
PHYSICAL REVIEW A MAY 1997VOLUME 55, NUMBER 5
Transient effects and delay time in the dynamics of resonant tunneling

Gastón Garcı´a-Caldero´n
Instituto de Fı´sica, Universidad Nacional Auto´noma de Me´xico Apartado Postal 20-364, 01000 Me´xico, Distrito Federal, Mexico

Alberto Rubio
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~Received 24 June 1996!

We consider an analytic solution of the time-dependent Schro¨dinger equation with the initial condition
c(x,0)5exp(ikx) along 2`,x,0 to investigate the time evolution forx.0 of the wave function in a
double-barrier resonant structure at resonance. For typical parameters of the structure we find that the single-
resonance approximation is valid from a few tenths of the corresponding lifetime onward. Very short times
require the contribution of many far away resonances. The buildup time along the internal region takes a few
lifetimes. At birth the transmitted wave front is blurred; however, for long times it becomes well defined and
moves with classical velocity yielding a delay timet'2\/G as in the stationary-phase treatment.
@S1050-2947~97!04105-X#

PACS number~s!: 03.65.2w, 73.40.Gk
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I. INTRODUCTION

Most studies on the dynamics of resonant tunneling h
used approaches based on the numerical solution of
Schrödinger equation with the initial condition of a Gaussi
wave packet@1–6#. The typical example for the analysis o
resonant tunneling corresponds to that of a classically
lowed region between two classically forbidden on
namely, the double-barrier resonant structure. This syste
of interest not only because it can be fabricated nowad
and possesses potential technological applications@7–9#, but
also because it lends itself to the investigation of basic iss
of the physics of resonant tunneling.

In this work we consider a recent analytic approach t
allows a general treatment of the dynamics of the tunne
process@10#. This approach consists of the solution of t
time-dependent Schro¨dinger equation for an arbitrary poten
tial V(x) defined in the region 0<x<L with the initial con-
dition at t50 of a plane wave of momentumk confined in
the half spacex,0 to the left of a shutter located atx50.
The sudden opening of the shutter at the timet50 allows the
wave to propagate into the regionx.0. It may be shown tha
as the timet goes to infinity, the wave solution tends to th
stationary solution of the Schro¨dinger equation@10#. In this
sense this approach is complementary to those base
finite-width wave packets that do not permit one to analy
the transition to the stationary case. The shutter problem
the time propagation of a free wave was initially conside
by Moshinsky@11#. He found that both the current and th
probability density for a fixed value of the timet as a func-
tion of the distancex, or for a fixed value ofx as a function
of t, present oscillations near the wave front, a phenome
he named diffraction in time@11#. More recently, the shutte
problem has been extended to the case of ad potential by
Eberfeld and Kleber@12,13# and considered also by othe
authors@14#. An experimental observation of diffraction i
time has been recently reported by Szriftgiseret al. @15#.

The purpose of this work is to apply the approach dev
oped in Ref.@10# to investigate the time evolution of a plan
551050-2947/97/55~5!/3361~10!/$10.00
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wave whose energy coincides with the resonance energy
double-barrier resonant structure~Fig. 1!. Specifically, we
are interested in the analysis of the buildup process that le
to the stationary-wave solution both for the internal region
the potential and for the transmitted propagating-wave so
tion along the regionx.L. We also investigate the wav
front of the transmitted wave for large times, i.e., mu
longer than the time scale given by the lifetime of the re
nance, and compare it with the free propagating case to s
the notion of delay time from a dynamical point of view.

The work is organized as follows. In Sec. II we presen
derivation of the formalism. Section III deals with some n
merical examples for both the internal and external regi
of the potential. In Sec. IV we discuss the notion of del
time from a dynamical point of view. Finally, Sec. V con
tains the conclusions.

II. FORMALISM

For the sake of completeness we present here a more
tailed derivation of the solutionc(x,t) of the time-dependen
Schrödinger equation forx.0 and t.0 given by Garcı´a-
Calderón @10#. Let us consider the time-dependent Sch¨-
dinger equation

i\S ]

]t
2H Dc~x,t !50, ~2.1!

FIG. 1. Shutter problem for a double-barrier resonant structu
A plane wave in the regionx,0 is instantaneously released
t50 by the removal of shutterS.
3361 © 1997 The American Physical Society
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where H52(\2/2m)d2/dx21V(x) and V(x) describes a
resonant tunneling potential profile of arbitrary shape exte
ing fromx50 tox5L. The initial valuec(x,t50) is chosen
to be

c~x,t50!5H eikx, x,0

0, x.L.
~2.2!

