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Accurate basis sets for the calculation of bound and continuum wave functions
of the Schrödinger equation

B. I. Schneider
Physics Division, National Science Foundation, Arlington, Virginia 22230

~Received 20 November 1996!

The major objective of this paper is to make some simple, but numerically useful generalizations of the
classical orthogonal functions. The motivation for doing this is to develop accurate, orthornormal basis sets for
the expansion of solutions of the Schro¨dinger equation in multichannel problems. The generalizations are
needed for two reasons. First, it is often useful for the set to have a mathematical structure which is unrelated
to the classical functions and second, the boundary conditions which need to be satisfied by the solutions to the
Schrödinger equation are often not easily represented by the classical functions. In contrast to certain other
techniques, such as those based on diagonalizing the overlap matrix, the method we propose is capable of
generating very large, orthonormal subspaces in a numerically stable fashion. While it is not possible to
demonstrate a one-to-one correspondence between this finite basis representation of the Hamiltonian and a
representation based on the points and weights of a Gauss quadrature, the so-called discrete variable represen-
tation~DVR!, as is true for the classical orthogonal functions, it is still possible to transform to a representation
which preserves all of the essential features of the DVR. The method is illustrated by applying it to a few
simple one- and two-dimensional problems.@S1050-2947~97!00205-9#

PACS number~s!: 31.10.1z
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I. INTRODUCTION

Most standard techniques for the numerical solution of
Schrödinger equation rely on discretization procedures
physical or function space. Grid-based methodologies@1#
have the advantage that they often lead to structured m
ces, which are easily adapted to a number of the itera
techniques@2,3# which have been developed for large, spa
linear systems@4#. The disadvantage of such approaches
that it is often difficult to approximate the derivatives th
appear in the Schro¨dinger equation to a sufficent accura
without resorting to high-order differences or very small s
sizes. Expansions in function space~often called spectra
methods@5#! typically do not suffer from this problem sinc
it is possible to ‘‘analytically’’ differentiate and in man
cases compute matrix elements of the representation wit
further approximation.

For a number of orthogonal systems, such as the clas
orthogonal polynomials, there are one-to-one corresp
dences between the functional representation based on
polynomials and a set of grid points of the Gauss quadrat
derived from the zeros of those polynomials. Thus, it
straightforward to transform freely between the two rep
sentations, and this has led to the application of the so-ca
discrete variable representation~DVR! to many problems in
nonreactive and reactive collisions of importance in atom
physics and chemistry. What is attractive about the DVR
that the matrix representation of kinetic energy still has
fairly simple structure and the~here! local potential energy
operator is diagonal. This preserves many of the feature
grid-based techniques without having to numerically a
proximate derivatives. The simplicity of the matrix represe
tation of the Hamiltonian in the DVR is fully exploited b
solving the typically large linear systems that emerge fr
the discretization process by iterative techniques. Since th
551050-2947/97/55~5!/3417~5!/$10.00
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methods are dominated by matrix-vector multiples, a str
tured and sparse matrix offers considerable computatio
savings. In addition, it is not necessary to compute com
cated matrix elements of the potential energy operator in
DVR representation.

In Sec. II I will briefly review the classical theory an
show how it is easily generalized to the nonclassical ca
The generalization will preserve the three-term recursion
lationship of the classical case but the recursion coefficie
will be computed numerically. Once the functions have be
determined, a simple transformation of the basis leads
representation which preserves the diagonal character o
cal operators in coordinate space.

Section III of the paper will present a few illustrations
the method to the solution of simple and partial different
equations which are either analytically known or soluble
other approaches in order to show the accuracy attainabl
the current technique.

