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Transient effects and delay time in the dynamics of resonant tunneling
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We consider an analytic solution of the time-dependent Sthger equation with the initial condition
P(Xx,0)=exp(kx) along —«<x<0 to investigate the time evolution for>0 of the wave function in a
double-barrier resonant structure at resonance. For typical parameters of the structure we find that the single-
resonance approximation is valid from a few tenths of the corresponding lifetime onward. Very short times
require the contribution of many far away resonances. The buildup time along the internal region takes a few
lifetimes. At birth the transmitted wave front is blurred; however, for long times it becomes well defined and
moves with classical velocity yielding a delay time~2#/I" as in the stationary-phase treatment.
[S1050-294{@7)04105-X

PACS numbegs): 03.65—w, 73.40.Gk

I. INTRODUCTION wave whose energy coincides with the resonance energy of a
double-barrier resonant structu(gig. 1). Specifically, we
Most studies on the dynamics of resonant tunneling havare interested in the analysis of the buildup process that leads
used approaches based on the numerical solution of tHe the stationary-wave solution both for the internal region of
Schralinger equation with the initial condition of a Gaussian the potential and for the transmitted propagating-wave solu-
wave packef1-6]. The typical example for the analysis of tion along the regiork>L. We also investigate the wave
resonant tunneling corresponds to that of a classically alfront of the transmitted wave for large times, i.e., much
lowed region between two classically forbidden ones,onger than the time scale given by the lifetime of the reso-
namely, the double-barrier resonant structure. This system izance, and compare it with the free propagating case to study
of interest not only because it can be fabricated nowadaythe notion of delay time from a dynamical point of view.

and possesses potential technological applicafiérg)], but The work is organized as follows. In Sec. Il we present a
also because it lends itself to the investigation of basic issuederivation of the formalism. Section Il deals with some nu-
of the physics of resonant tunneling. merical examples for both the internal and external regions

In this work we consider a recent analytic approach thaof the potential. In Sec. IV we discuss the notion of delay
allows a general treatment of the dynamics of the tunnelingime from a dynamical point of view. Finally, Sec. V con-
process 10]. This approach consists of the solution of thetains the conclusions.
time-dependent Schdinger equation for an arbitrary poten-
tial V(x) defined in the region € x=<L with the initial con- Il. FORMALISM
dition att=0 of a plane wave of momentuki confined in
the half spacex<0 to the left of a shutter located at=0.
The sudden opening of the shutter at the time® allows the
wave to propagate into the regia-0. It may be shown that
as the timet goes to infinity, the wave solution tends to the
stationary solution of the Schdinger equatiorj10]. In this
sense this approach is complementary to those based on [
finite-width wave packets that do not permit one to analyze 'ﬁ(E—H> P(x,1)=0, 2.9
the transition to the stationary case. The shutter problem for
the time propagation of a free wave was initially considered
by Moshinsky[11]. He found that both the current and the S 3?
probability density for a fixed value of the tinteas a func- i
tion of the distance, or for a fixed value ok as a function Yix,1=0) g
of t, present oscillations near the wave front, a phenomenon
he named diffraction in timgl1]. More recently, the shutter
problem has been extended to the case &f gotential by
Eberfeld and Klebef12,13 and considered also by other 0 L X
authors[14]. An experimental observation of diffraction in
time has been recently reported by Szriftgiseal. [15]. FIG. 1. Shutter problem for a double-barrier resonant structure.

The purpose of this work is to apply the approach devel-A plane wave in the regiox<0 is instantaneously released at
oped in Ref[10] to investigate the time evolution of a plane t=0 by the removal of shuttes.

For the sake of completeness we present here a more de-
tailed derivation of the solutiogk(x,t) of the time-dependent
Schralinger equation fox>0 andt>0 given by Gar@a-
Caldera [10]. Let us consider the time-dependent Sehro
dinger equation
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where H= — (#2/2m)d?/dx*+ V(x) and V(x) describes a
resonant tunneling potential profile of arbitrary shape extend-

z-plane
ing fromx=0 tox=L. The initial valuey(x,t=0) is chosen
to be Cq
ekx  x<0
t=0)= 2.2
P(x,t=0) 0. x>L. (2.2

Note thate'** extends only through a half space, so it cannot
be normalized in the usual way. One may Laplace transform
Eq. (2.1 using the standard definition

Wx,k,8)=f P(x.k, et (2.3
0
FIG. 2. Integration contoul’=3,c,+c,+C,+Cs used to

with the initial condition(2.2). It is convenient to make the €valuate Egs(2.15 and(2.33.

change of variables= —ip? «a with a=2m/#% to write the

- i 0
Laplace-transformed equations —G*(x,x’;p)} G L), (24D
72 B X L,
——5+p%|g(x,p)=iae", x=0, (2.4 _ _ |
X Let us multiply Eq.(2.9) by ¢(x,p) and subtract from it Eq.

