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Solutions without preacceleration to the one-dimensional Lorentz-Dirac equation

D. Villarroel
Departamento de Fı´sica, Universidad Te´cnica Federico Santa Marı´a, Casilla 110-V, Valparaı´so, Chile

~Received 25 March 1996; revised manuscript received 7 October 1996!

An approach to the problem of violation of causality in classical electrodynamics is proposed. This approach
is based on the construction of exact analytic solutions without preacceleration to the Lorentz-Dirac equation
in an electrostatic field that vanishes identically outside a certain region. Exact solutions are given for the
potential well and the linear potential wall, cases for which Plass@Rev. Mod. Phys.33, 37 ~1961!# already
found the corresponding preaccelerative solutions. In addition, an exact solution which differs from the one
found by Plass is given for a thin infinite charged plate. Finally, an exact solution is constructed for a special
electrostatic field. All these nonpreaccelerative solutions have a jump in the acceleration at points where the
electrostatic field has a jump; this implies that they cannot be obtained as solutions to the usual integro-
differential equation associated to the Lorentz-Dirac equation.@S1050-2947~97!02404-9#

PACS number~s!: 03.30.1p, 03.50.De
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I. INTRODUCTION

Early in this century, Abraham and Lorentz built th
equation of motion for a charged particle taking into acco
the radiation reaction. Lorentz’s work can be found in Ja
son’s book@1#, and leads to the following equation of motio
for a charged particle of massm and chargee:

mS dvdt 2t0
d2v

dt2 D5F, ~1!

wheret052e2/3mc3, c is the velocity of light,v denotes the
velocity of the charge, andF is the external force; in addi
tion, factor 43 in front of m has been changed to 1, which
the correct value.

In Lorentz’s time, relativity theory was incipient, and
fully relativistic formulation of the equation of motion wa
only achieved in 1938 by Dirac in his classic paper@2#. The
Lorentz-Dirac equation reads

mam5~e/c!Fmyuy1Gm, ~2!

with

Gm[~2e2/3c3!~ ȧm2alalu
m/c2!, ~3!

where the charge world linezm(t) is parametrized by its
proper time t, and um5dzm /dt, am5dum /dt, and
ȧm5dam /dt. Moreover, Greek indices range from 0 to
and the diagonal metric of Minkowski space is (21,1,1,1).
Equation~2!, as well as the main basic research associa
with the classical theory of a point charge, is considered
detail in Rohrlich’s book@3#. The term (e/c)Fmyuy in Eq. ~2!
is the well-known Lorentz force due to the external fie
Fmy. In addition,Gm represents the effect of radiation, an
consists of the Schott term given by the proper-time deri
tive of the four-accelerationam and the Larmor nonlinea
termalalu

m/c2.
In his paper, Dirac highlights undesired aspects of Eq.~2!,

namely, the self-acceleration and preacceleration effe
Self-acceleration refers to solutions where the charge is
551050-2947/97/55~5!/3333~8!/$10.00
t
-

d
n

-

ts.
n-

der acceleration even in the absence of an external fi
Preacceleration means that the charge begins to accel
before the force is actually applied. Dirac@2# illustrated the
existence of preacceleration by studying Eq.~1! in the case
of an electron disturbed by a force represented by ad func-
tion. The simplicity of the nonrelativistic equation~1! is such
that it can be integrated immediately with the help of t
integrating factoret/t0 for a rather general time-depende
forceF(t). The result is@1,3–5#

m
dv

dt
5E

0

`

e2sF~ t1t0s!ds. ~4!

This procedure allows a rather natural incorporation
Dirac’s asymptotic condition on the vanishing of the acc
eration for an asymptotically free particle. In fact, ifF(t)
vanishes identically for a large value oft, then Eq.~4! shows
that the acceleration also vanishes for a large value oft and
therefore solution~4! is not self-accelerating. In the fully
relativistic case, this method leads to an integro-differen
equation@3#, but, as Rohrlich pointed out~see Ref.@3#, p.
147!, in this case the asymptotic condition is not ensured
the integrodifferential equation.

The existence of preacceleration can be easily seen f
Eq. ~4!. For example, if we consider a time-dependent fo
F(t) that vanishes identically fort,0 and has a constan
value for t.0, then it is evident that the acceleration is d
ferent from zero fort,0. Following Dirac’s work, the prob-
lem of preacceleration has received a great deal of atten
in the literature@1–6#. The violation of causality implied by
preacceleration is particularly disappointing since t
Lorentz-Dirac equation~2! can be derived by using only re
tarded fields@7#. Mainly due to this problem, some autho
have proposed alternative equations of motion without
time derivative of the acceleration~see Ref.@5#!, because it
has been considered that the presence of this term in Eqs~1!
and ~2! is what leads to preacceleration. As we will clear
show here, the existence of preacceleration is not a co
quence of the presence of the third derivative, but of
method through which the solution has been obtained.
standard procedure that leads to Eq.~4!, or to the integro-
3333 © 1997 The American Physical Society
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3334 55D. VILLARROEL
‘differential equation in the relativistic case, does not al
for a solution without preacceleration.

