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Algebraic variational approach to atomic and molecular photoionization cross sections:
Removing the energy dependence from the basis
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We describe a variational method for calculating photoionization cross sections from a matrix element of the
resolvent operator. Scattering boundary conditions are enforced by expanding the resolvent in a basis of
square-integrable~L2! and outgoing wave continuum basis functions. By employing several continuum basis
functions, with overlaps defined by a suitable analytic continuation, we can, in a single calculation, express the
cross section over a continuous range of energies without explicitly resolving the variational equations at each
desired energy. The method is illustrated by calculation of the photoionization cross section of atomic Be in the
autoionizing region between the 1s22s and 1s22p states of Be1. @S1050-2947~97!02301-9#

PACS number~s!: 32.80.Fb, 33.80.Eh
ed
ifi
on
i

cc
u
y
oc
ts
a
u
c
a
ic

a
a
it
lo
ap
or
si
e
p
o

d-
c
ns

e

tiv
e
b
fi-

od
sec-
cti-
se
ely
ries
the
eso-
ns
e of
is
and
en-
n-

, it
an
well

,
ss

eth-
en-
ns
red
the
e of
s
the
d
r a
of
r-
ap-
on.
Be.
us-
I. INTRODUCTION

Advances in theory, combined with the power provid
by today’s high-end computers, have contributed sign
cantly to our ability to accurately evaluate photoionizati
cross sections from first principles. In the case of atom
targets, numerous methods are available for obtaining a
rate electron-ion continuum wave functions by direct n
merical integration of the Schro¨dinger equation and a variet
of techniques, such as the multiconfiguration Hartree-F
method@1#, are available for incorporating correlation effec
into the calculated cross sections. Nevertheless, there
many cases in which difficulties associated with direct n
merical computation of electron-ion scattering wave fun
tions by numerical integration of the close-coupling equ
tions makes analytic expansion methods a pract
alternative for theab initio calculation of photoionization
cross sections, particularly for molecular targets. Several
proaches have been developed. One category includes
riety of ‘‘L2 methods,’’ which attempt to avoid the explic
imposition of scattering boundary conditions and emp
only square-integrable basis functions. The most widely
plied methods of this type are the Stieltjes moment the
approach@2# and the rotated coordinate or complex ba
function method@3#. On the other hand, there are a numb
of variational methods that have been extensively develo
and applied over the past decade to electron-molecule c
sion problems. These include theR-matrix method@4#, the
multichannel Schwinger method@5#, and the complex Kohn
variational method@6#. In these methods, scattering boun
ary conditions are enforced either through a matching pro
dure ~R matrix!, through the use of variational expressio
based on the Lippman-Schwinger equation~Schwinger
method!, or through the use of continuum functions in th
trial function ~complex Kohn!.

The problem we wish to address here is the compara
ability of these methods to treat the energy dependenc
the photoionization cross section in regions dominated
autoionization peaks. Stieltjes imaging is notoriously dif
551050-2947/97/55~1!/342~5!/$10.00
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cult to apply in such cases. The Stieltjes moment meth
essentially averages the energy dependence of the cross
tion over an underlying, discrete pseudospectrum. In pra
cal applications, it is difficult to make this spectrum den
enough to resolve very sharp energy features, effectiv
limiting the method to cases where the cross section va
smoothly with energy. The method can be modified via
use of projection operators to study the case of isolated r
nances@7#, but the technique is ill suited to energy regio
dominated by many autoionizing states. The same is tru
the method of complex basis functions. While the latter
quite useful in direct calculations of resonance energies
lifetimes @8#, these parameters generally depend rather s
sitively on the basis and a careful optimization of the no
linear parameters~rotation angle! is generally required to
achieve accurate results. In photoionization applications
may be difficult to tune a single basis to provide both
accurate representation of the background continuum as
as a series of sharp resonances@9#.

Of the variational methods, theR matrix @4# is particu-
larly well suited to the kind of problem we have in mind
since it provides a method for rapid evaluation of the cro
section at any energy once all theR-matrix eigenvalues have
been determined. In the standard Schwinger and Kohn m
ods, the variational equations must be resolved at each
ergy. This may be computationally intensive in situatio
where many points are needed to resolve a highly structu
cross section. In this paper we describe a modification of
complex Kohn approach that shares the desirable featur
R-matrix theory of allowing for rapid calculation of the cros
section at any energy after a single diagonalization of
Hamiltonian. UnlikeR-matrix theory, however, the metho
does not require basis functions to be normalized ove
sphere of finite volume, which complicates the evaluation
Hamiltonian matrix elements, particularly for polyatomic ta
gets. In the next section, we describe our theoretical
proach for computing the total photoionization cross secti
In Sec. III we present some results for the case of atomic
Section IV contains some concluding remarks and a disc
342 © 1997 The American Physical Society
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55 343ALGEBRAIC VARIATIONAL APPROACH TO ATOMIC . . .
sion of the modifications necessary to obtain partial cr
sections and angular distributions.

