
PHYSICAL REVIEW A MAY 1997VOLUME 55, NUMBER 5
Mixed quantum-classical versus full quantum dynamics: Coupled quasiparticle-oscillator system

Holger Schanz* and Bernd Esser
Institut für Physik, Humboldt-Universita¨t, Invalidenstrasse 110, 10 115 Berlin, Germany

~Received 25 September 1996!

The relation between the dynamical properties of a coupled quasiparticle-oscillator system in the mixed
quantum-classical and fully quantized descriptions is investigated. The system is considered as a model
for applying a stepwise quantization. Features of the nonlinear dynamics in the mixed description such as
the presence of a separatrix structure or regular and chaotic motion are shown to be reflected in the evolu-
tion of the quantum state vector of the fully quantized system. In particular, it is demonstrated how wave
packets propagate along the separatrix structure of the mixed description, and that chaotic dynamics leads
to a strongly entangled quantum state vector. Special emphasis is given to viewing the system from a dyn-
amical Born-Oppenheimer approximation defining integrable reference oscillators, and elucidating the role of
the nonadiabatic couplings which complement this approximation into a rigorous quantization scheme.
@S1050-2947~97!05805-8#

PACS number~s!: 03.65.2w, 05.45.1b, 31.30.Jv
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I. INTRODUCTION

The relation between classical and quantum dynamic
nonlinear systems comprises specific aspects for sys
treated in a mixed quantum-classical description. The co
spondence between classical nonlinear systems on the
side and their fully quantized counterparts on the other
been intensively investigated in the last decade~see, e.g.,
@1–3#!. In many systems relevant for molecular a
condensed-matter physics, the direct quantization of the
system in one step is, however, not possible from a prac
point of view. As a rule such systems divide naturally in
interacting subsystems. Then a stepwise quantization is
plied, resulting in a mixed description, in which one of t
subsystems is treated in the quantum context and the oth
the classical context. Furthermore, in complex systems
mixed description is often necessary for understanding
bal dynamical properties, e.g., the presence of bifurcati
and separatrix structures dividing the solution manifold in
characteristic parts, before for a selected energy region
full quantization can be performed.

This stepwise quantization is the basic idea on which
Born-Oppenheimer approximation@4# developed in the early
days of quantum mechanics is based. Since then the se
tion of systems into subsystems, one treated classically
the other described in the quantum context, has been us
many situations. As examples we mention electronic spe
of molecules@5# or atomic and molecular collisions@6#. As is
well known, this approximation can be complemented int
rigorous quantization scheme, if the nonadiabatic coupli
are included@7#. These couplings can be the source of no
integrability and chaos in the mixed quantum-classical
scription@8,9# and the problem of the quantum-classical c
respondence arises for the dynamical properties of the m
and fully quantized descriptions. The particular point w
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are stressing here is that chaos in the mixed descriptio
produced by coupling one-dimensional integrable adiab
reference states. This situation is different from the c
where the main source of chaos lies in the dynamics on
adiabatic surfaces themselves when they support two
more dimensional vibronic motions, and the nonlinearity
strong enough to generate chaos@10#.

In the present paper we consider the relation between
dynamical properties of the mixed and fully quantized d
scriptions for the particular model of a quasiparticle movi
between two sites and coupled to an oscillator. Treating
oscillator in the classical or quantum contexts, whereas
quasiparticle moving between two sites is a quantum ob
from the beginning, one arrives at mixed and fully quantiz
levels of description. The coupled quasiparticle-oscilla
system is an important model describing, e.g., excitons
molecular aggregates and coupled to vibrations@11#. It has
also attracted widespread attention in the context of the s
boson Hamiltonian and its quantum-classical phase sp
~@12–14# and references therein!. Hence it seems appropriat
to use this system as a model to analyze the relation betw
the mixed and fully quantized descriptions. We have recen
investigated the dynamical properties of this model in
mixed description by integrating the corresponding Bloc
oscillator equations, and demonstrated the presence
separatrix structure underlying the phase space for overc
cal coupling, and of chaos developing from the hyperbo
point at the center of this structure. For increasing total
ergy, chaos spreads over the product phase space of the
tem constituted by the surface of the Bloch sphere and
oscillator plane@15#. Here we consider the problem of th
relation between the dynamics in the mixed and fully qua
tum levels of description of the coupled quasipartic
oscillator motion. Investigating this relation we focus on t
adiabatic parameter range, where the mixed descriptio
justified best, and hence the closest correspondence bet
the classical and quantum aspects of the oscillator dynam
can be expected. Although several aspects of the dynamic
the system have been considered previously@12,14#, to our
knowledge there exists no systematic investigation into
ny.
3375 © 1997 The American Physical Society
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3376 55HOLGER SCHANZ AND BERND ESSER
adiabatic parameter range that requires the numerical d
mination of a large number of eigenstates for the fully qu
tized system. The properties of these states and the c
sponding eigenvalues were reported in@16#. In the present
paper the dynamics of the fully quantized system is co
puted in order to compare the quantum evolution with
mixed description where the oscillator is treated classica
Performing this comparison, we use both fixed and adiab
bases in the mixed description. The latter basis is of part
lar importance to clarify the role of the nonadiabatic co
plings in the formation of the dynamics.