Recently, Valentini@8# and Comay@9# have provided in-
sights into preacceleration and self-acceleration effects. V
entini noted that there is no justification for imposing t
validity of the Lorentz-Dirac equation in nonanalytical poin
of the charge world linezm(t). On the other hand, Coma
studied the asymptotic properties of the Lorentz-Dirac eq
tion for a one-dimensional motion in an electrostatic fie
that behaves asx2n, with n>2, for large values ofx. He
concluded that Eq.~2! admits an asymptotically inertial so
lution, that is, a solution without self-acceleration whenx
tends to infinity.

The nonlinear character of Eq.~2! makes the construction
of exact analytical solutions a very difficult task. This e
plains why only very few exact solutions have been o
tained, most of them by Plass@4#. This author gives a solu
tion for the rectilinear motion of a charged particle unde
time-dependent force, as well as the solutions for the re
linear motion of a charge under a space-dependent forc
the cases of the potential well and the linear potential w
All Plass’s solutions present preacceleration, which led h
to conclude that the phenomenon of preacceleration alw
occurs when radiative reaction is considered@10#. As we will
show in this paper, this conclusion is incorrect. In fact,
construct exact analytic solutions without preacceleration
the potential well and the linear potential wall. We al
present an exact solution without preacceleration for the
tion of a charged particle moving in an electrostatic fie
given ~except for a factor! by sinh(x/r0)$

3
22cosh(x/r0)%, with

r 05e2/mc2. This last case is of special relevance beca
the nonlinear radiative reaction term makes a nontrivial c
tribution to the solution. The present solutions are such
the acceleration experiences a jump at a point where
external force presents a jump. This differs from the solut
obtained from the usual integro-differential formulation
Eq. ~2!, where the acceleration is necessarily continuo
around a finite jump in the external force.

II. PREACCELERATION AND SMOOTHNESS
OF THE SOLUTION

In order to see in a simple way the difference between
present approach and the integral representation~4! of Eq.
~1!, it is advisable to consider the example studied in Ja
son’s book, where a constant force of magnitudeF0 pointing
along theX axis is applied to the particle for timet.0,
while for t,0, the force vanishes identically. In this cas
from Eq. ~4! it is easy to see that fort<0 we have

dv
dt

5
F0

m
et/t0, ~5!

while for t>0, the accelerationdv/dt has a constant valu
equal toF0 /m. In particular, the acceleration is continuo
everywhere, includingt50, where the force has a jump. Th
continuity of the acceleration at a finite jump in the force
a rather general property of the solution in Eq.~4!, because a
finite jump inF(t) is smoothed over by the integration pr
cess. The acceleration given by Jackson is certainly a s
tion of the equation of motion~1! for t,0, and also for
w
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t.0. But this problem makes room for another solution;
fact, dv/dt[0 is a solution of Eq.~1! for t,0, and
dv/dt5F0 /m is a solution for t.0. This solution is, of
course, different from Jackson’s and free of the preaccel
tion effect. This is the solution that we are going to choose
the physical solution from here on. Unlike Jackson’s so
tion, the solutiondv/dt50 for t,0, anddv/dt5F0 /m for
t.0, is certainly discontinuous att50. Thus we are going to
solve the problem of preacceleration at the expense of in
ducing singularities in the acceleration at points where
force has a jump. At first sight, it would seem that we a
simply exchanging one problem for another. However, a
lution with preacceleration is of a completely different natu
compared to one without preacceleration but with disco
nuities.

The introduction of singularities in the acceleration rep
sents no real physical problem. For example, the radia
rate, which is quadratic in acceleration, is not defined at
jump in the force. But, in this case, the relevant physi
quantity is the energy radiated during a time interval,
which the contribution of the singularity point does not ma
ter because the acceleration, although undefined at this p
is bounded. Moreover, the introduction of a discontinuo
force in Jackson’s example, or in the cases we consider h
corresponds to a kind of idealization, whose main usefuln
is that it makes it possible to find exact analytic solutions.
reality, though, the forces have no jump and, in this case,
expect a solution without preacceleration and without acc
eration discontinuities. However, in this case, Eq.~4! pre-
sents preacceleration anyway. This can be easily shown
considering anF(t) that vanishes identically fort<0, that is
positive and continuous in the interval 0,t,t1, and van-
ishes identically fort>t1. Then, for anyt,0, the integrand
of Eq. ~4! is positive in the interval2t/t0,s,(t12t)/t0.
Therefore the accelerationdv/dt is positive for allt,0, not-
withstanding that for these values oft, F(t) is identically
zero.

