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Recoil corrections of order „Za…6„m/M …m to the hydrogen energy levels recalculated
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The recoil correction of order (Za)6(m/M )m to the hydrogen energy levels is recalculated and a discrep-
ancy existing in the literature on this correction for the 1S energy level, is resolved. An analytic expression for
the correction to theS levels with arbitrary principal quantum number is obtained.@S1050-2947~97!02405-0#
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I. INTRODUCTION

The calculation of the recoil corrections of ord
(Za)6(m/M )m to the hydrogen energy levels has a lo
history @1–6#. After initial disagreements consensus w
achieved in Ref.@7#, where one and the same result w
obtained in two apparently different frameworks. The fir
more traditional approach, used earlier in Refs.@2–4#, starts
with an effective Dirac equation in the external field. Corre
tions to the Dirac energy levels are calculated with the h
of a systematic diagrammatic procedure. The other logic
independent calculational framework, also used in Ref.@7#,
starts with an exact expression for all recoil corrections
the first order in the mass ratio of the light and heavy p
ticlesm/M . This remarkable expression, which is exact
Za, was first discovered by Braun@8#, and rederived later in
different ways in a number of papers@9,10,7#.

The agreement on the (Za)6(m/M )m contribution
achieved in@7# seemed to put an end to all problems co
nected with this correction. However, it was claimed in
recent work@11# that the result of@7# is in error. The dis-
crepancy between the results of Refs.@7,11# is confusing
since the calculation in@11# is performed in the same frame
work as the one employed in@7#, namely, it is based on a
particularly nice form of the Braun formula obtained by t
author earlier@10#,

DErec52
1

M
ReE dv

2p i
^nu@p2D̂~v!#G~E1v!

3@p2D̂~v!#un&, ~1!

where summation over all intermediate states is underst
G(E1v) is the Coulomb Green function in the Coulom
gauge, which in the momentum space has the form
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D̂~v,k!524pZaS a2
k~a•k!

k2 D 1

v22k21 i0

[24pZa
ak

v22k21 i0
~2!

and

a i5g0g i . ~3!

Note that D̂(v,k) is nothing more than the transvers
photon propagator with the source at the proton position,
integration over the exchanged photon momentumk is im-
plicit in the expression above. Below we will explicitly pe
form multiplication in the matrix element in Eq.~1!. Respec-
tive contributions to the energy levels will be calle
Coulomb ~corresponds topp), magnetic ~corresponds to
pD̂ and D̂p), and seagull~corresponds toD̂D̂).

It is the aim of this paper to resolve the above not
discrepancy on the recoil correction of ord
(Za)6(m/M )m to the 1S energy level, and also to obtai
this correction for theS levels with an arbitrary principa
quantum number~it was earlier calculated only forn51,2
@7#!.

II. TWO APPROACHES TO THE BRAUN FORMULA

Calculation of the recoil contribution of order (Za)6 gen-
erated by the Braun formula was performed in@7# in a most
straightforward way since separation of the high- and lo
frequency contributions was made in the framework of
e method developed by one of the authors earlier@12#.
Hence, not only were contributions of orde
(Za)6(m/M )m obtained in Ref.@7#, but also linear in
m/M parts of recoil corrections of orders (Za)4 and (Za)5

~@13#! were reproduced for the 1S state. Note that the Braun
formula, despite its obvious advantages, in its present fo
sums only contributions linear in the mass ratio. Hence,
methods are more adequate for obtaining the proper m
dependence of the contributions of orders (Za)4 and
3351 © 1997 The American Physical Society
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(Za)5, which were worked out in@1#. Calculations in@7#
turned out to be rather lengthy and tedious just because
corrections of previous orders inZa were reproduced.

