PHYSICAL REVIEW A VOLUME 55, NUMBER 5 MAY 1997
Recoil corrections of order (Za)®(m/M)m to the hydrogen energy levels recalculated
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The recoil correction of orderZa)®(m/M)m to the hydrogen energy levels is recalculated and a discrep-
ancy existing in the literature on this correction for tHf@ dnergy level, is resolved. An analytic expression for
the correction to thé levels with arbitrary principal quantum number is obtain®{l050-294{@7)02405-0
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I. INTRODUCTION ) k(a-k) 1
D(w,k)=—47TZa< a— 2 )wz—k2+i0
The calculation of the recoil corrections of order
(Za)8(m/M)m to the hydrogen energy levels has a long oy
history [1-6]. After initial disagreements consensus was E_4WZ“;2__2+_iO 2

achieved in Ref[7], where one and the same result was
obtained in two apparently different frameworks. The first,
more traditional approach, used earlier in Ré®s-4], starts
with an effective Dirac equation in the external field. Correc- _
tions to the Dirac energy levels are calculated with the help ai=7". 3)
of a systematic diagrammatic procedure. The other logically
independent calculational framework, also used in R&f. N . .
starts with an exact expression for all recoil corrections of hl\{ote thatD((;),k) Iti R}Oth'ng morteththan tthe tran_ts_verse q
the first order in the mass ratio of the light and heavy par-.p oton propagator wi € source at the proton position, an
ticles m/M. This remarkable expression, which is exact mlntegratlon over the exchanged photon momentuis im-

Za, was first discovered by BraJs], and rederived later in ?ollr(;g mutlrt]ie |ﬁ:ﬁiﬁSilmopheatﬁgfriﬁmevxﬁr\]’v:g"qi;(pplggye?r'
different ways in a number of pap€r8,10,7. b ' P

The agreement on the Z@)5(m/M)m contribution tive contributions to the energy levels will be called

achieved in[7] seemed to put an end to all problems con—cf)UIOmb (corresponds topp), magnetic (corresponds to

nected with this correction. However, it was claimed in aPD andDp), and seagul(corresponds t®D).

recent work[11] that the result of7] is in error. The dis- It is the aim of this paper to resolve the above noted
crepancy between the results of Reffg,11] is confusing dlscrgpancy on the recoil correction of order
since the calculation if1] is performed in the same frame- (Z@)°(M/M)m to the 1S energy level, and also to obtain
work as the one employed {i7], namely, it is based on a this correction fo_r theS Ieve_Is with an arbitrary principal
particularly nice form of the Braun formula obtained by the quantum numbetit was earlier calculated only fon=1,2
author earlief10], :

and

1 do R Il. TWO APPROACHES TO THE BRAUN FORMULA
ABrec MRef 2P~ D(@)IG(E+w) Calculation of the recoil contribution of ordeZ &)° gen-
erated by the Braun formula was performed T in a most
><[p—|5(w)]|n), (1) straightforward way since separatio_n of the high- and low-
frequency contributions was made in the framework of the
where summation over all intermediate states is understood, method developed by one of the authors ear[ie2].
G(E+ w) is the Coulomb Green function in the Coulomb Hence, not only were contributions of order
gauge, which in the momentum space has the form (Za)®(m/M)m obtained in Ref.[7], but also linear in
m/M parts of recoil corrections of orderg &)* and Za)®
([13]) were reproduced for theSlstate. Note that the Braun

*Electronic addresses: eides@phys.psu.edu eides@Inpi.spb.su formula, despite its obvious advantages, in its present form