II. CLASSICAL THEORY AND GENERALIZATION

All of the classical orthogonal polynomials are defined
a three-term recursion relation on the intervala<x<b of the
form,

b j Pj~x!5~x2a j !Pj21~x!2b j21Pj22~x!, ~1!

with the properties

E
a

b

w~x!Pi~x!Pj~x!dx5d i , j , ~2!

where w(x) is a non-negative weight function an
P0(x)5const and where the coefficientsa j and b j are
known analytically for the classical case. The recursion re
tion provides a numerically stable procedure for generat
3417 © 1997 The American Physical Society
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3418 55B. I. SCHNEIDER
the polynomials for any value ofx beginning withP0(x).
For many of the classical polynomials there are analytic
lations between the function and its first and/or second
rivatives which may be used to generate the derivative
needed. In the absence of such relationships, it is trivia
differentiate the recursion any number of times to obt
equations useful for computing derivatives. For example

b j

dPj~x!

dx
5~x2a j !

dPj21~x!

dx
2b j21

dPj22~x!

dx
1Pj21~x!

~3!

may be used for the first derivative once the functions
known. Thea and b coefficients may be regarded as t
elements of a symmetric, tridiagonal matrix. It is easy to
from Eq.~1!, that this is, in fact, the matrix representation
the coordinate operatorx, in the basis. It is possible to sho
that the eigenvalues of this tridiagonal matrix are the po
of ann-point Gauss quadrature corresponding to then poly-
nomials of the basis representation. It can also be dem
strated that the Gaussian weights for the quadrature ma
obtained from the coefficient of theP0(x) polynomial in
each eigenvector. This algorithim is used in one of the m
popular codes, Gaussq@12#, to get the points and weights o
many Gauss quadratures. It is far more efficient than p
forming a search for the zeros of thenth polynomial using
root search techniques. For the classical orthogonal poly
mials, it is possible to show that there is a one-to-one co
spondence between then Gaussian quadrature points and t
n orthonormal polynomials. This correspondence may be
ploited numerically by transforming from the original poly
nomial basis to a representation based on the Gaus
quadrature points, i.e., the numerical grid. Thus, provid
that it is numerically acceptable to represent a given func
as a linear combination of then orthonormal polynomials, it
is also acceptable to evaluate to coefficients in that expan
by numerical quadrature over the Gaussian points
weights. When this is done, the entire problem may be re
in the grid representation. These ideas were first describe
Dickinson and Certain@6#, and extensively exploited by
Light and co-workers@7#, Kosloff and Kosloff@8#, Marston
and Balint-Kurti @9#, Manolopoulos and Wyatt@10#, and
Muckerman and Lin@11#.

For the purposes of generalizing the ideas of the prec
ing paragraph, another viewpoint, which focuses on the fi
basis representation, is more useful. If we regard the coo
natex as an operator, the three-term recursion relations
for the orthogonal polynomials may also be obtained by
following procedure:~1! Starting from an arbitrary function
x0(x) calculate,

a05E
a

b

dx w~x!x0~x!x0~x!dx ~4!

and then form the normalizedi50 function,

c0~x!5
x0~x!

Aa0

. ~5!

~2! Form x1(x) as,
-
e-
if
o
n

e

e

s

n-
be

e

r-

o-
e-

x-

ian
d
n

on
d
st
by

d-
e
i-
ip
e

x1~x!5~x2a1!c0~x!, ~6!

where

a15E
a

b

dx w~x!c0~x!xc0~x!dx

and then form the normalizedi51 function,

c1~x!5
x1~x!

Ab1

, ~7!

b15E
a

b

dx w~x!x1~x!x1~x!dx.

~3! For i52 to n, calculate

G~x!5xc i21~x!, ~8!

a i5E
a

b

dx w~x!c i21~x!G~x!dxx i~x!

5G~x!2a ic i21~x!2b i21c i22~x! ~9!

and form the normalizedi th function,

c i~x!5
x i~x!

Ab i

, ~10!

b i5E
a

b

dx w~x!x i~x!x i~x!dx.

