PHYSICAL REVIEW A VOLUME 55, NUMBER 5 MAY 1997
Solutions without preacceleration to the one-dimensional Lorentz-Dirac equation
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An approach to the problem of violation of causality in classical electrodynamics is proposed. This approach
is based on the construction of exact analytic solutions without preacceleration to the Lorentz-Dirac equation
in an electrostatic field that vanishes identically outside a certain region. Exact solutions are given for the
potential well and the linear potential wall, cases for which P[&v. Mod. Phys33, 37 (1961)] already
found the corresponding preaccelerative solutions. In addition, an exact solution which differs from the one
found by Plass is given for a thin infinite charged plate. Finally, an exact solution is constructed for a special
electrostatic field. All these nonpreaccelerative solutions have a jump in the acceleration at points where the
electrostatic field has a jump; this implies that they cannot be obtained as solutions to the usual integro-
differential equation associated to the Lorentz-Dirac equafi®h050-29477)02404-9

PACS numbsgs): 03.30-+p, 03.50.De

[. INTRODUCTION der acceleration even in the absence of an external field.
Preacceleration means that the charge begins to accelerate

Early in this century, Abraham and Lorentz built the before the force is actually applied. Dir§2] illustrated the
equation of motion for a charged particle taking into accouniexistence of preacceleration by studying E. in the case
the radiation reaction. Lorentz’s work can be found in Jack-of an electron disturbed by a force represented yfanc-
son’s booK 1], and leads to the following equation of motion tion. The simplicity of the nonrelativistic equatiéh) is such
for a charged particle of mass and chargee: that it can be integrated immediately with the help of the
integrating factore™ for a rather general time-dependent
force F(t). The result i§1,3-5

dt 04z

(dv d?v
m =F, (1

dv o0
= TSR(t+ :
wherer,=2e%/3mc?, ¢ is the velocity of lightv denotes the Mat fo e “F(t+7s)ds @

