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Entropic Bell inequalities
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We derive entropic Bell inequalities from considering entropy Venn diagrams. These entropic inequalities,
akin to the Braunstein-Caves inequalities, are violated for a quantum-mechanical Einstein-Podolsky-Rosen
pair, which implies that the conditional entropies of Bell variables must be negative in this case. This suggests
that the satisfaction of entropic Bell inequalities is equivalent to the non-negativity of conditional entropies as
a necessary condition for separabilifg1050-294{@7)04505-9

PACS numbd(s): 03.65.Bz, 05.30-d, 89.70+c

The essence of Bell inequaliti¢4,2] is related to Ein- tive. This purely quantum behavior can be traced back to the
stein’s notion of “realism”[3]: that an object has “objective fact that the eigenvalues of a “conditional density matrix”
properties” whether they are measured or not. Bell inequalican exceed 1(In contrast, the conditional probabilities in
ties, in their simplest form, reflect constraints on the statisticglassical information theory are always bounded by one,
of anythreelocal properties of a collection of objects. These which implies the classical property that conditional entro-
constraints must be obeyed if the three properties can bgies are non-negatieNegative conditional entropies appear
independently known for each object. An intuitive discussionprecisely in the case of quantum entanglem@it for in-
of Bell inequalities in this context is due to Wigngf] (see  stance for an Einstein-Podolsky-Rog&PR wave function,
also [5]). Consider a set of objects, each characterized byvhich is the typical object of Bell-type experiments. As a
three two-valued(or dichotomig¢ propertiesa, b, andc.  consequence, it is natural to seek for a relation between this
Then, grouping the objects as a functiontab (out of the  nonclassical feature and the violation of Bell inequalities, the
three propertieqfor instance grouping together objects hav- standard evidence for the existence of quantum nonlocal cor-
ing propertya but notb), it is easy to build a simple inequal- relations. To begin with, we derive amtropicBell inequal-
ity relating the number of objects in various groups definedty that resembles the conventional one but involves mutual

by different pairs of properties. For example, entropies rather than correlation coefficients. This entropic
Bell inequality is related to the Braunstein-Caves informa-
n(a, not b)=<n(a, not c)+n(not b, c). (1)  tion Bell inequality[9], and implies Schumacher’s triangle

inequality for information distancg4.0]. Unlike those, how-
While such an inequality only refers to the simultaneouseVer, our inequality has a structure isomorphic to the conven-
specification of anypair of properties, its satisfaction de- tional one, and has a simple geometric interpretation based
pends on the existence of a probability distribution for allon the ternary entropy diagram describing the Bell variables
three Thus, even when the three properties cannot be ad, b, andc. Indeed, we show that the violation of our en-
cessed at the same tintfor whatever reason Eq. (1) still tropic Bell inequalities implies that one out of three condi-
holds provided that there exists suchabjectivedescription  tional entropies describingbc must be negative, a feature
of each object using three parameterd, andc; therefore, that eliminates any classical description of the system. We
Eq. (1) provides a straightforward test of “local realism” show that these entropic Bell inequalities are violated when
(i.e., the combination of objectivity and localityAs con- ~ performing Bell-type measurements on EPR pairs, for ex-
firmed experimentally6], an inequality such as Eql) can  ample, but not necessarily at the same angles as the conven-
be violated in quantum mechanics. It is the uncertainty prinIiOna| Bell inequalities. Therefore, our entropic Bell inequali-
ciple (implying that the simultaneous perfect knowledge ofties provide another necessary condition for separability,
two conjugate observables is impossjhiich is at the root  distinct from the standard Bell inequalities.
of such a violation. Arguments similar to those above are Consider two widely separated entangled systems in gen-
used to derive the Bell inequalitidd] or their generaliza- €ral, or, more specifically, a pair of spin-1/2 particles in a
tion, the Clauser-Horne-Shimony-HJl€HSH) inequalities ~ Singlet statgBohm’s[11] version of an EPR pajir
[7], and their violation can be traced back to the nonexist-

ence of an underlying joint probability distribution for in- 1
compatible variables. [W)y=—=(11)—=[11). )
The purpose of this paper is to show that the violation of V2

