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Entropic Bell inequalities
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We derive entropic Bell inequalities from considering entropy Venn diagrams. These entropic inequalities,
akin to the Braunstein-Caves inequalities, are violated for a quantum-mechanical Einstein-Podolsky-Rosen
pair, which implies that the conditional entropies of Bell variables must be negative in this case. This suggests
that the satisfaction of entropic Bell inequalities is equivalent to the non-negativity of conditional entropies as
a necessary condition for separability.@S1050-2947~97!04505-8#

PACS number~s!: 03.65.Bz, 05.30.2d, 89.70.1c
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The essence of Bell inequalities@1,2# is related to Ein-
stein’s notion of ‘‘realism’’@3#: that an object has ‘‘objective
properties’’ whether they are measured or not. Bell inequ
ties, in their simplest form, reflect constraints on the statis
of any threelocal properties of a collection of objects. The
constraints must be obeyed if the three properties can
independently known for each object. An intuitive discuss
of Bell inequalities in this context is due to Wigner@4# ~see
also @5#!. Consider a set of objects, each characterized
three two-valued~or dichotomic! propertiesa, b, and c.
Then, grouping the objects as a function oftwo ~out of the
three! properties~for instance grouping together objects ha
ing propertya but notb), it is easy to build a simple inequa
ity relating the number of objects in various groups defin
by different pairs of properties. For example,

n~a, not b!<n~a, not c!1n~not b, c!. ~1!

While such an inequality only refers to the simultaneo
specification of anypair of properties, its satisfaction de
pends on the existence of a probability distribution for
three. Thus, even when the three properties cannot be
cessed at the same time~for whatever reason!, Eq. ~1! still
holds provided that there exists such anobjectivedescription
of each object using three parametersa, b, andc; therefore,
Eq. ~1! provides a straightforward test of ‘‘local realism
~i.e., the combination of objectivity and locality!. As con-
firmed experimentally@6#, an inequality such as Eq.~1! can
be violated in quantum mechanics. It is the uncertainty p
ciple ~implying that the simultaneous perfect knowledge
two conjugate observables is impossible! which is at the root
of such a violation. Arguments similar to those above
used to derive the Bell inequalities@1# or their generaliza-
tion, the Clauser-Horne-Shimony-Holt~CHSH! inequalities
@7#, and their violation can be traced back to the nonex
ence of an underlying joint probability distribution for in
compatible variables.

The purpose of this paper is to show that the violation
Bell inequalities in quantum mechanics is directly connec
to the existence ofnegativequantum entropies, a featur
which is classically forbidden. We have shown in previo
work @8# that a consistent quantum information theory tre
ing classical correlation and quantum entanglement on
same footing implies that conditional entropies can be ne
551050-2947/97/55~5!/3371~4!/$10.00
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tive. This purely quantum behavior can be traced back to
fact that the eigenvalues of a ‘‘conditional density matrix
can exceed 1.~In contrast, the conditional probabilities i
classical information theory are always bounded by o
which implies the classical property that conditional ent
pies are non-negative.! Negative conditional entropies appe
precisely in the case of quantum entanglement@8#, for in-
stance for an Einstein-Podolsky-Rosen~EPR! wave function,
which is the typical object of Bell-type experiments. As
consequence, it is natural to seek for a relation between
nonclassical feature and the violation of Bell inequalities,
standard evidence for the existence of quantum nonlocal
relations. To begin with, we derive anentropicBell inequal-
ity that resembles the conventional one but involves mut
entropies rather than correlation coefficients. This entro
Bell inequality is related to the Braunstein-Caves inform
tion Bell inequality @9#, and implies Schumacher’s triangl
inequality for information distances@10#. Unlike those, how-
ever, our inequality has a structure isomorphic to the conv
tional one, and has a simple geometric interpretation ba
on the ternary entropy diagram describing the Bell variab
a, b, andc. Indeed, we show that the violation of our e
tropic Bell inequalities implies that one out of three cond
tional entropies describingabc must be negative, a featur
that eliminates any classical description of the system.
show that these entropic Bell inequalities are violated wh
performing Bell-type measurements on EPR pairs, for
ample, but not necessarily at the same angles as the con
tional Bell inequalities. Therefore, our entropic Bell inequa
ties provide another necessary condition for separabi
distinct from the standard Bell inequalities.