The most significant feature of the recoil corrections
order (Za)6, which made the whole approach of@11# pos-
sible, is connected with the absence oflogarithmic recoil
corrections of this order, as was proved in@6#. Unlike @7#, the
calculations in@11# are organized in such a way that on
explicitly makes approximations inadequate for calculat
of the contributions of the previous orders inZa, signifi-
cantly simplifying calculation of the correction of orde
(Za)6. Due to absence of the logarithmic contributions
order (Za)6, infrared divergences connected with the cru
approximations inadequate for calculation of the contrib
tions of the previous orders would be powerlike and can
safely thrown away. Next, the absence of logarithmic corr
tions of order (Za)6 means that it is not necessary to wor
too much about matching the low- and high-frequency~long
and short distance in terms of Ref.@11#! contributions, since
each region will produce only nonlogarithmic contributio
and correction terms would be suppressed as powers o
separation parameter. We would like to emphasize o
more that this approach would be doomed if the logarithm
divergences were present, since in such a case one coul
hope to calculate an additive constant to the log, since
exact value of the integration cutoff would not be known

We perform below a calculation of the recoil contributio
of order (Za)6 in the framework of Ref.@11#, and discover
the source of discrepancy between the results of@7# and@11#.
In order to really implement such a program we need to h
a regular method to qualify all terms which will be throw
away. To this end we will use a slight generalization of t
ordinary approach to calculation of the leading-order con
bution to the Lamb shift.

It may be proved that all corrections of ord
(Za)6(m/M )m are generated by the exchange of photo
with momenta larger thanm(Za)2, so we will consider be-
low only this integration region. In the spirit of the commo
approach to the Lamb-shift calculations we will split the i
tegration region over the exchanged photon momenta~and
when necessary over frequencies! with the help of an auxil-
iary parameters which satisfies the conditions

mZa!s!m, ~4!

and we will call the photons with momenta smaller thans
low-frequency~or long-distance! photons, and the photon
with momenta larger thans will be called high-frequency
~or short-distance! photons. Considering low-frequency ph
tons we may expand over the ratiok/m since for such pho-
tons k/m<s/m!11. On the other hand, for the high
frequency photonsmZa/k<mZa/s!1, and we may
expand over this parameter. Note that for momenta of or
s both expansions are valid simultaneously, and, hence
may match the expansions and get rid of the auxiliary
rameters. However, the problem under consideration is, in
sense, even simpler than calculation of the leading order c

1Note that the apparent linear divergences in this region of
form s/m are really parametrically small.
all
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tribution to the Lamb shift, and due to absence of the lo
rithmic contributions of order (Za)6(m/M )m, precise
matching of the high- and low-frequency contributions
unnecessary. Below we will consider calculation only of t
low-frequency (mZa,k,s) contribution to the energy
shift, since for the high-frequency contribution the results
Refs.@7# and @11# nicely coincide.

III. MAIN RECOIL CONTRIBUTION

With the help of the Braun formula one may easily obta
an expression for the leading recoil correction which is line
in the mass ratio and which includes all terms of ord
(Za)4 and lower~see Ref.@9#!. To this end we rewrite the
Coulomb contribution in Eq.~1! in the form

DECoul5
1

2M
^nup2un&2

1

M
^nupL2p#un& ~5!

[DEc11DEc2 .

We also extract the nonretarded Breit part from the m
netic contribution in Eq.~1!

DEmagn5DEBr1DEmagn,r , ~6!

where

DEBr52
1

2M
^nupD̂~0,k!1D̂~0,k!pun& ~7!

and

DEmagn,r52
1

ME dv

2p i
^nu@V,p#G~E1v!D̂~v,k!

2D̂~v,k!G~E1v!@V,p#un&
1

v1 i0
, ~8!

whereV is the Coulomb potential (V52Za/r ).
Now it is not difficult to check with the help of the viria

relations~see, e.g., Ref.@14#!, that the sum of the main par
of the Coulomb term and of the Breit contribution acquire
very nice form

DEc11DEBr5
m22E2

2M
, ~9!

whereE is the value of the energy given by the Dirac equ
tion. As we will see below, all other recoil contributions
the energy level start at least with the term of order (Za)5,
and, hence, the formula above correctly describes all con
butions of order (Za)4 and lower. However, this formula
describes only contributions linear in the mass ratio. A m
e
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precise expression which takes into account correction
higher order inm/M , was obtained in Ref.@1#.

It is easy to see that the expression in Eq.~9! also contains
the correction of order (Za)6, which for thenSstates has the
form

DEGY5S 181
3

8n
2

1

n2
1

1

2n3D ~Za!6

n3
m

M
m. ~10!

This contribution was originally obtained in Ref.@1#. The
remaining part of the Coulomb contribution has the form

DEc252
1

M
^nupL2pun&. ~11!