velocity of the charge, an#é is the external force; in addi-
tion, factor3 in front of m has been changed to 1, which is  This procedure allows a rather natural incorporation of
the correct value. Dirac’s asymptotic condition on the vanishing of the accel-
In Lorentz’s time, relativity theory was incipient, and a eration for an asymptotically free particle. In fact, F{t)
fully relativistic formulation of the equation of motion was vanishes identically for a large value fthen Eq.(4) shows
only achieved in 1938 by Dirac in his classic pap2) The that the acceleration also vanishes for a large valueaofd
Lorentz-Dirac equation reads therefore solution(4) is not self-accelerating. In the fully
relativistic case, this method leads to an integro-differential
ma“=(e/c)F+"u,+T'#, (2 equation[3], but, as Rohrlich pointed ousee Ref[3], p.
. 147), in this case the asymptotic condition is not ensured by
with the integrodifferential equation.
. The existence of preacceleration can be easily seen from
I'#=(2€?/3c¢% (a*—a*a u*/c?), (3 Eq.(4). For example, if we consider a time-dependent force
] . ] ~ F(t) that vanishes identically fot<O and has a constant
where the charge world line,(7) is parametrized by its yajye fort>0, then it is evident that the acceleration is dif-
proper time 7, and u,=dz,/d7, a,=du,/d7, and ferent from zero fot<0. Following Dirac's work, the prob-
a,=da,/dr. Moreover, Greek indices range from O to 3, lem of preacceleration has received a great deal of attention
and the diagonal metric of Minkowski space is {,1,1,1). in the literaturd 1—6]. The violation of causality implied by
Equation(2), as well as the main basic research associateireacceleration is particularly disappointing since the
with the classical theory of a point charge, is considered irLorentz-Dirac equatiori2) can be derived by using only re-
detail in Rohrlich’s booK3]. The term €/c)F#*u,in Eq.(2)  tarded fieldd7]. Mainly due to this problem, some authors
is the well-known Lorentz force due to the external field have proposed alternative equations of motion without the
F#?. In addition,I'* represents the effect of radiation, and time derivative of the acceleratidsee Ref[5]), because it
consists of the Schott term given by the proper-time derivahas been considered that the presence of this term in(Egs.
tive of the four-acceleratiom, and the Larmor nonlinear and(2) is what leads to preacceleration. As we will clearly
term ata, u”/c?. show here, the existence of preacceleration is not a conse-
In his paper, Dirac highlights undesired aspects of(8gy. quence of the presence of the third derivative, but of the
namely, the self-acceleration and preacceleration effectsnethod through which the solution has been obtained. The
Self-acceleration refers to solutions where the charge is urstandard procedure that leads to E4), or to the integro-
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‘differential equation in the relativistic case, does not allowt>0. But this problem makes room for another solution; in
for a solution without preacceleration. fact, dv/dt=0 is a solution of Eq.(1) for t<0, and
Recently, Valentin{8] and Comay[9] have provided in- dv/dt=F,/m is a solution fort>0. This solution is, of
sights into preacceleration and self-acceleration effects. Vakourse, different from Jackson's and free of the preaccelera-
entini noted that there is no justification for imposing thetjon effect. This is the solution that we are going to choose as
validity of the Lorentz-Dirac equation in nonanalytical points {he physical solution from here on. Unlike Jackson’s solu-
of the charge world line,(7). On the other hand, Comay tjon, the solutiondv/dt=0 for t<0, anddv/dt=F,/m for
studied the asymptotic properties of the Lorentz-Dirac equar= o s certainly discontinuous &t 0. Thus we are going to
tion for a one-dlmens_lonal motion in an electrostatic fieldgg|ye the problem of preacceleration at the expense of intro-
that behaves ag~", with n=2, for large values ok. He  qucing singularities in the acceleration at points where the
concluded that Eq(2) admits an asymptotically inertial So- force has a jump. At first sight, it would seem that we are
lution, that is, a solution without self-acceleration when simply exchanging one problem for another. However, a so-
tends to infinity. ~lution with preacceleration is of a completely different nature
The nonlinear character of E(2) makes the construction compared to one without preacceleration but with disconti-
of exact analytical solutions a very difficult task. This ex- pyities.
plains why only very few exact solutions have been ob-  The introduction of singularities in the acceleration repre-
tained, most of them by Plagé]. This author gives a solu- sents no real physical problem. For example, the radiation
tion for the rectilinear motion of a charged particle under asate, which is quadratic in acceleration, is not defined at the
time-dependent force, as well as the solutions for the rectijump in the force. But, in this case, the relevant physical
linear motion of a charge under a space-dependent force Buantity is the energy radiated during a time interval, to
the cases of the potential well and the linear potential wallyyhich the contribution of the singularity point does not mat-
All Plass’s solutions present preacceleration, which led himer pecause the acceleration, although undefined at this point,
to conclude that the phenomenon of preacceleration alwayg pounded. Moreover, the introduction of a discontinuous
occurs when radiative reaction is considef#d]. As we will  force in Jackson’s example, or in the cases we consider here,
show in this paper, this conclusion is incorrect. In fact, wecorresponds to a kind of idealization, whose main usefulness
construct exact analytic solutions without preacceleration fofs that it makes it possible to find exact analytic solutions. In
the potential well and the linear potential wall. We also rgajity, though, the forces have no jump and, in this case, we
present an exact solution without preacceleration for the moaypect a solution without preacceleration and without accel-
tion of a charged particle moving in an electrostatic fielderation discontinuities. However, in this case, E4). pre-
given (except for a factdrby sinh/ro){3—coshrg)}, with  sents preacceleration anyway. This can be easily shown by
ro=e’/mc”. This last case is of special relevance becausonsidering arf (t) that vanishes identically far<0, that is
the nonlinear radiative reaction term makes a nontrivial CONpositive and continuous in the intervak@<t,, and van-
tribution to the solution. The present solutions are such thakgpeg identically fot=t,. Then, for anyt<0, the integrand
the acceleration experiences a jump at a point where thgs Eq. (4) is positive in the intervalt/ 7y<s<(t;—t)/ 0.
external force presents a jump. This differs from the solutiontpgrefore the acceleratiaty/dt is positive for allt<0, not-

obtained from the usual integro-differential formulation of withstanding that for these values tf F(t) is identically
Edg. (2), where the acceleration is necessarily continuous,grq.

around a finite jump in the external force. The retarded-field solution of Maxwell's equations is
completely causal; for this reason, the existence of preaccel-

