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The major objective of this paper is to make some simple, but numerically useful generalizations of the
classical orthogonal functions. The motivation for doing this is to develop accurate, orthornormal basis sets for
the expansion of solutions of the ScHimger equation in multichannel problems. The generalizations are
needed for two reasons. First, it is often useful for the set to have a mathematical structure which is unrelated
to the classical functions and second, the boundary conditions which need to be satisfied by the solutions to the
Schralinger equation are often not easily represented by the classical functions. In contrast to certain other
techniques, such as those based on diagonalizing the overlap matrix, the method we propose is capable of
generating very large, orthonormal subspaces in a numerically stable fashion. While it is not possible to
demonstrate a one-to-one correspondence between this finite basis representation of the Hamiltonian and a
representation based on the points and weights of a Gauss quadrature, the so-called discrete variable represen-
tation(DVR), as is true for the classical orthogonal functions, it is still possible to transform to a representation
which preserves all of the essential features of the DVR. The method is illustrated by applying it to a few
simple one- and two-dimensional problerhfS1050-294717)00205-9

PACS numbsds): 31.10+z

[. INTRODUCTION methods are dominated by matrix-vector multiples, a struc-

tured and sparse matrix offers considerable computational

Most standard techniques for the numerical solution of thesavings. In addition, it is not necessary to compute compli-

Schralinger equation rely on discretization procedures incated matrix elements of the potential energy operator in the

physical or function space. Grid-based methodologils DVR representation.

have the advantage that they often lead to structured matri- In Sec. Il I will briefly review the classical theory and

ces, which are easily adapted to a number of the iterativ€Now how it is easily generalized to the nonclassical case.

technique$2,3] which have been developed for large, sparseTh.e generahzauon WII! preserve the three-term recursion re-

linear systemg4]. The disadvantage of such approaches iga_tlonShlp of the CIaSSIC{:II case but the recursion coefficients

that it is often difficult to approximate the derivatives that will be computed numerically. Once the functions have been

appear in the Schdinger equation to a sufficent accuracy determined, a simple transformation of the basis leads to a

without resorting to high-order differences or very small Steprepresentanon which preserves the diagonal character of lo-

. : . . cal operators in coordinate space.
sizes. Expansions in function spa¢eften called spectral P b

. . . Section Il of the paper will present a few illustrations of
mgthods[SJ) typmally do not Sfj,ﬁe.r from .th's problgm SINCE the method to the solution of simple and partial differential
it is possible to “analytically” differentiate and in many

equations which are either analytically known or soluble by

cases compute matrix elements of the representation withoyer approaches in order to show the accuracy attainable by
further approximation. the current technique.
For a number of orthogonal systems, such as the classical

orthogonal polynomials, there are one-to-one correspon-
dences between the functional representation based on the
polynomials and a set of grid points of the Gauss quadratures All of the classical orthogonal polynomials are defined by
derived from the zeros of those polynomials. Thus, it isa three-term recursion relation on the interaa x<b of the
straightforward to transform freely between the two repre-form,

sentations, and this has led to the application of the so-called

discrete variable representatidBVR) to many problems in BiF(X)=(x=aj)P;_1(X) = Bj-1P - 2(x), 1)
nonreactive and reactive collisions of importance in atomic ]

physics and chemistry. What is attractive about the DVR ighith the properties

that the matrix representation of kinetic energy still has a b

fairly simple structure and théhere local potential energy f W(X)R(X)P(x)dx= 6 )
operator is diagonal. This preserves many of the features of a e b

grid-based techniques without having to numerically ap-

proximate derivatives. The simplicity of the matrix represen-where w(x) is a non-negative weight function and
tation of the Hamiltonian in the DVR is fully exploited by Py(x)=const and where the coefficientg; and g; are
solving the typically large linear systems that emerge fromknown analytically for the classical case. The recursion rela-
the discretization process by iterative technigues. Since thed®n provides a numerically stable procedure for generating