Let us check that this term leads to corrections of hig
order than (Za)6 when the intermediate momenta are of t
atomic scale. We want to exploit the large~of order 2m)
value of the energy gap between positive and negative s
in comparison with the typical energy splittings@of order
m(Za)2# in the positive-energy spectrum. First, let us no
that

^nu@p,V#L2@p,V#un&5^nu@p,H2E#L2@p,H2E#un&
~12!

52^nup(
2

um&^mu~En2Em!2pun&.

However, (En2Em)
2.4m2(12ca2), and, hence,

z^nu@p,V#L2@p,V#un& z5 z^nup(
2

um&^mu~En2Em!2pun& z

> z^nupL2pun& z4m2~12ca2!.

~13!

Then

z^nupL2pun& z<
1

4m2~12ca2!
z^nu@p,V#L2@p,V#un& z.

~14!

We know that at the atomic scale the Coulomb potentia
of order (Za)2, the momentum operators are of orderZa,
and, hence, we explicitly have the factor (Za)6. Note that
this approach would not work if we had a projector on t
positive-energy states. In such a case the energy differe
would be of order (Za)2 themselves and we would not g
any suppression, since the factors (Za)2 would cancel in the
numerator and denominator.

Returning to our case, it is easy to realize that the pro
tor on the negative energy states leads to additional supp
sion in the nonrelativistic limit, and, hence, the term und
consideration does not produce any contribution of or
(Za)6 at the atomic scale.

There is complete agreement between the results of R
@7# and @11# for the corrections discussed in this section.
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IV. SEAGULL CONTRIBUTION

Following Ref.@11# let us again start with the Braun ex
pression Eq.~1! for the seagull contribution and perform th
integration by closing the contour each time around one
the transverse photon poles

DEs52
1

ME dv

2p i
^nuD̂~v,k!G~E1v!D̂~v,k!un&.

~15!

Substituting the pole representation for the Coulom
Green function we obtain in accordance with Ref.@11#

DEs5
~Za!2

2M
^nu

4pak8
k8 F(

1

um.,mu
~E2k82Em!~E2k2Em!

3S 11
Em2E

k81k D 2(
2

um.,mu
~E1k82Em!~E1k2Em!

3S 12
Em2E

k81k D G4pak

k
un&. ~16!

Let us consider positive- and negative-energy parts of
expression separately.

We may expand the positive-energy part in (E2Em)/k
and (E2Em)/k, taking into account that in the low
frequency integration regionmZa,k,s. In the first order
of this expansion we get

DEs
15

~Za!2

2M
^nu

4pak8
k82

L1

4pak

k2
un&. ~17!

Calculation of this contribution will be considered below
Let us turn to the negative-energy contribution. Energy d
ferences are large for the negative energy contribut
@ uE2Emu'2m(12ca2)#, so we expand the negative-energ
term in k/(E2Em)

(
2

um.,mu
~E1k82Em!~E1k2Em! S 12

Em2E

k81k D
5(

2

um.,mu
E2Em

F 1

k1k8
1

~k1k8!2

2~E2Em!3G . ~18!

In accordance with Ref.@11# the terms linear ink/2m
cancel, and the negative-energy contribution acquires
form
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DEs
252

~Za!2

4mM~11ca2!
^nu

4pak8
k8

3L2F 1

k1k8
1

~k1k8!2

2@2m~11ca2!#3G4pak

k
un&.

~19!

It may be shown~compare below the consideration of th
negative-energy contribution in the case of the one tra
verse exchange! that the first term produces the contributio
of order (Za)5, while the second is of order (Za)7. Only
terms linear ink, k8 are capable of producing contribution
of order (Za)6, but these terms cancel each other, as
have just seen.

Let us now return to the positive-energy contribution. T
idea of Ref.@11# is to consider matrix elements and to ca
culate them in the nonrelativistic approximation, which pr
duces the leading low-frequency contribution. All matrix e
ements under consideration have a common structure
general they are the products of matrix elements ofg matri-
ces in the momentum space. Each such matrix element in
nonrelativistic limit may easily be reduced to an expli
function of momenta ands matrices, then transformed int
coordinate space and calculated between Coulomb Sc¨-
dinger wave functions.