II. METHOD

In first-order perturbation theory, the total photoabso
tion cross section is related to the negative frequency c
ponent of the dipole polarizability

a2~v!5 lim
«→0

K C0Um 1

H2E02v2 i«
mUC0L ~1!

through the relation@10#

s~v!5~4pv/c!Im@a2~v!#, ~2!

whereH is the Hamiltonian of the target in initial stateC0
with energyE0, v is the photon energy, andm is the dipole
operator. Equation~2! is easily verified by inserting a spec
tral expansion ofH into Eq.~1! and evaluating the residue a
z5v1 i«. Many basis set techniques proceed by appro
mating the resolvent

G1~E!5 lim
«→0

1

H2E2 i«
~3!

in the generic form

G1~E!'(
i , j

uf i&~^f i uH2Euf j&!21^f j u, ~4!

where $fi% is some set of basis functions an
(^f i uH2Euf j&)

21 is the i j th element of the inverse of th
matrix ^f i uH2Euf j&. The basic attraction of these metho
is that scattering calculations are reduced to matrix elem
evaluation and linear algebra. Of course, the simp
approximation—choosing$fi% to be a set of real, square
integrable functions—does not work for real energies,
cause it fails to incorporate the proper outgoing wave bou
ary conditions, producing instead an approximation
G1(E) marked by a series of poles at the real eigenvalue
^f i uHuf j&. To address this problem, several methods h
been proposed, including the use of analytic continuat
@11# and complex-scaled basis functions@3#. We focus here
on the complex Kohn approach@12#, which in the present
context amounts to picking a real set ofL2 functions $fi%,
i51,...,N, and augmenting it with a single complex, outg
ing wave continuum functionf0 to produce a representatio
of ^f i uHuf j&, i50,...,N that is complex, symmetric an
generally has only complex eigenvalues. By construction,
complex functionf0 behaves like an outgoing free wave,
in the case of ion scattering, an outgoing Coulomb wave
serves to impose the proper asymptotic boundary condi
so that Eq.~4! is a meaningful approximation toG1(E).

Consider the free-free matrix element,^f0* uH2Euf0&.
~Note that the matrix element is defined without comp
conjugation, which is why the function̂f0* u replaces the
usual bra state.! Two points are to be noted. First, it is th
case that the eigenvalues ofH will depend on energy since
the functionf0 connects the wave vectork to E. ~In the case
of potential scattering, we have the relationE5k2/2.! There-
s
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fore, there is nothing to be gained by diagonalizing t
Hamiltonian in order to compute the resolvent. Second,
note that free-free matrix element is well defined in spite
the fact thatf0 is not normalizable, since the quantit
(H2E)f0 vanishes asymptotically.

We want to consider generalizing the approach by e
ploying several complex continuum functions, with differe
values ofk, in a single calculation, so as to be able to spa
range of energies with a single basis. This idea is not new
fact, we suggested it some time ago in the context of co
puting theT matrix and found that the combination of a s
of L2 functions with several continuum functions provides
reasonable way of calculating phase shifts over a range
energies@13#. The subtlety that requires special attention
the case when several continuum functions are used or
that matter, even one function whenEÞk2/2, is how to de-
fine the overlap and kinetic energy matrix elements. The
swer of course is that the matrix elements must be defined
analytic continuation from the upper halfk plane. If the ma-
trix elements are given by analytic formulas, the analy
continuation from Im(k).0 is given simply by those formu
las. When the continuum functions are only known nume
cally, as is generally the case in our current implementat
of the Kohn method@14#, another procedure must be foun

The only matrix elements that need special attention
the free-free kinetic energy and overlap integrals, which
simple one-body elements that can be reduced to single
dial integrals. These radial integrals could be carried out
performing the integration numerically on a ray inr given by
reiu, 0,u,p/2, along which the free function falls off ex
ponentially for realk @15#. However, this requires that th
free functions be generated for complex arguments, wh
may prove inconvenient. A simpler procedure is to use ‘‘e
terior complex scaling’’@16#, that is, to carry out the radia
integration along the real axis from 0 toRc and then switch
to a rotated contour given byRc1(r2Rc)e

iu. If Rc is suffi-
ciently large, we can replacef0 by its asymptotic form, thus
avoiding the need for numerically generating the free fu
tions for complexr values.

