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Mixed quantum-classical versus full quantum dynamics: Coupled quasiparticle-oscillator system
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The relation between the dynamical properties of a coupled quasiparticle-oscillator system in the mixed
guantum-classical and fully quantized descriptions is investigated. The system is considered as a model
for applying a stepwise quantization. Features of the nonlinear dynamics in the mixed description such as
the presence of a separatrix structure or regular and chaotic motion are shown to be reflected in the evolu-
tion of the quantum state vector of the fully quantized system. In particular, it is demonstrated how wave
packets propagate along the separatrix structure of the mixed description, and that chaotic dynamics leads
to a strongly entangled quantum state vector. Special emphasis is given to viewing the system from a dyn-
amical Born-Oppenheimer approximation defining integrable reference oscillators, and elucidating the role of
the nonadiabatic couplings which complement this approximation into a rigorous quantization scheme.
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[. INTRODUCTION are stressing here is that chaos in the mixed description is

. . . i -dimensional integrabl i i

The relation between classical and quantum dynamics d?roduced by couplmg one d mensiona tegrable adiabatic
reference states. This situation is different from the case

nonlinear systems comprises specific aspects for system . N .
y P P n YSthihere the main source of chaos lies in the dynamics on the

treated in a mixed gquantum-classical description. The corre- . .

. . adiabatic surfaces themselves when they support two or

spondence between classical nonlinear systems on the one : ; . ; ! : o

; . . more dimensional vibronic motions, and the nonlinearity is
side and their fully quantized counterparts on the other ha

) i ; . ; gtrong enough to generate chaas].
been intensively investigated in the last decasee, e.g., In the present paper we consider the relation between the
[1-3]). In many systems relevant for molecular and

, i o ynamical properties of the mixed and fully quantized de-
condensed-matter physics, the direct quantization of the full intions for the particular model of a quasiparticle moving
system in one step is, however, not possible from a practicgetween two sites and coupled to an oscillator. Treating the
point of view. As a rule such systems divide naturally into pscillator in the classical or quantum contexts, whereas the
interacting subsystems. Then a stepwise quantization is apuasiparticle moving between two sites is a quantum object
plied, resulting in a mixed description, in which one of the from the beginning, one arrives at mixed and fully quantized
subsystems is treated in the quantum context and the other jgvels of description. The coupled quasiparticle-oscillator
the classical context. Furthermore, in complex systems theystem is an important model describing, e.g., excitons in
mixed description is often necessary for understanding glomolecular aggregates and coupled to vibratifhl. It has
bal dynamical properties, e.g., the presence of bifurcationalso attracted widespread attention in the context of the spin-
and separatrix structures dividing the solution manifold intoboson Hamiltonian and its quantum-classical phase space
characteristic parts, before for a selected energy region thg12—-14 and references thergirHence it seems appropriate
full quantization can be performed. to use this system as a model to analyze the relation between
This stepwise quantization is the basic idea on which thehe mixed and fully quantized descriptions. We have recently
Born-Oppenheimer approximati¢d] developed in the early investigated the dynamical properties of this model in the
days of quantum mechanics is based. Since then the separaixed description by integrating the corresponding Bloch-
tion of systems into subsystems, one treated classically anskcillator equations, and demonstrated the presence of a
the other described in the quantum context, has been used $eparatrix structure underlying the phase space for overcriti-
many situations. As examples we mention electronic spectreal coupling, and of chaos developing from the hyperbolic
of moleculed5] or atomic and molecular collision§]. Asis  point at the center of this structure. For increasing total en-
well known, this approximation can be complemented into aergy, chaos spreads over the product phase space of the sys-
rigorous quantization scheme, if the nonadiabatic couplingsem constituted by the surface of the Bloch sphere and the
are included7]. These couplings can be the source of non-oscillator planeg15]. Here we consider the problem of the
integrability and chaos in the mixed quantum-classical derelation between the dynamics in the mixed and fully quan-
scription[8,9] and the problem of the quantum-classical cor-tum levels of description of the coupled quasiparticle-
respondence arises for the dynamical properties of the mixedscillator motion. Investigating this relation we focus on the
and fully quantized descriptions. The particular point weadiabatic parameter range, where the mixed description is
justified best, and hence the closest correspondence between
the classical and quantum aspects of the oscillator dynamics
*Present address: Max-Planck-Institut Rhysik komplexer Sys- can be expected. Although several aspects of the dynamics of
teme, Bayreuther Strasse 40, Haus 16, 01 187 Dresden, Germarthe system have been considered previoli$®;14], to our
Electronic address: holger@mpipks-dresden.mpg.de knowledge there exists no systematic investigation into the
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adiabatic parameter range that requires the numerical detewhere vy, are the coupling constants. The interaction is re-
mination of a large number of eigenstates for the fully quan-stricted to a single oscillator at each molecule. The simplest
tized system. The properties of these states and the correase of a symmetric two site system, e.g., an exciton in a
sponding eigenvalues were reported[16]. In the present molecular dimer constituted by two identical monomers, is
paper the dynamics of the fully quantized system is com<onsidered in what follows. We seé;=¢€;, wi=ws,
puted in order to compare the quantum evolution with they,= v, andV;,=V,;=—V, V>0. Then by introducing for
mixed description where the oscillator is treated classicallythe vibronic subsystem the coordinates and momenta
Performing this comparison, we use both fixed and adiabatic
bases in the mixed description. The latter basis is of particu- (e Plao ]} PoEpP1
lar importance to clarify the role of the nonadiabatic cou- g+= 2 p+= 2 ®
plings in the formation of the dynamics.