Consider two widely separated entangled systems in g
eral, or, more specifically, a pair of spin-1/2 particles in
singlet state~Bohm’s @11# version of an EPR pair!

uC&5
1

A2
~ u↑↓&2u↓↑&). ~2!

Assume that an observer, acting independently on each
ticle, can measure the spin component of that particle al
two possible orientations, for example with a Stern-Gerla
setup. Let the first observer either measure thez component
of one of the particles~and call this observableA and the
3371 © 1997 The American Physical Society
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3372 55N. J. CERF AND C. ADAMI
outcome of the measurementa) or else the component alon
an axis making an angleu with the z axis ~observableB,
with outcome b). Correspondingly, the second observ
measures~on the second particle! either thez component
~observableA8) or else the component making an anglef
with thez axis ~observableC) @12#. Locality implies that the
two distant observers have no influence on each other,
the decision to make one of the two possible measurem
on the first particle does not affect the outcome of the m
surement on the other particle. Indeed, it is known that
marginal statistics of the outcome of the spin measurem
on the second particle,c for instance, is unchanged wheth
one measuresA or B on the first particle. Let us now outlin
a general derivation of conventional Bell inequalities~see,
e.g., @13#!. Consider three dichotomic random variablesA,
B, andC that represent properties of the system and can o
take on the values11 or21 with equal probability~ 12!. For
our purposes, they stand of course for the measured
components~either up or down along the chosen axis!, i.e.,
the Bell variables.~As A8 is fully anticorrelated withA, we
do not make use of it.! Any random set of outcomesa, b,
andc must obey

ab1ac2bc<1 ~3!

along with the two corresponding equations obtained by
clic permutation (a→b→c). Indeed, the left-hand side o
Eq. ~3! is equal to 1 whena5b, while it is equal to
2162 whena52b. Taking the average of Eq.~3! and its
permutations yields the three basic Bell inequalities

^ab&1^ac&2^bc&<1, ~4!

^ab&2^ac&1^bc&<1, ~5!

2^ab&1^ac&1^bc&<1 ~6!

relating the correlation coefficients between pairs of va
ables. Equations~5! and~6! can be combined in the form o
the standard Bell inequality@13#

u^ab&2^ac&u1^bc&<1 . ~7!

The important point is that inequalities~4!–~6! involve only
the simultaneous specification oftwo ~out of the three! ran-
dom variables, although it is assumed that thethreevariables
possess an element of reality, i.e., they canin principle be
known at the same time~even if not in practice!. In other
words, it is assumed that there exists an underlying jo
probability distributionp(a,b,c), in which case the Bell in-
equalities@which depend only on the marginal probabili
p(a,b)5(cp(a,b,c) and cyclic permutations# must be sat-
isfied. Therefore, the violation ofanyof the inequalities~4!–
~6! implies thata, b, andc cannot derive from a joint distri-
bution~i.e., cannot be described by any local hidden-varia
theory!, as emphasized in Ref.@9#. In the following, we will
show that the violation of Bell inequalities, while ruling ou
such a classical underlying description of local realism, s
does not contradict a quantum one based on an underl
joint density matrixrABC , but forces the corresponding en
tropies to benegative@8#.
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Let us derive Bell inequalities akin to the convention
ones, Eqs.~4!–~6!, but relatingentropiesof the three di-
chotomic random variablesA, B, andC. We assume that one
has access to the entropy of each variableH(A), H(B),
H(C), as well as to the mutual entropy between each pai
variablesH(A:B), H(A:C), andH(B:C). Here the entropies
are Shannon entropies@14#, given ~in bits! by

H~A!52(
a

p~a!log2p~a!, ~8!

and the mutual entropies are defined by

H~A:B!5H~A!1H~B!2H~AB!. ~9!

The mutual entropyH(A:B) corresponds to the entrop
shared byA and B, or in other words to theinformation
aboutA that is conveyed byB ~or conversely!. Physically,
H(A:B) is closely related to the correlation coefficient b
tweena andb. To establish notation, let us also define t
conditional entropyH(AuB) as the entropy of variableA
while ‘‘knowing,’’ i.e., having measured,B:

H~AuB!5H~AB!2H~B!, ~10!

which allows us to separate any entropy into a conditio
and a mutual piece with respect to another variable@15#:

H~A!5H~AuB!1H~A:B!. ~11!