In Sec. II the model will be specified in detail. The mixe
quantum-classical description is discussed in Sec. III, incl
ing the derivation of the equations of motion, the fixed po
structure, and the dynamical properties of the system on
level of description. In Sec. IV the evolution of the full
quantized system is presented and compared to the dyna
in the mixed description. We demonstrate the effect of
separatrix structure in the mixed description on the oscilla
wave packet propagation of the fully quantized version,
namical subsystem correlations deriving from the separa
structure and how the chaotic phase-space regions of the
tem in the mixed description show up in the nonstation
properties of the time dependent full quantum state vect

II. MODEL

We consider a quasiparticle coupled to oscillator degr
of freedom. The quasiparticle is specified as a molecular
citon in a tight-binding representation, but can be substitu
for by any other quantum object moving between discr
sites and described by a tight-binding Hamiltonian of t
same structure. The system has the Hamiltonian

H ~ tot!5H ~exc!1H ~vib!1H ~ int!, ~1!

whereH (exc), H (vib), andH (int) are the excitonic, vibronic
and interaction parts, respectively.H (exc) represents the
quantum subsystem, which is taken in the site representa

H ~exc!5(
n

enucnu21 (
nÞm

Vnmcn* cm , ~2!

wherecn is the quantum probability amplitude of the excito
to occupy thenth molecule with on-site energyen , and
Vnm the transfer-matrix element. For the intramolecular
brations coupling to the exciton we use the harmonic
proximation inH (vib),

H ~vib!5
1

2(n ~pn
21vn

2qn
2!. ~3!

Hereqn , pn , andvn are the coordinate, the canonic conj
gate momentum, and the frequency of the intramolecular
bration of thenth molecule, respectively. The interactio
HamiltonianH (int) represents the dependence of the exci
energy on the intramolecular configuration for which we u
the first-order expansion inqn,

H ~ int!5(
n

gnqnucnu2, ~4!
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wheregn are the coupling constants. The interaction is
stricted to a single oscillator at each molecule. The simp
case of a symmetric two site system, e.g., an exciton i
molecular dimer constituted by two identical monomers,
considered in what follows. We sete15e2, v15v2,
g15g2 andV125V2152V, V.0. Then by introducing for
the vibronic subsystem the coordinates and momenta

q65
q26q1

A2
, p65

p26p1

A2
, ~5!

and for the excitonic subsystem the Bloch variables

x5r211r12, y5 i~r212r12!, z5r222r11, ~6!

wherermn is the density matrix of the excitonic subsystem

rmn5cn* cm , ~7!

the relevant part of Eqs.~1!–~4! containing the vibration
q2 is obtained in the form

H252Vx1
1

2
~p2

2 1v2q2
2 !1

gq2z

A2
. ~8!

The part corresponding toq1 is not coupled to the exciton
and is omitted.

The Hamiltonian~8! can be represented as an operator
the space of the two-dimensional vectorsC5(c1 ,c2) consti-
tuted by the excitonic amplitudescn by using the standard
Pauli spin matricessi ( i5x,y,z). Passing in Eq.~8! to di-
mensionless variables by measuringH in units of 2V and
replacingq2 , p2 by

Q5A2Vq2, P5
1

A2V
p2 , ~9!

one finally obtains

Ĥ52
sx

2
1
1

2
~ P̂21r 2Q̂2!I1S p2D

1/2

rQ̂sz , ~10!

with I denoting the 232 unit matrix.

p5
g2

2Vv2 ~11!

represents the dimensionless excitonic-vibronic coupli
and

r5
v

2V
~12!

is the adiabatic parameter measuring the relative strengt
quantum effects in both subsystems. We focus on the a
batic caser!1, when the vibronic subsystem can be d
scribed in the classical approximation. The Hamiltonian~10!
represents the simplest case of a spin-boson Hamilto
~two quantum states coupled to one oscillator degree of f
dom!, and has been studied in various contexts before.
though Eq.~1! describes in general much more complicat
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55 3377MIXED QUANTUM-CLASSICAL VERSUS FULL QUANTUM . . .
problems~more than two quantum states coupled to ma
oscillator degrees of freedom!, we can use Eq.~10! to pin-
point the particular aspect of chaos due to nonadiabatic c
plings in the mixed description.

III. MIXED QUANTUM-CLASSICAL DESCRIPTION

In this section we discuss the mixed quantum-class
dynamics resulting after a quasiclassical approximation
Eq. ~10!. It is instructive for this purpose to employ tw
representations differing in the basis set used for the e
tonic part of the wave function. In the following two subse
tions the basic equations in these different representation
derived.

A. Fixed basis

In this case the basis states are given by the fixed m
ecule sites un&. Representing the excitonic state b
uc&5(ncnun&, inserting it into the time-dependent Schr¨-
dinger equation, and using Eq.~6! to replace the quantum
amplitudescn by the Bloch variables, the quantum equatio
of motion for the excitonic subsystem describing the trans
dynamics between the two sites are obtained. The clas
equations for the dynamics of the oscillator are found
using the expectation value of Eq.~10! as a classical Hamil-
ton function from which the canonical equations forQ and
P are derived. In this way one obtains the coupled Blo
oscillator equations representing the dynamics of the sys
in the mixed description

ẋ52A2prQy,

ẏ5A2prQx1z,

ż52y, ~13!

Q̇5P,

Ṗ52r 2Q2S p2D
1/2

rz.

Besides the energy

E52
x

2
1
1

2
~P21r 2Q2!1S p2D

1/2

rQz, ~14!

there is a second integral of the motion restricting the fl
associated with the quantum subsystem to the surface o
unit radius Bloch sphere

R25x21y21z251 . ~15!