The retarded-field solution of Maxwell’s equations
completely causal; for this reason, the existence of preac
eration effects, no matter how small, is intrinsically contr
dictory in classical electrodynamics. Thus to preserve cau
ity we must consider the introduction of discontinuities in t
acceleration at points where the force has a jump. On
other hand, the introduction of singularities in the accele
tion is nothing new in physics, because this is exactly w
happens in Newton’s equationmdv/dt5F.

The usual procedure where the differential equation is
tegrated with the help of the integrating factoret/t0 is such
that self-accelerating solutions are discarded. Unfortunat
and although mathematically correct, this approach lead
preacceleration. In fact, the acceleration~5! in the free-force
region arises precisely from this integrating factor. Thus
must abandon this approach if we pretend to find a solu
without preacceleration. We will choose an inertial motion
any region where the external force vanishes identically
work directly with the Lorentz-Dirac equation~2! elsewhere.
Such a procedure will generate a solution different from
one that follows from the integro-differential equation. Th
lack of uniqueness of the Lorentz-Dirac equation was fou
earlier by Baylis and Huschilt@11# in a specific example.
This lack of uniqueness is also present in the example c
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55 3335SOLUTIONS WITHOUT PREACCELERATION . . .
sidered in Jackson’s book as well as in the solutions for
potential well and the linear potential wall.

III. THE POTENTIAL WELL

Here we will consider in some detail the motion of
positive charge along a straight line, theX axis, in the pres-
ence of an external electrostatic field that depends only
variablex and points along theX axis, vanishing identically
for x,x1 and x.x2. This field automatically satisfies th
equation“3E50, and can be considered as generated b
set of sheets orthogonal to theX axis, each with a uniform
density of charge given by the remaining Maxwell equat
r(x)5(1/4p)dE/dx. This type of force is chosen here s
that the whole issue of preacceleration becomes particu
transparent. The electric fieldE(x) and the charge densit
r(x) will be considered simply as mathematical function
disregarding the practical and experimental aspects.

Now, since by assumption the electric fieldE(x) vanishes
identically for x,x1 and x.x2, the charge densityr(x)
must be such that

E
x1

x2
r~x!dx50. ~6!

In what follows, x̄ will denote the position of the charg
at time t, while x will denote the coordinate of a gener
point in theX axis. Letv be the ordinary charge velocity
i.e., v5dx̄/dt, and

g5~12v2/c2!21/2 ~7!

be the usual relativistic factor. For the sake of simplicity, t
velocity v will be assumed as always positive. In this ca
the proper-time derivatives in Eq.~2! can be changed to de
rivatives with respect tox̄. This transformation is quite natu
ral, since we will be working with an electric field whic
depends on position instead of time. The change of varia
is possible since, by assumption,dx̄/dt5vg never vanishes
thus making the correspondence betweenx̄ and t a one-to-
one relation. For a motion along theX axis, the four-velocity
um in Eq. ~2! only has the components

u05cg, ~8!

u15c~g221!1/2. ~9!

Then, it is easy to see that in terms of the charge posi
x̄, the two radiation reaction terms in Eq.~2! become

ȧ15c3~g221!1/2g~d2g/dx̄2!1c3~g221!1/2~dg/dx̄!2

~10!

and

alalu
1/c25c3~g221!1/2~dg/dx̄!2. ~11!

Hence Eq.~2! takes the form

~g221!1/2g92~ 3
2 !g81Ē50, ~12!

whereg95d2g/dj2, g85dg/dj, with j the dimensionless
variable defined by j5 x̄/r 0, r 05e2/mc2, and
e

n

a

rly

,

,

le

n

Ē5(3r 0
2/2e)E( x̄). Equation~12! was originally derived by

Plass@4# as the energy equation, but this author did not us
to build solutions for Eq.~2!.

Equation~12! is very appropriate for building solutions b
assuming a reasonableg(j), and then looking for the field
Ē for which thisg(j) is the solution. For example, if we try
g5aj1b with a andb constant, theng950, and Eq.~12! is
satisfied by Ē5( 32)a. We can build the electric field
E(x)5(e/r 0

2)a5E0.0, for x in (2 l ,l ), by means of two
sheets located atx52 l and1 l , with uniform surface den-
sity charges1E0/4p and2E0/4p, respectively. In this case
the electric field forx,2 l and x. l vanishes identically,
and g(j)5(r 0

2E0 /e)j1b is not a solution to Eq.~12! in
these regions. But, forj,2 l /r 0 andj. l /r 0, g5const is a
solution, as it comes immediately from Eq.~12!. Now, at
x52 l the electric field has a jump, but the functiong( x̄)
basically represents the kinetic energy of the charge, wh
from a physical point of view can vary only continuousl
Therefore atx52 l the solutiong( x̄)5(r 0E0 /e) x̄1b must
coincide with the valueg in that g( x̄) has in the field-free
regionx,2 l . Thus the solution for anyx reads

g~ x̄!5H g in for x̄<2 l ,

g in1~eE0 /mc2!~ x̄1 l ! for 2 l< x̄< l ,

gout5g in12elE0 /mc2 for x̄> l . ~13!