We have performed an explicit calculation along the
lines and obtained in complete accord with Ref.@11#

DEs
15

~Za!2

4m2M
^nu2p

1

r 2
p1

1

r 4
2
3l212s• l

2r 4
un&. ~20!

This expression is singular at the origin. This singular
produces linear and logarithmic ultraviolet divergences
momentum space as well as a constant contribution,
hence, the contribution under consideration cannot be ca
lated unambiguously in the general case. It is necessar
realize at this stage that the initial expression for the sea
contribution in Eq.~15! was defined unambiguously. Eve
separation of the integration region with the help of the a
iliary parameters could not lead to an ultraviolet divergenc
in the low-frequency region since all momentum integratio
are cut off from above bys and should generate not pow
divergent but power suppressed terms. It is clear that
apparent divergence is connected with our inaccurate ca
lation of the singularity at large momenta or small distanc
Hence, we have to return to the initial momentum spa
expression for the positive energy seagull contribution a
perform all calculations directly in the momentum spa
The result of such a calculation may be later interpreted a
unambiguous prescription for the proper regularization of
coordinate space operators for theS states.

Note, that for the non-S-states, wave functions vanish
the origin, the operators above are well defined on such w
functions, and lead to unambiguous results. Of course,
regularization at small distances will not influence the va
of the non-S–matrix-elements of the operator in Eq.~20!,
and will not influence the agreement between theP-level
s-
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energy shift calculated in Ref.@11#, and the same shift ob
tained earlier in another framework in Ref.@15#.

A. Accurate calculation with momentum space cutoff

Direct calculation of the positive energy seagull contrib
tion @Eq. ~16!# in momentum space leads to the followin
expression for theS-state contribution:

DEs
15

~Za!2

m2M E d3p8

~2p!3
d3p

~2p!3
d3k8

~2p!3
d3k

~2p!3

3~2p!3d~p82p2k2k8!
8p2

k82k2

3c~p8!F2p8–p1
„k8–k…„p8–k8…„p–k…

k82k2
2
k8–k

2 Gc~p!

[DEs11DEs21DE1/r4. ~21!

The first two terms in the integrand do not rise too rapid
with k and k8, and we may unambiguously calculate the
using the Fourier transforms discussed above. For the
term we have

DEs152
~Za!2

m2M E d3r
d3p8

~2p!3
d3p

~2p!3
d3k8

~2p!3
d3k

~2p!3

3ei r–„2p81p1k1k8…
8p2

k82k2
c~p8!p8–pc~p!

52
~Za!2

2m2ME d3r
d3p8

~2p!3
d3p

~2p!3

3ei r–„2p81p…
…

1

r 2
c~p8!p8–pc~p!. ~22!

The remaining integration overp8 and p simply returns
us to the coordinate-space wave functions, and we may
write the expression above in the operator notation2

DEs15
~Za!2

2m2M K nUp1r 2pUnL . ~23!

This contribution exactly reproduces the nonsingular ope
tor obtained in the preceding section.

Next we calculate the second contribution in the sa
manner as above

2One has to take into account that the apparent sign of the exp
sion below changes, since the momenta in the exponent have o
site signs.
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DEs25
~Za!2

m2M E d3r E d3p8

~2p!3
d3p

~2p!3
d3k8

~2p!3
d3k

~2p!3
ei r•~2p81p1k1k8!c~p8!

8p2~k8•k!~p8•k8!~p•k!

k84k4
c~p!

5
~Za!2

2m2ME d3r E d3p8

~2p!3
d3p

~2p!3
ei r•~2p81p!)c~p8!

pj8pm
4r 2 S d i j2

r i r j
r 2 D S d im2

r i r m
r 2 Dc~p!

5
~Za!2

2m2ME d3r E d3p8

~2p!3
d3p

~2p!3
ei r•~2p81p!)c~p8!

1

4r 2 S p8–p2
„p8–r …„p–r …

r 2 Dc~p!. ~24!
ar
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Now we use the formula

„r–p8…„r–p…52†r3p8‡†r3p‡1r 2„p8–p…, ~25!

and omit the terms with the vector product since we
considering onlyS states now. Then we obtain

DEs250. ~26!