) ) o (2.5 multiplied by G*(x,x’;p) followed by integration
where the inhomogeneous term arises from the initial Cond'along the region from=0 tox=L. Using Egs(2.7), (2.10

tion (2.2, and(2.11) yields an expression that relatg¢$x, p) with the
52 _ outgoing propagator
(6’?4' pZ—V(X)) Py(x,p)=0, O=x=L, (2.5 B .
P(x,p)= mGﬂo,x;p) (0=sx<L). (2.12

and
2 Evaluating Egs(2.8) and (2.12 at x=L allows us to write
(Wﬂ)z ﬁx,p)=0, x=L. (2.6) the coefficientD(p) as
o .
The Laplace-transformed solutions for E@2.4) and (2.6) D(p)= ﬁGJr(OvL;p)e PL (2.13

are given, respectively, as

. . Hence forx>L,_x, may be written as
— ia(p?—k?) e+ C(p)e'P*, x<0 (2.7 Y(x.p) may
VOSPI=) b pyeipx,  x=L. 2.8

W(x,p)= %GWO,L;p)e“pLeipx (x>L).

(2.19
In Eq. (2.7) the first term on the right-hand side corresponds ) .
to a particular solution of the inhomogeneous equathy).  Equations(2.12) and(2.14) are very convenient because one
Notice that the solutions C(p)exp(—ipx) and can exploit the analytical properties of the propagator on the
D(p)exp(px) appearing, respectively, in Eq$2.7) and complex p plane to (_)btai_n appropriate expressions from
(2.8) are the only physically acceptable solutions to EqSWhICh the corresponding inverse Laplace transform can be

(2.4) and(2.6) sincep=a(1+i)(s/2)*2 evaluated.

Along the internal region of the potential it is convenient
to write the solutiony(x,p) in terms of the outgoing Green'’s A. Internal region
function G™(x,x’;p) that satisfies the equation __Let us consider the analytical continuation of the solution

P ¥(Xx,p), defined along the internal regionsk<L, over the
2_ + )= S(X— X' complexp plane. Takep—z and write the Cauchy contour
(077+p V(x))G (x,x";p)=8(x—x"), O0=x=<L, integpral pp e y
(2.9 _
1 ZiP(X,z

with the outgoing boundary conditions = i )dz=0, (2.1

27 Jr Z—p

=—ipGT(0x’;p) (2.10  where the contoul is as shown in Fig. 2 and is formed by
x=0_ the sum of small circlegc,}, associated with the complex
polesk,=a,—ib, of the propagator, and, and cy, sur-
and rounding, respectively, poles atp andz=Kk, all enclosed

J G+ .
Ix (X,xX";p)
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by the large circlecs, i.e.,I'=2,c,+cp+c+Cs. It can be
shown along the same lines as Rgf6] that for O<x<L,

the integral overcg vanishes as its radius tends to infinity.

Consequently, Eq.2.15 can be written as

1 zﬁx,z) azG"(0X;2)
_| 35 zp O 3gck(z—|o><z—k>°'Z

2i
_2 azG" (0X; z)d ] 0

2B ATy (218
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gion of the double-barrier system. Notice that the derivation
is not based on a particular potential profile and therefore, as
pointed out in Ref[10], the above equation is valid for an
arbitrary potential provided it vanishes after a distance. Note
also that the expansiaf2.20) does not apply atk=0 where
subtractions are required to ensure converg¢hég

It is of interest to direct the attention of the reader to the
limits of Eq. (2.20 for (x,t), as the timet—0 and also
whent becomes very large. At=0 the solutiony(x,k,t)
must vanish forx>0 as specified by the initial condition
(2.2. It follows from Eq.(B4) that fort=0, the Moshinsky

Next we apply the theorem of residues to evaluate the intelunctions appearing in Eq2.20 attain the value

grals above. The residue of the propaga®f(x,x’;k) at
each polek,=a,

shown in Appendix A, namely,

Un(X)Un(x")

reG*(x,x";k)= 2k, (2.17
Hence Eg. (2.16 may be written as
— ~ kGT(0xk) Un(0)Un(X)
O e O T
(2.18

The inverse Laplace transform is given by

CHiom— —
P(x,k,t) = —f p(x.k,p)e'P "“( )p dp.