Note thateikx extends only through a half space, so it cann
be normalized in the usual way. One may Laplace transfo
Eq. ~2.1! using the standard definition

c̄~x,k,s!5E
0

`

c~x,k,t !e2stdt, ~2.3!

with the initial condition~2.2!. It is convenient to make the
change of variables52 ip2/a with a52m/\ to write the
Laplace-transformed equations

S ]2

]x2
1p2D c̄~x,p!5 iaeikx, x<0, ~2.4!

where the inhomogeneous term arises from the initial con
tion ~2.2!,

S ]2

]x2
1p22V~x! D c̄~x,p!50, 0<x<L, ~2.5!

and

S ]2

]x2
1p2D c̄~x,p!50, x>L. ~2.6!

The Laplace-transformed solutions for Eqs.~2.4! and ~2.6!
are given, respectively, as

c̄~x,p!5H ia~p22k2!21eikx1C~p!e2 ipx, x<0

D~p!eipx, x>L.

~2.7!

~2.8!

In Eq. ~2.7! the first term on the right-hand side correspon
to a particular solution of the inhomogeneous equation~2.4!.
Notice that the solutions C(p)exp(2 ipx) and
D(p)exp(ipx) appearing, respectively, in Eqs.~2.7! and
~2.8! are the only physically acceptable solutions to E
~2.4! and ~2.6! sincep5a(11 i )(s/2)1/2.

Along the internal region of the potential it is convenie
to write the solutionc̄(x,p) in terms of the outgoing Green’
functionG1(x,x8;p) that satisfies the equation

S ]2

]x2
1p22V~x! DG1~x,x8;p!5d~x2x8!, 0<x<L,

~2.9!

with the outgoing boundary conditions

F ]

]x
G1~x,x8;p!G

x502

52 ipG1~0,x8;p! ~2.10!

and
-

t
m

i-

s

.

F ]

]x
G1~x,x8;p!G

x5L1

5 ipG1~L,x8;p!. ~2.11!

Let us multiply Eq.~2.9! by c̄(x,p) and subtract from it Eq.
~2.5! multiplied by G1(x,x8;p) followed by integration
along the region fromx50 tox5L. Using Eqs.~2.7!, ~2.10!,
and ~2.11! yields an expression that relatesc̄(x,p) with the
outgoing propagator

c̄~x,p!5
a

k2p
G1~0,x;p! ~0<x<L !. ~2.12!

Evaluating Eqs.~2.8! and ~2.12! at x5L allows us to write
the coefficientD(p) as

D~p!5
a

k2p
G1~0,L;p!e2 ipL. ~2.13!

Hence forx.L, c̄(x,p) may be written as

c̄~x,p!5
a

k2p
G1~0,L;p!e2 ipLeipx ~x.L !.

~2.14!

Equations~2.12! and~2.14! are very convenient because on
can exploit the analytical properties of the propagator on
complex p plane to obtain appropriate expressions fro
which the corresponding inverse Laplace transform can
evaluated.

A. Internal region

Let us consider the analytical continuation of the soluti
c̄(x,p), defined along the internal region 0<x<L, over the
complexp plane. Takep→z and write the Cauchy contou
integral

1

2p i RG

zc̄~x,z!

z2p
dz50, ~2.15!

where the contourG is as shown in Fig. 2 and is formed b
the sum of small circles$cn%, associated with the comple
poles kn5an2 ibn of the propagator, andcp and ck , sur-
rounding, respectively, poles atz5p andz5k, all enclosed

FIG. 2. Integration contourG5(ncn1cp1ck1cs used to
evaluate Eqs.~2.15! and ~2.33!.
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by the large circlecs , i.e.,G5(ncn1cp1ck1cs . It can be
shown along the same lines as Ref.@16# that for 0,x<L,
the integral overcs vanishes as its radius tends to infinit
Consequently, Eq.~2.15! can be written as

1

2p i H R
cp

zc̄~x,z!

z2p
dz2 R

ck

azG1~0,x;z!

~z2p!~z2k!
dz

2(
n

R
cn

azG1~0,x;z!

~z2p!~z2k!
dzJ 50. ~2.16!

Next we apply the theorem of residues to evaluate the i
grals above. The residue of the propagatorG1(x,x8;k) at
each polekn5an2 ibn , with (an ,bn).0, can be written in
terms of the functionun(x) obeying the Schro¨dinger equa-
tion of the problem with outgoing boundary conditions,
shown in Appendix A, namely,

resG1~x,x8;k!5
un~x!un~x8!

2kn
. ~2.17!

Hence Eq. ~2.16! may be written as

pc̄~x,k,p!5a
kG1~0,x;k!