Next we have to calculate the third contribution, whi
corresponds to the 1/r 4 term in the naive result above in Eq
~20!. This time we cannot use Fourier transformations o
exchanged momenta for calculation of this integral, sin
this leads to a singular expression in coordinate space. S
first perform the safe Fourier transformations over the w
function momenta, and then directly evaluate the exchan
momenta integrals, taking into account that they are cut fr
above bys!m,

DEs
1/r452

~Za!2

m2M E d3k8

~2p!3
d3k

~2p!3
4p2~k8–k!

k82k2

3^n~r !uei „k1k8…–run~r !&. ~27!

In order to preserve the transparency of the presenta
we will perform the calculation only forn51 here. The gen-
eral case of arbitrary principal quantum number will be co
sidered at the end of the paper. We substitute explicit exp
sions for the 1Swave functions in the formula above, and d
the coordinate-space integral

DEs
1/r452

~Za!2

m2M
uc~0!u2E d3k8

~2p!3
d3k

~2p!3
4p2~k8–k!

k82k2

3E d3rei „k1k8…–re22gr

52
64p3~Za!2

m2M
guc~0!u2

3E d3k8

~2p!3
d3k

~2p!3
k8–k

k82k2@~k1k8!21~2g!2#2
,

~28!

whereg5mZa.
Symmetrical integrals over the exchanged momenta

cut from above by the parameters. However, first integra-
tion, say overk8, is convergent at high momenta and t
cutoff may be safely ignored
e

r
e
we
e
ed
m

n

-
s-

re

DEs
1/r452

16p~Za!2

m2M
guc~0!u2E d3k

~2p!3k2E0
`

dk8

3E
21

1

dx
k8kx

@k21k8212kk8x1~2g!2#2

52
8p2~Za!2

m2M
guc~0!u2E d3k

~2p!3k2

3F arctank2g

k
2

1

2g
G

52
4~Za!2

m2M
guc~0!u2E

0

s

dkF arctank2g

k
2

1

2g
G

52
~Za!2

m2M
guc~0!u2F2p ln

s

2g
22

s

g G . ~29!

The nonlogarithmic term of order (Za)5 in this expres-
sion is additionally suppressed by the small ratios/m, and
may be safely ignored. Thus, we see that the properly re
larized operator 1/r 4 in the seagull diagram does not genera
a constant contribution. The logarithmic divergence abo
should cancel with the respective contribution of the on
transverse~magnetic! diagram.

V. MAGNETIC CONTRIBUTION

This time we start with the Braun expression for the on
transverse photon in Eq.~1!

DEmagn5
1

M
ReE dv

2p i
^nupG~E1v!D̂~v,k!

1D̂~v,k!G~E1v!pun& ~30!

and first calculate the contour integral3

3Note that the overall minus sign is connected with the respec
sign in the definition of the transverse propagator.
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DEmagn52
Za

2M
^nupF(

1

um.,mu
k1Em2E

2(
2

um.,mu
E2Em1kG4pak

k
un&1H.c. ~31!

As we are again calculating the low-frequency correctio
to the Breit potential let us expand the positive-energy te
in (Em2E)/k

DEmagn
1 52

Za

2M
^nup(

1
um&^muF1k2

Em2E

k2

1
~Em2E!2

k3
1••• G4pak

k
un&1H.c. ~32!

The first term in this expansion may be written in t
form

DEmagn1
1 52

Za

2M
^nupL1

4pak

k2
un&1H.c.

52
Za

2M
^nup

4pak

k2
un&

1
Za

2M
^nupL2

4pak

k2
un&1H.c.

5DEBr1DEmagn12
1 , ~33!

and it is now evident that the first~Breit! term here coincides
with that part of transverse exchange which cancels with
respective term in the Coulomb contribution.

Remaining positive-energy contributions are given by
expression

DEmagnr
1 52

Za

2M
^nup(

1
um&^muF2

Em2E

k2

1
~Em2E!2

k3
1••• G4pak

k
un&1H.c.

[DEmagn2
1 1DEmagn3

1 1•••. ~34!

A. Positive-energy contribution

In accordance with Ref.@11# one may check that the term
DEmagn2

1 does not lead to the contributions of order (Za)6.
We have

DEmagn2
1 5

Za

2M
^nup(

1
um&^mu~Em2E!