In Sec. Il the model will be specified in detail. The mixed 5,4 for the excitonic subsystem the Bloch variables
guantum-classical description is discussed in Sec. lll, includ-
ing the derivation of the equations of motion, the fixed point X=pyutpio, Y=i(po1—p12), Z=po—p11, (6)
structure, and the dynamical properties of the system on this
level of description. In Sec. IV the evolution of the fully wherepy, is the density matrix of the excitonic subsystem
guantized system is presented and compared to the dynamics .
in the mixed description. We demonstrate the effect of the Pmn=CnCm, ™
separatrix structure in the mixed description on the oscillator . o
wave packet propagation of the fully quantized version, dyhe relevant part of Eqs1)—(4) containing the vibration
namical subsystem correlations deriving from the separatrifl- IS obtained in the form
structure and how the chaotic phase-space regions of the sys-

tem in the mixed description show up in the nonstationary _ 1 2 2.2y, Y4-2
. . _=—Vx+ z(p2+ + .
properties of the time dependent full quantum state vector. H VX 2 (P~ + %) \/E ®
II. MODEL The part corresponding tg, is not coupled to the exciton,

and is omitted.

We consider a quasiparticle coupled to oscillator degrees The Hamiltonian(8) can be represented as an operator in
of freedom. The quasiparticle is specified as a molecular expe space of the two-dimensional vect@s (c, ,c,) consti-
citon in a tight-binding representation, but can be substituteg;ted py the excitonic amplitudes, by using the standard
for by any other quantum object moving between discreteg|i spin matricesr, (i=x,y,z). Passing in Eq(8) to di-
sites and described by a tight-binding Hamiltonian of themensionless variables by measurigin units of 2V and

same structure. The system has the Hamiltonian replacingg_, p_ by
H(tot): H(exc) + H(vib) + H(int) (1)
| Q=v2Vq., P= = p €)
where H®®, HD) " and H(M are the excitonic, vibronic, - Jav'
and interaction parts, respectivelyd(®° represents the ) ]
guantum subsystem, which is taken in the site representatig?n€ finally obtains
- oy 1 ., ., p\¥? .
H(exc)zz €n|cn|2+2 VnmC:Cm! ) H:—?—I—E(P +r°Q°)l+ > rQo,, (10
n n#m
wherec, is the quantum probability amplitude of the exciton With | denoting the 22 unit matrix.
to occupy thenth molecule with on-site energy,, and 2
V,m the transfer-matrix element. For the intramolecular vi- p= # (12)
w

brations coupling to the exciton we use the harmonic ap-

proximation inH ), . . L . .
represents the dimensionless excitonic-vibronic coupling,

1 and
HYP=22, (pi+wian). 3

(O]

T2v

(12)
Hereq,, p,, andw, are the coordinate, the canonic conju-

gate momentum, and the frequency of the intramolecular viis the adiabatic parameter measuring the relative strength of
bration of thenth molecule, respectively. The interaction qyantum effects in both subsystems. We focus on the adia-
HamiltonianH™ represents the dependence of the excitoryatic caser<1, when the vibronic subsystem can be de-
energy on the intramolecular configuration for which we usegcrined in the classical approximation. The Hamiltoriz@)

the first-order expansion iqy, represents the simplest case of a spin-boson Hamiltonian
(two quantum states coupled to one oscillator degree of free-

H(int):E yolnlCal?, (4) dom), and has beeq studied in various contexts befo.re. Al-

n though Eq.(1) describes in general much more complicated
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problems(more than two quantum states coupled to manyWe shall replace the usual Bloch variables by these coordi-
oscillator degrees of freedgimwe can use Eqg(10) to pin-  nates where it is appropriate.

point the particular aspect of chaos due to nonadiabatic cou-

plings in the mixed description. B. Adiabatic basis

In this case one first solves the eigenvalue problem of the
lll. MIXED QUANTUM-CLASSICAL DESCRIPTION part of the Hamiltoniar{10) which contains excitonic opera-

In this section we discuss the mixed quantum-classicai®’s

dynamics resulting after a quasiclassical approximation to o
Eg. (10). It is instructive for this purpose to employ two had — _ ZX 4
representations differing in the basis set used for the exci- 2
tonic part of the wave function. In the following two subsec- whereQ is considered as an adiabatic parameter. The eigen-

tions the basic equations in these different representations a8 ues of Eq(17) are given b
derived. ! y

€?(Q)==3w(Q), (18)

1/2

Pl Q. (17)

2

A. Fixed basis

. . . . where
In this case the basis states are given by the fixed mol-

ecule sites |[n). Representing the excitonic state by w(Q) =1+ 2pr2QZ (19)
|)==,cnNn), inserting it into the time-dependent Schro

dinger equation, and using E() to replace the quantum The eigenvalues enter the adiabatic potentials for the slow
amplitudesc,, by the Bloch variables, the quantum equationssubsystem

of motion for the excitonic subsystem describing the transfer

dynamics between the two sites are obtained. The classical U(fd)(Q): 1r2Q%+ e(iad)(Q). (20
equations for the dynamics of the oscillator are found by

using the expectation value of EG.0) as a classical Hamil- The two eigenstatesa(=1 and 2 of Eq. (17) can be repre-
ton function from which the canonical equations forand ~ sented in the fixed basis as