Il. PREACCELERATION AND SMOOTHNESS eration effects, no matter how small, is intrinsically contra-
OF THE SOLUTION dictory in classical electrodynamics. Thus to preserve causal-

ity we must consider the introduction of discontinuities in the
@cceleration at points where the force has a jump. On the
other hand, the introduction of singularities in the accelera-
fion is nothing new in physics, because this is exactly what
happens in Newton's equatiandv/dt=F.
The usual procedure where the differential equation is in-
'tegrated with the help of the integrating facet™ is such
that self-accelerating solutions are discarded. Unfortunately,
and although mathematically correct, this approach leads to
d_U _ ﬂ et/ 7o (5) preacceleration. In fact, the accelerati@ in the free-force
dt m ' region arises precisely from this integrating factor. Thus we
must abandon this approach if we pretend to find a solution
while for t=0, the accelerationlv/dt has a constant value without preacceleration. We will choose an inertial motion in
equal toFy/m. In particular, the acceleration is continuous any region where the external force vanishes identically and
everywhere, including= 0, where the force has a jump. The work directly with the Lorentz-Dirac equatid®) elsewhere.
continuity of the acceleration at a finite jump in the force isSuch a procedure will generate a solution different from the
a rather general property of the solution in E4), because a one that follows from the integro-differential equation. The
finite jump in F(t) is smoothed over by the integration pro- lack of uniqueness of the Lorentz-Dirac equation was found
cess. The acceleration given by Jackson is certainly a solwearlier by Baylis and Huschilf11] in a specific example.
tion of the equation of motio{l) for t<0, and also for This lack of uniqueness is also present in the example con-

In order to see in a simple way the difference between th
present approach and the integral representadprof Eq.
(1), it is advisable to consider the example studied in Jack
son’s book, where a constant force of magnitégepointing
along theX axis is applied to the particle for time>0,
while for t<0, the force vanishes identically. In this case
from Eq. (4) it is easy to see that fd<0 we have
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sidered in Jackson’'s book as well as in the solutions for theE_=(3r§/2e)E(x_)_ Equation(12) was originally derived by

potential well and the linear potential wall. Plasg 4] as the energy equation, but this author did not use it
to build solutions for Eq(2).
ll. THE POTENTIAL WELL Equation(12) is very appropriate for building solutions by

. . . . . assuming a reasonabtg £), and then looking for the field
Here we will consider in some detail the motion of a —, ; . . . .

positive charge along a straight line, teaxis, in the pres- E for Wh'Ch.th'S ¥(£) s the solution. If,or example, if we try
ence of an external electrostatic field that depends only oﬁ/:_a§+b with a a?db constant, the'?’ =0, and Eq(12) 1S
variablex and points along thi axis, vanishing identically ~Satisfied by E=(3)a. We can build the electric field
for x<x; and x>x,. This field automatically satisfies the E(X)=(€/rg)a=Eq>0, for x in (—1I,1), by means of two
equationV X E=0, and can be considered as generated by gheets located at=—1| and +1, with uniform surface den-
set of sheets orthogonal to theaxis, each with a uniform  Sity chargest E¢/4m and — Eq/4, respectively. In this case,
density of Charge given by the remaining Maxwe" equationthe eleCtl’IC f|e|d fOI’X<—| and x> VanISheS |dent|Ca”y,
p(x) = (L/4m)dE/dx. This type of force is chosen here so and ¥(£)=(riEq/€)é+b is not a solution to Eq(12) in
that the whole issue of preacceleration becomes particularithese regions. But, fof<—1/rq andé>1/ro, y=const is a
transparent. The electric field(x) and the charge density solution, as it comes immediately from E(L2). Now, at

p(x) will be considered simply as mathematical functions,Xx=—1 the electric field has a jump, but the functiorfx)
disregarding the practical and experimental aspects. basically represents the kinetic energy of the charge, which
Now, since by assumption the electric fii¢x) vanishes from a physical point of view can vary only continuously.
identically for x<x; and x>x,, the charge densitp(x)  Therefore a=—1 the solutiony(x)=(roEq/e)x+b must
must be such that coincide with the valuey,, that y(x) has in the field-free
regionx<<—1. Thus the solution for anx reads
Xp J—
i p(x)dx=0. (6) Yin for x<—1,
X — —
7 YXT={ Y+ (eEo/mB)(x+1) for —I<x=l,
In what follows, x will denote the position of the charge _ =
. . T . = yint2€elE f =|.
at timet, while x will denote the coordinate of a general You™ Yin 2¢/Eo/mc* - for x (13
point in the X axis. Letv be the ordinary charge velocity,
i.e.,v=dx/dt, and Solution (13) for the potential well is, as in Plagd], an
5 212 exact solution of Eq(2). However, our solution, as opposed
y=(1-v/c%) (7)  to Plass’s, is without preacceleration. According to Ed),