Thus, a Gram-Schmidt process applied to the sequenc
vectors defined in this manner, generates the desired th
term recursion relationship and the coefficientsa and b
needed to compute any member of the sequence as the
cedure moves forward. The entire process may be rega
as an application of the Lanczos technique to the coordin
operatorx. Thesea and b coefficients may be calculate
using any quadrature capable of integrating the appropr
polynomial product with the given weight function over th
desired interval. For the simple case wherew(x)51 and the
interval is finite, the integrals may be computed exactly
ing any number of standard quadratures. By computing
integrals numerically and as the calculation proceeds,
can avoid the instabilities associated with manipulating s
lar products ofxn for large values ofn. The entire procedure
is trivial to program and is capable of generating numerica
orthonormal sets for very largen.

For the classical polynomical bases, one begins the re
sion procedure with the function one. The so generated
thonormal basis, is capable of expanding any arbitrary fu
tion in the interval (a,b). However, if the desired function is
required to satisfy some boundary conditions at the e
points of the interval, it may be far more efficient and co
venient to build those boundary conditions into the basis
the outset. It is essential to be able to do this if the ortho
nal functions are being used to expand the solution o
differential equation where there are essential singularitie
the end points. A simple example will clarify this. Suppo
one is trying to solve a second order differential equat
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55 3419ACCURATE BASIS SETS FOR THE CALCULATION OF . . .
where the desired solution is required to be zero at the
end point. Since the classical orthogonal polynomials m
contain a constant in order to be complete for the expan
of all functions, a large cancellation of terms would be ne
essary to satisfy the required boundary condition. This
very dangerous, since even a small admixture of the irreg
solution to the second-order equation could lead to disas
ous results. The problem is easily solved by starting the
cursion withx instead of a constant.

A discrete variable representation

One of the nicest features of the classical orthogonal fu
tions is their relationship to Gauss quadratures. As we h
noted above, the coefficients of the three-term recursion
lation may be viewed as a tridiagonal matrix whose eig
values and eigenvectors provide the points and weights o
n point Gauss quadrature. Since these functions are pol
mials, the properties of the Gauss quadratures assure us
an orthonormality relation of the form,

(
q51

n

wqPi~xq!Pj~xq!5d i , j ~11!

exists and in addition, it can be demonstrated that a c
pleteness relation of the form,

(
i51

n

Pi~xq!Pi~xq8!5
dq,q8
wq

~12!

also holds. The latter is a consequence of the Christof
Darboux identity@13#. For the nonclassical case, there is
one-to-one correspondence between the functions and
points of any Gauss quadrature and the Christoffel-Darb
identity has no meaning. However, by diagonalizing t
tridiagonal matrix of coefficients, it is still possible to gene
ate a new basis in which the coordinate operator is diago
and that is all that is required. In the new basis, any lo
function ~ operator! of x, is diagonal and the matrix elemen
consists of the function evaluated at the eigenvalue. T
enables us to use a representation having all the simple
tures of the usual DVR but unrelated to any quadrat
scheme.

III. NUMERICAL RESULTS

I have applied the ideas of the previous sections to a
one-dimensional and one two-dimensional problem. T
one-dimensional problems examine the eigenvalue spec
for thes-wave radial Schro¨dinger equation for a free particle
a particle in a potential well and the hydrogen atom. In ea
case the problem is solved by placing the system in a bo
appropriate dimension, generating the set of polynomials
then forming and diagonalizing the Hamiltonian in the re
resentation defined by that basis. In the case of the free
ticle and potential well, the box size and the physical reg
were taken to be 1.0 a.u. For the Coulomb potential, the
size was set at 1000.0 a.u. in order to be able to make c
parisions between numerically generated and exact eigen
ues for a high principal quantum number. The results for
free-particle case for two different boundary conditions
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shown in Tables I and II. Similarly, I show in Table III th
results for a potential well with zero derivative condition
r51.0 a.u. In both the free-particle and potential well calc
lations for the eigenvalue spectrum for zero derivat
boundary conditions, the polynomial basis was not forced
satisfy the condition atr51.0 a.u. Instead, I added a Bloc
operator,L, @14–16# to the Hamiltonian,H, and diagonal-
izedH1L in the basis. Comparison of the numerical resu
for the larger of the two basis sets in Tables I–III with exa
values indicates essentially perfect agreement.