P are derived. In this way one obtains the coupled Bloch-

oscillator equations representing the dynamics of the system _ _ i Sy PPy
in the mixed description |@=1Q) \/§[+ 1+e(QID+V1-c(QI2)] @D
x=—12prQy, and
y=1\2prQx+z L I eQ) ) - VI3 e@)
’ |a=2,Q>=E[+ 1-c(Q)[1) = V1+c(Q)[2)],
2=y, (13 (22)
. with
Q=P,
V2prQ
112 c(Q)= . (23
P=—-r-Q— 5] Tz
The state vector of the excitonic subsystem can now be ex-
Besides the energy panded in the adiabatic basjg)==,c{Y«,Q) and in-
serted into the time-dependent Sdlirmer equation. In or-
x 1 p\| 2 der to obtain the complete evolution equations in this basis,
E=—5+ E(P2+r2Q2)+ =| rQz, (14)  one has to take into account the time derivative of the ex-

pansion coefficients®? as well as the nonadiabatic cou-

there is a second integral of the motion restricting the fIO\/vp“mlJS due tﬁ the time ?ependenlcée of tr?e_stb;t]eQ(é)_)éthg
associated with the quantum subsystem to the surface of tHi9Iect of these couplings would result in the adiabatic ap-
unit radius Bloch sphere proximation. Using (d/dt)|@,Q)=Q(d/dQ)|«,Q) the
nonadiabatic coupling function
RZ=x2+y2+7%=1. (15) 5
ws=\ @,Q|—=|B,Q), 24
Sometimes it is advantageous to make use of this conserved Pap < QlﬁQ A Q> @9
quantity in order to reduce the total number of variables to _ i o i
four, e.g., when a formulation in canonically conjugate vari-(®«s= ~ ¢s.) IS found, which in case of the eigensta(gs)
ables is also desired for the excitonic subsystem. One thedd(22) is explicitly given by
introduces an anglé b
gle by B L 5
x=\1—2Z2cosp, y=+1-22sing. (16) 127 pw(Q)
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Introducing now in analogy to Ed6) the Bloch variables in  sition between these two groups when the parameters of the
the adiabatic basis, and treating the oscillator in the classicalystem are varied sinog=0 is excluded by Eq(29). This
approximation, one obtains the coupled Bloch-oscillatorterminology is in accordance with molecular physics, where

equations in the adiabatic basis it is common to refer to the state=1 with symmetric site
) occupation amplitudes;=c, as bonding, and to the state
x@9=2P¢1(Q)z*—w(Q)y'®?, x=—1 with antisymmetric amplitudes,=—c, as anti-
bonding.

y @@ =w(Q)x,
1. Bonding region(x¢>0)

229=—2P ¢ (Q)x"*, (26) We consider the bonding region first. The location of the
. fixed points is obtained from Eq29) using the additional
Q=P, restriction

1/2

2, .2
rc(Q)z(ad). Xs+zi=1. (30

P=—r’Q+ \/BW(Q)wlzX(a‘”—(g

One finds the following solutions in dependence on the value
The connection between the Bloch variables in the fixed anéf the dimensionless coupling strengih

the adiabatic basis is given by (@) 0=p=1: In this case Eq(29) allows for a single
solution only:
x=—c(Q)x® — JI-c%(Q)z, Y
. _ _ - —_1
X(ad)=—C(Q)X— /1—C2(Q)Z g x=1, z=0, Qs=0, Eg 2. (31

This point is the bonding ground state corresponding to a

y=—y@d = y@d=_y : o oo :
(277  symmetric combination of the excitonic amplitudes

_ (ad _ 127 (ad c,=c,=1/\/2. g is stable elliptic.
2=c(Q)z 1=, (b) p=1: A bifurcation has occurred and we obtain three
209 = c(Q)z— V1-cX(Q)x stationary points:
J1—2%sing= — 1 — (z2@)Zsing(@9. O : stl- 7=+ p°-1 ,
- p p
Using these transformation formulas one can show that the (32)
equations of motior§13) derived in the fixed basis are actu-
ally equivalent to those in the adiabatic bas§). The flow JpZ—1 p?+1
is again located on the surface of the unit Bloch sphere, and Qs==* ; T
the energy can be expressed using the adiabatic Bloch vari- \/ﬁr P
ablez(®9) as . .
These two points are stable elliptic.
zZ@ 1
E=w(Q)— +§(P2+r2Q2). (28 h: xs=1, zs=0, Q¢=0, Es=—3. (33

The pointh is at the position of the former ground state, but
C. Fixed points and bifurcation in contrast tog it is unstable hyperbolic.

Essential information about the phase space of the Hence the parametgy governs a pitchfork bifurcation:
excitonic-vibronic coupled dimer is contained in the location '€ ground statg below the bifurcation §p<1) splits into
and stability properties of the fixed points of the mixed WO degenerate ground statgs above bifurcation >1).
quantum-classical dynamics. Setting in the equations of moAt the former ground state a hyperbolic pomappears. This
tion in the fixed basig13) all time derivatives to zero, for Situation is also obvious from Fig.(d).

any stationary state we find ) ) )
2. Antibonding region(xs<0)

1/2
Q.= — 1 E) 7 P.=0, y.=0 Independent on the coupling strengihwe have in this
Soorl2) o s 0 region only one solution of Eq29) [see Fig. )]:
(29) )
2~ pXeze=0. e z=0, xs=—1, Qs=0, Es=+3. (39

The stability properties of a fixed point are determined by al NiS Stationary state corresponds to an antisymmetric com-
linearization of the equations of motion using canonical vari-dination of the excitonic amplitudes, = —c,= 1N2. eis
ab'es[ls] stable for
It is appropriate to subdivide all stationary points accord- ,
ing to whether they are located in the bonding region Ir-1]
Xs>0 or in the antibonding regior;<0. There is no tran- r