Il. CLASSICAL THEORY AND GENERALIZATION
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the polynomials for any value aof beginning with Py(x). X1(X) = (X—ay) h(X), (6)
For many of the classical polynomials there are analytic re-

lations between the function and its first and/or second dewhere

rivatives which may be used to generate the derivatives if )

n_eeded._ In the absencg of such relat|onsh|p_s, it is trivial _to alzf dx W(X) ro(X)Xehp( X)X
differentiate the recursion any number of times to obtain a

equations useful for computing derivatives. For example, o )
and then form the normalizeid=1 function,

dP;(x) dP;_4(x) dP;_»(x)
L pix =22 U
3) VB1

may be used for the first derivative once the functions are b
known. Thea and B coefficients may be regarded as the B1= fadx WOX) x1(X) x2(X) dx.
elements of a symmetric, tridiagonal matrix. It is easy to see
from Eq.(1), that this is, in fact, the matrix representation of (3) Fori=2 ton, calculate
the coordinate operatos, in the basis. It is possible to show
that the eigenvalues of this tridiagonal matrix are the points G(X) =Xt -1(X), 8
of ann-point Gauss quadrature corresponding torthgoly- A
nomials of the basis representation. It can also be demon- _
strated that the Gaussian weights for the quadrature may be @i= L dx W(X) i - 1(X) G(x) dxxi(X)

obtained from the coefficient of thBy(x) polynomial in
each eigenvector. This algorithim is used in one of the more =G(X) — aithi—1(X) = Bi—1¢i—2(X) C)
opular codes, Gaus$2], to get the points and weights of o .
ﬁn’fny Gauss quadratt?res. Itgis far rgore efficient t?wan per'Emd form the normalizedh function,
forming a search for the zeros of timeh polynomial using
root search techniques. For the classical orthogonal polyno- ~Xi(x)
: () ="=, (10
mials, it is possible to show that there is a one-to-one corre- \/E
spondence between theGaussian quadrature points and the
n orthonormal polynomials. This correspondence may be ex- b
ploited numerically by transforming from the original poly- Bi= fa dXx Wex) xi (X) xi (x)dx.
nomial basis to a representation based on the Gaussian
quadrature points, i.e., the numerical grid. Thus, providedrhus, a Gram-Schmidt process applied to the sequence of
that it is numerically acceptable to represent a given functiovectors defined in this manner, generates the desired three-
as a linear combination of the orthonormal polynomials, it term recursion relationship and the coefficiemtsand 3
is also acceptable to evaluate to coefficients in that expansiafeeded to compute any member of the sequence as the pro-
by numerical quadrature over the Gaussian points andedure moves forward. The entire process may be regarded
weights. When this is done, the entire problem may be recasts an application of the Lanczos technique to the coordinate
in the grid representation. These ideas were first described yperatorx. Thesea and 8 coefficients may be calculated
Dickinson and Certair{6], and extensively exploited by using any quadrature capable of integrating the appropriate
Light and co-workerg7], Kosloff and Kosloff[8], Marston  polynomial product with the given weight function over the
and Balint-Kurti [9], Manolopoulos and Wyatf10], and  desired interval. For the simple case where)=1 and the
Muckerman and Lirj11]. interval is finite, the integrals may be computed exactly us-
For the purposes of generalizing the ideas of the precedng any number of standard quadratures. By computing the
ing paragraph, another viewpoint, which focuses on the finiténtegrals numerically and as the calculation proceeds, one
basis representation, is more useful. If we regard the coordiean avoid the instabilities associated with manipulating sca-
natex as an operator, the three-term recursion relationshipar products oi" for large values oh. The entire procedure
for the orthogonal polynomials may also be obtained by thés trivial to program and is capable of generating numerically
following procedure(1) Starting from an arbitrary function orthonormal sets for very large.
Xo(X) calculate, For the classical polynomical bases, one begins the recur-
sion procedure with the function one. The so generated or-
(" thonormal basis, is capable of expanding any arbitrary func-
%o~ L dx WOX) xo(X) xo(X)dX @ tion in the interval @,b). However, if the desired function is
required to satisfy some boundary conditions at the end
points of the interval, it may be far more efficient and con-
venient to build those boundary conditions into the basis at
the outset. It is essential to be able to do this if the orthogo-