4pak

k3
un&1H.c.

52
~Za!2

2M
^nu

4pk8

k82
L1

4pak

k3
un&1H.c. ~35!

The simplest way to estimate this matrix element is
make a Fourier transformation. Then we need an infra
divergent Fourier transform of 1/k3. All momentum integrals
in the low-frequency region are cut off from below b
m(Za)2, and it is easy to check that the leading term in t
s

e

e

d

e

infrared divergent Fourier transform generates a logarith
divergent contribution of order (Za)5 in accordance with
Ref. @11#. The next terms vanish with the infrared cutoff an
cannot produce contributions of order (Za)6.

Let us turn now to the termDEmagn3
1 . Naive calculation in

the coordinate space in accordance with the result in R
@11# leads to the result

DEmagn3
1 52

Za

2M
^nup(

1
~Em2E!2um&^mu

4pak

k4
un&1H.c.

52
~Za!2

4m2M
^nu2p

1

r 2
p2

7l2

2r4
2

s• l

r 4
un&. ~36!

This expression contains only operators which are n
singular at the origin forS states. Hence, they are well de
fined, and there is no need for a careful momentum sp
consideration in this case.

B. Negative-energy contribution

There are two negative-energy contributions connec
with the magnetic term, one in Eq.~31!, and the other in Eq.
~33!.

Let us consider first

DEmagn
2 5

Za

2M
^nup(

2

um.,mu
E2Em1k

4pak

k
un&1H.c. ~37!

We have checked, in accordance with Ref.@11#, that this
term leads, at most, to contributions of order (Za)7, and,
hence, is of no interest.

We still have to calculate one more negative-energy c
tribution, contained in Eq.~33!

DEmagn12
1 5

Za

2M
^nupL2

4pak

k2
un&1H.c.

5
~Za!2

8m2M
^nu

4pak8
k82

4pk~a•k!

k2
un&1H.c.

~38!

Naive calculation with the help of the Fourier transform
tion leads, in accordance with Ref.@11#, to the expression

DEmagn12
1 5

~Za!2

4m2M
^nu

4pd~r !

r
2

1

r 4
un&. ~39!

However, this expression, as in the case of the sea
contribution, contains singular operators at the origin, a
does not have unambiguous meaning for theS states. A more
careful calculation, which explicitly takes into account a m
mentum space cutoffs, is needed.

First we transform the negative-energy contribution in E
~38! to the form

DEmagn12
1 52

Za

4mM
^nu@p,V#L2

4pak

k2
un&1H.c. ~40!
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Next we substitute the negative-energy projection ope
tor in the nonrelativistic approximation
L2(p)'1/22(a•p1bm)/2m and use the trivial identity

@p,V#L25L2@p,V#2†L2 ,@p,V#‡

5L2@p,V#1†

a•p

2m
,@p,V#‡. ~41!

Note that the first term on the right-hand side vanish
applied to the ket vector, and the negative-energy contr
tion reduces in the nonrelativistic approximation to

DEmagn12
1 52

Za

2m2ME d3k

~2p!3
^nupk@p,V#

4peik–r

k2
un&.

~42!

Then we use
rm
a
e.

w
ll
h
f.
rm
-

s
u-

^n~r !upk52 ig,n~r !u
r k
r
,

@p,V#52 i ~Za!
r

r 3
, ~43!

and obtain

DEmagn12
1 5

~Za!2

2m2M
gE d3k

~2p!3
E d3rc ~r !2

~r k•r !

r 4
4peik–r

k2
.

~44!

As in the case of the singular seagull contribution we w
perform the calculation forn51 first, postponing consider
ation of the general case to Sec. VI. We substitute exp
expressions for the wave functions and obtain
DEmagn12
1 5

2p~Za!2

2m2M
guc~0!u2E d3k

~2p!3
4p

k2 E21

1

dx~12x2!E
0

`

dr e22greikrx

5
4p~Za!2

2m2M
g2uc~0!u2E d3k

~2p!3
4p

k2
F ~4g21k2!arctan

k

2g

gk3
2

2

k2
G

5
4p~Za!2

2m2M

~4p!2

~2p!3
g2uc~0!u2E

0

s

dkF ~4g21k2!arctan
k

2g

gk3
2

2

k2
G

5
p~Za!2

m2M
guc~0!u2F2 ln s

2g
21G . ~45!
m
the
is
n

m

r

Again, as in the case of the seagull contribution, this te
may be understood as a proper regularization of the oper
appearing in Eq.~39!, which is singular in coordinate spac

VI. CALCULATIONS FOR ARBITRARY PRINCIPAL
QUANTUM NUMBER

The total low-frequency contribution for the 1S state is
given by the sum of the results in Eqs.~10!, ~23!, ~29!, ~36!,
and ~45!