Temporary address. sums only contributions linear in the mass ratio. Hence, old
*Permanent address. methods are more adequate for obtaining the proper mass
$Electronic address: h1g@psuvm.psu.edu dependence of the contributions of orderZaj* and
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(Za)®, which were worked out if1]. Calculations in[7] tribution to the Lamb shift, and due to absence of the loga-
turned out to be rather lengthy and tedious just because alithmic contributions of order Za)®(m/M)m, precise
corrections of previous orders iie were reproduced. matching of the high- and low-frequency contributions is
The most significant feature of the recoil corrections ofunnecessary. Below we will consider calculation only of the
order Z«)®, which made the whole approach [df1] pos- low-frequency (MZa<k<o) contribution to the energy
sible, is connected with the absence lofarithmic recoil  shift, since for the high-frequency contribution the results of
corrections of this order, as was proved@j. Unlike[7], the  Refs.[7] and[11] nicely coincide.
calculations in[11] are organized in such a way that one
explicitly makes approximations inadequate for calculation 1. MAIN RECOIL CONTRIBUTION
of the contributions of the previous orders Zw, signifi- ) i _
cantly simplifying calculation of the correction of order ~ With the help of the Braun formula one may easily obtain
(Za)ﬁ. Due to absence of the logarithmic contributions of@n expression fo.rthe Ieadln_g reg:oﬂ correction which is linear
order Z«)®, infrared divergences connected with the crude'” thf mass ratio and which includes all terms of order
approximations inadequate for calculation of the contribu{(Za)" and Iow_er(s_ee Ref.[g]). To this end we rewrite the
tions of the previous orders would be powerlike and can b&oulomb contribution in Eq(l) in the form
safely thrown away. Next, the absence of logarithmic correc-
tions of order Za)® means that it is not necessary to worry
too much about matching the low- and high-frequefiong AEc |=i<n|p2|n>— i<n|pA‘p]|n> (5)
and short distance in terms of R¢1.1]) contributions, since o 2M M
each region will produce only nonlogarithmic contributions
and correction terms would be suppressed as powers of the
separation parameter. We would like to emphasize once =AEq+AE.
more that this approach wou_Id be. doomed if the logarithmic We also extract the nonretarded Breit part from the mag-
divergences were present, since in such a case one could qwoettic contribution in Eq(1)
hope to calculate an additive constant to the log, since the q
exact value of the integration cutoff would not be known.
We perform below a calculation of the recoil contribution AE magi= AEg+ AE magny » (6)
of order Za)® in the framework of Ref[11], and discover
the source of discrepancy between the resul{§pand[11]. where
In order to really implement such a program we need to have
a regular method to qualify all terms which will be thrown
away. To this end we will use a slight generalization of the
ordinary approach to calculation of the leading-order contri-
bution to the Lamb shift.
It may be proved that all corrections of order and
(Za)®(m/M)m are generated by the exchange of photons
with momenta larger tham(Za)?, so we will consider be-
low only this integration r(_agion. In the spirit of_the common AE pmagn=— ij d—w.(n|[v,p]G(E+ ©)D(w,k)
approach to the Lamb-shift calculations we will split the in- M) 2
tegration region over the exchanged photon moméaiel

1 N A
AEg=— 5(n[pD(0K) +D(0K)p|n) (7)

when necessary over frequengi@gth the help of an auxil- R 1
iary parametewr which satisfies the conditions —D(w,k)G(E+ w)[v,p]|n>m, (8
MZa<o<m, (4)

] ] whereV is the Coulomb potential(= —Za/r).
and we will call the photons with momenta smaller than Now it is not difficult to check with the help of the virial

low-frequency(or long-distance photons, and the photons re|ations(see, e.g., Ref14]), that the sum of the main part

with momenta larger thawr will be called high-frequency of the Coulomb term and of the Breit contribution acquires a
(or short-distancephotons. Considering low-frequency pho- yery nice form

tons we may expand over the ratiém since for such pho-

tons k/m=<o/m<1'. On the other hand, for the high-

frequency photonsmZa/k<mZalo<1, and we may m?—E?

expand over this parameter. Note that for momenta of order AEcl“LAEBr:Wv ©

o both expansions are valid simultaneously, and, hence, we

may match the expansions and get rid of the auxiliary pa-

rametero. However, the problem under consideration is, in awhereE is the value of the energy given by the Dirac equa-

sense, even simpler than calculation of the leading order conion. As we will see below, all other recoil contributions to
the energy level start at least with the term of ord@e)®,
and, hence, the formula above correctly describes all contri-

INote that the apparent linear divergences in this region of théutions of order Za)* and lower. However, this formula
form o/m are really parametrically small. describes only contributions linear in the mass ratio. A more
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precise expression which takes into account corrections of IV. SEAGULL CONTRIBUTION
higher order inm/M, was obtained in Ref.1].