Bell inequalities in quantum mechanics is directly connected

to the existence ohegativequantum entropies, a feature Assume that an observer, acting independently on each par-
which is classically forbidden. We have shown in previousticle, can measure the spin component of that particle along
work [8] that a consistent quantum information theory treat-two possible orientations, for example with a Stern-Gerlach
ing classical correlation and quantum entanglement on theetup. Let the first observer either measureziftemponent
same footing implies that conditional entropies can be negasf one of the particlegand call this observabléd and the
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outcome of the measuremeait or else the component along Let us derive Bell inequalities akin to the conventional
an axis making an anglé@ with the z axis (observableB, ones, Eqs.(4)—(6), but relatingentropiesof the three di-
with outcome b). Correspondingly, the second observerchotomic random variables, B, andC. We assume that one
measuregon the second particleeither thez component has access to the entropy of each variadlgA), H(B),
(observableA’) or else the component making an angle H(C), as well as to the mutual entropy between each pair of
with the z axis (observableC) [12]. Locality implies that the variablesH(A:B), H(A:C), andH(B:C). Here the entropies
two distant observers have no influence on each other, i.eare Shannon entropi¢44], given (in bits) by

the decision to make one of the two possible measurements

on the first particle does not affect the outcome of the mea- _

surement on the other particle. Indeed, it is known that the H(A)= ; p(a)logp(a), ®
marginal statistics of the outcome of the spin measurement

on the second particle, for instance, is unchanged whether and the mutual entropies are defined by

one measurel or B on the first particle. Let us now outline

a general derivation of conventional Bell inequalitisge, H(A:B)=H(A)+H(B)—H(AB). ©)
e.g.,[13]). Consider three dichotomic random variabkes

B, andC that represent properties of the system and can onl
take on the values-1 or —1 with equal probability(3). For
our purposes, they stand of course for the measured
componentgeither up or down along the chosen axise.,
the Bell variables(As A’ is fully anticorrelated withA, we
do not make use of jt.Any random set of outcomes, b,
andc must obey

The mutual entropyH(A:B) corresponds to the entropy
¥hared byA and B, or in other words to thenformation
SpaboutA that is conveyed byB (or conversely. Physically,
(A:B) is closely related to the correlation coefficient be-
tweena andb. To establish notation, let us also define the
conditional entropyH(A|B) as the entropy of variablé
while “knowing,” i.e., having measured:
ab+ac—bcs1 (3 H(A[B)=H(AB)~H(B), (10

which allows us to separate any entropy into a conditional

along with the two corresponding equations obtained by Cyand a mutual piece with respect to another varigbf:
clic permutation 4—b—c). Indeed, the left-hand side of

Eq. (3) is equal to 1 whena=b, while it is equal to H(A)=H(A|B)+H(A:B). 11
—1+2 whena= —b. Taking the average of E¢3) and its _ N o
permutations yields the three basic Bell inequalities For a three-variable system we can sptiformation into
conditional and mutual information in the same fashion: the
(ab)+(ac)—(bc)=<1, (4)  informationH(A:B), for example, can be split as
<ab>_<ac>+<bc>$1, (5) H(AB):H(AB|C)+H(ABC) (12)
Thus, a conditional information such asH(A:B|C)
—(ab)+(ac)+(bc)=<1 6 —H(AC)+H(BC)—H(C)—H(ABC) is that piece of an in-

lati h lati fici b , ¢ . formation (between two variablesthat is not shared by a
relating the correlation coefficients between pairs of varky,; g variable, i.e., the informationonditional on the third

ables. Equation(sS)_ and(6)_ can be combined in the form of variable. The piece of information th& shared by a third
the standard Bell inequalityl3] variable can be written as

[(ab) —(ac)|+(bc)<1. (7 H(A:B:C)=H(A)+H(B)+H(C)—H(AB)—H(AC)