DElow freq~1S!52~Za!6
m

M
m, ~46!

and coincides with the result obtained earlier for the lo
frequency contribution in Ref.@7#. We see that the seagu
and magnetic contributions partially cancel each other. T
reflects cancellation of the 1/r 4 terms in the language of Re
@11#. However, the contribution connected with the te
(21) in the square brackets in the last line in Eq.~45! sur-
tor

-

is

vives. This contribution is connected with thed function
term in Ref. @11#, and the error in Ref.@11# is due to an
improper regularization of this contribution. Note that fro
the point of view of the coordinate representation after
Fourier transformation is done the proper regularization
highly nontrivial. One could never obtain this contributio
with a naivead hocregularization in coordinate space.

The result in Eq.~46! is valid only for the 1S state. We
are going to generalize it to an arbitrary principal quantu
number.

A. Seagull contribution for arbitrary nS level

The general expression for the wave function of annS
level has the form

cn~r !5S g3

pn3D
1/2

e2~gr /n!F12
n21

n
gr1••• G . ~47!

Let us introduceb[g/n. Almost all calculations above fo
n51 immediately turn into calculations for arbitraryn after
substitutiong→b @16#. The wave function has the form
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cn~r !5S b3

p D 1/2e2br@12~n21!br1•••#

[cn~0!e2br@12~n21!br1•••#. ~48!

Quadratic and higher-order terms inr in the postexponen
tial factor in the wave function do not produce any contrib
tion to the energy level connected with the singular opera
in the naive expression in Eq.~20!, and we will ignore them
below. The only difference between the general case and
case ofn51 is connected with the linear term in the poste
ponential factor. Let us find out how it changes the result
the seagull contribution. First, let us write down the singu
seagull contribution induced by the purely exponential p
of the wave function for arbitraryn in the form

DEs
1/r452

~Za!2

m2M
uc~0!u2E d3k8

~2p!3
d3k

~2p!3
4p2~k8–k!

k82k2

3E d3r ei „k1k8…–re22br

52
~Za!2

m2M
uc~0!u2es

1/r4 , ~49!

where

es
1/r452pb ln

s

2b
. ~50!

The linear terms in the wave functions lead to an ad
tional contribution

DEs,corr
1/r4 52

~Za!2

m2M
uc~0!u2E d3k8

~2p!3
d3k

~2p!3
4p2~k8–k!

k82k2

3E d3r ei „k1k8…–re22br@22~n21!br #

52
~Za!2

m2M
uc~0!u2~n21!b

]

]b
es
1/r4

52
~Za!2

m2M
uc~0!u2~n21!F2pb ln

s

2b
22pbG ,

~51!

and the total seagull contribution to the energy shift is eq
to
-
r

he
-
r
r
rt

i-

al

DEs,tot
1/r45DEs

1/r41DEs,corr
1/r4

52
~Za!2

m2M
uc~0!u2Fes1/r41~n21!b

]

]b
es
1/r4G

52
~Za!2

m2M
uc~0!u2F2pg ln

s

2b
22p~n21!b G .

~52!

B. Magnetic contribution for arbitrary nS level

As in the case of the seagull contribution the only diffe
ence of the general case from the case ofn51 is connected
with the linear term in the postexponential factor in the wa
function. The purely exponential part of the wave functi
leads to the following singular magnetic contribution for a
bitrary n:

DEmagn12
1 5

~Za!2

m2M
uc~0!u2F2pb ln

s

2b
2pbG

[
~Za!2

m2M
uc~0!u2emagn12

1 . ~53!

The new contribution induced by the linear term in t
wave function has the form

DEmagn12,cor
1 52

Za

2m2ME d3k

~2p!3
@2~n21!b#

3H ^nurpk@p,V#
4peik–r

k2
un&

1^nupk@p,V#
4peik–r

k2
r un&J . ~54!