>2p, (35)
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(a) 2 /_.\_,__‘\ (by 2
/—\a
ﬁa
1 ﬁﬂ 1
//\\//j\\\ ﬁ\ﬁ FIG. 1. Phase-space plots for
o0 QJ/\\;// M0 &y the adiabatic oscillators (left:
\k/-\/ lower potential, right: upper po-
-1 gg -1 tentia) for p=2 andr=0.1.
vy
-2 \'_/_— -2
-20 -10 0 10 20 -20 -10 0 10 20
Q Q
which holds when the system is not in resonance, and in h(@=1p2+yd(Q), (39

particular for the adiabatic case<1.
Since the equations of motion in fixed and in adiabatic (ad) . . L
bases are equivalent, it is clear that the same fixed p@8js whereU"(Q) is given by Eq.(20). In this approximation

can also be obtained from E€R6). Setting the time deriva- some of the nonlinear features of the model are still con-
tives ofx, y, andQ in Eq. (26) eqdal to zero. for the station- tained in the integrable adiabatic reference oscillators, Eq.
ary state’s én e finds ' ' (39). In particular the lower adiabatic potenti@0) displays

the bifurcation from a single minimum structure to the char-

x@=qg, y@d_g pad_q (36) acteristic double-well structure when the parametg@asses
s tUs s ’ through the bifurcation valup=1. Formally the neglect of
leaving forz®® only the two values 1, does not necessarily lead #§¥= +1: According to the
equations of motiori26), ¢;,=0 implieszZ*»=const. Then
zfsad)zil_ (37 in the dynamics of the adiabatic approximation both adia-
batic modes can be occupied, and only the transitions be-
The equatiorP=0 reduces to tween them are switched off. The oscillator equations be-
come autonomous describing regular motion according to the
[w(Q)+pz>?]Q=0. (38)  classical Hamilton functioii28), with z* a parameter. The

oscillator coordinateQ(t) enters the Bloch equations for

For zgad)=+1 the only solution of Eq.(38) is Qs=0, X(t) andy(t). The equations for the latter describe the regu-
whereas forz®¥=—1 one obtains additional solutions for lar motion on a circle generated by an intersection of the
p>1. These solutions are easily seen to correspond to thloch sphere with the plar&®®= const, on which the phase
bifurcation discussed above. oscillations between the modes are realized. The regular

It is worth noting that in the adiabatic basis the stationaryphase space structures following from the integrable adia-
states are always located /= +1, and that this will be batic reference oscillator§39) above the bifurcation are
the case for any system treated in mixed quantum-classic&own in Fig. 1.
description and restricted to the lowest two adiabatic levels. N the following we demonstrate that the regular struc-
A specific feature of using the adiabatic basis is the indeperfures associated with the adiabatic approximation are present
dence of the location of the fixed points on the explicit formin both the mixed and fully quantized descriptions. At the
of the nonadiabatic coupling function, since this function en-Same time we show that the complete coupled system of
ters the equations of motion in form of the productSBloch-oscnlator equations, i.e., including the nonadiabatic
1(Q)P and ¢;(Q)x@ which drop out at a fixed point couplirjgs, _displays_ dynamical chaos. Thi; identif_i(_as the
because of Eq(36). From Eq.(27) it is, moreover, easy to nonadiabatic couplings as a source of nonintegrability and
see that the fixed points in the bonding region are locate§h@0s in the mixed description of the system, and raises a

within the lower adiabatic potential, while the antibonding duestion about the signatures of this chaos after full quanti-
Sec. V.

D. Integrable approximations

Before we investigate the dynamics of the complete E. Dynamical properties

coupled equations of motiofl3) or (26) we would like to The dynamical properties of the coupled Bloch-oscillator
mention two integrable approximations to the model. Theequationg13) were analyzed by a direct numerical integra-
first, trivial integrable approximation is to set in the equa-tion. Some of our results, such as the presence of chaos in the
tions of motion in the fixed basid3), p=0, which results in  mixed description of the excitonic-vibronic coupled dimer,

a decoupling of the excitonic and vibronic motions. The secwere already reported if15]. Therefore the aim of this sec-
ond and more interesting integrable approximation is obtion is twofold: On the one side we reconsider the findings in
tained by neglecting the nonadiabatic coupling functign ~ [15] relating the dynamical structures to the adiabatic ap-
in the equations of motio26) in the adiabatic basis. One proximation, in which the integrable reference syst¢88
obtains the dynamics of the decoupled one-dimensional adi@an be defined. This clarifies the role of the nonadiabatic
batic oscillators corresponding to the Hamiltonians couplings in the formation of the dynamics of the model,
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(a) 1
0.5 i
FIG. 2. Poincaresection in the
a 0 oscillator variables fop=0.8 (be-
low bifurcation, r=0.1 and(a)
E=0.0 and (b) E=0.75. The
0.5 Bloch variabley is fixed (y=0,
dy/dt>0).
-1
-20

which was not done before. On the other side we give the@uter part of the surface of section, which is due to resonance
necessary characterization of the phase-space structure, susdtween the oscillator motion and the occupation oscillations
as the regions and associated parameters belonging to thetween the adiabatic modes. The interaction between the
regular and chaotic parts of the dynamics, respectively. Thi%ccupation oscillations due to the finité? and the oscilla-

W'." %ro(;nde _tht_e ba‘c’.'ti E[ﬁ pfer:;orm tr;e compla;!son_ Ofsthetor motion becomes much more pronounced for higher ener-
mixed description wi € Tull quantum evolution in Sec. gies. A corresponding Poincasection is displayed in Fig.