It is easy to see that the expression in Ej.also contains
the correction of orderZa)®, which for thenSstates has the

Following Ref.[11] let us again start with the Braun ex-
pression Eq(1) for the seagull contribution and perform the
integration by closing the contour each time around one of

form the transverse photon poles
AE 1+ 3 1 . 1\ (Za)®* m 10
oYTlaTan 2t 53 3 M 1(d
8 8n n° 2n n° M __ | Y@, A A
AE¢= Mf27Ti<n|D(a),k)G(E+w)D(w,k)|n>.
This contribution was originally obtained in RdfL]. The (15

remaining part of the Coulomb contribution has the form

1 Substituting the pole representation for the Coulomb
AE=— M{nlp/\_p|n>. (11) Green function we obtain in accordance with Réf1]

|m><m|

2
Let us check that this term leads to corrections of higher :(Z“) / dmap E
+ (E_k,_Em)(E_k_ Em)

order than Z«)® when the intermediate momenta are of the S 2M | K’
atomic scale. We want to exploit the largef order 2m)

value of the energy gap between positive and negative states E —E Im><m|
in comparison with the typical energy splittingef order x| 1+ k’? " —E ETK —E(ETk—E
m(Za)?] in the positive-energy spectrum. First, let us note + = (E+ m) (E+ m)
that
1 En—E)\ |47 16
(nl[p.VIA_[p,V]In)=(n|[p,H—E]A_[p,H—E]|n) X\ e I (16
(12)
= —<n|pz |m)(m|(En—Em)?p|n). Let us consider positive- and negative-energy parts of this

expression separately.

We may expand the positive-energy part B<E,)/k
and E—-E,)/k, taking into account that in the low-
frequency integration regiomZa<k<g. In the first order

Knltp.VIA _[pVIIm)=Kn|pS [m)(m|(E,—Em?plmy|  OF IS expansion we get

However, €,— E,)?>4m?(1—ca?), and, hence,

=|(n[pA _p|n)|4m?*(1-ca?).
(Za)? Amay 477ay
(13) AE;—: 2M <n| k/2 A+ k2 |n> (17)

Then

1 Calculation of this contribution will be considered below.
Kn[pA —plm){< 4m?(1—ca?) Knltp.VIA-Tp.VIIm)]. Let us turn to the negative-energy contribution. Energy dif-
(14  ferences are large for the negative energy contribution
[[E—Enl~2m(1—ca?)], so we expand the negative-energy
We know that at the atomic scale the Coulomb potential igerm ink/(E—E,,)
of order (Za)?, the momentum operators are of ordéw,
and, hence, we explicitly have the factd«)®. Note that
this approach would not work if we had a projector on the

positive-energy states. In such a case the energy differences 2 |m><m| ( B Em—E

would be of order Za)? themselves and we would not get = (E+k'—E ) (E+k—E,) k'+k

any suppression, since the factoB)? would cancel in the 5

numerator and denominator. _S Im><m|[ 1 (k+k") 18)
Returning to our case, it is easy to realize that the projec- ~ E—-E, |ktk'  2(E—Ep)3|

tor on the negative energy states leads to additional suppres-

sion in the nonrelativistic limit, and, hence, the term under

consideration does not produce any contribution of order

(Za)® at the atomic scale. In accordance with Refl11] the terms linear ink/2m
There is complete agreement between the results of Refsancel, and the negative-energy contribution acquires the