Sometimes it is advantageous to make use of this conse
quantity in order to reduce the total number of variables
four, e.g., when a formulation in canonically conjugate va
ables is also desired for the excitonic subsystem. One
introduces an anglef by

x5A12z2cosf, y5A12z2sinf. ~16!
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We shall replace the usual Bloch variables by these coo
nates where it is appropriate.

B. Adiabatic basis

In this case one first solves the eigenvalue problem of
part of the Hamiltonian~10! which contains excitonic opera
tors

h~ad!52
sx

2
1S p2D

1/2

rQsz , ~17!

whereQ is considered as an adiabatic parameter. The eig
values of Eq.~17! are given by

e6
~ad!~Q!56 1

2 w~Q!, ~18!

where

w~Q!5A112pr2Q2. ~19!

The eigenvalues enter the adiabatic potentials for the s
subsystem

U6
~ad!~Q!5 1

2 r
2Q21e6

~ad!~Q!. ~20!

The two eigenstates (a51 and 2! of Eq. ~17! can be repre-
sented in the fixed basis as

ua51,Q&5
1

A2
@1A11c~Q!u1&1A12c~Q!u2&] ~21!

and

ua52,Q&5
1

A2
@1A12c~Q!u1&2A11c~Q!u2&],

~22!

with

c~Q!5
A2prQ
w~Q!

. ~23!

The state vector of the excitonic subsystem can now be
panded in the adiabatic basisuc&5(aca

(ad)ua,Q& and in-
serted into the time-dependent Schro¨dinger equation. In or-
der to obtain the complete evolution equations in this ba
one has to take into account the time derivative of the
pansion coefficientsca

(ad) as well as the nonadiabatic cou
plings due to the time dependence of the statesua,Q(t)& ~the
neglect of these couplings would result in the adiabatic
proximation!. Using (d/dt)ua,Q&5Q̇(d/dQ)ua,Q& the
nonadiabatic coupling function

wab5 K a,QU ]

]Q Ub,QL , ~24!

(wab52wba) is found, which in case of the eigenstates~21!
and ~22! is explicitly given by

w1252
Apr

A2w2~Q!
. ~25!
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3378 55HOLGER SCHANZ AND BERND ESSER
Introducing now in analogy to Eq.~6! the Bloch variables in
the adiabatic basis, and treating the oscillator in the class
approximation, one obtains the coupled Bloch-oscilla
equations in the adiabatic basis

ẋ~ad!52Pw12~Q!z~ad!2w~Q!y~ad!,

ẏ~ad!5w~Q!x~ad!,

ż~ad!522Pw12~Q!x~ad!, ~26!

Q̇5P,

Ṗ52r 2Q1Apw~Q!w12x
~ad!2S p2D

1/2

rc~Q!z~ad!.

The connection between the Bloch variables in the fixed
the adiabatic basis is given by

x52c~Q!x~ad!2A12c2~Q!z~ad!,

x~ad!52c~Q!x2A12c2~Q!z

y52y~ad!, y~ad!52y
~27!

z5c~Q!z~ad!2A12c2~Q!x~ad!,

z~ad!5c~Q!z2A12c2~Q!x

A12z2sinf52A12~z~ad!!2sinf~ad!.

Using these transformation formulas one can show that
equations of motion~13! derived in the fixed basis are actu
ally equivalent to those in the adiabatic basis~26!. The flow
is again located on the surface of the unit Bloch sphere,
the energy can be expressed using the adiabatic Bloch
ablez(ad) as

E5w~Q!
z~ad!

2
1
1

2
~P21r 2Q2!. ~28!

C. Fixed points and bifurcation

Essential information about the phase space of
excitonic-vibronic coupled dimer is contained in the locati
and stability properties of the fixed points of the mix
quantum-classical dynamics. Setting in the equations of
tion in the fixed basis~13! all time derivatives to zero, for
any stationary state we find

Qs52
1

r S p2D
1/2

zs , Ps50, ys50

~29!

zs2pxszs50.

The stability properties of a fixed point are determined b
linearization of the equations of motion using canonical va
ables@15#.

It is appropriate to subdivide all stationary points acco
ing to whether they are located in the bonding reg
xs.0 or in the antibonding regionxs,0. There is no tran-
al
r

d

e

d
ri-

e

o-

a
-

-

sition between these two groups when the parameters o
system are varied sincexs50 is excluded by Eq.~29!. This
terminology is in accordance with molecular physics, whe
it is common to refer to the statex51 with symmetric site
occupation amplitudesc15c2 as bonding, and to the stat
x521 with antisymmetric amplitudesc152c2 as anti-
bonding.

1. Bonding region„xs>0…

We consider the bonding region first. The location of t
fixed points is obtained from Eq.~29! using the additional
restriction

xs
21zs

251 . ~30!

One finds the following solutions in dependence on the va
of the dimensionless coupling strengthp:

~a! 0<p<1: In this case Eq.~29! allows for a single
solution only:

g: xs51, zs50, Qs50, Es52 1
2 . ~31!

This point is the bonding ground state corresponding t
symmetric combination of the excitonic amplitude
c15c251/A2. g is stable elliptic.

~b! p>1: A bifurcation has occurred and we obtain thr
stationary points:

g6 : xs5
1

p
, zs56

Ap221

p
,

~32!

Qs56
Ap221

A2pr
, Es52

p211

4p
.