~k2p!
1a(

n

un~0!un~x!

2~p2kn!~k2kn!
.

~2.18!

The inverse Laplace transform is given by

c~x,k,t !5
1

2p i Ec2 i`

c1 i`

c̄~x,k,p!e2 ip2t/aS 22i

a D p dp.

~2.19!

Substitution of Eq.~2.18! into Eq. ~2.19! yields

c~x,k,t !5f~x,k!M ~0,k,t !2 i(
n

un~0!un~x!

k2kn
M ~0,kn ,t !

~0,x<L !, ~2.20!

wheref(x,k)52ikG1(0,x;k) stands for the stationary so
lution to the Schro¨dinger equation@17# and the indexn runs
over all the poles, which are located on the third and fou
quadrants of the complexk plane. The poles on the thir
quadrant denoted byk2r are related to those on the four
kr , by k2r52kr* (r positive!. In what followskn stands for
any pole unless explicitly indicated by the subindexr . The
Moshinsky functionsM (0,k,t) andM (0,kn ,t) in Eq. ~2.20!
are defined as@18,19,11#

M ~0,q,t !5
i

2pE2`

` e2 ip2t/a

p2q
dp5

1

2
ey

2
erfc~y!,

~2.21!

whereq5k,kn and the argumenty is given by

y[2e2 ip/4S m2\ D 1/2F\qm t1/2G . ~2.22!

Equation ~2.20! gives an exact expression for the tim
evolution of the wave functionc(x,t) along the internal re-
e-

h

gion of the double-barrier system. Notice that the derivat
is not based on a particular potential profile and therefore
pointed out in Ref.@10#, the above equation is valid for a
arbitrary potential provided it vanishes after a distance. N
also that the expansion~2.20! does not apply atx50 where
subtractions are required to ensure convergence@16#.

It is of interest to direct the attention of the reader to t
limits of Eq. ~2.20! for c(x,t), as the timet→0 and also
when t becomes very large. Att50 the solutionc(x,k,t)
must vanish forx.0 as specified by the initial condition
~2.2!. It follows from Eq. ~B4! that for t50, the Moshinsky
functions appearing in Eq.~2.20! attain the value

M ~0,k,t50!5M ~0,kn ,t50!5
1

2
, ~2.23!

with qn either kr or k2r as specified above, and hence E
~2.20! becomes

c~x,k,t50!5
1

2
f~x,k!2

1

2
i(
n

un~0!un~x!

k2kn
~0,x<L !.

~2.24!

Since the stationary solutionf(x,k) admits the resonant ex
pansion@16#

f~x,k!5 ik(
n

un~0!un~x!

kn~k2kn!
~0,x<L ! ~2.25!

and furthermore resonant states fulfill@16#

(
n

un~0!un~x!

kn
50 ~0,x<L !, ~2.26!

it follows, using the identity

k

kn~k2kn!
[

1

kn
1

1

k2kn
, ~2.27!

that Eq.~2.24! vanishes exactly. It is interesting to note th
in a single-term approximation,c(x,k,t50) is given by

c~x,k,t50!5
1

2
i
un~0!un~x!

kn
~0,x<L !, ~2.28!

which might be very small, but strictly differs from zero. It
also worth noticing that the very-short-time behavior
c(x,k,t) may involve the contribution of far away resonan
terms.

The long-time limit ofc(x,k,t) @see Eq.~2.20!# is given
by the asymptotic behavior of the Moshinsky functio
M (0,q,t). For q5k it follows from Eq. ~2.22! that
argy53p/4 and hence from Eq.~B9!, M (0,k,t) behaves as

M ~0,k,t !→e2 iEt/\, t→`, ~2.29!

namely,M (0,k,t) goes into the time dependence of the s
tionary solution of the Schro¨dinger equation. For the long
time limit of the functionsM (0,kn ,t) appearing in Eq.
~2.21!, one has to distinguish the casesq5k2r andq5kr .
For q5k2r[2kr* , denoting the correspondingM function
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as M (0,k2r ,t), it follows from Eq. ~2.22! that
2p/2,argy,p/2 and hence from Eq.~B6! ~with x50) one
obtains at long times

M ~0,k2r ,t !'
a

t1/2
1

b

t3/2
1•••, ~2.30!

where a and b are independent of time. Evidently, Eq
~2.30! vanishes ast→`. For q5kr , denoting theM func-
tion as M (0,kr ,t), it now follows from Eq. ~2.22! that
p/2,argy,3p/2, and consequently from Eq.~B9! ~with
x50) one gets at very long times

M ~0,kr ,t !'e2 iEr t/\1
a

t1/2
1

b

t3/2
1•••, ~2.31!

where the first term on the right-hand side exhibits expon
tial decay with time sinceEr5e r2 iG r /2. Again, Eq.~2.31!
vanishes as t→`. The functions M (0,k2r ,t) and
M (0,kr ,t) are also relevant in studies on the nonexponen
contributions to decay@20#. Hence it follows from the above
analysis that at very long timesc(x,k,t) goes into the sta-
tionary solution

c~x,k,t !5f~x,k!e2 iEt/\ ~0,x<L !. ~2.32!