[7] and[11] for the corrections discussed in this section.  form
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B (Za)? , Aoy, energy shift calculated in Refl1], and the same shift ob-
AEg =~ am |\/|(1+Ca2)\n| K tained earlier in another framework in RE1L5].
1 (k+k’")? 41 ay A. Accurate calculation with momentum space cutoff
XA k+k’ * 2[2m(1+ca®)]®| k ). Direct calculation of the positive energy seagull contribu-

tion [Eq. (16)] in momentum space leads to the following
(190  expression for th&-state contribution:

2 3n7 3 3L’ 3

It may be showr(compare below the consideration of the AES = (Zza) ly 3 d p3 Ik 3 d k3
negative-energy contribution in the case of the one trans- mM J (2m)" (2m)* (2m)” (2m)
verse exchangehat the first term produces the contribution
of order Za)®, while the second is of ordeiZg)’. Only
terms linear ink, k' are capable of producing contributions
of order Za)®, but these terms cancel each other, as we
have just seen.

Let us now return to the positive-energy contribution. The X :,//(p’)[ —p'-p+
idea of Ref.[11] is to consider matrix elements and to cal-
culate them in the nonrelativistic approximation, which pro-
duces the leading low-frequency contribution. All matrix el- =AEy+AE,+AE . (21
ements under consideration have a common structure. In
general they are the products of matrix elementy ofatri-
ces in the momentum space. Each such matrix element in the
nonrelativistic limit may easily be reduced to an explicit
function of momenta and- matrices, then transformed into
coordinate space and calculated between Coulomb”Schr
dinger wave functions.

We have performed an explicit calculation along these
lines and obtained in complete accord with Réfl]

2

X(27T)35(p'—p—k—k’)m

(k"-K)(p'-k")(p-k)  k'-k
k'%k? 2

w(p)

The first two terms in the integrand do not rise too rapidly
with k andk’, and we may unambiguously calculate them
Hsing the Fourier transforms discussed above. For the first
term we have

(Za)zf L & dp Bk d
"2m)? 2m)® (2m)3 (2m)°
. (Za)? 1 1 3I°+20-1

AE =7 o (n[2pspt - ——57—(n). (20 )

am? o rorkakh BT
X el PP o oy(p')p' - py(p)

This expression is singular at the origin. This singularity

produces linear and logarithmic ultraviolet divergences in 2 3, 3

S 2 (Za) d°p’ d°p
momentum space as well as a constant contribution, and, =— d3r 3 .
hence, the contribution under consideration cannot be calcu- 2m°M (2m)° (2m)

lated unambiguously in the general case. It is necessary to

realize at this stage that the initial expression for the seagull ‘ , 1

contribution in Eq.(15) was defined unambiguously. Even xerp +p))r—z¢(P')p"p<ﬂ(p)- (22)
separation of the integration region with the help of the aux-

iliary parametewr could not lead to an ultraviolet divergence

in the low-frequency region since all momentum integrations The remaining integration ovey’ andp simply returns

are cut off from above by and should generate not power Us to the coordinate-space wave functions, and we may re-
divergent but power suppressed terms. It is clear that thé/fite the expression above in the operator notdtion
apparent divergence is connected with our inaccurate calcu-

lation of the singularity at large momenta or small distances. (Za)? 1
Hence, we have to return to the initial momentum space AE51:m<n PzP n>. (23
expression for the positive energy seagull contribution and

perform all calculations directly in the momentum space.