These two points are stable elliptic.

h: xs51 , zs50, Qs50, Es52 1
2 . ~33!

The pointh is at the position of the former ground state, b
in contrast tog it is unstable hyperbolic.

Hence the parameterp governs a pitchfork bifurcation
The ground stateg below the bifurcation (p,1) splits into
two degenerate ground statesg6 above bifurcation (p.1).
At the former ground state a hyperbolic pointh appears. This
situation is also obvious from Fig. 1~a!.

2. Antibonding region„xs<0…

Independent on the coupling strengthp we have in this
region only one solution of Eq.~29! @see Fig. 1~b!#:

e: zs50, xs521, Qs50, Es51 1
2 . ~34!

This stationary state corresponds to an antisymmetric c
bination of the excitonic amplitudesc152c251/A2. e is
stable for

ur 221u
r

.2Ap, ~35!
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FIG. 1. Phase-space plots fo
the adiabatic oscillators ~left:
lower potential, right: upper po-
tential! for p52 andr50.1.
ti

-

r
t

ar

ic
el
e
rm
n
ts
t

te
g

et

h
a

ec
ob

e
d

on-
Eq.

ar-

ia-
be-
be-
the

r
u-
the
e
ular
dia-

c-
sent
he
of
tic
the
nd
s a
nti-
in

tor
a-
the
r,
-
in
ap-

tic
el,
which holds when the system is not in resonance, and
particular for the adiabatic caser!1.

Since the equations of motion in fixed and in adiaba
bases are equivalent, it is clear that the same fixed points~29!
can also be obtained from Eq.~26!. Setting the time deriva-
tives ofx, y, andQ in Eq. ~26! equal to zero, for the station
ary states one finds

xs
~ad!50, ys

~ad!50, Ps
~ad!50, ~36!

leaving forzs
(ad) only the two values

zs
~ad!561 . ~37!

The equationṖ50 reduces to

@w~Q!1pzs
~ad!#Q50 . ~38!

For zs
(ad)511 the only solution of Eq.~38! is Qs50,

whereas forzs
(ad)521 one obtains additional solutions fo

p.1. These solutions are easily seen to correspond to
bifurcation discussed above.

It is worth noting that in the adiabatic basis the station
states are always located atzs

(ad)561, and that this will be
the case for any system treated in mixed quantum-class
description and restricted to the lowest two adiabatic lev
A specific feature of using the adiabatic basis is the indep
dence of the location of the fixed points on the explicit fo
of the nonadiabatic coupling function, since this function e
ters the equations of motion in form of the produc
w12(Q)P and w12(Q)x

(ad) which drop out at a fixed poin
because of Eq.~36!. From Eq.~27! it is, moreover, easy to
see that the fixed points in the bonding region are loca
within the lower adiabatic potential, while the antibondin
fixed points belong to the upper one.

D. Integrable approximations

Before we investigate the dynamics of the compl
coupled equations of motion~13! or ~26! we would like to
mention two integrable approximations to the model. T
first, trivial integrable approximation is to set in the equ
tions of motion in the fixed basis~13!, p50, which results in
a decoupling of the excitonic and vibronic motions. The s
ond and more interesting integrable approximation is
tained by neglecting the nonadiabatic coupling functionw12
in the equations of motion~26! in the adiabatic basis. On
obtains the dynamics of the decoupled one-dimensional a
batic oscillators corresponding to the Hamiltonians
in

c

he

y

al
s.
n-

-

d

e

e
-

-
-

ia-

h6
~ad!5 1

2 P
21U6

~ad!~Q!, ~39!

whereU6
(ad)(Q) is given by Eq.~20!. In this approximation

some of the nonlinear features of the model are still c
tained in the integrable adiabatic reference oscillators,
~39!. In particular the lower adiabatic potential~20! displays
the bifurcation from a single minimum structure to the ch
acteristic double-well structure when the parameterp passes
through the bifurcation valuep51. Formally the neglect of
w12 does not necessarily lead tozs

(ad)561: According to the
equations of motion~26!, w1250 implieszs

(ad)5const. Then
in the dynamics of the adiabatic approximation both ad
batic modes can be occupied, and only the transitions
tween them are switched off. The oscillator equations
come autonomous describing regular motion according to
classical Hamilton function~28!, with zs

(ad) a parameter. The
oscillator coordinateQ(t) enters the Bloch equations fo
x(t) andy(t). The equations for the latter describe the reg
lar motion on a circle generated by an intersection of
Bloch sphere with the planezs

(ad)5 const, on which the phas
oscillations between the modes are realized. The reg
phase space structures following from the integrable a
batic reference oscillators~39! above the bifurcation are
shown in Fig. 1.

In the following we demonstrate that the regular stru
tures associated with the adiabatic approximation are pre
in both the mixed and fully quantized descriptions. At t
same time we show that the complete coupled system
Bloch-oscillator equations, i.e., including the nonadiaba
couplings, displays dynamical chaos. This identifies
nonadiabatic couplings as a source of nonintegrability a
chaos in the mixed description of the system, and raise
question about the signatures of this chaos after full qua
zation is performed. The latter problem will be addressed
Sec. V.