B. External region

The analysis of the external regionx.L proceeds essen
tially along similar lines to that of the preceding subsectio
Here it is convenient to consider a contour integral for
coefficientD(p) as defined by Eq.~2.13!. Hence, instead o
Eq. ~2.15! we evaluate

1

2p i RG

zD~z,k!

z2p
dz50. ~2.33!

After a few manipulations we obtain

pD~p,k!5a
kG1~0,L;k!

~k2p!
1a(

n

un~0!un~x!e2 iknL

2~p2kn!~k2kn!
.

~2.34!

Substitution of Eq.~2.34! into Eq. ~2.8! and the result into
the inverse Laplace transform~2.19! yields

c~x,k,t !5T~k!M ~x,k,t !

2 i(
n

un~0!un~L !e2 iknL

~k2kn!
M ~x,kn ,t ! ~x>L !,

~2.35!

where T(k)52ikG1(0,L,k)e2 ikL stands for the transmis
sion amplitude of the problem@17# and the Moshinsky func-
tionsM (x,q,t), with q5k,kn , are now defined as@18,19,11#

M ~x,q,t !5
i

2pE2`

` eipxe2 ip2t/a

p2q
dp5

1

2
eimx2/2\tey

2
erfc~y!

~2.36!

where the argumenty is, in this case, given by
-

l

.
e

y[e2 ip/4S m

2\t D
1/2Fx2

\q

m
t G . ~2.37!

Equation ~2.35! provides an exact expression for the tim
evolution of the wave function along the transmitted regi
x>L. As in Sec. II A, it is of interest to analyze the limits o
c(x,k,t) both as the time goes to zero and as it becom
very large. It turns out that in both limits Eq.~2.37! becomes
very large. Indeed, it follows from Eq.~2.37! that a very
short time implies a very large argumenty, i.e.,

y'e2 ip/4S m

2\t D
1/2

x, ~2.38!

which is independent of the value ofq. Consequently, using
Eq. ~B6!,

M ~x,q,t !'eip/4S 2\

mx2D
1/2

t1/2 ~2.39!

and henceM (x,k,t), M (x,k2r ,t), andM (x,kr ,t) vanish as
t→0. Therefore,c(x,k,t50) vanishes as expected from th
initial condition. For very large times, the argumenty in Eq.
~2.37! becomes also very large, namely,

y'2e2 ip/4S m2\ D 1/2F\qm t1/2G . ~2.40!

The above expression depends on the choice ofq. For
q5k, it follows from Eq. ~2.40! that argy53p/4 and hence
from Eq. ~B9! M (x,k,t) tends to the stationary form of th
wave function ast→`,

M ~x,k,t !→eikxe2 iEt/\ ~ t→`!. ~2.41!

The functionsM (x,kr ,t) and M (x,k2r ,t) behave at long
times in a similar fashion to the functionsM (0,kr ,t) and
M (0,k2r ,t) discussed in Sec. II B. Indeed, fo
q5k2r52kr* , it is easily seen from Eq.~2.40! that
2p/2,argy,p/2 and henceM (x,k2r ,t) behaves as Eq
~B6! and, ast→`, it vanishes. Finally, forq5kr it follows
from Eq. ~2.40! that p/2,argy,3p/2 and hence from Eq
~B9! M (x,kr ,t) vanishes also ast→` since exp(2 iEr t)
decays exponentially with time. Therefore, at very lo
times the solutionc(x,k,t) along the external region, give
by Eq. ~2.35!, tends to the stationary form of the wave fun
tion

c~x,k,t !5T~k!eikxe2 iEt/\ ~x>L !. ~2.42!