The result of such a calculation may be later interpreted as anhis contribution exactly reproduces the nonsingular opera-

unambiguous prescription for the proper regularization of theor obtained in the preceding section.

coordinate space operators for tBestates. Next we calculate the second contribution in the same
Note, that for the norg-states, wave functions vanish at manner as above

the origin, the operators above are well defined on such wave

functions, and lead to unambiguous results. Of course, any

regularization at small distances will not influence the value 20One has to take into account that the apparent sign of the expres-

of the nonS—matrix-elements of the operator in EQ0),  sion below changes, since the momenta in the exponent have oppo-

and will not influence the agreement between fhéevel  site signs.
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(Za)zf f d®p’ dp d%’ d% ir (B p ) g ,)87r2(k’-k)(p’~k’)(p-k) o)
(2m)3 (2m)3 (2m)2 (27)° P kK P
(Za)2 PP rr; r.r
J f —ge'” PP Gz | i 17 || Gmm | 9AP)
(Zoz)2 - (P’ )(p r)
= (=p'+p) plp———
|
Now we use the formula o 16m(Za)?
AES" =~ — V%0 fmf dk’
(-p)(-p)==[rxp'llrxpl+r’(’-p), (25 °
k'kx
and omit the terms with the vector product since we are XJ dX=5—7> - 5=
considering onlyS states now. Then we obtain -1 [KEHKE2KK X (2)7]
e (26) _BrZe” Iw(O)sz g
Next we have to calculate the third contribution, which mM 7 (2m)%k?
corresponds to the 1 term in the naive result above in Eq. K
(20). This time we cannot use Fourier transformations over arctanz—
exchanged momenta for calculation of this integral, since % 7’_i
this leads to a singular expression in coordinate space. So we k 2y
first perform the safe Fourier transformations over the wave
function momenta, and then directly evaluate the exchanged arcta K
momenta integrals, taking into account that they are cut from _ 4(Za)? ) K 1
above byo<m, T MM Y[$(0)] 0 d k 2y
AEM_ (Za)zf d®k’  d%k 47%(k'-k)
B RN = (Z i |4(0)|? 271 i—zz 29
VAN 5% (29)

x(n(r)|e'® kI Tn(r)). (27)

In order to preserve the transparency of the presentation The nonlogarithmic term of orderZg)® in this expres-
we will perform the calculation only fon=1 here. The gen- sjon is additionally suppressed by the small ration, and
eral case of arbitrary principal quantum number will be con-may be safely ignored. Thus, we see that the properly regu-
sidered at the end of the paper. We substitute explicit expresarized operator 1 in the seagull diagram does not generate
sions for the B wave functions in the formula above, and do a constant contribution. The logarithmic divergence above
the coordinate-space integral should cancel with the respective contribution of the one-
transversémagnetig diagram.

s (Za)? d3k’  d%k 47?%(k’-k)
AEl/T —
s m’M (2m)3 (2m)°  k'°k?
V. MAGNETIC CONTRIBUTION
xf d3reik+k)-rg=2yr This time we start with the Braun expression for the one-
transverse photon in Eql)

_ 64m(Za)? o2
S AE —1R do G(E+ w)D(w,k
d3k’  d3k k'-k magn_m ef ﬁ(nlp (E+ w)D(w,k)
2m)% (2m)° K" 2K (k+k')*+(29)%]%" R
(2m)*" (2m) [k+k)™+ (2)7] +D(w,k)G(E+ w)p|n) (30

(28)
where y=mZa. and first calculate the contour integtal

Symmetrical integrals over the exchanged momenta are
cut from above by the parametet However, first integra-
tion, say overk’, is convergent at high momenta and the 3Note that the overall minus sign is connected with the respective
cutoff may be safely ignored sign in the definition of the transverse propagator.
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|m><m| infrared divergent Fourier transform generates a logarithmic
AEmagi= 2M<”| [E k+E “E divergent contribution of orderZa)® in accordance with
Ref.[11]. The next terms vanish with the infrared cutoff and
|m><m| 47mk cannot produce contributions of orde«)®.
Z E—E.+k ——Im+Hc. (31 Let us turn now to the termE ... Naive calculation in

the coordinate space in accordance with the result in Ref.

As we are again calculating the low-frequency correctiond 11] 1€ads to the result
to the Breit potential let us expand the positive-energy term

in (E,—E)/k Za 4day
" (En=BY AE o=~ (DS (Epy= EYm)(m| g ) + Hic.