V. B :
We used the fixed basis for the integration of the equa—z(b) for the same valup=0.8 of the coupling constant, but

tions of motion in the mixed description, since it is numeri-W't.h thg energy now chosen gbove the minimum of the upper
cally more convenient. In view of the existence of two inte- fadlabanc potential. This choice of the energy aI_Iovys accord-
grals of the motion, only three from the total of five variables'"d 10 Eq.(28) a much broader range for the variation of the

of the system are independent. Therefore a standard woyariable 2, and consequently the nonadiabatic couplings
dimensional Poincarsurface of section can be defined for e more effective. Correspondingly we now observe several
both the oscillatory and excitonic subsystems by fixing ond€sonance chains.

variable. In Fig. 2a) a Poincaresection in oscillator vari- Increasing the coupling above the bifurcation value
ables is presented for the valpe=0.8, which is below the P=1, but fixing the total energy belo,, one expects
bifurcation valuep=1. In this case the adiabatic potential regular oscillations around the displaced minima of the
U_(Q) has a single minimum. The total energy is fixed atdouble-well structure irJ _(Q). A Poincaresection in the
E=0, i.e., well below the minimum of the upper adiabatic oscillator variables corresponding to this behavior is shown
potential. Therefore the influence of this potential is small,in Fig. 3(a). Increasing the energy to a value slightly above
and the oscillator dynamics can be expected to be close &, [Fig. 3(b)], one finds Poincarsections resembling the
the regular dynamics of the lower reference oscillator assoseparatrix structure as shown in Figail

ciated withU _(Q). This is indeed confirmed by Fig.(&. For energies well abovE;, many chaotic trajectories do
There is, however, a chain of small resonance islands in thexist. Characteristic examples are provided by the Poincare

(a) 0.6 T (b)

FIG. 3. Poincaresections in
the oscillator variables fop=3.4
(above bifurcation r =0.1 and(a)
E=-0.75, (b) E=—-0.45, (¢
E=0.0 and (d) E=0.25. The
Bloch variabley is fixed (y=0,
dy/dt>0).

30
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(a) 1 X< ) (by 1 \
\ / =
\ o/
N 0 N 0
i
N FIG. 4. Poincaresection in the
/0\ iI\J excitonic variables forr=0.1,
i '\ / AN p=2.0 (above bifurcation and
-1 { : ) 1 e - N\ different energies(a) E= —0.54,
-n 0 n - 0 T () E=-0.5, (c) E=+0.5, and
¢ ) (d) E=0.83(see also Fig. B The
N v s - f f the section is defined b
(c) 1 T - (d) PR PITI & 7SS CIMPLIARS surface o y
. RS 'T A ;{..'.’,.,;3 "" el t..,«"‘f"u::f: the left-turning point of the oscil-
~g T AR 2 g :.;::.}c';.,‘ s .,;::’;”«", QRN R lator (P=0, dP/dt>0), and dis-
. ., P BAXS ’ e [X2UNE AR H H
\\ . y // AR T T AR AT A 8 played using the coordinatesand
. CaR N v o S ~“’.. R _ s
Yalt, = vy IR PO A e e R R ¢ (note the periodicity of the ab-
N9 e, e el N et ;::"’,"—g“f’:{, #- bk SR scissa
AR . .o TR .".',: W
y/ T N R e B
‘... . o ". ‘: . P 0, :OX
L \\ 3 / Nz ) A S IR A /(C
P PR Nt
-1 - -1 .J A R VRS
- 0 n -1 0 T
o ¢
sections in oscillator variables displayed in Figéc)3and IV. QUANTUM EVOLUTION

3(d) with the total energy of cas@g) below that of caséd). . o . A
It is seen how the regular part of the oscillator phase space ''€ating in Hamiltonian(10) the coordinateQ and the

becomes smaller, and the chaotic part grows with increasinffomentumP as noncommuting quantum operators, we now
energy. The destruction of the regular dynamics is seen to bl to the full quantum dynamics of the model. We focus on
connected mainly with the energy of the vibronic subsystem?he features of the evolution in the adiabatic parameter re-

Regular dynamics is restricted to the inner region of thedionr<1. The evolution of the full quantum state vector of
Poincaresections, i.e., to oscillator states with low-energy, (N€ System satisfying some specified initial condition is com-
small-amplitude oscillations and consequently small effeCputed using the eigenstate representation of the Hamiltonian.

tive coupling, whereas high oscillator energy correspondin he diagonalization of HamlltomaﬁLO) was performed us-
to the outer regions in Figs(® and 3d) results in chaos ng a Iargg set of oscnlatpr _e|genfunct|ons for the undis-
The dynamics of the dscillator subsystem is corr;ple placed oscillator as a basis, i.e., the basis was constructed

L, ) from the product statel, v)=|n)®|v), where the index
mented by the Poincamgections on the surface of the Bloch labels the two sites of the dimer, ame=0.1, . . . stands for

SPhere showing thg behavior Of.th? excﬁonlc'subsystem_ Ithe oscillator guantum number. In this basis the Hamiltonian
Figs. 4a)—4(d) a typical set of Poincarsections is presented (10) is represented by the matrix
for different energies and above the bifurcation. The sections

correspond to the left-turning point of the oscillator. For low AL,

energy one again finds regular dynamics in the region of thén'V|H|n ')

bifurcated ground states. These trajectories represent self-

trapped solutions of the system in which the exciton is pref- [1-(— 1)”*”']
erentially at one of the sites of the dimer and correspond to T4
the one-sided oscillations of the vibronic subsystem in Fig.