C. Remarks

The solutionc(x,k,t) of the shutter problem for the po
tentialV(x) as given by Eqs.~2.20! and~2.35! represents an
expansion in terms of resonant states andM functions. No-
tice that in the absence of an interactionV(x), there are no
complex poles. The solution~2.20! does not exist, since ther
is no internal region, and the solution~2.35! goes into the
free solution obtained by Moshinsky@11#

c~x,k,t !5M ~x,k,t ! ~x.0!. ~2.43!
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As soon as the timetÞ0, each term in Eqs.~2.20! and
~2.35! contributes to yield a finite, yet very small, probabili
to find the particle along the full regionx.0. This is also the
case for the free case given by Eq.~2.43!. The above situa-
tion exhibits a nonlocal feature of the time-dependent so
tion @10# and it results from the fact that in a nonrelativist
description, there is no restriction on the velocity of som
components of the initially confined wave function to t
regionx,0. It might be of interest to mention that in full
relativistic quantum field theories it has been pointed out
Hegerfeldt @21# that the sudden opening of a shutter
t50 may also lead to the same sort of nonlocal effects. T
leads to a causality problem since it implies a violation
Einstein causality, i.e., no propagation faster than light. H
gerfeldt argues that the above difficulty is of a theoreti
nature and discusses a number of ways out. However, in
nonrelativistic approach the violation of Einstein causa
should not be surprising.

The example presented in the next section shows
buildup of the probability density along the internal regi
and the birth and formation of the propagating probabi
density along the external region. As we shall see, at a g
time, the nonlocal aspects of the propagating solution
exhibited as an exceedingly small precursor extending at
distance beyond the wave front.

III. EXAMPLE

In this section we consider the example of a doub
barrier resonant structure with typical parameters@7,8# to
investigate the time evolution ofc(x,k,t) along both the
internal and external regions of the potential. We choose
following parameters for the system: barrier heigh
V050.23 eV, barrier and well widthsbw550 Å, and effec-
tive mass for the electronm50.067me . The resonance pa
rameters$En%, with En5en2 iGn/25\2kn

2/2m, and the cor-
responding resonant eigenfunctions$un(x)% can be obtained
by a straightforward calculation using the transfer mat
method adapted to outgoing boundary conditions@22#. The
first few poles are shown in Fig. 3. We find in our calcu
tions that for times roughly of the order of 0.1t onward, the
single-resonance term approximation to the expans
~2.20! and ~2.35! for c(x,k,t) is quite good. However, for
shorter times, both for the internal and external regions,

FIG. 3. First eight complex poles of the outgoing Green’s fun
tion on theE plane corresponding to the double-barrier struct
depicted in Fig. 1 with the parametersV050.23 eV and
b5w550 Å.
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has to take into account the contribution of additional re
nance terms. In this regime the probability density is qu
small and it might be beyond experimental observation
detailed analysis of this regime of very early times will b
considered elsewhere@23#. For energies near the resonan
energyE1 one may write the single resonance approxim
tions to Eqs.~2.20! and ~2.35!, namely,

c~x,k,t !' i
u1~0!u1~x!

k2k1
F kk1M ~0,k,t !2M ~0,k1 ,t !G

~0,x<L ! ~3.1!

and

c~x,k,t !' i
u1~0!u1~L !

k2k1
F kk1M ~x,k,t !e2 ikL

2M ~x,k1 ,t !e
2 ik1LG ~x>L !. ~3.2!

At long times one may use Eqs.~2.32! and ~2.42! to write
Eqs.~3.1! and ~2.35!, respectively, as

c~x,k,t !' i
u1~0!u1~x!

k2k1
F kk1e2 iEt/\G ~0,x<L !

~3.3!

and

c~x,k,t !' i
u1~0!u1~L !

k2k1
F kk1e2 ikLeikxe2 iEt/\G ~x>L !.

~3.4!

Note thatu1(0) and u1(L) are proportional to the partia
decay widths of the corresponding resonance state@22#. It is
appealing to write the probability densities to Eqs.~3.3! and
~3.4! in the energy plane in a Breit-Wigner fashion, name

uc~x,k,t !u2'
G1
0

~E2e1!
21G1

2/4
uu1~x!u2 ~0,x<L !

~3.5!

and

uc~x,k,t !u2'
G1
0G1

L

~E2e1!
21G1

2/4
~x>L !. ~3.6!

Equations~3.5! and ~3.6! hold far from threshold, namely
for an isolated sharp resonance. The decay wi
G15G1

01G1
L and the partial decay widthsG1

0 and G1
L are

defined as@22#

G1
05

\a1
m

uu1~0!u2

I 1
, G1

L5
\a1
m

uu1~L !u2

I 1
. ~3.7!

In Eqs. ~3.7! a15Rek1 and I 1 is a quantity of the order of
unity @22#. For a symmetrical structureG1

05G1
L5G1/2 and

hence, for example, at resonance energyE5e1, Eq. ~3.6!
becomes unity. The resonance parameters of the problem
lowest resonancen51 are e150.080 054 eV and

-
e
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G150.001 028 eV. The lifetimet5\/G1 associated with
this resonance state ist50.64 ps.