Za 1 E,—E ’

m
AEmagi= ~ o(IP2 |m><m|[E——kz (Za)? 1 72 ol
2 = = 2 r(nl2pp— 55—~ In). (36
(En—E) 47Tak
Tt Tt [n)+H.c. (32 . . . .
k This expression contains only operators which are non-

singular at the origin folS states. Hence, they are well de-

The first term in this expansion may be written in the gho4 and there is no need for a careful momentum space

form consideration in this case.
n o T QY
AE agn= m<n| pA +_k2_|n>+ H.c. B. Negative-energy contribution

Za 4 There are two negative-energy contributions connected

= 2| pm 772ak| n) with the magnetic term, one in E(1), and the other in Eq.
- 2M k (33).
7 Let us consider first

+—a<n| A 7mk|n>+Hc
am\MPA -T2 ' e 5, Im=<ml m><m| dmay
magn 2M< | E E +k k | > C. ( 7)
=AEg+AEnagns » (33

and it is now evident that the firéBreit) term here coincides W& have checked, in accordance with Reffl], th73t this
with that part of transverse exchange which cancels with thé'm leads, at most, to contributions of ordeta()’, and,

respective term in the Coulomb contribution. hence, is of no interest. _
Remaining positive-energy contributions are given by the We still have to calculate one more negative-energy con-

expression tribution, contained in Eq(33)

Za - E o T

+ _ m
AEmagrr m<n|p§+: |m><m|[_ AErTwagnl m<n|p/\, K2 [n)+H.c
(Em—E)? 477ak (Za)?  4ma 4mk(e-K)
+ k3 + ' |n>+HC 8m2M\ | er k2 > +H.c.
EAEr;agnz'i_ AEr;agnS"_ T (34) (38)

3 o Naive calculation with the help of the Fourier transforma-
A. Positive-energy contribution tion leads, in accordance with R¢fL1], to the expression
In accordance with Ref11] one may check that the term

AE 02 does not lead to the contributions of ordé@a()®. (Za)? 47r5(r) 1

We have AEpagnt- = am ZM\ n| r_4|n>' (39
47Tak . , ;
AEmagns= 2|v|<n|pz [m){m|(E,,— & In)+H.c. However, this expression, as in the case of the seagull
contribution, contains singular operators at the origin, and
2 ' oes not have unambiguous meaning for$tstates. A more
(Za) 4xk Aoy d h ; b.. L ing f $hﬂ A
RTY (n| 2 AL —=—|n)+H.c. (35  careful calculation, which explicitly takes into account a mo-

mentum space cutoff, is needed.
First we transform the negative-energy contribution in Eq.

The simplest way to estimate this matrix element is t338) to the form

make a Fourier transformation. Then we need an infrare
divergent Fourier transform of k7. All momentum integrals
in the low-frequency region are cut off from below by AEY
m(Za)?, and it is easy to check that the leading term in the magni-

Za VIA_ 2T 0 He., (40
~ amm NP VIA - — = [n)+H.c. (40)



Next we substitute the negative-energy projection opera-
approximation

tor in the nonrelativistic
A _(p)=1/2— (a-p+ Bm)/2m and use the trivial identity

[va]Aszf[va]_[Af v[pvv]]

=A_[p, V]+[ [p V11 (41)

Note that the first term on the right-hand side vanishes
applied to the ket vector, and the negative-energy contribuAg*

tion reduces in the nonrelativistic approximation to
ik-r

4
2m Mf (27T)3<n|pk[p NV]—m— K2 |n>
(42

AE

magni-

Then we use

2m(Za)?