E. Dynamical properties

The dynamical properties of the coupled Bloch-oscilla
equations~13! were analyzed by a direct numerical integr
tion. Some of our results, such as the presence of chaos in
mixed description of the excitonic-vibronic coupled dime
were already reported in@15#. Therefore the aim of this sec
tion is twofold: On the one side we reconsider the findings
@15# relating the dynamical structures to the adiabatic
proximation, in which the integrable reference systems~39!
can be defined. This clarifies the role of the nonadiaba
couplings in the formation of the dynamics of the mod
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FIG. 2. Poincare´ section in the
oscillator variables forp50.8 ~be-
low bifurcation!, r50.1 and ~a!
E50.0 and ~b! E50.75. The
Bloch variabley is fixed (y50,
dy/dt.0).
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which was not done before. On the other side we give
necessary characterization of the phase-space structure,
as the regions and associated parameters belonging to
regular and chaotic parts of the dynamics, respectively. T
will provide the basis to perform the comparison of t
mixed description with the full quantum evolution in Se
IV.

We used the fixed basis for the integration of the eq
tions of motion in the mixed description, since it is nume
cally more convenient. In view of the existence of two int
grals of the motion, only three from the total of five variabl
of the system are independent. Therefore a standard
dimensional Poincare´ surface of section can be defined f
both the oscillatory and excitonic subsystems by fixing o
variable. In Fig. 2~a! a Poincare´ section in oscillator vari-
ables is presented for the valuep50.8, which is below the
bifurcation valuep51. In this case the adiabatic potenti
U2(Q) has a single minimum. The total energy is fixed
E50, i.e., well below the minimum of the upper adiaba
potential. Therefore the influence of this potential is sm
and the oscillator dynamics can be expected to be clos
the regular dynamics of the lower reference oscillator as
ciated withU2(Q). This is indeed confirmed by Fig. 2~a!.
There is, however, a chain of small resonance islands in
e
uch
the
is

-

-

o-

e

t

l,
to
o-

e

outer part of the surface of section, which is due to resona
between the oscillator motion and the occupation oscillati
between the adiabatic modes. The interaction between

occupation oscillations due to the finiteż(ad) and the oscilla-
tor motion becomes much more pronounced for higher en
gies. A corresponding Poincare´ section is displayed in Fig
2~b! for the same valuep50.8 of the coupling constant, bu
with the energy now chosen above the minimum of the up
adiabatic potential. This choice of the energy allows acco
ing to Eq.~28! a much broader range for the variation of th
variablez(ad), and consequently the nonadiabatic couplin
are more effective. Correspondingly we now observe sev
resonance chains.

Increasing the coupling above the bifurcation val
p51, but fixing the total energy belowEh , one expects
regular oscillations around the displaced minima of t
double-well structure inU2(Q). A Poincare´ section in the
oscillator variables corresponding to this behavior is sho
in Fig. 3~a!. Increasing the energy to a value slightly abo
Eh @Fig. 3~b!#, one finds Poincare´ sections resembling the
separatrix structure as shown in Fig. 1~a!.

For energies well aboveEh many chaotic trajectories do
exist. Characteristic examples are provided by the Poinc´
FIG. 3. Poincare´ sections in
the oscillator variables forp53.4
~above bifurcation!, r50.1 and~a!
E520.75, ~b! E520.45, ~c!
E50.0 and ~d! E50.25. The
Bloch variabley is fixed (y50,
dy/dt.0).
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FIG. 4. Poincare´ section in the
excitonic variables for r50.1,
p52.0 ~above bifurcation! and
different energies:~a! E520.54,
~b! E520.5, ~c! E510.5, and
~d! E50.83 ~see also Fig. 8!. The
surface of the section is defined b
the left-turning point of the oscil-
lator (P50, dP/dt.0), and dis-
played using the coordinatesz and
f ~note the periodicity of the ab-
scissa!.
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sections in oscillator variables displayed in Figs. 3~c! and
3~d! with the total energy of case~c! below that of case~d!.
It is seen how the regular part of the oscillator phase sp
becomes smaller, and the chaotic part grows with increa
energy. The destruction of the regular dynamics is seen t
connected mainly with the energy of the vibronic subsyste
Regular dynamics is restricted to the inner region of
Poincare´ sections, i.e., to oscillator states with low-energ
small-amplitude oscillations and consequently small eff
tive coupling, whereas high oscillator energy correspond
to the outer regions in Figs. 3~c! and 3~d! results in chaos.

The dynamics of the oscillator subsystem is comp
mented by the Poincare´ sections on the surface of the Bloc
sphere showing the behavior of the excitonic subsystem
Figs. 4~a!–4~d! a typical set of Poincare´ sections is presente
for different energies and above the bifurcation. The secti
correspond to the left-turning point of the oscillator. For lo
energy one again finds regular dynamics in the region of
bifurcated ground states. These trajectories represent
trapped solutions of the system in which the exciton is pr
erentially at one of the sites of the dimer and correspond
the one-sided oscillations of the vibronic subsystem in F
3~a!. In the vicinity of the hyperbolic pointEh , local chaos
starts to develop. This can be considered a perturbation
to nonadiabatic couplings of the dynamics near the saddl
the lower adiabatic potentialU2(Q). With increasing en-
ergy, chaos spreads over the Bloch sphere, leaving
regular islands in the region of antibonding states associ
with the upper adiabatic potential and in accordance with
dynamics of the vibronic subsystem discussed above.
high enough energy the coupling between the adiabatic
erence oscillators almost completely destroys regular st
tures and results in global chaos.
ce
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IV. QUANTUM EVOLUTION