(2.19
Substitution of Eq(2.18 into Eq. (2.19 yields
P(X,K, 1) = (X, K)M(0K,t)—i >, WM(OKHJ)

(0<x<L), (2.20

where ¢(x,k) =2ikG " (0x;k) stands for the stationary so-

lution to the Schrdinger equation17] and the index runs

over all the poles, which are located on the third and fourth
guadrants of the complek plane. The poles on the third
guadrant denoted bl_, are related to those on the fourth

k., byk_,=—k¥ (r positive. In what followsk,, stands for
any pole unless explicitly indicated by the subindexThe
Moshinsky functiondM (0k,t) andM(0k,,t) in Eq. (2.20

are defined af18,19,11

Ipzt/a 1,
MOa0= 5= S ap= je eriay),
(2.21
whereq=Kk,k,, and the argumeny is given by
1/2] hq
- —iml4 12|
y=—e Zh) - —t (2.22

—ib,, with (a,,b,)>0, can be written in
terms of the functioru,(x) obeying the Schiinger equa-
tion of the problem with outgoing boundary conditions, as

1
M(O,k,t=0)=M(0,kn,t=O)=E, (2.23
with q,, eitherk, or k_, as specified above, and hence Eq.
(2.20 becomes

Un(0)up(X)

1 1
<//(x,k,t=0)=§¢(x,k)—§|; K (0<x<L).

(2.29

Since the stationary solutiofi(x,k) admits the resonant ex-
pansion[16]

: Un(0)Up(X)
K =ik, —————— (0<x<L 2.2
POk =ik G5 (0<x<L) (229
and furthermore resonant states fulfili6]
Up(0)up(x
ZM=0 (0<x<L), (2.26
n Kn
it follows, using the identity
k B 1 1 22
k(k—Kk) K, K=k’ (227

that Eq.(2.24 vanishes exactly. It is interesting to note that
in a single-term approximation(x,k,t=0) is given by

1 Un(O)Un(X)

(X, k,t= 0)— K

(0<x<L), (2.28

which might be very small, but strictly differs from zero. It is
also worth noticing that the very-short-time behavior of
¥(X,Kk,t) may involve the contribution of far away resonance
terms.

The long-time limit of #/(x,k,t) [see Eq(2.20] is given
by the asymptotic behavior of the Moshinsky functions
M(0g,t). For g=k it follows from Eq. (2.22 that
argy=3w/4 and hence from EqB9), M(0Kk,t) behaves as

: (2.29

namely,M(0Kk,t) goes into the time dependence of the sta-
tionary solution of the Schobnger equation. For the long-
time limit of the functionsM(0k,,t) appearing in Eq.

SIEUA 4o

M(0k,t)—e

Equation (2.20 gives an exact expression for the time (2.21), one has to distinguish the casgs k_, andq=k,.

evolution of the wave functiog(x,t) along the internal re-

Forg=k_,=—k’, denoting the corresponding function
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as M(Ok_,,t), it follows from Eg. (2.22 that _ m \Y 3
—iml4 q

—m[2<argy< /2 and hence from EqB6) (with x=0) one y=e ont X——t|.

obtains at long times

(2.3

a b Equlati_on (2];32 providefs an exalct exphression fqr tge tir_ne
~ e evolution of the wave function along the transmitted region
MOk D=+ ot (230 x=L. As in Sec. Il A, itis of interest to analyze the limits of
¥(x,k,t) both as the time goes to zero and as it becomes
very large. It turns out that in both limits E(R.37) becomes
very large. Indeed, it follows from Eq2.37) that a very
short time implies a very large argumenti.e.,

where a and b are independent of time. Evidently, Eqg.
(2.30 vanishes as—=. Forg=k,, denoting theM func-
tion as M(0k, ,t), it now follows from Eg. (2.22 that
ml2<argy<3w/2, and consequently from EdB9) (with
x=0) one gets at very long times 12

y~e 174 LI (2.39
2kt ' ’

: a b
MOk, ,t)~e Bttt ap -, (2.3))
r 2 32 which is independent of the value gf Consequently, using