A. Results for the internal region

We have evaluated Eq.~3.1! for c(x,k,t) to plot the
probability density uc(x,k,t)u2 along the internal region
from x50 to x5L5150 Å, with k5(2me1)

1/2/\, as shown
in Fig. 4. The figure exhibits the building up of the pro
ability density for times 1, 2, 5, and 15 ps, showing t
transient behavior towards the stationary value. In our
ample this occurs around a timet0'10 ps, as is made evi
dent in Fig. 5, which shows the probability density evalua
at the fixed value ofx575 Å, where the probability acquire
its maximium value, as a function of time. This figure al
displays the contribution of the decaying term, i.e., the s
ond term on the right-hand side of the probability dens
~3.1!.

B. Results for the external region

For the external region one sees from Eq.~3.2! that as
soon as the timet differs from zerotÞ0, the transmitted
probability density acquires a value different from zero ov
the whole space regionx>L. Figure 6 shows the birth of the
transmitted probability function and how it evolves with tim

FIG. 4. Plot of uc(x,k,t)u2 for times t5 1,2,5,15 ps, showing
the buildup along the internal region.

FIG. 5. Plot ofuc(x,k,t)u2 for a fixed valuex575 Å as a func-
tion of time to exhibit the transient behavior of the solution and
onset to the stationary solution at long times. Also shown is
decaying contributionuc1(x,k,t)u2 to the probability density
-

d

-

r

from 1 to 6 ps. In Fig. 7 we show the subsequent tim
evolution for uc(x,k,t)u2 for three values of the time from
15 to 100 ps. As can be seen, the wave front becomes
defined, turning sharper, as time goes on. The wave fr
advances with the classical velocityv5\k/m. As in the case
for the internal region, the very-short-time regime corr
sponds to a very small probability density and requires a
one to take into account additional resonance terms.
propagation can also be seen in Fig. 8, which sho
uc(x,k,t)u2 as a function of time for two fixed positions
This case is analogous to Fig. 5 for the internal region. T
stationary value is also reached around 10 ps. In all the c
studied, as soon astÞ0, the solution is different from zero
along the whole spacex.L'. Nevertheless, we find that th
value of the probability density is exceedingly small beyo
the propagating wave front. In order to illustrate this situ
tion we plot in Fig. 9uc(x,t)u2 for t56 ps for values ofx
between 90 000 Å and 100 000 Å. The wave front cor
sponding to this case, situated near 40 000 Å, is shown
Fig. 6. It follows from Eq.~2.39! that for a fixed value of the
time, the precursor strictly vanishes only in the limitx→`.
The small observed oscillatory behavior in Fig. 9 is wash
out by adding more resonance terms to the calculation.

e
e

FIG. 6. Plot of uc(x,k,t)u2 as a function of the distancex for
three timest51,3,6 ps. This graph shows the birth and growth
the transmitted wave. Note that the lifetime of the resonance
t50.64 ps.

FIG. 7. This graph, as the previous one, shows the evolution
uc(x,k,t)u2, now for longer timest5 15,50,100 ps. Note, by com
parison with the previous graph, that the wave front becom
sharper as time increases.
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IV. DELAY TIME

The notion of delay time arises from a stationary-pha
argument for the transmitted wave packet@24,25#. It is well
known that the delay time may be expressed in terms of
energy derivative of the phase of the transmission amplitu
namely,

tu5\
du

dE
. ~4.1!

Near resonance energy the following analytic expression
the delay time may be obtained@26#:

tu'\
G1/2

~E2e1!
21G1

2/4
. ~4.2!

Clearly at resonance energyE5e1, tu'2\/G1.
We have compared the transmitted probability dens

uc(x,k,t)u2 across the double-barrier resonant structure w
the free-wave probability density for two cases: one, given
Fig. 10, for a short time of the order of one lifetime, i.e
t50.64 ps, and the other case for a much longer ti
t51540 ps, corresponding to a wave front atx'0.1 cm,
given in Fig. 11. In both cases one observes a delay tim

FIG. 8. Plot ofuc(x,k,t)u2 for two values ofx as a function of
time to show the transient behavior leading to the stationary va
in the external region as time increases.

FIG. 9. Plot ofuc(x,k,t)u2 at t5 6 ps forx from 90 000 Å up
to 100 000 Å. This graph shows the nonvanishing, though exce
ingly small, precursor beyond the wave front. The wave front c
responding to this case occurs near 40 000 Å as shown in Fig
e

e
e,

r

y
h
n

e

of

the transmitted case relative to the free situation. In Fig.
the transmitted probability density is blurred and it does
allow one to estimate confidently the delay time. On t
other hand, in Fig. 11, where the transmitted wave fron
sharper, the delay can be estimated to be roughly of the o
of 2\/G1, which agrees with the stationary-phase value
resonance energy. The above considerations imply that
notion of delay time is an asymptotic property and provi
also a measurement of the delay time using a dynam
analysis of the wave-packet propagation. This result dese
further analysis.