Treating in Hamiltonian~10! the coordinateQ̂ and the
momentumP̂ as noncommuting quantum operators, we n
turn to the full quantum dynamics of the model. We focus
the features of the evolution in the adiabatic parameter
gion r!1. The evolution of the full quantum state vector
the system satisfying some specified initial condition is co
puted using the eigenstate representation of the Hamilton
The diagonalization of Hamiltonian~10! was performed us-
ing a large set of oscillator eigenfunctions for the und
placed oscillator as a basis, i.e., the basis was constru
from the product statesun,n&5un& ^ un&, where the indexn
labels the two sites of the dimer, andn50,1, . . . stands for
the oscillator quantum number. In this basis the Hamilton
~10! is represented by the matrix

^n,nuĤun8,n8&

52
@12~21!n1n8#

4
dn,n81r ~n1 1

2 !dn,n8dn,n8

1Apr

2
~21!n~An8dn,n8211Andn,n811!dn,n8. ~40!

The typical number of oscillator eigenfunctions used w
750, yielding a total of 1500 basis states. The properties
the stationary eigenstates, the fine structure of the spect
and in particular the role of the adiabatic reference oscillat
and the nonadiabatic couplings in the formation of the sp
trum were reported in@16#. Here we consider the nonstation
ary properties of the full quantum system based on t
eigenstate expansion, and demonstrate how the nonli
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FIG. 5. Evolution of a Gaussian wave packet initially located at the hyperbolic fixed point forp52 andr50.01. Husimi distribution~43!
for the wave function projected on the excitonic statesz50 andf50 in a surface plot.
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features of the dynamics in the mixed quantum-classical
scription are reflected in the time dependence of the
quantum state vectoruC(t)&.

We investigated the evolution of wave packets initia
prepared in the product state

uF,a&5uFz0 ,f0
& ^ uaQ0 ,P0

&, ~41!

where F is an excitonic two component wave functio
which is specified up to an irrelevant global phase by
expectation values of the Bloch variablesz andf @see Eqs.
~6! and ~16!#. The complex parameter

a~Q,P!5S r2D
1/2

^auQ̂ua&1
i

A2r
^auP̂ua& ~42!

labels a standard coherent state in the oscillator variable
In order to map the evolution of the full state vect

uC(t)& constructed from the eigenstate expansion accord
to the initial condition~41! onto an analog of the phase spa
of the mixed description, in which the oscillator is treat
classically, for the oscillator subsystem we used the Hus
distribution, which is an appropriate quantum analog to
e-
ll

e

g

i
e

classical phase-space distribution~see, e.g.,@17#!. It is de-
fined by projectinguC(t)& on the manifold of coherent state

hz,f~Q,P!5u^Fz,f ,aQ,PuC~ t !&u2, ~43!

where nowQ andP are varied in the oscillator plane, whil
z andf are fixed parameters.

Without the interaction between the subsystems a w
packet prepared in a coherent oscillator state would tra
undistorted along the classical trajectory started
(Q0 ,P0). A weak coupling below the bifurcation (p,1)
results in a similar picture~not displayed! with the wave
packet after some initial period almost uniformly coverin
the classical trajectories such as those displayed in Figs.~a!
and 2~b!.

Of particular interest is the effect of the separatrix stru
ture characterizing the mixed description above the bifur
tion (p.1) on the propagation of the oscillator wave pack
For a system with a proper classical limit and a separatrix
the classical phase space, the correspondence to the qua
evolution was studied, e.g., in@3#. Similar to this we found
that the presence of the separatrix is clearly reflected in
wave-packet dynamics when the energy is fixed atEh . In
Fig. 5 the evolution of a quantum state prepared initia
right at the hyperbolic fixed pointh is presented. The rel
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evant parameters arep52 andr50.01 and the Husimi dis-
tribution ~43! for the projection onto the excitonic state
z50 andf50 is displayed. It is seen how the oscillat
wave packet spreads along the unstable direction of the s
ratrix structure. The asymmetric distortion of the wa
packet in the beginning of the propagation, when the sup
of the Husimi distribution is given by the unstable directi
of the separatrix, is remarkable.

FIG. 6. Evolution of a quantum state prepared att50 as a
Gaussian wave packet on the hyperbolic fixed point of the mi
quantum-classical dynamics (p52, r50.1, anddt50.1). The state
is represented by the corresponding Husimi distribution after p
jection on the excitonic statez50, f50. The value of the Husimi
distribution is encoded by the color using a linear scale with wh
corresponding to zero, and black to 1. The solid line is the iso
ergy line of the lower adiabatic potential at the energy of the w
packet (E520.5), i.e., the separatrix associated with the hyp
bolic fixed point in the adiabatic approximation.
a-

rt

In Fig. 6 contour plots for an analogous wave pack
propagation started at the hyperbolic point but for a lar
adiabatic parameterr50.1 are presented. The propagati
along the separatrix structure, which is shown by a full lin
is again evident. This indicates that the well-know
quantum-classical correspondence in the case of regular
namics, namely, that the quantum distribution follows t
flow of the classical system, can be extended to syste
treated in a mixed quantum-classical description. A m
detailed comparison of the results forr50.01 ~Fig. 5! and
r50.1 ~Fig. 6! reveals, as expected, that the width of t
wave-packet transversal to the underlying classical struc
is reduced as the system is closer to the adiabatic limit.
conclude that in the adiabatic regime regular structures s
as a separatrix in the formally classical phase space of
mixed description can serve to forecast qualitatively the e
lution of a wave packet in the fully quantized system.