3(@). In the vicinity of the hyperbolic poinE,,, local chaos pr ;

starts to develop. This can be considered a perturbation due + \/;(_1)n( V'8, 1+ V3, 1) Sp . (40)
to nonadiabatic couplings of the dynamics near the saddle of

the lower adiabatic potentidl _(Q). With increasing en-  The typical number of oscillator eigenfunctions used was
ergy, chaos spreads over the Bloch sphere, leaving onlysg, yielding a total of 1500 basis states. The properties of
regular islands in the region of antibonding states associategie stationary eigenstates, the fine structure of the spectrum,
with the upper adiabatic potential and in accordance with theind in particular the role of the adiabatic reference oscillators
dynamics of the vibronic subsystem discussed above. Faind the nonadiabatic couplings in the formation of the spec-
high enough energy the coupling between the adiabatic retrum were reported ifl6]. Here we consider the nonstation-
erence oscillators almost completely destroys regular strucary properties of the full quantum system based on this
tures and results in global chaos. eigenstate expansion, and demonstrate how the nonlinear

5V’V7+r(V+ %)5n’n,5,,y,,r
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1 h(Q, P} h(Q.P)

h(Q,P
- (Q,P) h(Q,P)

FIG. 5. Evolution of a Gaussian wave packet initially located at the hyperbolic fixed poiptf@randr =0.01. Husimi distributior{43)
for the wave function projected on the excitonic states) and¢=0 in a surface plot.

features of the dynamics in the mixed quantum-classical declassical phase-space distributitsee, e.9.[17]). It is de-

scription are reflected in the time dependence of the fulfined by projectind ¥ (t)) on the manifold of coherent states

quantum state vectg®’(t)). 5
We investigated the evolution of wave packets initially h;,4(Q.P)=[(P;,4,cqp| ¥ (1))[%, (43

prepared in the product state where nowQ andP are varied in the oscillator plane, while

z and ¢ are fixed parameters.
@) =[Py 4)®]ag, py), (42) Without the interaction between the subsystems a wave
packet prepared in a coherent oscillator state would travel
where & is an excitonic two component wave function undistorted along the classical trajectory started at
which is specified up to an irrelevant global phase by thgQg,P;). A weak coupling below the bifurcationp& 1)
expectation values of the Bloch variablesind ¢ [see Egs. results in a similar picturénot displayed with the wave

(6) and (16)]. The complex parameter packet after some initial period almost uniformly covering
the classical trajectories such as those displayed in Figs. 2
vz i R and 2b).
a(Q,P)I(—) (a|Q|a) +—=(a|P|a) (42 Of particular interest is the effect of the separatrix struc-
2 Var ture characterizing the mixed description above the bifurca-

tion (p>1) on the propagation of the oscillator wave packet.

labels a standard coherent state in the oscillator variables. For a system with a proper classical limit and a separatrix in
In order to map the evolution of the full state vector the classical phase space, the correspondence to the quantum

|W(t)) constructed from the eigenstate expansion accordingvolution was studied, e.g., {i8]. Similar to this we found
to the initial condition(41) onto an analog of the phase spacethat the presence of the separatrix is clearly reflected in the
of the mixed description, in which the oscillator is treatedwave-packet dynamics when the energy is fixedEgt In
classically, for the oscillator subsystem we used the Husimkig. 5 the evolution of a quantum state prepared initially
distribution, which is an appropriate quantum analog to theight at the hyperbolic fixed poin is presented. The rel-
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In Fig. 6 contour plots for an analogous wave packet
propagation started at the hyperbolic point but for a larger
adiabatic parameter=0.1 are presented. The propagation
along the separatrix structure, which is shown by a full line,
is again evident. This indicates that the well-known
gquantum-classical correspondence in the case of regular dy-
namics, namely, that the quantum distribution follows the
flow of the classical system, can be extended to systems
treated in a mixed quantum-classical description. A more
detailed comparison of the results for=0.01 (Fig. 5 and
r=0.1 (Fig. 6) reveals, as expected, that the width of the
wave-packet transversal to the underlying classical structure
is reduced as the system is closer to the adiabatic limit. We
conclude that in the adiabatic regime regular structures such
as a separatrix in the formally classical phase space of the
mixed description can serve to forecast qualitatively the evo-
lution of a wave packet in the fully quantized system.

In Fig. 7 we compare the Husimi distributions for one and
the same wave packet projected onto two different excitonic
states in order to reveal the quantum correlations between the
excitonic and the vibronic subsystems. In Figa)Ave chose
z=0 and¢=0 corresponding to equal site occupation prob-
abilities, whereas in Fig.(B) the wave packet is projected
ontoz=1, i.e., an excitonic state completely localized at one
of the dimer sites. It is seen that for the case of an equal site
occupation the oscillator covers both branches of the separa-

trix structure, whereas for the one sided projection the oscil-
lator is preferentially located on the branch of the separatrix