For a three-variable system we can splitinformation into
conditional and mutual information in the same fashion:
informationH(A:B), for example, can be split as

H~A:B!5H~A:BuC!1H~A:B:C!. ~12!

Thus, a conditional information such asH(A:BuC)
5H(AC)1H(BC)2H(C)2H(ABC) is that piece of an in-
formation ~between two variables! that is not shared by a
third variable, i.e., the informationconditional on the third
variable. The piece of information thatis shared by a third
variable can be written as

H~A:B:C!5H~A!1H~B!1H~C!2H~AB!2H~AC!

2H~BC!1H~ABC!. ~13!

Let us now construct Bell inequalities involving informatio
between pairs of variables~rather than correlation coeffi
cients!. Relations between entropies are conveniently rep
sented by entropy Venn diagrams@16,17#, and inequalities
can easily be read off them. As shown in Fig. 1, the tern
entropy diagram for the Bell variablesABC has seven
(2n21 with n53) entries. We use the symbolsa, b, and
g for conditional entropies@e.g.,a5H(AuBC)#, ā, b̄, and
ḡ for conditional informations@e.g.,ā5H(B:CuA)#, and de-
note byd5H(A:B:C) the mutual information between th
three Bell variables. Apart from the marginal statistics
each of the variablesA, B, andC, experimentally we also
have access to the marginal statistics of any pair (AB, AC, or
BC), yielding six constraints. Consequently, we do not ha
enough constraints to completely fill in the entropy diagra
of Fig. 1: the missing constraint concerns the intrins
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55 3373ENTROPIC BELL INEQUALITIES
three-body correlation which is not fixed by two-body stat
tics. The seven entries in the ternary entropy diagram
thus be expressed as a function of the six entropiesH(A),
H(B), H(C), H(A:B), H(A:C), H(B:C), plus a paramete
d, the inaccessibleternary mutual information.

Despite this indeterminacy, the entries can be combi
to give expressionsindependentof d, and which therefore
can be expressed in terms of measurable entropies o
More precisely, we find

a1ā5H~A!1H~B:C!2H~A:B!2H~A:C!, ~14!

b1b̄5H~B!1H~A:C!2H~A:B!2H~B:C!, ~15!

g1ḡ5H~C!1H~A:B!2H~A:C!2H~B:C!. ~16!

If A, B, andC describe a classical system, it is known th
all the entries exceptd are non-negative. Indeed, the mon
tonicity of Shannon entropies implies that conditional ent
pies such asa5H(AuBC) are positive semidefinite@18#. By
the same token, a conditional information such
ā5H(B:CuA), as it describes information between two va
ables when a third is known, is non-negative.~This property
is called strong subadditivity@18#.! The indeterminacy ofd
can be traced back to the freedom in the choice of a lo
hidden-variable model to describe the marginal statistics,
its value is unimportant as far as questions of locality
concerned. From Eqs.~14!–~16! it follows straightforwardly
that the three inequalities

H~A:B!1H~A:C!2H~B:C!<H~A!, ~17!

H~A:B!2H~A:C!1H~B:C!<H~B!, ~18!

2H~A:B!1H~A:C!1H~B:C!<H~C! ~19!

must be satisfied if the systemABC is classical. These equa
tions therefore constitute entropic Bell inequalities. Note t
in the case whereA, B, andC have a uniform distribution,
one hasH(A)5H(B)5H(C)51; the inequalities then be
come very similar to the standard ones@Eqs. ~4!–~6!#, but
relating mutual entropies rather than correlation coefficie
For instance, one can write

uH~A:B!2H~A:C!u1H~B:C!<1 ~20!