In Fig. 7 we compare the Husimi distributions for one a
the same wave packet projected onto two different excito
states in order to reveal the quantum correlations between
excitonic and the vibronic subsystems. In Fig. 7~a! we chose
z50 andf50 corresponding to equal site occupation pro
abilities, whereas in Fig. 7~b! the wave packet is projecte
ontoz51, i.e., an excitonic state completely localized at o
of the dimer sites. It is seen that for the case of an equal
occupation the oscillator covers both branches of the sep
trix structure, whereas for the one sided projection the os
lator is preferentially located on the branch of the separa
corresponding adiabatically to the occupied site. This beh
ior reflects the the property of the quantum system to inclu
coherently all the variants of motion of the mixed quantu
classical system weighted with the corresponding probab
in resemblance to the semiclassical propagator of a sys
with proper classical limit, which is given as a sum ov
classical trajectories.

The demonstrated correlations between the two s
systems imply that the total wave function cannot be fact
ized into a product of subsystem wave functions. This f
torization is, however, the basic assumption the mix
quantum-classical description is based upon. Hence
agreement between the mixed description and the full qu
tum evolution of expectation values deteriorates as the c
pling parameterp is increased beyond the bifurcation valu
p51, where strong subsystem correlations start to appea
a similar way the mixed description can be expected to f
whenever the system shows a bifurcation. In fact a bifur

d

-

e
-
e
-

FIG. 7. Form of a Gaussian wave packet initially located at the hyperbolic fixed point forp52 and r50.01 at large time. Husimi
distribution of the wave function projected on the excitonic statesz50 andf50 ~left!, andz51 ~right! in a surface plot.



e
c
ed
a
no
we

in

las-
en
of
the
the
ence
fol-
tial
he
art to

ave
tic
the
n
. 8
he
-

in
m-
se

o-

-
de-

vo-
n-
er-
and
: For

e
se
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tion is only one way to produce nonlocalized wave pack
with correlations between the subsystems. Even stronger
relations can be expected when wave packets are prepar
chaotic regions of the mixed quantum-classical phase sp
where the instability of classical trajectories is global and
restricted to a hyperbolic fixed point. In the remainder

FIG. 8. Poincare´ sectionP50, dP/dt.0 for the symmetric
dimer with r50.1 andp52 at E510.5. The circles mark the
initial states, for which the time evolution will be displayed in th
following figures. A regular island embedded into the chaotic
has been enlarged in the lower part of the figure.
ts
or-
in
ce
t

will address the problem of how this property is reflected
the evolution of the fully quantized system.

For systems quantized in one step and chaotic in the c
sical limit the differences in the quantum evolution betwe
initial conditions selected in the regular and chaotic parts
the classical phase space of the system are well known: If
initial conditions of the quantum system are selected in
regular part of the classical phase space the time depend
of the appropriately chosen quantum expectation values
low the corresponding classical values over a substan
amount of time, whereas for initial conditions chosen in t
chaotic part of the classical phase space these values st
deviate from each other almost immediately~see, e.g.,@18#!.
In order to investigate this connection in our case we h
selected different initial conditions in the regular and chao
parts of the Bloch sphere of the system, and compared
evolution in the mixed description with that of expectatio
values obtained from the fully quantized system. In Fig
three different initial conditions on the Bloch sphere of t
excitonic subsystem are shown.A belongs to the main regu
lar region of the dynamics in the mixed description,B to the
chaotic region, andC to a small regular island embedded
a large chaotic surrounding. For a comparison of the dyna
ics in the mixed and fully quantized descriptions for the
cases we selected the variablesQ(t) and z(t) displayed in
the upper parts of Figs. 9–11.

We first compare the dynamics for initial conditions l
cated in the main regular~antibonding! and main chaotic
~bonding! regions. Since the initial state of the fully quan
tized system is chosen as a product state for which the
coupling implicit in the derivation of Eq.~13! is justified,
there is always an interval at the beginning of the time e
lution where the mixed description follows closely the qua
tum data. Then, however, there is indeed a striking diff
ence between initial conditions selected in the regular
the chaotic parts of the phase space of the mixed system
initial conditions in the regular part~A, Fig. 9! the quantum
expectation valueQ(t) follows the classical trajectory of the

a

n

g
-

FIG. 9. Time evolution of the
initially factorized coherent state
corresponding toA in Fig. 8
@f(t50)5p, z(0)520.5,
Q(0)521.2,E50.55#. In the up-
per parts the quantum expectatio
values ofQ andsz ~full lines! are
compared to the correspondin
quantities of the mixed quantum
classical description ~dashed
lines!. In the lower part the quan-
tum Bloch radiusR(t) ~44! is dis-
played using a larger time scale.
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FIG. 10. Time evolution of the
initially factorized coherent state
corresponding toB in Fig. 8
@w(t50)50, z(0)50, Q(0)
5214.1,E50.55#. See Fig. 9 for
details.
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mixed description over several periods and then, apart fro
slowly growing phase shift, both dependences keep a sim
oscillatory form, whereas for an initial condition in the ch
otic part ~B, Fig. 10! the corresponding curves are com
pletely different and the deviation between both starts
ready after a fourth of the oscillator period. This confirms
our case the general feature of classically chaotic system
produce a fast breakdown of the validity of quasiclassi
approximations. The comparison for the occupation diff
encez(t) of the excitonic sites is not so direct, because
exciton constitutes the fast subsystem displaying rapid os
lations in the mixed description. For the regular case
observe that the slowly changing mean value ofz(t) ob-
tained from the mixed description is related to the quant
data, though the amplitude and phase of the superimpo
rapid oscillations are different after a few periods of the e
a
ar

l-
r
to
l
-
e
il-
e

ed
-

citonic subsystem. In the chaotic case the breakdown of
mixed description for shorter times is evident and there is
correspondence for the mean values.