Gaussian wave packet on the hyperbolic fixed point of the mixed_:orrespondmg adiabatically to the occupied site. Thls_behav-
quantum-classical dynamicp€ 2, r=0.1, andst=0.1). The state 107 reflects the the property of the quantum system to include
is represented by the corresponding Husimi distribution after procoherently all the variants of motion of the mixed quantum-
jection on the excitonic state=0, #=0. The value of the Husimi ~ classical system weighted with the corresponding probability
distribution is encoded by the color using a linear scale with whitein resemblance to the semiclassical propagator of a system
corresponding to zero, and black to 1. The solid line is the isoenwith proper classical limit, which is given as a sum over
ergy line of the lower adiabatic potential at the energy of the waveclassical trajectories.
packet E=—0.5), i.e., the separatrix associated with the hyper- The demonstrated correlations between the two sub-
bolic fixed point in the adiabatic approximation. systems imply that the total wave function cannot be factor-
ized into a product of subsystem wave functions. This fac-
evant parameters ape=2 andr=0.01 and the Husimi dis- torization is, however, the basic assumption the mixed
tribution (43) for the projection onto the excitonic states quantum-classical description is based upon. Hence the
z=0 and ¢=0 is displayed. It is seen how the oscillator agreement between the mixed description and the full quan-
wave packet spreads along the unstable direction of the sepasm evolution of expectation values deteriorates as the cou-
ratrix structure. The asymmetric distortion of the wavepling parametep is increased beyond the bifurcation value
packet in the beginning of the propagation, when the suppom =1, where strong subsystem correlations start to appear. In
of the Husimi distribution is given by the unstable direction a similar way the mixed description can be expected to fail,
of the separatrix, is remarkable. whenever the system shows a bifurcation. In fact a bifurca-

FIG. 6. Evolution of a quantum state preparedtat0 as a

_h(Q,P)

(=)
_ oy

o
[\

FIG. 7. Form of a Gaussian wave packet initially located at the hyperbolic fixed poirg=f& andr=0.01 at large time. Husimi
distribution of the wave function projected on the excitonic state® and¢=0 (left), andz=1 (right) in a surface plot.
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will address the problem of how this property is reflected in
the evolution of the fully quantized system.

For systems quantized in one step and chaotic in the clas-
sical limit the differences in the quantum evolution between
initial conditions selected in the regular and chaotic parts of
the classical phase space of the system are well known: If the
initial conditions of the quantum system are selected in the
regular part of the classical phase space the time dependence
of the appropriately chosen quantum expectation values fol-
low the corresponding classical values over a substantial
amount of time, whereas for initial conditions chosen in the
chaotic part of the classical phase space these values start to
deviate from each other almost immediat&dge, e.g.[18)).
In order to investigate this connection in our case we have
selected different initial conditions in the regular and chaotic
parts of the Bloch sphere of the system, and compared the
evolution in the mixed description with that of expectation
values obtained from the fully quantized system. In Fig. 8
three different initial conditions on the Bloch sphere of the
excitonic subsystem are showh.belongs to the main regu-
lar region of the dynamics in the mixed descripti@to the
chaotic region, an€ to a small regular island embedded in
a large chaotic surrounding. For a comparison of the dynam-
ics in the mixed and fully quantized descriptions for these
cases we selected the variabl@ét) and z(t) displayed in
the upper parts of Figs. 9-11.

We first compare the dynamics for initial conditions lo-

dimer with r=0.1 andp=2 at E=+0.5. The circles mark the cated in the main regulaantibonding and main chaotic
initial states, for which the time evolution will be displayed in the (honding regions. Since the initial state of the fully quan-
following figures. A regular island embedded into the chaotic segjg( system is chosen as a product state for which the de-

has been enlarged in the lower part of the figure.

coupling implicit in the derivation of Eq(13) is justified,
there is always an interval at the beginning of the time evo-

tion is only one way to produce nonlocalized wave packetdution where the mixed description follows closely the quan-
with correlations between the subsystems. Even stronger cotdm data. Then, however, there is indeed a striking differ-
relations can be expected when wave packets are prepareddnce between initial conditions selected in the regular and
chaotic regions of the mixed quantum-classical phase spadhe chaotic parts of the phase space of the mixed system: For
where the instability of classical trajectories is global and notnitial conditions in the regular paff, Fig. 9 the quantum
restricted to a hyperbolic fixed point. In the remainder weexpectation valu€(t) follows the classical trajectory of the

Q(t)
o
\\

N N FIG. 9. Time evolution of the
initially factorized coherent state

corresponding toA in Fig. 8

1 T T T T T T T T T [¢(t:0):771 Z(0)=_0.5,
- - . A . ) Q(0)=-1.2,E=0.55]. In the up-

5 ) A RR AOAM A AR A VA A A R per parts the quantum expectation
< LAY Y }' GV /‘\y,'\/’ V"’\,M\J’ \‘\i’/\\(/ VI \\ 1,7*‘(\}, VY \\’ \V V values ofQ and o, (full lines) are

compared to the corresponding

quantities of the mixed quantum-
classical description (dashed
lines). In the lower part the quan-

R(t)

tum Bloch radiusR(t) (44) is dis-
played using a larger time scale.

1000

1500 2000



55 MIXED QUANTUM-CLASSICAL VERSUS FULL QUANTUM. .. 3385

2
ot
FIG. 10. Time evolution of the
5 initially factorized coherent state
N corresponding toB in Fig. 8
' [¢(7=0)=0, 2z(0)=0, Q(0)
=-14.1,E=0.55]. See Fig. 9 for
details.
s
14
0 1 L

0 500 1000 1500 2000

mixed description over several periods and then, apart from eitonic subsystem. In the chaotic case the breakdown of the
slowly growing phase shift, both dependences keep a similamixed description for shorter times is evident and there is no
oscillatory form, whereas for an initial condition in the cha- correspondence for the mean values.