Eq. (B6),
where the first term on the right-hand side exhibits exponen- a. (B6)

tial decay with time sinc&, =¢,—iI',/2. Again, Eq.(2.3)) . 2f \ 12

vanishes ast—o~. The functions M(0k_,,t) and M(x,q,t)~e'”’4(m) 112 (2.39
M (0K, ,t) are also relevant in studies on the nonexponential

contributions to deca}20]. Hence it follows from the above and henceM (x,k,t), M(x.k_, ,t), andM (xk. ,t) vanish as

?nalysis tTatt. at very long timef(x.k,t) goes into the sta- t—0. Therefore(x,k,t=0) vanishes as expected from the
lonary solution initial condition. For very large times, the argumenin Eq.
Pk =d(x ke (0<x<L). (2.32 (2.37 becomes also very large, namely,

I m\ Y
B. External region y= —e'”"‘( E) Z[thm}. (2.40
The analysis of the external regiom»>L proceeds essen-
tially along similar lines to that of the preceding subsection.The above expression depends on the choiceg.ofFor
Here it is convenient to consider a contour integral for theq=Kk, it follows from Eq.(2.40 that arey=3w/4 and hence
coefficientD(p) as defined by Eq2.13. Hence, instead of from Eq. (B9) M(x,k,t) tends to the stationary form of the
Eg. (2.195 we evaluate wave function ag— o,

i ZD(Z,k)dZ:O (2.33 M(X,k,t)Heikxe_iEt/ﬁ (t—). (2.4
2@ Jr Z—p ' '

The functionsM(x,k, ,t) and M(x,k_,,t) behave at long

After a few manipu|a‘[ions we obtain times in a similar fashion to the functiorid (0,kr ,t) and
_ M(Ok_,,t) discussed in Sec. IIB. Indeed, for
kG*(0L;k) Un(0)up(x)e Knk q=k_,=—kJ, it is easily seen from Eq.(2.40 that
pD(p.K)=a————+a : _
(k—p) =~ 2(p—ky)(k—kp) ml2<argy<w/2 and henceM(x,k_, ,t) behaves as Eq.

(2.34 (B6) and, ast— o, it vanishes. Finally, foig=Kk, it follows
from Eq. (2.40 that w/2<argy<3w/2 and hence from Eq.
Substitution of Eq(2.34 into Eq. (2.8) and the result into  (B9) M(x,k,,t) vanishes also as—« since exp(-iE,t)

the inverse Laplace transfor(@.19 yields decays exponentially with time. Therefore, at very long
times the solutionj(x,k,t) along the external region, given
(X, k1) =T(K)M(x,k,t) by Eq.(2.39, tends to the stationary form of the wave func-

kgL tion
—i> u“(o)(l;“_(l‘k:? M(x,k,,t)  (x=L),

n

Pk ) =T(k)eke BV (x=L). (2.42
(2.3

where T(k)=2ikG" (0L ,k)e k- stands for the transmis-
sion amplitude of the problefd 7] and the Moshinsky func-
tionsM(x,q,t), with q=k,k,, are now defined 448,19,1]

C. Remarks

The solution(x,k,t) of the shutter problem for the po-
tential V(x) as given by Eqs(2.20 and(2.35 represents an
expansion in terms of resonant states dhdunctions. No-

i (e glPxgiptta 1 tice that in the absence of an interactid(ix), there are no
M t) = Lfree dp= = eiM¥/2itay’arf complex poles. The solutioi2.20 does not exist, since there
(xq.0)=3 - p=5¢€ eferfoly) VU : : ,
m)-= P—Q is no internal region, and the solutid@.35 goes into the

(2.3 free solution obtained by Moshinskg 1]

where the argument is, in this case, given by P(x,kt)=M(x,k,t) (x>0). (2.43
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ImkK, has to take into account the contribution of additional reso-
nance terms. In this regime the probability density is quite
ot ReK, small and it might be beyond experimental observation. A
-0.2 . detailed analysis of this regime of very early times will be
04l ° considered elsewhef@3]. For energies near the resonance
‘ . energyE,; one may write the single resonance approxima-
-0.64 . tions to Eqs(2.20 and(2.35), namely,
-0.8 o
-1 Pk t)=~i M 5M(O,k,t)—M(O,kl,t)
k—k; |kg
o] 05 1 1.5 2 25 (0<X$L) (31)
FIG. 3. First eight complex poles of the outgoing Green'’s func-
tion on theE plane corresponding to the double-barrier structureand
depicted in Fig. 1 with the parameter¥,=0.23 eV and
b=w=50 A. SOk =i Ul(O)U1(L)[£M(X,k,t)eikL
k—k, kq