Next we write

rpk5pkr2@pk ,r #, ~55!

and using the commutation relation

@pk ,r #52 i
r k
r
, ~56!

obtain
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DEmagn12,cor
1 52

Za

2m2ME d3k

~2p!3
@2~n21!b#H ^nu i

r k
r

@p,V#
4peik–r

k2
un&1^nupk@p,V#

4peik–r

k2
2r un&J .

52
Za

2m2ME d3k

~2p!3
~n21!H ^nuS 2 ib

r k
r D @p,V#

4peik–r

k2
un&2~n21!b^nupk@p,V#

4peik–r

k2
2r un&J

5
~Za!2

m2M
uc~0!u2~n21!Femagn12

1 1b2
]

]b S emagn12
1

b D G
5

~Za!2

m2M
uc~0!u2F2pb~n21!ln

s

2b
2~n21!pb2~n21!2pbG

5
~Za!2

m2M
uc~0!u2F2pb~n21!ln

s

2b
23~n21!pbG . ~57!
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Then the total singular magnetic contribution is equal

DEmagn12,tot
1 5DEmagn12

1 1DEmagn12,cor
1

5
~Za!2

m2M
uc~0!u2F2pb ln

s

2b

2pb12pb~n21!ln
s

2b
23~n21!pb G

5
~Za!2

m2M
uc~0!u2F2pg ln

s

2b
2pb

23~n21!pb G . ~58!

VII. TOTAL RECOIL CORRECTION

The total low-frequency contribution of orde
(Za)6(m/M )m for an arbitrarynS state is given by the sum
of the terms in Eqs.~10!, ~23!, ~52!, ~36!, and~58!

DElow freq5S 181
3

8n
2

1

n2
1

1

2n3D ~Za!6

n3
m

M
m

1
~Za!2

2m2M
^nup

1

r 2
pun&2

~Za!2

m2M
uc~0!u2

3F2pg ln
s

2b
22p~n21!b G

2
~Za!2

4m2M
^nu2p

1

r 2
pun&1

~Za!2

m2M
uc~0!u2

3F2pg ln
s

2b
2pb23~n21!pb G

5S 181
3

8n
2

1

n2
1

1

2n3D ~Za!6

n3
m

M
m

2
~Za!6

n3
m

M
m. ~59!
Note that the last term connected with the naive singu
operators in the coordinate space turned out to be state i
pendent.

To obtain the total recoil correction of orde
(Za)6(m/M )m it is also necessary to calculate the hig
frequency~or short-distance! contribution to the energy shift
The simplest way is to use again the Braun formula Eq.~1!,
but this time in the Feynman gauge. This calculation is qu
straightforward if one again uses the auxiliary parametes
introduced above in order to qualify would be infrared dive
gences. Such a calculation was performed explicitly in R
@11# and led to the result

DEhigh freq5S 4 ln22
5

2D ~Za!6

n3
m

M
m, ~60!

in complete agreement with Ref.@7#.
Then total correction of order (Za)6(m/M )m to the en-

ergy levels is given by the sum of the results in Eq.~59! and
Eq. ~60!

DEtot5S 181
3

8n
2

1

n2
1

1

2n3D ~Za!6

n3
m

M
m

1S 4 ln22
7

2D ~Za!6

n3
m

M
m. ~61!

For n51,2 this result nicely coincides with the one obtain
in Ref. @7#.

In conclusion, let us emphasize that discrepancies
tween the different results for the correction of ord
(Za)6(m/M ) to the energy levels of the hydrogenlike ion
are resolved and the correction of this order is now firm
established.
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@11# A. S. Elkhovskii, Zh. Éksp. Teor. Fiz.110, 431 ~1996! @JETP
83, 230 ~1996!#.

@12# K. Pachucki, Ann. Phys.~NY! 226, 1 ~1993!.
@13# E. E. Salpeter, Phys. Rev.87, 328 ~1952!.
@14# J. H. Epstein and S. T. Epstein, Am. J. Phys.30, 266 ~1962!.
@15# E. A. Golosov, A. S. Elkhovskii, A. I. Milshtein, and I. B
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