Solution ~13! for the potential well is, as in Plass@4#, an
exact solution of Eq.~2!. However, our solution, as oppose
to Plass’s, is without preacceleration. According to Eq.~13!,
all the work done by the external fieldE0 goes into the
kinetic energy increase. On the other hand, Rohrlich’s lo
radiation criterion@12# implies that the charge emits radia
tion in the interval (2 l ,l ), and, as this author points out@13#,
for uniform acceleration all the radiation comes from t
Schott term~10!. This fact can be directly seen from Eq.~13!
because the Schott term~10! is exactly canceled out by th
Larmor term~11!.

Immediately to the right ofx52 l , solution ~13! fulfills
the following boundary conditions:

g5g in ~14!

and

dg

dx̄
5
eE0
mc2

. ~15!

If E0 tends to zero, the jump in the derivative ofg also tends
to zero, and, as expected, Eq.~13! describes an inertial mo
tion in this limit.

On physical grounds, the continuity of the kinetic ener
of the charge, as expressed by Eq.~14!, is a fundamental
requirement. Therefore Eq.~14! is not restricted to the cas
of a jump in a homogeneous electric field; yet, it holds ind
pendently of the functional dependency ofE(x). However,
as we will see in Secs. V and VI below, unlike Eq.~14!, the
boundary condition~15! does not hold for a general cas
This condition certainly differs from the one associated w
the usual preaccelerative solution, a case in which both
acceleration and the velocity are continuous across the ju
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The differences between the two approaches can also be
by analyzing Eq.~12! in more detail around the jump inE at
x1. If, as usual, we integrate Eq.~12! around the jump and
assume thatg( x̄) anddg/dx̄ behave well, we do not obtain
any jump fordg/dx̄. This is precisely what happens with th
preacceleration solution. But our solution~13! is singular at
x1, and formal handling to obtain the jump ofdg/dx̄ cannot
be justified. Thus this procedure fails to reproduce the ju
in Eq. ~15! in our case. As pointed out by Valentini@8#, there
is actually no justification for imposing the validity of th
Lorentz-Dirac equation at pointx1. The acceleration is no
well defined at this point and, consequently, the electrom
netic field of the charge is not defined at any space-t
point whose retarded position corresponds to the charge
cated atx1. The latter makes the derivations of Eq.~2! in-
valid atx1, since they require the existence of derivatives
any order of the charge world linezm(t). Figure 1 illustrates
the solution~13! for the potential well.

IV. THE LINEAR POTENTIAL WALL

Equation~12! can also be solved for the linear potent
wall, that is, for an electrostatic field given by

E~x!5H 0 for x,0

E0 for x.0,
~16!

FIG. 1. The graphs depict the electric fieldE(x), the function
g( x̄), anddg/dx̄ as functions ofx̄ for the exact solution~13! with-
out preacceleration corresponding to the potential well.
een

p

g-
e
lo-

f

whereE0 is any positive number. Since forx.0 the electro-
static field has a fixed valueE0, the solution of Eq.~12! is
such that (dg/dx̄)5eE0 /mc2, independently ofx̄. So in this
case, the exact solution without preacceleration reads

g5H g in for x̄<0

g in1~eE0 /mc2!x̄ for x̄>0.
~17!

According to Eq.~17!, whenx̄ tends to infinity, the charge
velocity tends to the velocity of light. This derives from th
fact that we are assuming a homogeneous electric field in
regionx.0. It is easy to see that in the nonrelativistic lim
that is, whenc tends to infinity, Eq.~17! reduces to the
nonpreaccelerative solution of the example considered
Jackson and discussed in Sec. II of this paper.

The problem of the reflection of a charge due to a co
stant repulsive force is also immediate. In this case,

E~x!5H 0 for x,0

2E0 for x.0,
~18!

with E0 an arbitrary positive number. We assume that
charge is initially moving to the right in the free-field regio
so, solution~17! holds but withE0 changed to2E0. Now,
since (dg/dx̄)52(eE0 /mc2),0, the charge stops at poin
xs.0 wheng equals 1; that is,

xs5
mc2

eE0
~g in21!. ~19!

At xs the charge starts moving to the left, withg increas-
ing at the same rate at which it was decreasing when
charge was moving to the right. Thus when the charge
turns to the originx50, it has exactly the same absolu
velocity as the initial velocity at that same point. After th
reflection, that is, in the regionx,0, the value ofg is, of
course, equal tog in . In other words, the charge loses n
energy in the reflection process. At first sight, this res
appears somewhat curious since the charge certainly rad
energy in the region 0,x,xs . Nevertheless, it is easy to se
that this solution presents no conflict with energy conser
tion. In fact, the idealization of a homogeneous electric fi
in the regionx.0 means that the energy stored in this fie
is infinite; it is precisely this unlimited source of energ
which supplies the energy radiated by the charge.