As soon as the timé+#0, each term in Eqs.2.20 and
(2.39 contributes to yield a finite, yet very small, probability
to find the particle along the full region>0. This is also the
case for the free case given by E8.43. The above situa-
tion exhibits a nonlocal feature of the time-dependent soluAt long times one may use Eq&.32 and (2.42 to write
tion [10] and it results from the fact that in a nonrelativistic Egs.(3.1) and(2.35), respectively, as
description, there is no restriction on the velocity of some

—M(x,ky,t)e b (x=L). (3.2

components of the initially confined wave function to the _u(Ou )k e
regionx<<0. It might be of interest to mention that in fully Pk t~i k—k, kle (0<x<L)
relativistic quantum field theories it has been pointed out by (3.3

Hegerfeldt [21] that the sudden opening of a shutter at

t=0 may also lead to the same sort of nonlocal effects. Thignd

leads to a causality problem since it implies a violation of "

Einstein causality, i.e., no propagation faster than light. He- SOk~ uy(0)uy(L) [—e“‘Le“‘XeiE“ﬁ (x=L).

gerfeldt argues that the above difficulty is of a theoretical k—kq kq

nature and discusses a number of ways out. However, in our (3.9
nonrelativistic approach the violation of Einstein causality ] )
should not be surprising. Note thatu,(0) anduy(L) are proportional to the partial

The example presented in the next section shows thdecay widths of the corresponding resonance $2ag It is
buildup of the probability density along the internal region @ppealing to write the probability densities to E¢&3) and
and the birth and formation of the propagating probability(3-4) in the energy plane in a Breit-Wigner fashion, namely,

density along the external region. As we shall see, at a given 0

time, the nonlocal aspects of the propagating solution are 2 1 2
exhibited as an exceedingly small precursor extending at any [k, (E—e1)%+ F§/4|u1(x)| (0<x<L)
distance beyond the wave front. (3.5
and
1. EXAMPLE
. . . rort

In this section we consider the example of a double- lp(x, K, )| 2~ 11 (x=L). (3.6

barrier resonant structure with typical parametgfs8] to Y (E— €)%+ T34

investigate the time evolution of(x,k,t) along both the

internal and external regions of the potential. We choose th&quations(3.5) and (3.6) hold far from threshold, namely,
following parameters for the system: barrier heightsfor an isolated sharp resonance. The decay width
V,=0.23 eV, barrier and well widthsw=50 A, and effec- I';=T%+T% and the partial decay widthE$ and I'} are
tive mass for the electrom=0.067,. The resonance pa- defined ag22]

rameters(E,}, with E,=e,—iT",/2=#2k?/2m, and the cor- 5 5

responding resonant eigenfunctiong,(x)} can be obtained Fo:@ |u1(0)] L:@ |us(L)] 3.7)

by a straightforward calculation using the transfer matrix m I, Y m I, '
method adapted to outgoing boundary conditip22]. The

first few poles are shown in Fig. 3. We find in our calcula-In Egs.(3.7) a;=Rek; andl; is a quantity of the order of
tions that for times roughly of the order of @.bnward, the unity [22]. For a symmetrical structurE(l’:szl“llz and
single-resonance term approximation to the expansionkence, for example, at resonance enekgye;, Eq. (3.6
(2.20 and (2.35 for ¢(x,k,t) is quite good. However, for becomes unity. The resonance parameters of the problem for
shorter times, both for the internal and external regions, onéowest resonancen=1 are ¢€,=0.080054 eV and
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200 1
t=15ps
160 | 08 b 6 ps
o 120 o 081
2 gol 2 o4l
40 0.2 \Ips
0 ! 0 I 1 1 !
150 0 10,000 20,000 30,000 40,000
X(Z) x(A)
FIG. 4. Plot of|y(x,k,t)|2 for timest= 1,2,5,15 ps, showing FIG. 6. Plot of|(x,k,t)|? as a function of the distance for
the buildup along the internal region. three timest=1,3,6 ps. This graph shows the birth and growth of

the transmitted wave. Note that the lifetime of the resonance is

[';=0.001 028 eV. The lifetimer=#/T"; associated with 7=0.64 ps.
this resonance state is=0.64 ps.
from 1 to 6 ps. In Fig. 7 we show the subsequent time