The important point is that inequaliti€d)—(6) involve only —H(BC)+H(ABC). (13

the simultaneous specification tfo (out of the thregran-

dom variables, although it is assumed thatttireevariables L€t us now construct Bell inequalities involving information
possess an element of reality, i.e., they damprinciple be between pairs of variablegather than correlation coeffi-
known at the same timéeven if not in practice In other cienty. Relations between entropies are conveniently repre-
words, it is assumed that there exists an underlying joinfented by entropy Venn diagrarfis6,17, and inequalities
probability distributionp(a,b,c), in which case the Bell in- can easily be read off them. As shown in Fig. 1, the ternary
equalities[which depend only on the marginal probability entropy diagram for the Bell variableABC has seven
p(a,b)=3.p(a,b,c) and cyclic permutatiojsmust be sat- (2"—1 with n=3) entries. We use the symbais 8, and
isfied. Therefore, the violation @fny of the inequalitieg4)—  y for conditional entropiege.g., a=H(A|BC)], «, B, and

(6) implies thata, b, andc cannot derive from a joint distri- vy for conditional informationge.g.,a= H(B:C|A)], and de-
bution (i.e., cannot be described by any local hidden-variablgnote by 6=H(A:B:C) the mutual information between the
theory), as emphasized in R€R]. In the following, we will  three Bell variables. Apart from the marginal statistics of
show that the violation of Bell inequalities, while ruling out each of the variables, B, andC, experimentally we also
such a classical underlying description of local realism, stillhave access to the marginal statistics of any paB,(AC, or
does not contradict a quantum one based on an underlyingC), yielding six constraints. Consequently, we do not have
joint density matrixpagc, but forces the corresponding en- enough constraints to completely fill in the entropy diagram
tropies to benegative[8]. of Fig. 1: the missing constraint concerns the intrinsic
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A from Egs.(18) and (19), in perfect analogy with Eq(7).
More generally, the CHSH inequalities for mutual entropies
can be derived using the chain rule for entropies. The result-

ing inequality
vv H(A”:B)+H(A:C)—H(B:C)+H(A:AH<2, (21
6 is similar in form to the traditional CHSH inequalitisee,
e.g.,[13]), and implies the Braunstein-Caves inequali®y
as well as Schumacher’s quadrilateral inequdlit].
B C The converse of the previous reasoning is most interest-

ing. If the data that are extracted from marginal statistics
show that one of the three entropic inequalities is violated, it
FIG. 1. Ternary entropy diagram for the Bell variablkBC.  jmplies that one of the three inequalitiest =0 (etc) is
The entriesy, @, 8,8, 7,7, andé are defined in the text. All of them yjjp|ated. Therefore, since strong subadditivity qiantum
(exceptd) are non-negative in Shannon information thed$. entropieg 18] implies thata, 8, andy are always=0, one
of the conditional entropies, 8, or v mustbe negative,
which of course is classically forbidden. Thus the violation
Bf an entropic Bell inequality always goes hand in hand with
the appearance of a negative conditional entropy in Fig. 1.
This is the case for example in Bell measurements of EPR
airs, as we show in more detail below. Negative entropies
utomatically rule out a description of the system in terms of
local hidden variablegor an underlying joint probability dis-
Yribution). If there cannot be any such description, it is well-
known that the system in question monseparable[19].
a+a=H(A)+H(B:C)—H(AB)—H(A:C), (14 Equi\_/glently, it is shown in R_efs{S_,16] yhat the concavity of
conditional quantum entropies implies that any separable
density matrix is characterized by non-negative conditional
entropies (see also [20]). In summary, the satis-

three-body correlation which is not fixed by two-body statis-
tics. The seven entries in the ternary entropy diagram cal
thus be expressed as a function of the six entropiéa),
H(B), H(C), H(A:B), H(A:C), H(B:C), plus a parameter
8, theinaccessibldernary mutual information.