The attractive electric field generated by an infinite pla
located in theY-Z plane is another example for whic
Lorentz-Dirac equation~2! admits an exact analytic solution
In this case, the external field is

E~x!5H 1E0 for x,0

2E0 for x.0,
~20!

where E0.0. If we call g in the value ofg at x̄50, the
solution reads

g~ x̄!5H g in2~eE0 /mc2!x̄ for x̄.0

g in1~eE0 /mc2!x̄ for x̄,0.
~21!

Thus the charge oscillates indefinitely around the plate, w
a fixed amplitudexs given by Eq.~19!. As in the case of the
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55 3337SOLUTIONS WITHOUT PREACCELERATION . . .
reflection problem, the energy radiated by the charge is
supplied here by the infinite amount of energy stored in
field of the plate. Solution~21! is different from and simpler
than the one found by Plass@4# for the same problem.

V. THE CASE OF AN ANALYTIC Ē„j…

We are going to consider now a rather general formal
for an electrostatic fieldE(x) which is analytic inside the
interval x1,x,x2 and vanishes identically forx,x1 and
x.x2. By an analytic funtion, we mean here a real-val
function that can be represented by means of a conver
power series in the real variablej5x/r 0. The dimensionless
function Ē(j) in Eq. ~12! is clearly nonanalytic at
j15x1 /r 0 andj25x2 /r 0. Let the origin be inside the inter
val (j1 ,j2). Then, we can write

Ē5 (
n50

`

anj
n. ~22!

We will use a power series to construct the solution of E
~12!, namely,

g~j!5 (
n50

`

bnj
n. ~23!

It is also convenient to introduce coefficientscn , defined
by

~g221!1/25 (
n50

`

cnj
n. ~24!

It is easy to show that eachcn can be expressed in term
of the coefficientsb0 ,b1 , . . . ,bn in Eq. ~23!. In fact, taking
successive derivatives of Eqs.~23! and ~24! and evaluating
them atj50, we find that

c05~b0
221!1/2,

c15b0b1~b0
221!21/2, ~25!

c25$2b0
2b1

2~b0
221!23/21~b1

212b0b2!~b0
221!21/2%/2,

and so on. Sinceg.1, we haveb0.1. Substituting Eqs.
~22!, ~23!, and~24! in Eq. ~12!, we obtain

b25~3b1/22a0!/2c0 ,

b35~22b2c113b22a1!/6c0 , ~26!

b45~22b2c226b3c119b3/22a2!/12c0 ,

and so on. The constitutive law for thebn is, in general, very
complicated. Nevertheless, Eqs.~25! and ~26! show that if
we knowb05g(0), andb15g8(0), then all the coefficients
bn in Eq. ~23! are uniquely determined in a constructive wa

For a practical application of the above formalism, it
convenient to see the power series~22!–~24! as expansions
aroundj5j1. For this end, we callĒ* (j) the analytic con-
tinuation of Ē(j) for j<j1. In order to clarify the meaning
of the analytic continuation, let us consider a pointj.j1 and
so
e

nt

.

.

the power-series representation ofĒ(j) around this point. In
general, this power series will converge for values ofj<j1
and, consequently, will define an analytic functionĒ* (j)
that coincides withĒ(j), for j.j1. As opposed toĒ(j),
function Ē* (j) is continuous and has continuous derivativ
of all orders atj1. So, the expansion~22! aroundj1 can be
applied toĒ* (j), thus constructing a solutiong to Eq. ~12!
be means of an appropriate choice of coefficientsb0 and
b1 in Eq. ~23!. This g is also a solution to Eq.~12! for
Ē(j) in j.j1, but, sinceĒ(j) vanishes identically in this
region, it is not a solution inj,j1. So, the above solution to
Ē* (j) is chosen as the solution without preacceleration
Ē(j) for j.j1, while for j,j1, the inertial motion solution
g5g in is chosen.

The above procedure is now illustrated with our exa
solution~13! to the potential well. In this case, the analytic
continuation ofĒ5(3r 0

2/2e)E0 is, of course, the same con
stant function for anyj. Then, except fora0, all thean in Eq.
~22! are zero; this implies that, as seen in Eq.~26!, coeffi-
cientsbn in Eq. ~23!, for n>3, become proportional tob2.
Now, the boundary conditiondg/dx̄5(r 0 /e)E0 makes
b15(2/3)a05(r 0

2/e)E0, which in turn means thatb250,
thereby reducing Eq.~23! to g5b01(r 0

2/e)E0j, for all j.
However, this function represents the solution only f
0<j<2l /r 0, as shown in Eq.~13!. This solution is well
defined for any value of the initial energy and any value
the jump in the electric field.