In Table IV I present the results for the hydrogen ato
Here the boundary condition of zero value atr51000.0 a.u.
was imposed directly on the basis set. The results for
larger basis sets agree perfectly with the exact spectrum
cept for the highest values of the principal quantum num
n. In order to remove any questions of the finite size of t

TABLE I. Eigenvalues ofs-wave free particle Hamiltonian for
different size basis sets (nb). The box size51.0 a.u. and the bound
ary condition is zero derivative atr51.0 a.u.

N Energy (nb525) Energy (nb550)a

1 1.233 700 55 1.233 700 55
2 11.103 304 95 11.103 304 95
3 30.842 513 75 30.842 513 75
4 60.451 326 96 60.451 326 96
5 99.929 744 56 99.929 744 56
6 149.277 766 57 149.277 766 57
7 208.495 392 97 208.495 392 97
8 277.582 623 78 277.582 623 78
9 356.539 459 00 356.539 458 99
10 445.365 900 00 445.365898 60
11 544.062 030 93 544.061 942 61
12 652.630 590 51 652.627 591 02
13 771.121 294 21 771.062 843 84
14 900.045 405 57 899.367 701 05
15 1042.371 469 69 1037.542 162 66

aBold numbers indicate where differences in energy begin.

TABLE II. Same as Table I for the boundary condition ze
wave function atr51.0 a.u.

N Energy (nb525) Energy (nb550)a

1 4.934 802 20 4.934 802 20
2 19.739 208 80 19.739 208 80
3 44.413 219 80 44.413 219 80
4 78.956 835 21 78.956 835 21
5 123.370 055 01 123.370 055 01
6 177.652 879 22 177.652 879 22
7 241.805 307 83 241.805 307 83
8 315.827 340 83 315.827 340 83
9 399.718 978 25 399.718 978 24
10 493.480 222 52 493.480 220 05
11 597.111 084 72 597.111 066 27
12 710.615 952 61 710.611 516 88
13 833.998 829 84 833.981 571 89
14 968.128 523 99 967.221 231 31
15 1112.477 531 34 1110.330 495 12

aBold numbers indicate where differences in energy begin.
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3420 55B. I. SCHNEIDER
box on the eigenvalue spectrum, the Hamiltonian was re
agonalized in a box ofr52000.0 a.u. This caused the high
lying eigenvalues to come into perfect agreement with
exact values, showing that the box size not the basis set
responsible for the small differences in the original calcu
tion.

The results of the final calculation, which treats the h
drogen atom as if it were a diatomic molecule, is shown

TABLE III. Same as Table I for a potential well of -1.0 a.u.

N Energy (nb525) Energy (nb550)a

1 .233 700 55 .233 700 55
2 10.103 304 95 10.103 304 95
3 29.842 513 75 29.842 513 75
4 59.451 326 96 59.451 326 96
5 98.929 744 56 98.929 744 56
6 148.277 766 57 148.277 766 57
7 207.495 392 97 207.495 392 97
8 276.582 623 78 276.582 623 78
9 355.539 459 00 355.539 458 99
10 444.365 900 00 444.365898 60
11 543.062 030 93 543.061 942 61
12 651.630 590 51 651.627 591 02
13 770.121 294 21 770.062 843 84
14 899.045 405 57 898.367 701 05
15 1041.371 469 69 1036.542 162 66