and then form the normalized=0 function,

¢O(X):M_ (5)  nal functions are being used to expand the solution of a
\/a—o differential equation where there are essential singularities at

the end points. A simple example will clarify this. Suppose
(2) Form x4(x) as, one is trying to solve a second order differential equation
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where the desired solution is required to be zero at the left TABLE I. Eigenvalues ofs-wave free particle Hamiltonian for
end point. Since the classical orthogonal polynomials mustifferent size basis setif). The box size=1.0 a.u. and the bound-

contain a constant in order to be complete for the expansiofry condition is zero derivative at=1.0 a.u.

of all functions, a large cancellation of terms would be nec-
essary to satisfy the required boundary condition. This idV

Energy (,=25)

Energy 0,=50)?

very dangerous, since even a small admixture of the irregul
solution to the second-order equation could lead to disasteE-
ous results. The problem is easily solved by starting the re;

. . . 3
cursion withx instead of a constant. 4

5

A discrete variable representation 6

One of the nicest features of the classical orthogonal func?
tions is their relationship to Gauss quadratures. As we have

1.233 700 55
11.103 304 95
30.842 51375
60.451 326 96
99.929 744 56
149.277 766 57
208.495 392 97
277.582 62378

1.233 700 55
11.103 304 95
30.842 513 75
60.451 326 96
99.929 744 56

149.277 766 57
208.495 392 97
277.582 62378

noted above, the coefficients of the three-term recursion res 356.539 459 00 356.539 899
lation may be viewed as a tridiagonal matrix whose eigen-10 445,365 900 00 445.36@98 60
values and eigenvectors provide the points and weights of am 544.062 030 93 544.08042 61
n point Gauss quadrature. Since these functions are polyng2 652.630 590 51 65226 591 02
mials, the properties of the Gauss quadratures assure us that 771.121 294 21 77062 843 84
an orthonormality relation of the form, 14 900.045 405 57 899.367 701 05

n 15 1042.371 469 69 BY.542 162 66

qzl WqPi(Xq) Pj(Xg) = 6i (1) 3Boid numbers indicate where differences in energy begin.

] ) N ) shown in Tables | and Il. Similarly, | show in Table III the
exists and in addition, it can be demonstrated that a compesults for a potential well with zero derivative condition at
pleteness relation of the form, r=1.0 a.u. In both the free-particle and potential well calcu-
lations for the eigenvalue spectrum for zero derivative
boundary conditions, the polynomial basis was not forced to
satisfy the condition at=1.0 a.u. Instead, | added a Bloch
operator,L, [14-14 to the HamiltonianH, and diagonal-

also holds. The latter is a consequence of the ChristoffellZ€dH +L in the basis. Comparison of the numerical results
Darboux identity[13]. For the nonclassical case, there is nofor the I_arger of the two_baS|s sets in Tables I-IIl with exact
one-to-one correspondence between the functions and ti@lues indicates essentially perfect agreement.

points of any Gauss quadrature and the Christoffel-Darboux " Table IV | present the results for the hydrogen atom.
identity has no meaning. However, by diagonalizing theHere the boundary condition of zero valuerat1000.0 a.u.
tridiagonal matrix of coefficients, it is still possible to gener- Was imposed directly on the basis set. The results for the
ate a new basis in which the coordinate operator is diagonal@rger basis sets agree perfectly with the exact spectrum ex-
and that is all that is required. In the new basis, any locafept for the highest values of the principal quantum number
function ( operatoy of x, is diagonal and the matrix element - In order to remove any questions of the finite size of the
consists of the function evaluated at the eigenvalue. This TABLE |I. Same as Table I for the boundary condition zero
enables us to use a representation having all the simple fegmve function ar=1.0 a.u.