It is amusing to note that these same elements can als
determined without any complex integration simply from t
condition that the matrix representation of the Hamiltoni
be complex symmetric. Letf0 andf08 be free functions cor-
responding to energiesE andE8. We write the correct ki-
netic energy element as

^f08* uTuf0&5^f08* uT2Euf0&1E^f08* uf0&

5^f0* uTuf08&

5^f0* uT2E8uf08&1E8^f08* uf0&, ~5!

which we can use to solve for^f08* uf0&:

^f08* uf0&5
^f08* uT2Euf0&2E^f0* uT2E8uf08&

E82E
. ~6!

The quantity (T2E)f0 goes to zero for larger , so Eq.~6!
provides a means for determininĝf08* uf0&, and then
^f08* uTuf0& from Eq. ~5!, without the need for performing
any complex integrations. Equation~6! is undefined for
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E5E8, but we can apply l’Hospital’s rule numerically in tha
case to get the diagonal elements.

We can now meaningfully approximatea2~v! as

a2~v!5(
i

^C0umuF i&^F i* umuC0&
Ei2E02v

, ~7!

whereEi andF0 are the complex eigenvalues ofH in the
combined basis ofL2 and continuum functions.

We mentioned that the idea of combining several c
tinuum functions into a single variational basis was ori
nally suggested@13# in connection with the computation o
theT matrix for electron scattering, which takes the form

T5^F0u~H2E!uF0&

2 lim
«→0

^F0u~H2E!
1

H2E2 i«
~H2E!uF0&, ~8!

whereF0 is the unperturbed wave function, that is, an eige
function of H0, whereH5H01V andV is the interaction
potential. The Green’s function in Eq.~8! can be approxi-
mated by a spectral expansion of the same form we
outlined, but, in contrast to the photoabsorption express
given by Eqs.~7! and~2!, the presence ofF0 in theT matrix
expression both in the Born and scattered wave terms on
right-hand side of Eq.~8! requires the explicit calculation o
free-free matrix elements at each energy. For this reaso
spectral expansion ofG1(E) is far less useful than in the
present case of photoabsorption, where the energy de
dence of the working equations is particularly trivial once t
eigenvalues and eigenvectors ofH have been determined.

The foregoing discussion outlines a procedure for co
puting the total photoabsorption cross section via Eq.~2!. We
will illustrate the procedure in the following section and th
remark on the modifications needed to compute partial c
sections and angular distributions.

III. APPLICATION

To illustrate the procedure outlined above, we have c
culated the photoionization cross section for atomic Be fr
threshold~v59.32 eV! to 13 eV. The cross section in thi
region @17# is dominated by a series of extremely narro
doubly excited (2pnd),1P Be* resonances and a broad
series of (2pns),1P states, both converging to th
(1s22p),2P state of Be1 at v513.28 eV.

The ground state of Be was represented by a sim
configuration-interaction~CI! wave function constructed
from a set of Gaussian-type orbitals. The orbital parame
are listed in Table I. The contraction coefficients for t
s-type functions are those of Dunning@18#. The self-
consistent field~SCF! energy of Be in this target basis
214.5725 a.u. A 1s orbital was obtained from a SCF calcu
lation on Be1 ~ESCF5214.2769 a.u.! and was doubly occu
pied in all initial- and final-state configurations. The groun
state wave function included the configurations~2s2!,
~2s2s8!, ~2s82!, and~2p2!. The 2s orbital was also obtained
from the Be1 SCF calculation, while the correlating 2s8 and
2p orbitals are natural orbitals obtained by diagonalizing
one-particle density matrix obtained from a full CI calcul
-
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tion on the ground state of Be. The use of 1s and 2s ion
orbitals provides a good description of the final ioniz
states, while the correlating natural orbitals provide the fl
ibility needed to give a reasonable description of the init
state. The target CI wave function we calculated has an
ergy of214.6138 a.u., while the full CI value in this basis
214.6158 a.u.