aBold numbers indicate where differences in energy begin.
i-

e
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n

Table V. The objective of this calculation was to give som
indication of the performance of the method in a tw
dimensional problem. By placing the proton 1.0 a.u. from
origin of the coordinate system, the problem can be redu
to a two-dimensional partial differential equation in the va
ables (r ,u). Here I examine only them50 symmetry solu-
tions. The basis set is taken to be the product of Legen
polynomials inu and radial polynomials inr , satisfying the
boundary condition of zero value atr510.0 a.u. A point
worth noting is that by expanding the solution away from t
Coulomb singularity, one is faced with the additional dif
culty of converging the electron-nuclear interaction poten
in the basis set. It is well known that this is not an optim
approach to multicenter systems and I am currently inve
gating alternatives that retain the essentials of the polynom
basis sets but do not suffer from the convergence probl
of single-center expansions. In the last row of Table V
present the results of the calculation when the nuclear sin
larity and the origin of the coordinate system are coincide
This calculation did not impose spherical symmetry on
system. It was performed using the diatomic code with
trivial one line modification to place the proton at the origi
All of the calculations used the representation wherer and
u were diagonal. Thus, only diagonal matrix elements of
Coulomb interaction are computed and these are trivially
lated to the eigenvalues ofr and cos~u! for the polynomial
basis sets. By not explicitly enforcing spherical symmet
there is a lack of exact degeneracy in eigenvalues of
same (n,l ) quantum numbers. This arises for two reaso
first, the radial basis set does not satisfy the exactr l11
TABLE IV. Energy levels of hydrogen atom for different size basis sets (nb). The box size is 1000.0 a.u.

N Energy (nb550) Energy (nb575) Energy (nb5100) Energy (nb5500)

1 20.431 725 32 20.499 085 26 20.499 999 62 20.500 000 00
2 20.118 899 63 20.124 999 05 20.125 000 00
3 20.054 332 93 20.055 555 55 20.055 555 56
4 20.030 903 54 20.031 250 00
5 20.019 880 44 20.020 000 00
6 20.013 841 87 20.013 888 89
7 20.010 183 73 20.010 204 08
8 20.007 803 00 20.007 812 50
9 20.006 172 84 20.006 172 84
10 20.004 997 53 20.005 000 00
11 20.004 130 87 20.004 132 23
12 20.003 471 45 20.003 472 22
13 20.002 958 12 20.002 958 58
14 20.002 550 74 20.002 551 02
15 20.002 222 04 20.002 222 22
16 20.001 953 01 20.001 953 13
17 20.001 730 03 20.001 730 10
18 20.001 543 16 20.001 543 21
19 20.001 385 00 20.001 385 04
20 20.001 249 94 20.001 249 96
21 20.001 132 64 20.001 132 66
22 20.001 022 18 20.001 022 20
23 20.000 901 48 20.000 901 50
24 20.000 762 78 20.000 762 79
25 20.000 606 56 20.000 606 57
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TABLE V. Lowest eigenvalues of the hydrogen atom treated as a diatomic molecule as a funct
radial (nr) and angular (nu) basis. The nucleus is placed 1.0 a.u. from the coordinate center and the bo
is 10.0 au

nr nu root 1 root 2 root 3 root 4 root 5 root 6

10 10 20.494 910 4720.128 874 3520.122 037 5820.054 011 0020.051 926 9320.049 862 49
20 10 20.463 632 4320.125 050 1120.120 256 8520.053 995 1720.051 709 2620.047 290 98
30 10 20.490 605 1920.124 971 1420.123 796 9120.053 994 0420.051 701 7820.048 924 36
40 10 20.480 290 8220.124 993 9420.122 473 6720.053 994 2620.051 666 9520.048 364 58
50 10 20.482 830 4420.124 985 1620.122 802 7220.053 994 2520.051 680 4820.048 497 08
70 10 20.482 374 6620.124 987 0520.122 743 6620.053 994 2520.051 676 8620.048 474 89
70 20 20.494 296 7120.124 993 5120.124 267 9520.053 995 0220.051 762 58 –.049 082 15
70 30 20.496 453 5520.124 994 7420.124 539 3220.053 995 1620.051 781 6520.049 184 98
70 40 20.496 974 6720.124 995 2820.124 604 4720.053 995 1920.051 786 5320.049 209 39

20.499 885 8 20.124 994 6220.124 972 8120.053 967 5620.051 611 4320.049 911 71
s
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boundary condition at the originseparatelyfor each partial
wave and second, the finite sized region of 10.0 a.u. ha
slightly different effect on the eigenvalues for each angu
momentum. All of these effects contribute to the differenc
between the atomic and molecular calculation.
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