tures of the usual DVR but unrelated to any quadrature

’ Sqqr
2, Pilxg)Pi(xq) = (12)
1= q

scheme. N Energy (,=25) Energy (,=50)?
. NUMERICAL RESULTS 1 4.934 802 20 4.934 802 20
’ 2 19.739 208 80 19.739 208 80
| have applied the ideas of the previous sections to a fevé 44.413 219 80 44.413 219 80

one-dimensional and one two-dimensional problem. Thet
one-dimensional problems examine the eigenvalue spectru
for the s-wave radial Schidinger equation for a free particle, 6
a particle in a potential well and the hydrogen atom. In eacly
case the problem is solved by placing the system in a box of
appropriate dimension, generating the set of polynomials and
then forming and diagonalizing the Hamiltonian in the rep-19
resentation defined by that basis. In the case of the free pajq
ticle and potential well, the box size and the physical regior >
were taken to be 1.0 a.u. For the Coulomb potential, the boxs
size was set at 1000.0 a.u. in order to be able to make comy
parisions between numerically generated and exact eigenvaﬁ_—,
ues for a high principal quantum number. The results for the

78.956 835 21
123.370 055 01
177.652 879 22
241.805 307 83
315.827 340 83
399.718 978 25
493.480 222 52
597.111 084 72
710.615952 61
833.998 829 84
968.128 523 99

1112.477 531 34

78.956 835 21
123.370 055 01
177.652 879 22
241.805 307 83
315.827 340 83
399.718 978 2
493.480@D5
597.11566 27
710.61516 88
83339 571 89
96221 231 31

101330 495 12

free-particle case for two different boundary conditions aré®Bold numbers indicate where differences in energy begin.
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TABLE lll. Same as Table | for a potential well of -1.0 a.u.

N Energy (,=25) Energy 0,=50)%
1 .233 700 55 .233 700 55
2 10.103 304 95 10.103 304 95
3 29.84251375 29.84251375
4 59.451 326 96 59.451 326 96
5 98.929 744 56 98.929 744 56
6 148.277 766 57 148.277 766 57
7 207.495 392 97 207.495 392 97
8 276.582 623 78 276.582 623 78
9 355.539 459 00 355.539899
10 444.365 900 00 444 .3E98 60
11 543.062 030 93 543.a8042 61
12 651.630 590 51 6512@ 591 02
13 770.121 294 21 77062 843 84
14 899.045 405 57 @367 701 05
15 1041.371 469 69 B®.542 162 66

#old numbers indicate where differences in energy begin.

Table V. The objective of this calculation was to give some
indication of the performance of the method in a two-
dimensional problem. By placing the proton 1.0 a.u. from the
origin of the coordinate system, the problem can be reduced
to a two-dimensional partial differential equation in the vari-
ables ¢,0). Here | examine only then=0 symmetry solu-
tions. The basis set is taken to be the product of Legendre
polynomials in6 and radial polynomials im, satisfying the
boundary condition of zero value a&=10.0 a.u. A point
worth noting is that by expanding the solution away from the
Coulomb singularity, one is faced with the additional diffi-
culty of converging the electron-nuclear interaction potential
in the basis set. It is well known that this is not an optimal
approach to multicenter systems and | am currently investi-
gating alternatives that retain the essentials of the polynomial
basis sets but do not suffer from the convergence problems
of single-center expansions. In the last row of Table V |
present the results of the calculation when the nuclear singu-
larity and the origin of the coordinate system are coincident.
This calculation did not impose spherical symmetry on the
system. It was performed using the diatomic code with a
trivial one line modification to place the proton at the origin.