V. CONCLUDING REMARKS

An important feature of our approach is that it allows
to observe clearly the transient effects associated with
time evolution of a wave solution at resonance energy ac
and beyond a resonant tunneling structure. It is found,
typical parameters of the system, that the transient is of
order of a few lifetimes. Along the internal region of th
potential the transient consists of the building up of the re

e

d-
-
.

FIG. 10. Comparison of the free-wave time evolutio
uc0(x,k,t)u2 with the solution transmitted across the syste
uc(x,k,t)u2 for a short time of the order of the lifetimet50.64 ps.
Since the transmitted wave front is not yet sharp enough, it is
possible to measure the delay confidently.

FIG. 11. Comparison of the free-wave time evolutio
uc0(x,k,t)u2 with the solution transmitted across the syste
uc(x,k,t)u2 for a longer timet5 1540 ps~corresponding to a wave
front at x'0.1 cm! to show that the delay time is of the order o
2\/G1.
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nant solution until the stationary solution is reached. Alo
the external region, one observes the birth of the propaga
wave front and after a few lifetimes the transmitted wa
front propagates virtually with the classical veloci
v5\k/m. Our approach provides a dynamical analysis
the delay time that the transmitted wave solution suffers w
respect to the free propagating wave. We found a delay t
of the order of 2\/G1, as obtained using a stationary-pha
argument. Our analysis shows also the absence of prop
tion along the internal region, at least for times longer tha
fraction of a lifetime. Our work exhibits a nonlocal charact
of the quantum-mechanical propagation. This appears a
exceedingly small precursor covering the whole space
soon as the time differs from zero. Along the internal reg
of the interaction one observes how this precursor builds
as time evolves until the stationary solution is reach
whereas along the external region, it remains negligi
small at distances beyond the propagating wave front. I
worth stressing that for times longer than one-tenth of a l
time onward the single-term approximation to our expa
sions is quite accurate.
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APPENDIX A: DETERMINATION OF THE RESIDUE AT
A POLE OF THE GREEN FUNCTION

In what follows it is shown that the residue o
G1(x,x8;k) near one of its complex poles is proportional
the functionsun(x) andun(x8). In doing so we apply to one
dimension the derivation of Garcı´a-Caldero´n and Peierls
@27#. This is of interest because the normalization condit
for resonant states in one dimension differs from that in th
dimensions.

The resonant function un(x) for a Hamiltonian
H5T1V, with V(x) extending fromx50 to x5L, obeys
the Schro¨dinger equation

d2

dx2
un~x!1@kn

22V~x!#un~x!50 ~A1!

and satisfies the boundary conditions atx50 andx5L,

F ddxun~x!G
x502

52 iknun~0! ~A2!

and

F ddxun~x!G
x5L2

5 iknun~L !. ~A3!

On the other hand, the outgoing Green’s function associa
with the HamiltonianH satisfies the equation
g
ng

f
h
e

ga-
a
r
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s
n
p
,
y
is
-
-

.

m

n
e

ed

]2

]x2
G1~x,x8;k!1@k22V~x!#G1~x,x8;k!5d~x2x8!,

~A4!

with the boundary conditions atx50 andx5L given, re-
spectively, by

F ]

]x
G1~x,x8;k!G

x502

52 ikG1~0,x8;k! ~A5!

and

F ]

]x
G1~x,x8;k!G

x5L2

5 ikG1~L,x8;k!. ~A6!

Near a complex polekn one may then write

G1~x,x8;k!5
Cn~x,x8!

k2kn
1x~x,x8;k!, ~A7!

whereCn(x,x8;k) is the residue andx(x,x8;k) is regular at
the pole. Substitution of Eq.~A7! into Eq. ~A4! leads, after
some simple algebra, to the result

1

k2kn
H d2Cn~x,x8!

dx2
1@k22V~x!#Cn~x,x8!J

1H ]2x~x,x8;k!

]x2
1@k22V~x!#x~x,x8;k!J 2d~x2x8!

50. ~A8!

Taking the limit k→kn , the addition and substraction o
kn
2Cn(x,x8)/(k2kn) to Eq. ~A8! leads to the expressions

]2Cn~x,x8!

]x2
1@kn

22V~x!#Cn~x,x8!50 ~A9!

and

]2x~x,x8;kn!