For givenb0 and b1, the above construction allows th
finding of a unique solution to the Lorentz-Dirac equatio
Therefore coefficientsb0 andb1 must be completely deter
mined by the electric fieldE(x) and the inertial motion ex-
isting for j,j1. As we already pointed out, the kinetic en
ergy of the charge must be continuous at anyj, particularly
at j5j1. This boundary condition can be fulfilled only i
b05g in , whereg in is the value ofg for j,j1. The determi-
nation ofb1 is not as direct as in the case ofb0, since there
seems to be no simple closed formula forb1 in terms of
g in and Ē* (j). However, an approximate evaluation ofb1
can be obtained by the method of Baylis and Huschilt@14#.
By iterating Eq.~12!, these authors found the following for
mula forg8 in terms ofg and the electric fieldE(x) with its
derivatives.

g85E1«uE81«2~u2E91gEE8!1«3u~2gE8213gEE9

1u2E-1E2E8!1O~«4!, ~27!

where we use the notation of Ref.@14#, that is, the primes
indicate derivatives with respect tox, u5(g221)1/2, «5 2

3,
and the units are such thate5m5c51. For our purpose, the
electric field and the derivatives in Eq.~27! must be evalu-
ated atx5x1 using the analytic continuationE* (x) of the
electric field E(x). Note that for a homogeneous electr
field, Eq.~27! reduces exactly to the boundary condition f
dg/dx in Eq. ~15!.

Since we have not proven that the coefficients in Eq.~26!
lead to a convergent power series in Eq.~23!, nor that this
power series is a solution of Eq.~12!, our treatment for a
generalĒ(j) has a rather formal nature. Our conjecture
that the power series~23! is convergent and a solution to Eq
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~12! whenĒ(j) is an analytical function ofj, but this com-
plex problem will not be discussed here. This is a delic
matter, given that the nonlinear nature of Eq.~12! leads to a
complex structure for the coefficientsbn in Eq. ~26!. Hence
to deal with this problem it seems advisable first to try
study some specific form forĒ(j) and then attack the gen
eral problem of the convergence of the power series~23!.
However, given the fruitfulness of the power-series meth
for generating solutions in different areas of mathemat
physics, its use implies no real restrictions. Thus our met
is a constructive approach for building up a solution witho
self-acceleration and without preacceleration. Therefore
solution is the following: forx̄<x1, we setg5g in , where
g in is defined by the initial velocity of the charge. Fo
x1< x̄<x2, g( x̄) is determined by Eq.~23!, where the coef-
ficients are given by Eq.~26!, with b0 andb1 determined as
we already explained. Forx̄>x2, we simply set
g5gout5g(x2).

VI. AN EXACT SOLUTION WITH A NONLINEAR g„ x̄…

Since for the potential well and for the linear potent
wall g( x̄) is a linear function ofx̄, the nonlinear radiative
reaction term of Eq.~12! vanishes identically. In particular
this simplification allows the finding of exact solutions f
these cases for any initial energy of the charge. On the o
hand, when the nonlinear term is different from zero,
expect to find exact solutions only for very special elect
static fields and for exceptional values of the initial energy
the charge. Let us consider the motion of a chargee.0 in
the following electrostatic field:

E~x!5S 2e3r 02D sinhS xr 0D H 322coshS xr 0D J
for 0,x1,x,x2 , ~28!

wherex1 is a certain positive number less thanxm , the point
at which E(x) reaches its maximum, andx2 is defined
throughx1 by means ofE(x2)5E(x1)[E0. In the interval
(x1 ,x2), the charge densityr(x) generating the electric field
~28! is given by

r~x!5S e

6pr 0
3D H 32 coshS xr 0D 2cosh2S xr 0D 2sinh2S xr 0D J ,

~29!

with r(x)[0, for x,x1 and x.x2. Figure 2 shows the
graph of Ē5(3r 0

2/2e)E(x) in terms of the dimensionles
variable j5x/r 0, where j15x1 /r 0, j25x2 /r 0, and
jm5xm /r 0.

The analytic continuationĒ* (j) of E(j) defined in the
preceding section is given by

Ē* ~j!5sinhj~ 3
22coshj! ~30!

for anyj. If we apply the formalism of the preceding sectio
aroundj5j1, we find that the coefficientsan of Eq. ~22! are
given by
e

d
l
d
t
e

l

er

-
f

a05~ 3
2 !sinhj12sinhj1coshj1 ,

a15~ 3
2 !coshj12cosh2j12sinh2j1 , ~31!

a25~ 3
4 !sinhj122 sinhj1coshj1 ,

and so on. Now, in order to build an exact analytic solutio
we choose the following boundary conditions atj5j1:

b05g~j1!5coshj1 ,
~32!

b15g8~j1!5sinhj1 .