For the final ionized state calculations, the target ba
was augmented with additionals-, p-, andd-type Gaussian
functions, which are also listed in Table I. The1P final states
were built from terms of the form (1s22s np), (1s22s82p),
(1s22p ns), and (1s22p nd). Two independent computa
tions of the photoabsorption cross section were carried
In the first case, the cross section was obtained from
squared modulus of the dipole transition amplitude betw
the ground state and a conventional complex Kohn trial fu
tion @6# built from the above configurations and terms of t
form (1s22sfk) with numerically generated regular and ou
going wavep-wave Coulomb basis orbitals,fk , of appropri-

TABLE I. Gaussian basis sets used in Be photoionization c
culations.

Type Exponent Coefficienta

Target basis
s 3630.0 0.000839
s 532.3 0.006735
s 117.8 0.035726
s 32.66 0.138635
s 10.48 0.385399
s 3.668 0.547688
s 3.668 0.213406
s 1.354 0.814692
s 0.389 1.0
s 0.1502 1.0
s 0.05241 1.0
p 2.6 1.0
p 0.5 1.0
p 0.10 1.0
p 0.032 1.0

Supplemental scattering basis
s 0.03 1.0
s 0.015 1.0
s 0.0075 1.0
s 0.003 1.0
s 0.001 1.0
p 100.0 1.0
p 40.0 1.0
p 10.0 1.0
p 5.0 1.0
p 1.0 1.0
p 0.22 1.0
p 0.057 1.0
p 0.016 1.0
p 0.008 1.0
d 0.3 1.0
d 0.015 1.0

aUnderlines separate contracted basis functions.
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55 345ALGEBRAIC VARIATIONAL APPROACH TO ATOMIC . . .
ate energy@14#. We also obtained the cross sections by c
rying out a calculation using only two outgoing-wave ba
functions corresponding to photon energies of 11.0 and 1
eV and using the formulas for the total cross section given
Eqs.~2! and~7!. The results are displayed in Fig. 1. The tw
procedures yield virtually identical results. The limite
Gaussian basis we used allows us to describe the first t
members of the (2p ns), 1P resonance series, as well as t
first (2p3d),1P resonance atv;12.4 eV. Our results are
also in reasonably good agreement with previous mu
channel quantum defect theory determinations of the c
section@19–21#.

IV. DISCUSSION

We have outlined a procedure for computing photo
sorption cross sections from a simple expression involv
the resolvent that can be approximated by a basis set ex
sion. The method shares the desirable feature ofR-matrix
theory of being able to trivally display the energy depe
dence of the cross section in terms of the eigenvalues
eigenvectors of the Hamiltonian, yet unlike theR-matrix
method, it does not require the matrix elements to be ev
ated over a sphere of finite volume. We illustrated t
method with a calculation of the photoionization cross s
tion of Be in a region dominated by autoionizing states a
showed that the structure could easily be resolved using
two energy-dependent continuum basis functions in the
space. One may ask why this method appears to work
well. The answer lies in the fact that the energy-depend
outgoing-wave basis functions are only needed to desc
the background continuum into which the resonances de

FIG. 1. Photoionization cross section of Be calculated at d
crete energies using conventional Kohn wave functions (x) and
from the imaginary part of the resolvent as described in text~solid
line!.
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and that this background is a slowly varying function
energy. The resonance states themselves are well desc
by the doubly excited configurations that are included in
CI expansion of the trial space.

One limitation of the formalism as outlined above is th
it only appears capable of providing total cross sectio
However, Pont and Shakeshaft@22# have addressed this poin
in a recent paper and have shown how Eqs.~1! and ~2! can
be modified to allow for the determination of partial cro
sections and angular distributions. We first use the iden
(H2E)G1(E)51 to rewrite Eq.~1! as

a2~v!5^C1u~H2E02v!uC1&, ~9!

where

C15 lim
«→0

1

H2E02v2 i«
muC0&. ~10!

Pont and Shakeshaft use Green’s theorem to show tha
imaginary part of a2~v! only depends on the asymptot
form of uC1&. This being the case, we can introduce proje
tion operators into Eq.~9! to produce the partial photoion
ization cross section for producing ions in a specific sta
i.e., we can write

sG~v!5~4pv/c!Im^C1uPG~H2E02v!PGuC1&, ~11!

wherePG projects onto a specific ion state denoted byG. One
can further modify the formalism to include angular fun
tions in the projectors to extract the angular dependenc
the cross section. The projection operators can only be c
structed exactly for one-electron residual ions@23# and have
to be approximated in other cases.

The procedure we outlined was illustrated with an atom
example, but the real utility of the method will be realized
the case of molecular photoabsorption where the choice
viable theoretical methods forab initio computation is sig-
nificantly more limited.
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