]x2
1@kn

22V~x!#x~x,x8;kn!12knCn~x,x8!

5d~x2x8!. ~A10!

Now, substitution of Eq.~A7! into the boundary conditions
given by Eqs. ~A5! and ~A6!, adding and substracting
iknCn(x,x8)/(k2kn), and taking the limitk→kn yields

F ]

]x
Cn~x,x8!G

x502

52 iknCn~0,x8!, ~A11!

F ]

]x
x~x,x8;kn!G

x502

52 iknx~0,x8;kn!2 iCn~0,x8!,

~A12!

F ]

]x
Cn~x,x8!G

x5L2

5 iknCn~L,x8!, ~A13!

and
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F ]

]x
x~x,x8;kn!G

x5L2

5 iknx~L,x8;kn!1 iCn~L,x8!.

~A14!

One sees that Eq.~A9! for Cn(x,x8) and its boundary con
ditions ~A11! and ~A13! are identical to Eq.~A1! for un(x)
and its boundary conditions,~A2! and ~A3!. Consequently,
these functions are proportional, namely,

Cn~x,x8!5un~x!P~x8!. ~A15!

An explicit expression forP(x8) may be obtained as follows
Multiply Eq. ~A10! by un(x) and Eq.~A1! by x(x,x8;kn),
subtract one from the other, and integrate fromx50 to
x5L. The result may be written as

Fun~x!
]

]x
x~x,x8;kn!2x~x,x8;kn!

d

dx
un~x!G

0

L

12knE
0

L

un~x!Cn~x,x8!dx5E
0

L

un~x!d~x2x8!dx.

~A16!

It then follows, using Eqs.~A2!, ~A3!, ~A12!, ~A14!, and
~A15!, that

P~x8!5
un~x8!

2knH E
0

L

un
2~x!dx1 i @un

2~0!1un
2~L !#/2knJ .

~A17!

Hence the residue of the outgoing Green’s function at
pole kn may be written as

Cn~x,x8!5
un~x!un~x8!

2kn
, ~A18!

provided the resonant states are normalized according to
condition

E
0

L

un
2~x!dx1 i

un
2~0!1un

2~L !

2kn
51. ~A19!

APPENDIX B: ASYMPTOTIC PROPERTIES
OF THE MOSHINSKY FUNCTION

The Moshinsky function is defined as@18,11#

M ~y![M ~x,q,t !5
i

2pE2`

` eipxe2 ip2t/a

p2q
dp

5
1

2
eimx2/2\tey

2
erfc~y!, ~B1!

where the argumenty is complex and q stands for
k,kr[ar2 ibr , or k2r52kr* . In this appendix we shall be
interested in evaluating the limits ast→0 and ast→` of the
Moshinsky function.
e

he

The properties of theM function may be obtained from
the properties of the function exp(y2)erfc(y). It turns out
that this last product corresponds to the functi
w(z)5exp(2z2)erfc(2 iz) as defined by Abramowitz and
Stegun@28# and Faddeyeva and Terent’ev@29#. Hence, mak-
ing z5 iy one may write theM function as

M ~y!5
1

2
eimx2/2\tw~ iy !. ~B2!

Expression~B2! may be adequate for calculations sin
methods to evaluate numerically the functionw are available
@28,29#. The properties of the functionw have been dis-
cussed by Abramowitz and Stegun@28# and Faddeyeva and
Terent’ev@29#.

For small values of the argumenty it is convenient to
consider the series expansion@28,29#

M ~y!5
1

2
w~ iy !5

1

2(n50

`
~2y!n

G~n/211!
. ~B3!

Hence, foruyu!1,

M ~y!'
1

2 F12
1

2
p1/2y1••• G . ~B4!

For very large values of the argumenty, provided it obeys
2p/2,argy,p/2, one may write the series expansion

w~ iy !'
1

p1/2y
2

1

p1/2y3
1•••, ~B5!

and therefore, using Eq.~B2!, one may writeM (y) as

M ~y!'
1

2
eimx2/2\tF 1

p1/2y
2

1

p1/2y3
1••• G . ~B6!

When the argument y lies within the limits
p/2,argy,3p/2 one may use the symmetry relation

w~2 iy !52ey
2
2w~ iy ! ~B7!

to write the asymptotic expansion

w~2 iy !'2ey
2
2

1

p1/2y
1

1

p1/2y3
2••• , ~B8!

and consequently, using Eq.~B2!, one may writeM (y) as

M ~y!'
1

2
eimx2/2\tF2ey22 1

p1/2y
1

1

p1/2y3
1••• G .

~B9!
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