all the work done by the external field, goes into the
kinetic energy increase. On the other hand, Rohrlich’s local
radiation criterion[12] implies that the charge emits radia-

be the usual relativistic factor. For the sake of simplicity, the
velocity v will be assumed as always positive. In this case
the tr_)roperjilhme demﬁt'_ve_l?h!n tECQ) fcan bte. chgnge_sl to otle- tion in the interval 1,1), and, as this author points dut3],
rlvla IVES wi regllp%c o. i IS ra.rshs ormal '0?.'5 ?ullde ng_ ur; for uniform acceleration all the radiation comes from the
ral, since we will be working with an €electric hieid Which g, o term(10). This fact can be directly seen from E423)

— Because the Schott ter(m0) is exactly canceled out by the
is possible since, by assumptiah/d7=wv y never vanishes, Larmor term(11) @0) y y

thus making the correspondence betwaeand 7 a one-to- e giately to the right ok=— I, solution (13) fulfills
one relation. For a motion along theaxis, the four-velocity the following boundary conditions:
u“ in Eg. (2) only has the components '

=% 14
UOZ cy, (8) Y= Yin ( )
and
ut=c(y*~ 1" )
dy ek
Then, it is easy to see that in terms of the charge position ix m& (19

X, the two radiation reaction terms in E@) become
. If Eq tends to zero, the jump in the derivative phlso tends
al=c3(y?*—1)Y2y(d?y/dxX?) +c3(y*— 1) YA dyldx)? to zero, and, as expected, H43) describes an inertial mo-
(10 tion in this limit.
On physical grounds, the continuity of the kinetic energy

and of the charge, as expressed by E#4), is a fundamental
ara,ul/c2=c3(y%—1)¥%(dy/dx)2. (11)  requirement. Therefore E¢l4) is not restricted to the case
of a jJump in a homogeneous electric field; yet, it holds inde-
Hence Eq.(2) takes the form pendently of the functional dependency Bfx). However,
e as we will see in Secs. V and VI below, unlike Ed4), the
(Y*—=1)Y2y"—(3)y' +E=0, (120  boundary condition(15) does not hold for a general case.

This condition certainly differs from the one associated with
where y"=d?y/d&?, y'=dyld§, with ¢ the dimensionless the usual preaccelerative solution, a case in which both the
variable defined by &=x/ry,, ro=e’ mc?, and acceleration and the velocity are continuous across the jump.



3336 D. VILLARROEL 55
E whereE, is any positive number. Since far>0 the electro-
static field has a fixed valug, the solution of Eq(12) is
such that @y/dx) =eE,/mc?, independently ok. So in this
case, the exact solution without preacceleration reads

Yin for x<0

X Y7yt (eEy/mPx for x=0. (7

“ e According to Eq(17), whenx tends to infinity, the charge

velocity tends to the velocity of light. This derives from the
fact that we are assuming a homogeneous electric field in the
Y regionx>0. It is easy to see that in the nonrelativistic limit,
! Your that is, whenc tends to infinity, Eq.(17) reduces to the
nonpreaccelerative solution of the example considered by
TN Jackson and discussed in Sec. Il of this paper.
- The problem of the reflection of a charge due to a con-
X stant repulsive force is also immediate. In this case,

0 for x<0

E()= —Eo for x>0,

(18

d¥/dx with E, an arbitrary positive number. We assume that the
charge is initially moving to the right in the free-field region;
so, solution(17) holds but withE, changed to— E,. Now,
since @y/dx)=—(eE,/mc?) <0, the charge stops at point
Xs>0 whenvy equals 1; that is,

eEo/mc2

X
- / _me*
+ Xs_eEO(')’m 1). (19

_FIG. 1. The graphs depict the electric fiei{x), the function
v(x), anddy/dx as functions ok for the exact solutiori13) with-
out preacceleration corresponding to the potential well.

