In the first case, the cross section was obtained from the
state wave function included the configuratioigs?®),  squared modulus of the dipole transition amplitude between
(2s2s'), (2s'?), and(2p?). The 2 orbital was also obtained the ground state and a conventional complex Kohn trial func-
from the B€ SCF calculation, while the correlatings2and  tion [6] built from the above configurations and terms of the
2p orbitals are natural orbitals obtained by diagonalizing theform (1s?2s¢,) with numerically generated regular and out-
one-particle density matrix obtained from a full CI calcula- going wavep-wave Coulomb basis orbitalg, , of appropri-
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5.00 ] and that this background is a slowly varying function of

C ] energy. The resonance states themselves are well described
2 400 E by the doubly excited configurations that are included in the
§ 3,00 _ . Cl expansion of the trial space.
g 7 r One limitation of the formalism as outlined above is that
3 2.00 o it only appears capable of providing total cross sections.
2 . However, Pont and Shakeshf®] have addressed this point
S 1.00f in a recent paper and have shown how Hd$.and(2) can

. be modified to allow for the determination of partial cross

0.00 5= '1(').(') = ‘11"(') LY sections and angular distributions. We first use the identity

(H—E)G™(E)=1 to rewrite Eq.(1) as

Photon Energy (eV)
a (0)=(VY(H-Eq— )T, (9)
FIG. 1. Photoionization cross section of Be calculated at dis-

crete energies using conventional Kohn wave functioxs gnd ~ where

from the imaginary part of the resolvent as described in ¢salid 1

line). 1.1
Pr=Ilim —— u|¥y). 10

S_>0H_E0_CO—|8 /‘L| 0> ( )

ate energy 14]. We also obtained the cross sections by car-

rying out a calculation using only two outgoing-wave basisPont and Shakeshaft use Green’s theorem to show that the
functions corresponding to photon energies of 11.0 and 13.0naginary partof a (w) only depends on the asymptotic
eV and using the formulas for the total cross section given byorm of [¥%). This being the case, we can introduce projec-
Egs.(2) and(7). The results are displayed in Fig. 1. The two tion operators into Eq(9) to produce the partial photoion-
procedures yield virtually identical results. The limited ization cross section for producing ions in a specific state;
Gaussian basis we use(ii allows us to describe the first thrée., we can write

members of the (R ns), “P resonance series, as well as the

first (2p3d),'P resonance atv~12.4 eV. Our results are or(w)=(4mwlc)Im(W!Pr(H-Eo—w)Pr[¥!), (11

also in reasonably good agreement with previous multiyyherep projects onto a specific ion state denotedbyne
channe[l quanﬁum defect theory determinations of the CrosSan further modify the formalism to include angular func-
section[19-21].

tions in the projectors to extract the angular dependence of
the cross section. The projection operators can only be con-
IV. DISCUSSION structed exactly for one-electron residual ig88] and have
. . to be approximated in other cases.
We have outlined a procedure for computing photoab- e procedure we outlined was illustrated with an atomic
sorption cross sections from a simple expression involving,, » hje hut the real utility of the method will be realized in

the reszlvent tﬂat Carr: be aphproxim.atecli b;’ a basis set expafle case of molecular photoabsorption where the choice of
sion. The method shares the desirable featur®hatrix ape theoretical methods fab initio computation is sig-

theory of being able to _trivally display the energy dEpe”'rg‘ficamly more limited.
dence of the cross section in terms of the eigenvalues an

eigenvectors of the Hamiltonian, yet unlike tHematrix
method, it does not require the matrix elements to be evalu-
ated over a sphere of finite volume. We illustrated the This work was performed under the auspices of the U.S.
method with a calculation of the photoionization cross secDepartment of Energy by the Lawrence Berkeley National
tion of Be in a region dominated by autoionizing states and_aboratory under Contract No. DE-AC03-76SF00098 and
showed that the structure could easily be resolved using onlghe Lawrence Livermore National Laboratory under Contract
two energy-dependent continuum basis functions in the triaNo. W-7405-Eng-48. The authors wish to acknowledge the
space. One may ask why this method appears to work sose of computational resources of the National Energy Re-
well. The answer lies in the fact that the energy-dependentearch Scientific Computing Center. A.E.O. acknowledges
outgoing-wave basis functions are only needed to describsupport from the National Science Foundation, Grant No.
the background continuum into which the resonances decayHY-93-22067.
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