otic part (B, Fig. 10 the corresponding curves are com- The gradual development of quantum correlations be-
pletely different and the deviation between both starts altween both subsystems, which are absent in the initially fac-
ready after a fourth of the oscillator period. This confirms fortorized state, can be quantified by calculating the effective
our case the general feature of classically chaotic systems ®loch radius

produce a fast breakdown of the validity of quasiclassical

approximations. The comparison for the occupation differ-

encez(t) of the excitonic sites is not so direct, because the R(t)= Vx?(t) +y?(t) + Z2(t) (44)
exciton constitutes the fast subsystem displaying rapid oscil-

lations in the mixed description. For the regular case we

observe that the slowly changing mean valuez@f) ob-  of the excitonic subsystem using the time-dependent expec-
tained from the mixed description is related to the quantuntation values ofoy, o, and o,. Note that the reduced
data, though the amplitude and phase of the superimposetensity matrixp(t) for the excitonic subsystem, obtained
rapid oscillations are different after a few periods of the ex-from the full density matrix by taking the trace over the

25
£ 0
(o]
-25
1 7 T T n ’,-\ % " T T /'{J L0 VA
) i \ i ) FIG. 11. Time evolution of the
h ! . e .
m 0 / h ! D initially factorized coherent state
N

7 | / corresponding toC in Fig. 8
o L (i [¢(r=0)=0, 2(0)=0.9, Q(0)
-1 | Doianase wpn S L N AU skl L t

=—24.0,E=0.55]. See Fig. 9 for
0 20 40 60 80 100 120 140 160 180 200 Getall
¢ etails.

1 T T T

R{t)

0 500 1000 1500 2000
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oscillator states, is related toR(t) via Trp?(t) classical description to the full quantum evolution of the
—11+R2(t)]. For the factorized and correspondingly un- Mmodel. Our results are related to the general question of how

correlated initial quantum state the value of the Bloch radiughe idea of the Born-Oppenheimer approach to analyze com-
is R(0)=1. R(t) will decrease in the course of time accord- Pl€x Systems by a stepwise quantization can be extended to a
ing to the degree to which quantum correlations lead to afynamical description. A more systematic investigation of
entanglement between both subsystems. In the lower parts §iS question using other model systems is certainly of inter-
Figs. 9—11, the dependence of the Bloch radius on the time &St In view of the widespread use of this approach.
displayed for a long-time interval. The difference between (2) We demonstrated that the regular structures of the
the behavior for initial conditions chosen in the regular andMixed quantum-classical description such as the fixed points
chaotic parts of the phase space of the mixed description @nd the presence Of a separgtnx are gssoc_lated with the cor-
remarkable: For initial conditions in the regular part of the '€Sponding adiabatic approximation, in which the nonadia-
phase spacB(t) stabilizes at a value close to 1, whereas forbatic couplings are switched off_ and mtegrabl_e reference sys-
the initial conditions in the chaotic part the descent is muct€Ms can be defined. Comparing the evolution of quantum
more pronounced, and the long-time valueRgt) is much ~ Wave packets to the mixed quantum-classical description, we

lower, thus indicating stronger quantum correlations in thdound that regular structures of the mixed description can
chaotic case. The correlations between the subsystems a&/V€ as & support for wave packet propagation in the fully
the reason for the breakdown of the mixed description whictfluantized system in the adiabatic regime. This should be of
implicitly contains the factorization of expectation values.Nt€rest for other systems to which a stepwise quantization
Therefore the smaller value &(t) observed for the state must be applied due to their more complex structure, e.g., for

prepared in the chaotic region confirms the faster breakdowl{!® Purpose of forecasting the qualitative properties of propa-
of the mixed description as compared to a regular initial92ting wave packets using the mixed description as a refer-

state. However, it is important to note that the striking dif- €Nce system. _ _ _
ference between the values Bft) is not restricted to this (3) Signatures of chaos in the mixed quantum-classical
initial period, but extends to much longer tim@ghich are, description were found in the full quantum evolution of the

on the other hand, small compared to the time for quantungYSt€M- In analogy to previous results for systems with a
recurrences In this respect our results indicate time- proper.clas'swa limit, the breakdown of the quasmlassma_l
dependent quantum signatures of chaos of the mixed descrigPProximation is enhanced for states prepared in a chaotic

tion which are beyond the well-known different time scales'€9ion Of the phase space. On the other hand, the stronger
for the breakdown of quasiclassical approximations. quantum correlations between the subsystems of the fully

Finally we present the example for a quantum state preguantized syste.m,.which were foun.d in the chaptic regioq of
pared on a regular island embedded into chaotic regions ¢f¢ Mixed description, persist even in the long-time evolution
the mixed quantum-classical phase spé@eFig. 11. The ©f the system, and are specific signatures of chaos in the
structure of the selected island is shown in the lower part ofix€d description. _ .

Fig. 8. For such a state the situation is specific due to the (4 From the point of view of the Born-Oppenheimer
spreading of the quantum state out of the regular island. Afduantization .scheme, there are .dlfferent possible sources of
ter some initial time in which the quantum dynamics probesChaos in a mixed quantum-classical model system. Either the

the regular region of the mixed dynamics, the wave packe?diabatic potentials are suffi_ciently compléonlinear and
enters the region in which the mixed dynamics is chaotic0UP!€ more than one vibronic degree of freedioasupport

Correspondingly for an initial time interval we find that the Chaotic motion even within the adiabatic approximation, or

agreement between the mixed and full quantum descriptiof’€ Chaos is due to nonadiabatic couplings. In the considered
is as good as expected for regular dynamics, whereas sdpodel the adiabatic potentials are one dimensional and thus
long times the quantum system shows the typical behavior git@nifestly integrable. Hence the observed quantum signa-
a chaotic state. The latter feature is evident from the timdurés of chaos are unambiguously related to nonadiabatic

dependence of the Bloch radius which is displayed in th&©UPlings. This mechanism should be of interest also for
lower part of Fig. 11 on a sufficiently large time scale. other systems treated by a stepwise quantization.
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