FIG. 1. Ternary entropy diagram for the Bell variablesABC.
The entriesa,ā,b,b̄,g,ḡ, andd are defined in the text. All of them
~exceptd) are non-negative in Shannon information theory@15#.
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from Eqs. ~18! and ~19!, in perfect analogy with Eq.~7!.
More generally, the CHSH inequalities for mutual entropi
can be derived using the chain rule for entropies. The res
ing inequality

H~A8:B!1H~A:C!2H~B:C!1H~A:A8!<2 , ~21!

is similar in form to the traditional CHSH inequality~see,
e.g., @13#!, and implies the Braunstein-Caves inequality@9#
as well as Schumacher’s quadrilateral inequality@10#.

The converse of the previous reasoning is most intere
ing. If the data that are extracted from marginal statist
show that one of the three entropic inequalities is violated
implies that one of the three inequalitiesa1ā>0 ~etc.! is
violated. Therefore, since strong subadditivity ofquantum
entropies@18# implies thatā, b̄, andḡ are always>0, one
of the conditional entropiesa, b, or g must be negative,
which of course is classically forbidden. Thus the violatio
of an entropic Bell inequality always goes hand in hand w
the appearance of a negative conditional entropy in Fig
This is the case for example in Bell measurements of E
pairs, as we show in more detail below. Negative entrop
automatically rule out a description of the system in terms
local hidden variables~or an underlying joint probability dis-
tribution!. If there cannot be any such description, it is we
known that the system in question isnonseparable@19#.
Equivalently, it is shown in Refs.@8,16# that the concavity of
conditional quantum entropies implies that any separa
density matrix is characterized by non-negative conditio
entropies ~see also @20#!. In summary, the satis-

FIG. 2. ~a! Left-hand sideLE of entropic Bell inequalities Eqs.
~17!–~19! for EPR Bell measurements withu5p/3.958. The in-
equalities are violated ifLE.1. ~b! Left-hand sideLC of conven-
tional inequalities Eqs.~4!–~6! at the same angle.
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3374 55N. J. CERF AND C. ADAMI
faction of entropic Bell-inequalities, or equivalently the no
negativity of the corresponding entropies, is anecessarycon-
dition for separability, albeit not a sufficient one. Let
show that this condition is distinct from the one based on
satisfaction of traditional Bell inequalities by considering
an example Bell experiments on EPR pairs. In this ca
because the outcomes61 occur with equal probability~ 12!,
the correlation coefficient can be written a
^ab&54p11215124p12 , with p11 (p12) being the
probability to observe aligned~anti-aligned! spins. The mu-
tual entropy~in bits! can then trivially be expressed in term
of the corresponding correlation coefficient via

H~A:B!5 1
2 log2~12^ab&2!1

^ab&
2

log2S 11^ab&
12^ab& D .

~22!

Using the standard quantum results for the correlation c
ficients, i.e., ^ab&52^a8b&5cos(u), ^ac&52cos(f), and
^bc&52cos(u2f), in Fig. 2~a! we plot the left-hand side o
Eqs.~17!–~19! as a function off for the ‘‘most violating’’
angle u5p/3.958 ~the maximum violation occurs a
f5u/2). Note that the conventional Bell inequalities~4!–~6!
are maximally violated at a different angleu5p/3. Never-
theless, we plot the left-hand side of these equations at
same angleu as the entropic ones for comparison in F
2~b!. Despite the similarity in the structure of the equatio
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the violation of one conventional Bell inequality does n
necessarily imply the violation of an entropic one, or vi
versa.

We have derived entropic Bell inequalities by demand
that the conditional entropies arising in the ternary entro
diagram for Bell variables be non-negative, providing a n
essary condition for separability. The experimental violati
of Bell inequalities, traditionally interpreted as ruling out th
existence of a joint probabilitypabc , therefore also reflects
the appearance of negative conditional entropies in Bell-t
measurements. In fact, these experiments do not rule o
description in terms of an underlying jointdensity matrix
rABC . Yet the latter does not describethreephysical systems
as the EPR experiment only involvestwo detectors. Because
of the degree of freedom involved with the choice ofd, such
a rABC cannot be constructed explicitly. We are therefo
uncertain as to the physical interpretation ofrABC , a diffi-
culty inherent to independentBell-type measurements o
identically prepared systems. It has recently been sugge
that consecutivemeasurements performed on a single qu
tum system are more apt at revealing ‘‘hidden nonlocalit
@21#. It might therefore prove to be fruitful to apply th
present analysis to such situations.
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