The gradual development of quantum correlations
tween both subsystems, which are absent in the initially f
torized state, can be quantified by calculating the effect
Bloch radius

R~ t !5Ax2~ t !1y2~ t !1z2~ t ! ~44!

of the excitonic subsystem using the time-dependent exp
tation values ofsx , sy , and sz . Note that the reduced
density matrixr(t) for the excitonic subsystem, obtaine
from the full density matrix by taking the trace over th
FIG. 11. Time evolution of the
initially factorized coherent state
corresponding toC in Fig. 8
@w(t50)50, z(0)50.9, Q(0)
5224.0,E50.55#. See Fig. 9 for
details.
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oscillator states, is related toR(t) via Trr2(t)
5 1

2@11R2(t)#. For the factorized and correspondingly u
correlated initial quantum state the value of the Bloch rad
is R(0)51.R(t) will decrease in the course of time accor
ing to the degree to which quantum correlations lead to
entanglement between both subsystems. In the lower par
Figs. 9–11, the dependence of the Bloch radius on the tim
displayed for a long-time interval. The difference betwe
the behavior for initial conditions chosen in the regular a
chaotic parts of the phase space of the mixed descriptio
remarkable: For initial conditions in the regular part of t
phase spaceR(t) stabilizes at a value close to 1, whereas
the initial conditions in the chaotic part the descent is mu
more pronounced, and the long-time value ofR(t) is much
lower, thus indicating stronger quantum correlations in
chaotic case. The correlations between the subsystems
the reason for the breakdown of the mixed description wh
implicitly contains the factorization of expectation value
Therefore the smaller value ofR(t) observed for the state
prepared in the chaotic region confirms the faster breakd
of the mixed description as compared to a regular ini
state. However, it is important to note that the striking d
ference between the values ofR(t) is not restricted to this
initial period, but extends to much longer times~which are,
on the other hand, small compared to the time for quan
recurrences!. In this respect our results indicate tim
dependent quantum signatures of chaos of the mixed des
tion which are beyond the well-known different time sca
for the breakdown of quasiclassical approximations.

Finally we present the example for a quantum state p
pared on a regular island embedded into chaotic region
the mixed quantum-classical phase space~C, Fig. 11!. The
structure of the selected island is shown in the lower par
Fig. 8. For such a state the situation is specific due to
spreading of the quantum state out of the regular island.
ter some initial time in which the quantum dynamics prob
the regular region of the mixed dynamics, the wave pac
enters the region in which the mixed dynamics is chao
Correspondingly for an initial time interval we find that th
agreement between the mixed and full quantum descrip
is as good as expected for regular dynamics, whereas
long times the quantum system shows the typical behavio
a chaotic state. The latter feature is evident from the ti
dependence of the Bloch radius which is displayed in
lower part of Fig. 11 on a sufficiently large time scale.

V. CONCLUSIONS

~1! We compared the nonlinear dynamical properties o
coupled quasiparticle-oscillator system in a mixed quantu
e
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classical description to the full quantum evolution of t
model. Our results are related to the general question of h
the idea of the Born-Oppenheimer approach to analyze c
plex systems by a stepwise quantization can be extended
dynamical description. A more systematic investigation
this question using other model systems is certainly of in
est in view of the widespread use of this approach.

~2! We demonstrated that the regular structures of
mixed quantum-classical description such as the fixed po
and the presence of a separatrix are associated with the
responding adiabatic approximation, in which the nonad
batic couplings are switched off and integrable reference s
tems can be defined. Comparing the evolution of quant
wave packets to the mixed quantum-classical description,
found that regular structures of the mixed description c
serve as a support for wave packet propagation in the f
quantized system in the adiabatic regime. This should be
interest for other systems to which a stepwise quantiza
must be applied due to their more complex structure, e.g.,
the purpose of forecasting the qualitative properties of pro
gating wave packets using the mixed description as a re
ence system.

~3! Signatures of chaos in the mixed quantum-class
description were found in the full quantum evolution of th
system. In analogy to previous results for systems with
proper classical limit, the breakdown of the quasiclassi
approximation is enhanced for states prepared in a cha
region of the phase space. On the other hand, the stro
quantum correlations between the subsystems of the f
quantized system, which were found in the chaotic region
the mixed description, persist even in the long-time evolut
of the system, and are specific signatures of chaos in
mixed description.

~4! From the point of view of the Born-Oppenheime
quantization scheme, there are different possible source
chaos in a mixed quantum-classical model system. Either
adiabatic potentials are sufficiently complex~nonlinear and
couple more than one vibronic degree of freedom! to support
chaotic motion even within the adiabatic approximation,
the chaos is due to nonadiabatic couplings. In the conside
model the adiabatic potentials are one dimensional and
manifestly integrable. Hence the observed quantum sig
tures of chaos are unambiguously related to nonadiab
couplings. This mechanism should be of interest also
other systems treated by a stepwise quantization.
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