A. Results for the internal region evolution for|y(x,k,t)|? for three values of the time from
15 to 100 ps. As can be seen, the wave front becomes well
o ! A ' defined, turning sharper, as time goes on. The wave front
probability density |/(x,k,t)| along the 1}gternal region  advances with the classical velocity= 7 k/m. As in the case
from x=0 tox=L=150 A, withk=(2me) "%, as shown  for the internal region, the very-short-time regime corre-
in Fig. 4. The figure exhibits the building up of the prob- sponds to a very small probability density and requires also

ability density for times 1, 2, 5, and 15 ps, showing thegne o take into account additional resonance terms. The
transient behavior towards the stationary value. In our expropagation can also be seen in Fig. 8, which shows

ample this occurs around a timg~10 ps, as is made evi- |y k t)|2 as a function of time for two fixed positions.
dent in Fig. 5, which shows the probability density evaluatedrhis case is analogous to Fig. 5 for the internal region. The
at the fixed value ok=75 A, where the probability acquires stationary value is also reached around 10 ps. In all the cases
its maximium value, as a function of time. This figure alsostudied, as soon as+ 0, the solution is different from zero
displays the contribution of the decaying term, i.e., the secy|ong the whole space>L L. Nevertheless, we find that the
ond term on the right-hand side of the probability density,aiue of the probability density is exceedingly small beyond
(3.1). the propagating wave front. In order to illustrate this situa-
tion we plot in Fig. 9|#(x,t)|? for t=6 ps for values ok
B. Results for the external region between 90 000 A and 100 000 A. The wave front corre-
For the external region one sees from E8.2) that as sponding to this case, situated near 40 000 A, is shown in
soon as the time differs from zerot#0, the transmitted Fig. 6. It follows from Eq.(2.39 that for a fixed value of the
probability density acquires a value different from zero overlime, the precursor strictly vanishes only in the limit .
the whole space regioeL. Figure 6 shows the birth of the The small observed oscillatory behavior in Fig. 9 is washed
transmitted probability function and how it evolves with time out by adding more resonance terms to the calculation.

We have evaluated Eq.(3.1) for #(x,k,t) to plot the

240 [
200 | [w]2 1k
160 08 L
-
= '“‘5 t=50 t=100 ps
% 120 X 06l =15 ps =50 ps
Eal =
80 04|
E=E,
40 02|
0 L 0 1 . 1 )
10 15 0 200,000 400,000 600,000 800,000
t (ps) x(A)
FIG. 5. Plot of| /(x,k,t)|? for a fixed valuex=75 A as a func- FIG. 7. This graph, as the previous one, shows the evolution of

tion of time to exhibit the transient behavior of the solution and the| z,b(x,k,t)|2, now for longer timeg= 15,50,100 ps. Note, by com-
onset to the stationary solution at long times. Also shown is theparison with the previous graph, that the wave front becomes
decaying contributiof (x,k,t)|? to the probability density sharper as time increases.
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10
08|
o~
=
X 06 [
2l x=20000 & x=50000 A
04|
02|
Jw[?
0 L L L
0 5 10 15 20 25 0 . . .
0 2,000 4,000 6,000 8,000

t(ps) o
x(A)

FIG. 8. Plot of|#(x,k,t)|? for two values ofx as a function of FIG. 10. Comparison of the free-wave time evolution
Fime to show the t.ransient. behavior leading to the stationary valu?l/[o(x kt)|2 lwith tt?e solution transmitted across the system
in the external region as time increases. | 4(x,k,1)|? for a short time of the order of the lifetime=0.64 ps.
Since the transmitted wave front is not yet sharp enough, it is not
possible to measure the delay confidently.

The notion of delay time arises from a stationary-phase
argument for the transmitted wave packe4,25. It is well  the transmitted case relative to the free situation. In Fig. 10
known that the delay time may be expressed in terms of théhe transmitted probability density is blurred and it does not
energy derivative of the phase of the transmission amplitudegllow one to estimate confidently the delay time. On the

IV. DELAY TIME

namely, other hand, in Fig. 11, where the transmitted wave front is
sharper, the delay can be estimated to be roughly of the order

- :ﬁﬂ 4.1) of 24/T"1, which agrees with the stationary-phase value at
T dE” ' resonance energy. The above considerations imply that the

notion of delay time is an asymptotic property and provide
Near resonance energy the following analytic expression fogiso a measurement of the delay time using a dynamical
the delay time may be obtain¢26]: analysis of the wave-packet propagation. This result deserves
further analysis.