Then, from Eqs.~31!, ~32!, ~25!, and~26! we obtain

b25~ 1
2 !coshj1 ,

b35~ 1
6 !sinhj1 , ~33!

b45~ 1
24 !coshj1 ,

and so on. Coefficients~32! and ~33! correspond to the ex
pansion of the function

g~j!5coshj ~34!

aroundj5j1. It is easy to verify that Eq.~34! is indeed an
exact solution to Eq.~12! for Ē* (j) given by Eq.~30!. Then,
the exact solution without preacceleration in the electric fi
~28! reads

g~ x̄!55
coshS x1r 0D for x̄<x1

coshS x̄r 0D for x1< x̄<x2

coshS x2r 0D for x̄>x2 .

~35!

This solution is such that atx5x1, dg/dx̄ has a jump given
by

1

r 0
sinhS x1r 0D . ~36!

FIG. 2. The full line represents the functionĒ(j) that vanishes
identically for j,j1 and j.j2, and is given by Eq.~30! in the
interval j1,j,j2. The dotted line represents the analytic contin
ation Ē* (j) of Ē(j).
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55 3339SOLUTIONS WITHOUT PREACCELERATION . . .
If we apply Eq.~15! to obtain the jump atx5x1, instead of
Eq. ~36! we would obtain

1

r 0
sinhS x1r 0D2

2

3r 0
sinhS x1r 0D coshS x1r 0D . ~37!

The difference between Eqs.~36! and~37! shows that the
valueĒ0 of Ē* (j), determining the jump of the electric fiel
at j5j1, is not enough to calculate coefficientb1, a fact that
is also clear from Eq.~27!. The simplification which is
present in the cases of the potential well and the linear
tential wall —where coefficientb1 is entirely determined by
the jump of the electric field— is due to the homogeneo
character of the electric field.

Solution ~35! is such that the jump~36! can be made
arbitrarily small ifx1 is chosen very close to zero. So, in th
limit, Eq. ~35! gives an analytic solution with an acceleratio
that vanishes identically forx,x1 and which is very small
immediately to the right ofx1. In other words, for very smal
values ofx1, the acceleration in Eq.~35! changes in an al-
most continuous way aroundx1. This kind of behavior—
where both the velocity and the acceleration of the cha
change continuously—is what is generally expected for
motion of the charge in a spatially localized electric field th
vanishes smoothly in the borders.

VII. SOME REMARKS

In the absence of an electromagnetic field, the coefficie
an in Eq. ~22! are equal to zero; thus the boundary conditio
in Eqs.~14! and~15!, along with Eq.~26!, imply that all the
bn in Eq. ~23!, except forb0, are equal to zero. That is, w
obtaing5g in , for any x, as the only solution. Thus in th
absence of an external force an inertial motion cannot
come self-accelerating.

The existence of preacceleration is illustrated in Dira
paper with the motion of an electron disturbed by a pulse
we choose appropriate parameters forl andE0 in the exact
solution ~13!, we may approximate a Diracd function with
the potential well; however, Eq.~13! does not present preac
celeration for any choice of the parametersl and E0. The
nonexistence of preacceleration can also be seen in Fi
Moreover, the solution~13! has a perfectly well-defined non
relativistic limit, which certainly does not present preacc
eration.

For a motion along a straight line, the usual no
relativistic procedure of neglecting the Larmor term, co
pared to the Schott term, needs careful examination. In f
for the sake of consistency, neglecting term~11! would also
imply neglecting the second term on the right-hand side
Eq. ~10! leading thus to Eq.~12!, which is the exact equation
and not the approximation we are looking for. A simil
finding, although within a somewhat different context, is
ported by Rohrlich@15#. The above analysis seems to ind
cate that the Larmor non-linear term is an essential elem
of the equation of motion that may not be neglected. T
would also explain why the solution of the truncated line
ized version~1! of Eq. ~2! presents some pathologies. W
plan to study this issue further in the future. Let us rem
though, that our exact solutions for a homogeneous elec
static field in Secs. III and IV are such that the sum of t
o-
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Larmor and Schott terms vanishes identically, while the L
mor term itself is different from zero.

Important simplifications in the structure of thebn in Eq.
~26! occur in the ultrarelativistic case, since in this case
cn in Eq. ~24! become equal to thebn in Eq. ~23!. But Eq.
~26! is not wholly appropriate for studying the nonrelativist
limit, as may be seen from the form of the coefficients
Eqs.~25! and ~26!.

If the electric field always points in a positive direction o
theX axis, then a positive charge coming from the left w
have a velocity that is positive for anyx̄, and the formulation
developed in the preceding section will need no chang
However, if the electric field changes direction, the cha
may stop at a point, and then turn back. In this case,
formalism is not appropriate, because the power series~23!
cannot be written around the turning point, sinceg( x̄) will
be defined only to the left of the turning point. The sam
difficulty arises in Eq.~24!, given that (g221)1/2 vanishes at
the turning point. This problem is of a purely technical n
ture, having nothing to do with preacceleration, since iner
motion can be imposed anyway in the free-field region.
way to deal with this complication seems to be to write
power series forx̄(t) in terms of the laboratory time, an
work directly with the Lorentz-Dirac equation~2!, instead of
Eq. ~12!.