+
AEmagnl
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. Mk
((D)lpe=—iy<n(r)| 7,

r
[pV]=~i(Za) 3, (43)
and obtain
(Za)? d3k (r r) 4me'k’
magnl- ZmC;M Y (277)3J‘ d3r rg(r )2 k 7Tk2
(44)

As in the case of the singular seagull contribution we will
perform the calculation fon=1 first, postponing consider-
ation of the general case to Sec. VI. We substitute explicit
expressions for the wave functions and obtain

|¢(0)|2J _d3k 4—7TJ1 dx(l—xz)dere*Z”e”‘”‘
2mm 7 2m3 K], 0

k
(Za (4'y2+ k2)arctan2—7 5
fyzlww)lz f -
2m2M (2m )3 yk3 [

B 4m(Za)? (47)°
- o2m’M  (2m)°

m(Za)?

—2—y|¢<0)|2[2|n%—1]

k
(4y%+Kk?) arctanz—y 5

2 2 7 -
Y |¢(0)| jo dk yk3 k2

(45

Again, as in the case of the seagull contribution, this termvives. This contribution is connected with th® function
may be understood as a proper regularization of the operatéerm in Ref.[11], and the error in Ref{11] is due to an
appearing in Eq(39), which is singular in coordinate space. improper regularization of this contribution. Note that from

VI. CALCULATIONS FOR ARBITRARY PRINCIPAL
QUANTUM NUMBER

The total low-frequency contribution for theSlstate is
given by the sum of the results in Eq40), (23), (29), (36),
and (45

m
AEjow freq(ls): —(Za)ﬁmm, (46)

and coincides with the result obtained earlier for the low-
frequency contribution in Ref.7]. We see that the seagull

the point of view of the coordinate representation after the
Fourier transformation is done the proper regularization is
highly nontrivial. One could never obtain this contribution
with a naivead hocregularization in coordinate space.

The result in Eq(46) is valid only for the 1S state. We
are going to generalize it to an arbitrary principal quantum
number.

A. Seagull contribution for arbitrary nS level

The general expression for the wave function of re®
level has the form

1/2

e—(yr/n) -1

n
1= —=yr+---|. (47

3
¢n<r>=(#

and magnetic contributions partially cancel each other. This
reflects cancellation of therf/ terms in the language of Ref. Let us introduce8= y/n. Almost all calculations above for
[11]. However, the contribution connected with the termn=1 immediately turn into calculations for arbitranyafter

(—1) in the square brackets in the last line in E4p) sur-

substitutiony— B [16]. The wave function has the form
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3\ 1/2 4 ur r#
dfn(r):(ﬂ?) e AT1—(n—1)Br+--] ABi=AEST +ABscor
— 2
=yn(0)e P [1-(n—1)Br+---]. (48 LQLM 0)|2[ Wy (o ”ﬁaﬂ o

Quadratic and higher-order termsririn the postexponen- _ (Za 2 2
tial factor in the wave function do not produce any contribu- == |40l 2777'”2,3 2a(n=1)B).
tion to the energy level connected with the singular operator
in the naive expression in ERO), and we will ignore them (52)

below. The only difference between the general case and the
case ofn=1 is connected with the linear term in the postex-
ponential factor. Let us find out how it changes the result for
the seagull contribution. First, let us write down the singular
seagull contribution induced by the purely exponential part  ag in the case of the seagull contribution the only differ-
of the wave function for arbitrary in the form ence of the general case from the case#sfl is connected
with the linear term in the postexponential factor in the wave
function. The purely exponential part of the wave function

B. Magnetic contribution for arbitrary nS level

ya (Za)? , [ @k d¥k 4mP(k’ k) leads to the following singular magnetic contribution for ar-
AES == mZM |l[1(0)| (277)3 (277_)3 k12k2 bitraryn:
% f d3r ei(k+k’)~re72Br
(
(Za)? AEmagnl— |¢(0)|2[27T:8|nzﬁ Wﬂ}
— [ w(0) 2l (49
_(Za )
- 2 |¢(0)| magnl (53)
where
The new contribution induced by the linear term in the
wave function has the form
1” =2 ,Bln (50)