LY L. (4.2

T E T 2 T4 '

(E-e)+1I7/4 V. CONCLUDING REMARKS

Clearly at resonance energy=eq, 7o~2A/1;. An important feature of our approach is that it allows us

We have compared the transmitted probability density, ohserve clearly the transient effects associated with the
| (x,k,1)|? across the double-barrier resonant structure withime evolution of a wave solution at resonance energy across
the free-wave probability density for two cases: one, given ingng peyond a resonant tunneling structure. It is found, for
Fig. 10, for a short time of the order of one lifetime, i.e., typical parameters of the system, that the transient is of the
t=0.64 ps, and the other case for a much longer timgger of a few lifetimes. Along the internal region of the
t=1540 ps, corresponding to a wave front>at0.1 cm,  potential the transient consists of the building up of the reso-
given in Fig. 11. In both cases one observes a delay time of

8x1078 |

= exi08 |
<

S 4x108 |

2x1078 mew

! p . y 9.8 9.9 10.0 1041 10.2
90,000 92,000 94,000 96,000 98,000 100,000 62
x(10°A)

x(A)

FIG. 11. Comparison of the free-wave time evolution
FIG. 9. Plot of|(x,k,t)|? att= 6 ps forx from 90 000 A up  |o(x,k,t)|? with the solution transmitted across the system
to 100 000 A. This graph shows the nonvanishing, though exceed-/(x,k,t)|? for a longer timet= 1540 ps(corresponding to a wave
ingly small, precursor beyond the wave front. The wave front cor-front atx~0.1 cn) to show that the delay time is of the order of
responding to this case occurs near 40 000 A as shown in Fig. 624/T ;.
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nant solution until the stationary solution is reached. Along 42

the external region, one observes the birth of the propagating WGWX,X’;k)+[k2—V(X)]G+(X,X';k)= o(x=x"),

wave front and after a few lifetimes the transmitted wave (A4)

front propagates virtually with the classical velocity . . .

v=#k/m. Our approach provides a dynamical analysis ofwith t.he boundary conditions at=0 andx=L given, re-

the delay time that the transmitted wave solution suffers witrePECtively, by

respect to the free propagating wave. We found a delay time Ja ., . - .

of the order of Z/T';, as obtained using a stationary-phase 5 G (Xx5K) =—1kG7(0x"k) (AS)

argument. Our analysis shows also the absence of propaga- x=0_

tion along the internal region, at least for times longer than

fraction of a lifetime. Our work exhibits a nonlocal character

of the quantum-mechanical propagation. This appears as an 9

exceedingly small precursor covering the whole space as [—G*(x,x’;k)} =ikG*(L,x";k). (AB)

soon as the time differs from zero. Along the internal region dx

of the interaction one observes how this precursor builds up

as time evolves until the stationary solution is reachedNear a complex pol&, one may then write

whereas along the external region, it remains negligibly

small at distances beyond the propagating wave front. It is - Cn(x,x")
G (X,X ,k)= W

n

x=L_

! ’.
worth stressing that for times longer than one-tenth of a life- Fx(x.x"k), (A7)
time onward the single-term approximation to our expan-
sions is quite accurate. whereC,(x,x";k) is the residue ang(x,x’;k) is regular at

the pole. Substitution of EA7) into Eq. (A4) leads, after
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=0. (A8)

APPENDIX A: DETERMINATION OF THE RESIDUE AT

A POLE OF THE GREEN FUNCTION Taking the limit k—k,, the addition and substraction of

k2Cn(x,x")/(k—ky,) to Eq.(A8) leads to the expressions
In what follows it is shown that the residue of