Despite this indeterminacy, the entries can be combine
to give expressionindependenof &, and which therefore
can be expressed in terms of measurable entropies onl
More precisely, we find

,8—1—,8_= H(B)+H(A:C)—H(A:B)—H(B:C), (15

y+y=H(C)+H(A:B)—H(A:C)—H(B:C). (16)

If A, B, andC describe a classical system, it is known that
all the entries excepf are non-negative. Indeed, the mono-
tonicity of Shannon entropies implies that conditional entro-
pies such asx=H(A|BC) are positive semidefinitgl8]. By

the same token, a conditional information such as
a=H(B:C|A), as it describes information between two vari-
ables when a third is known, is non-negatiVEhis property

is called strong subadditivitj18].) The indeterminacy of

can be traced back to the freedom in the choice of a local
hidden-variable model to describe the marginal statistics, but

L, (bits)

its value is unimportant as far as questions of locality are 00 0.5 1.0 15 2.0
concerned. From Eq$14)—(16) it follows straightforwardly 20 : . ;
that the three inequalities ()
15
H(A:B)+H(A:C)—H(B:C)<H(A), 17
10
H(A:B)—H(A:C)+H(B:C)<H(B), (18 2 o5
—H(A:B)+H(A:C)+H(B:C)<H(C) (19 0.0
must be satisfied if the systeABC is classical. These equa- -05

tions therefore constitute entropic Bell inequalities. Note that
in the case wherd, B, andC have a uniform distribution,
one hasH(A)=H(B)=H(C)=1; the inequalities then be-
come very similar to the standard onld=gs. (4)—(6)], but
relating mutual entropies rather than correlation coefficients. FIG. 2. (a) Left-hand sidelg of entropic Bell inequalities Egs.
For instance, one can write (17)—(19 for EPR Bell measurements with= 7/3.958. The in-
equalities are violated iEg>1. (b) Left-hand sideL of conven-
|[H(A:B)—H(A:C)|+H(B:C)<1 (200  tional inequalities Eqs(4)—(6) at the same angle.
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faction of entropic Bell-inequalities, or equivalently the non-the violation of one conventional Bell inequality does not
negativity of the corresponding entropies, isexessargon-  necessarily imply the violation of an entropic one, or vice
dition for separability, albeit not a sufficient one. Let us versa.

show that this condition is distinct from the one based on the We have derived entropic Bell inequalities by demanding
satisfaction of traditional Bell inequalities by considering asthat the conditional entropies arising in the ternary entropy
an example Bell experiments on EPR pairs. In this casediagram for Bell variables be non-negative, providing a nec-

because the outcomesl occur with equal probability?), essary condition for separability. The experimental violation
the correlation coefficient can be written as Of Bell inequalities, traditionally interpreted as ruling out the

ab)=4 —1=1—4p,_, with ) being the €Xistence of a joint prob.abilit]z)ab'c,. therefore qlso_ reflects
E)rogabilﬁ; 0 observe F;Jlrignegnti-glrg?le(dpgpizws. 'Ilhg mu. the appearance of negative conditional entropies in Bell-type

tual entropy(in bits) can then trivially be expressed in terms Measurements. In fact, these experiments do not rule out a
of the corresponding correlation coefficient via description in terms of an underlymg Jouutens,lty matrix
pagc- Yetthe latter does not descril@eephysical systems

as the EPR experiment only involvego detectors. Because
. of the degree of freedom involved with the choicef®fuch

a pagc cannot be constructed explicitly. We are therefore

(22 yncertain as to the physical interpretationmfzc, a diffi-

Using the standard quantum results for the correlation coef€Uty inherent toindependentBell-type measurements on
ficients, i.e.,(ab)=—(a’'b)=cos@), (ac)=—cos), and identically prgpared systems. It has recently begn suggested
(bc)=—cos(— &), in Fig. Aa) we plot the left-hand side of that consecutivaneasurements perfprmed. on a single quan-
Egs.(17)—(19) as a function of for the “most violating” tum system are more apt at revealing “h_ldden nonlocality”
angle 6=/3.958 (the maximum violation occurs at [21]. It might 'gherefore prove to be fruitiul to apply the
¢= 6/2). Note that the conventional Bell inequalitieg—(6) present analysis to such situations.
are maximally violated at a different angte= /3. Never- This work was supported in part by NSF Grant Nos. PHY
theless, we plot the left-hand side of these equations at th@4-12818 and PHY 94-20470, and by a grant from DARPA/
same angled as the entropic ones for comparison in Fig. ARO through the QUIC Program(No. DAAH04-96-1-
2(b). Despite the similarity in the structure of the equations,3086.

1+(ab)
1—-(ab)

(ab)
H(A:B)=3log,(1—(ab)?)+ 5 log,
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