28"
N Za d3k
AEmagnl— cor— m ﬁg[ (n— 1)ﬁ]

The linear terms in the wave functions lead to an addi-
tional contribution

ik-r
X <”|rpk[p,V]—kr|”>

T ik-r
AEl/r __( )2| )|2 d3k13 d3k3 47T2(2k,2k) +<n|pk[p,V]Tr|n>]. (59
(2m)° (2m) K’k

S, comr

Next we write
xf d3r e/ k+k)re=26 _2(n—1)pBr]

(Za rpx= Pkl — [Pk, (55
_ l/r
T m M “(n- 1)3(9,3
and using the commutation relation
(Za)? ) o
= (n—=1) ZWﬂlnﬁ—Zﬂ',B ,
Tk
J]=—i—, 56
- [Pi.rl=—i~ (56)

and the total seagull contribution to the energy shift is equ%btain
to
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ik-r

47e melkT
AEmagnl— cor— ZszJ(Z )3[ (n 1)B]{<n||_[p V] k2 |n>+<n|pk[p V] k2 2r|n>}

Za d3k _ rk)
( ﬂ.)§(n 1) <n| _|BT
(Za)?
- mZaM 2(n—1)| €fhagns + B aﬂ(
(Za)?
:W|¢(0)|2 25
_(Za)? 2
=M |4(0)]4| 2mB(N— 1)In 28 —-3(n—

Zwﬁ(n—1)In——(n—1)7-r,8—(n—1)27r,8

ik-r ik-r
[p,V]—kz—|n>—<n—1)ﬁ<nlpk[p,VJ—kz—2r|n>]
er;agnl”
B

(57)

LywpB|.

Then the total singular magnetic contribution is equal to Note that the last term connected with the naive singular

+ —
A Emagnlf Jtot™ A Emagnl +A Emagnl ,cor

(Za 0)|3 2781
——2—|¢( )| ”ang

—aB+2mB(n—1)l n——3(n—1)7r,8

2p
o 2mying s~ mp
-3(n— 1)773}. (58)
VII. TOTAL RECOIL CORRECTION
The total low-frequency contribution of order

(Za)®(m/M)m for an arbitraryn S state is given by the sum
of the terms in Eqgs(10), (23), (52), (36), and(58)

1 3 1 (Za)® m
AEIowfreq: 8 %_?"'ﬁ Tmm

(Za)? 1 (Za)?

+ o (P pln) = | Y(O)2

27T'y|n 25 277(!’1—1),8}

(Za)? (Za

~ amemN2Pz i)+ zM |¢/<0>|2

27Ty|n—— wB—3(n— 1)77,6’}

2B
. 1+3 1+ (Za)® m
“l8"8n n2 203 @ MM
(Za)® m

m. (59

n M

operators in the coordinate space turned out to be state inde-
pendent.

To obtain the total recoil correction of order
(Za)®(m/M)m it is also necessary to calculate the high-
frequency(or short-distancecontribution to the energy shift.
The simplest way is to use again the Braun formula &y.
but this time in the Feynman gauge. This calculation is quite
straightforward if one again uses the auxiliary parameter
introduced above in order to qualify would be infrared diver-
gences. Such a calculation was performed explicitly in Ref.
[11] and led to the result

5\ (Za)® m

AEhigh freq: ( 4 n2— E) _ng_ Mm, (60)

in complete agreement with Réf7].

Then total correction of orderZ)®(m/M)m to the en-
ergy levels is given by the sum of the results in Esf) and
Eq. (60)

AE _(1+3 1 1\(Za)®*m
=18 gn n2 2n3) 3 MM
(Za)® m
4|n2—E —7 M (62)

Forn=1,2 this result nicely coincides with the one obtained
in Ref. [7].

In conclusion, let us emphasize that discrepancies be-
tween the different results for the correction of order
(Za)®(m/M) to the energy levels of the hydrogenlike ions
are resolved and the correction of this order is now firmly
established.
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