G*(x,x";k) near one of its complex poles is proportional to FCh(x,X")

the functionsu,(x) andu,(x’). In doing so we apply to one G

dimension the derivation of GamsCalderm and Peierls

[27]. This is of interest because the normalization conditionand

for resonant states in one dimension differs from that in three

+[k2—V(X)]Cn(x,x")=0 (A9)

dimensions. Px(x.x"iKy) . ,
The resonant functionu,(x) for a Hamiltonian o2 K= VOO I (XX Kn) + 2knCi(X,X7)
H=T+V, with V(x) extending fromx=0 to x=L, obeys ,
the Schrdinger equation =6(X=x"). (A10)
2 Now, substitution of Eq(A7) into the boundary conditions
Wun(x)Jr[kﬁ—V(x)]un(x):O (A1) given by Egs.(A5) and (A6), adding and substracting

iknCn(x,x")/(k—k,), and taking the limik—k, yields

and satisfies the boundary conditionsxatO andx=L,

iCn(x,x’) = —ik,C,,(0x"), (A11)
_ X X=0_
d_Xun(X) X:(L:_'knun(o) (AZ)
i)((x,X’;kn)} =—ikpx(0X";k,) —iCpr(0X"),
and oX x=0_

(A12)

&un(x) N =iknpup(L). (A3) J , B ,
x=L_ &Cn(x,x) . =ik,C,(L,x"), (A13)

On the other hand, the outgoing Green’s function associated
with the HamiltonianH satisfies the equation and



=ik,x(L,x";k,) +iC(L,x").

x=L

(9 !
&X(XIX vkn)
(A14)
One sees that EqA9) for C,(x,x') and its boundary con-
ditions (A11) and (A13) are identical to Eq(Al) for u,(x)

and its boundary condition$A2) and (A3). Consequently,
these functions are proportional, namely,

Ch(X,x")=u(xX)P(x"). (A15)

An explicit expression foP(x') may be obtained as follows.

Multiply Eqg. (A10) by u,(x) and Eq.(Al) by x(x,x";k,),
subtract one from the other, and integrate from0 to
x=L. The result may be written as

L

d d
Un(X) 5x(x,X’ 'Kn) —x(x,X’;kn)&un(X)

0

+2knfLun(X)Cn(x,X’)dX= fLun(x)é(x—x')dx.
0 0

(A16)

It then follows, using Eqs(A2), (A3), (Al12), (Al4), and
(A15), that

Un(x")

P(x")= i .
ZkH[ f u2(x)dx+i[uz(0)+u3(L)]/2k,
0
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The properties of thé/l function may be obtained from
the properties of the function exypi)erfc(y). It turns out
that this last product corresponds to the function
w(z) =exp(—z%)erfc(—iz) as defined by Abramowitz and
Stegun 28] and Faddeyeva and Terent’E29]. Hence, mak-
ing z=iy one may write theM function as

M(y)= %eﬂmxz’zmway). (B2)

Expression(B2) may be adequate for calculations since
methods to evaluate numerically the functisrare available
[28,29. The properties of the functiomw have been dis-
cussed by Abramowitz and Steg{®8] and Faddeyeva and
Terent'ev[29].

For small values of the argumegtit is convenient to
consider the series expansif8,29

I Sy Ca
M(y)—EW(W)—EzOm- (B3)
Hence, forly|<1,
1 1
M(y)~§[1—§wl’2y+.-. . (B4)

For very large values of the argumentprovided it obeys
—m/2<argy<w/2, one may write the series expansion

(A7) _ 1 1
W(ly)*m—Wer, (BS)
Hence the residue of the outgoing Green’s function at the
polek, may be written as and therefore, using E4B2), one may writeM (y) as
Un(X)Up(X")
cn(x,x’)z%, (A18) 1 1 1
2 n M(y)~ EelmXZ/th m—w-{—... i (86)
provided the resonant states are normalized according to the
condition
When the argumenty lies within the limits
L, “u2(0)+u3(L) ml2<argy<3m/2 one may use the symmetry relation
un(x)dx+|T:1. (A19)
0 n

APPENDIX B: ASYMPTOTIC PROPERTIES
OF THE MOSHINSKY FUNCTION

The Moshinsky function is defined §%8,11]

v iy 0o i fx eipxe—ipzt/a J
(Y)— (qu1 )_E C p_q p
1. 5 2
:Eelmx /Zﬁtey erfc(y), (Bl)

where the argumenty is complex andq stands for
k,k,=a,—ib,, ork_,=—k¥ . In this appendix we shall be
interested in evaluating the limits &s>0 and ag— o of the
Moshinsky function.

w(— iy)=2ey2—w(iy) (B7)
to write the asymptotic expansion
. ¥ 1 1
w(—iy)=~2e —m‘f'w—“-, (B8)

and consequently, using E@?2), one may writeM(y) as

1 imx2/2hit| 5 ay2 1 1
M(y)~§e 2e —m‘Fw-F-“ .

(B9)
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