box on the eigenvalue spectrum, the Hamiltonian was rediAll of the calculations used the representation whernd
agonalized in a box af=2000.0 a.u. This caused the higher # were diagonal. Thus, only diagonal matrix elements of the
lying eigenvalues to come into perfect agreement with theCoulomb interaction are computed and these are trivially re-
exact values, showing that the box size not the basis set waated to the eigenvalues ofand co$6) for the polynomial
responsible for the small differences in the original calcula-basis sets. By not explicitly enforcing spherical symmetry,

tion.

there is a lack of exact degeneracy in eigenvalues of the

The results of the final calculation, which treats the hy-same €,l) quantum numbers. This arises for two reasons;
drogen atom as if it were a diatomic molecule, is shown infirst, the radial basis set does not satisfy the exact

TABLE IV. Energy levels of hydrogen atom for different size basis set3.(The box size is 1000.0 a.u.

2

Energy (,=50)

Energy 0,=75)

Energy 0,=100) Energy (,=500)

© 0o ~NOO O WNPR

10

12
13
14
15
16
17
18
19
20
21
22
23
24
25

—0.431 72532
—0.118 899 63
—0.054 332 93
—0.030 903 54
—0.019 880 44
—0.013 841 87
—0.01018373
—0.007 803 00
—0.006 172 84
—0.004 997 53
—0.004 130 87
—0.003 47145
—0.002 958 12
—0.002 550 74
—0.002 222 04
—0.001 95301
—0.001 73003
—0.001543 16
—0.001 385 00
—0.001 24994
—0.001 132 64
—0.001 022 18
—0.000 901 48
—0.000 762 78
—0.000 606 56

—0.499 085 26
—0.124 999 05
—0.055 555 55
—0.031 250 00
—0.020 000 00
—0.013 888 89
—0.010 204 08
—0.007 812 50
—0.006 172 84
—0.005 000 00
—0.004 132 23
—0.003 472 22
—0.002 958 58
—0.002 551 02
—0.002 222 22
—0.001 953 13
—0.001 730 10
—0.001 543 21
—0.001 385 04
—0.001 249 96
—0.001 132 66
—0.001 022 20
—0.000 901 50
—0.000 762 79
—0.000 606 57

—0.499 999 62
—0.125 000 00
—0.055 555 56

—0.500 000 00
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TABLE V. Lowest eigenvalues of the hydrogen atom treated as a diatomic molecule as a function of
radial (n,) and angularif,) basis. The nucleus is placed 1.0 a.u. from the coordinate center and the box size
is 10.0 au

n, Ny root 1 root 2 root 3 root 4 root 5 root 6

10 10 —-0.49491047—0.128 874 35 —0.122 037 58 —0.054 011 00 —0.051 926 93 —0.049 862 49
20 10 —0.46363243—-0.125050 11 —0.120 256 85 —0.053 995 17 —0.051 709 26 —0.047 290 98
30 10 —0.49060519—-0.124 971 14 —0.123 796 91 —0.053 994 04 —0.051 701 78 —0.048 924 36
40 10 —0.48029082—0.124 993 94 —0.122 473 67 —0.053 994 26 —0.051 666 95 —0.048 364 58
50 10 —0.48283044—-0.124985 16 —0.122 802 72 —0.053 994 25 —0.051 680 48 —0.048 497 08
70 10 —0.48237466 —0.124 987 05 —0.122 743 66 —0.053 994 25 —0.051 676 86 —0.048 474 89
70 20 —0.494 296 71 —-0.124 993 51 —0.124 267 95 —0.053 995 02 —0.051 762 58 —.049 082 15
70 30 —0.496 453 55—-0.124 994 74 —0.124 539 32 —0.053 995 16 —0.051 781 65 —0.049 184 98
70 40 —0.496 974 67 —0.124 995 28 —0.124 604 47 —0.053 995 19 —0.051 786 53 —0.049 209 39

—0.499 8858 —0.124 994 62 —0.124 972 81 —0.053 967 56 —0.051 611 43 —0.049 911 71

boundary condition at the origiseparatelyfor each partial ACKNOWLEDGMENTS
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