The electrostatic field of the solution considered in th
paper is generated by a set of sheets, each one with a uni
density of charge. For this reason, the total amount of ene
stored in the electric field is necessarily infinite, a fact whi
does not allow a quantitative discussion of energy conse
tion. This trouble can be avoided by considering the elec
static field generated by a set of spherical shells with a u
form charge each, such that the electric field is spatia
localized. In this case, a one-dimensional motion still is p
sible along a straight line across the center of the cha
distribution, and the change in the kinetic energy of t
charge can be directly compared to the energy radiated a
by the charge. This methodology has already been emplo
by Comay @16#, who solved the old controversy aroun
Eliezer’s problem@17# regarding the motion of a particle
with chargee and massm, attracted towards an infinitely
massive charge of opposite sign. Eliezer and several o
authors@14,18,19# claimed that, in this case, all solutions
the Lorentz-Dirac equation violate energy conservati
Nevertheless, by replacing the field of the infinitely mass
point charge by the field of a uniformly charged spheric
shell, Comay was able to construct the correct solution
show that it is in full agreement with energy conservatio
The idea of replacing the point charge by a charge distri
tion of finite extension was first suggested by Rohrlich@20#.

In order to avoid self-accelerating solutions to Eq.~2!,
Dirac @2# suggested the idea that besides the initial condit
regarding the position and velocity of the charge fort50,
the vanishing of the acceleration for a large value oft must
be imposed as a boundary condition as well. The deve
ment of this idea led to the integro-differential formulation
the Lorentz-Dirac equation. Unfortunately, however, as
well known, this formulation implies the existence of prea
celeration. On the other hand, the exact solutions discus
in this paper are without preacceleration and without s
acceleration, and cannot be obtained from the integ
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3340 55D. VILLARROEL
differential equation. These results privilege the differen
form of the Lorentz-Dirac equation over its integr
differential formulation.

Our focus on the Lorentz-Dirac equation is motivated
the wide attention it has received in the literature, and by
fact that this equation follows quite naturally from the fo
malisms of classical electrodynamics. Furthermore, the e
solutions without preacceleration presented in this paper
insight into the issue of the violation of causality so far co
sidered inherent to the Lorentz-Dirac equation. In connec
with this, other alternative equations of motion of seco
order have been proven to be inconsistent with fundame
physical requirements@21–24#.

Let us also point out that the integro-differential equati
has been of little help to the construction of solutions to
Lorentz-Dirac equation. The only known exact solutions
the integro-differential equation are those found by Plass
the potential well and the linear potential wall. Plass was a
able to obtain the solution for a one-dimensional mot
along a straight line for a rather general time-depend
force. As a consequence of this, a great number of e
solutions to the Lorentz-Dirac equation seem to be known
this case. Yet, if we consider that the natural forces
charged particles are those due to electric and magn
fields, Plass’s formula represents just a restriction on the
tion rather than a solution. This point becomes clear by c
sidering one of the simplest possible cases, that is, the
tion in a straight line in an electrostatic field like the o
discussed in Sec. V. In fact, if we substitute the traject
x̄(t) in the electrostatic fieldE(x), the latter can be seen as
time-dependent forceE„x̄(t)…, and, consequently, Plass
formula applies. But the problem is that we do not kno
x̄(t), since this function is precisely the solution we a
looking for.
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Although our approach has been developed for motion
only one dimension, its generalization to the cases of m
than one dimension seems natural considering that its es
tial features could be formulated for such cases. These
tures are the following:~1! The charge has inertial motion i
any region where the external electromagnetic field vanis
identically; ~2! the Cartesian components of the charge po
tion vector are analytic functions of time in the regio
where the external electromagnetic field is analytic; and~3!
the inertial motion present in a free-field region matches w
the solution of the non-free-field region by imposing the co
tinuity of the velocity and an eventual jump in the accele
tion. This jump is determinated by the electromagnetic fi
and by the velocity present in the free-field region. A furth
treatment in order to find the explicit formalism for the d
termination of the jump is still pending; however, a genera
zation of the Baylis-Huschilt expansion~27! seems to be a
good starting point to deal with this problem.

Thus it would seem that, when properly formulated, t
Lorentz-Dirac equation has a solution that is free of pre
celeration and self-acceleration for rather general exte
electromagnetic fields. The most immediate way of co
structing the solution is by means of power series in labo
tory time. We hope that this procedure will be useful, at le
for some particular space-time-dependent electromagn
fields.
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