At x4 the charge starts moving to the left, withincreas-
ing at the same rate at which it was decreasing when the
charge was moving to the right. Thus when the charge re-

turns to the originx=0, it has exactly the same absolute

The differences between the two approaches can also be segfyq iy a5 the initial velocity at that same point. After the
by analyzing Eq(12) in more detail around the jump Bat  |ofiection, that is, in the regior<0, the value ofy is, of

xy. If, as usual, we integrate E¢L2) around the jump and ., rse “equal toy,,. In other words, the charge loses no
assume thay(x) anddy/dx behave well, we do not obtain energy in the reflection process. At first sight, this result

any jump fordy/dx. This is precisely what happens with the 550415 somewhat curious since the charge certainly radiates
preacceleration solution. But our soluti¢h3) is singular at energy in the region @x<x.. Nevertheless, it is easy to see

X1, .and. formal hand!ing to obtain th'e jump ofy/dx cannolt that this solution presents no conflict with energy conserva-
be justified. Thus this procedure fails to reproduce the jJuMRion | fact, the idealization of a homogeneous electric field

in Eq. (15) in our case. As pointed out by Valentiidl], there i, e regionx>0 means that the energy stored in this field
is actually no justification for imposing the validity of the is infinite; it is precisely this unlimited source of energy
Lorentz-Dirac equation at point;. The acceleration is not | hich supplies the energy radiated by the charge.

well defined at this point and, consequently, the electromag-  the ariractive electric field generated by an infinite plate
netic field of the charge is not defined at any space-timg,.ated in theY-Z plane is another example for which

point whose retarded position corresponds to the charge 19-4rent;-pirac equatiof2) admits an exact analytic solution.
cated atx;. The latter makes the derivations of EQ) in- In this case. the external field is

valid atxy, since they require the existence of derivatives of
any order of the charge world lirg, (7). Figure 1 illustrates
the solution(13) for the potential well. E(x)=

+E, for x<0O

2
—Ey for x>0, 20

where E>0. If we call v, the value ofy at x=0, the
solution reads
Equation(12) can also be solved for the linear potential

wall, that is, for an electrostatic field given by x)
fy =

IV. THE LINEAR POTENTIAL WALL

Yin— (€Ey/mc)x for x>0

Yint (eEy/mc)x for x<O. @D

0 for x<0

(16) Thus the charge oscillates indefinitely around the plate, with
E, for x>0,

E()= a fixed amplitudexs given by Eq.(19). As in the case of the
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reflection problem, the energy radiated by the charge is alsghe power-series representation&(f¢) around this point. In
supplied here by the infinite amount of energy stored in theyeneral, this power series will converge for valuestsf¢,

field of the plate. Solutiori21) is different from and simpler
than the one found by Pla$4] for the same problem.

V. THE CASE OF AN ANALYTIC E_(§)

and, consequently, will define an analytic functi@ (&)
that coincides withE(¢), for £>¢&;. As opposed taE(€),
functionE* (£) is continuous and has continuous derivatives
of all orders at¢;. So, the expansiof22) aroundé, can be

We are going to consider now a rather general formalisn@pplied toE* (£), thus constructing a solutiop to Eq. (12

for an electrostatic field=(x) which is analytic inside the
interval x;<x<X, and vanishes identically fox<x; and

be means of an appropriate choice of coefficien§sand
b, in Eg. (23). This vy is also a solution to Eq(12) for

X>X,. By an analytic funtion, we mean here a real-valueE(¢) in £&>¢&;, but, sinceE(§) vanishes identically in this
function that can be represented by means of a convergenggion, it is not a solution ig<¢;. So, the above solution to

power series in the real variabfe=x/rq. The dimensionless
function E(¢) in Eq. (12) is clearly nonanalytic at
&1=XqIrg and&,=X,/r. Let the origin be inside the inter-
val (¢1,¢,). Then, we can write

E= nzo a,é. (22)

E* (&) is chosen as the solution without preacceleration to
E(&) for £> ¢4, while for §¢< &4, the inertial motion solution
v= v, is chosen.

The above procedure is now illustrated with our exact
solution(13) to the potential well. In this case, the analytical
continuation ofE=(3rS/2e)Eo is, of course, the same con-
stant function for any. Then, except foa,, all thea,, in Eq.
(22) are zero; this implies that, as seen in E26), coeffi-

We will use a power series to construct the solution of Eqcientsb,, in Eq. (23), for n=3, become proportional tb..

(12), namely,

HE= 2, boé". (23
It is also convenient to introduce coefficiers, defined
by

(YP=1)¥2=3 c "

n=0

(24

It is easy to show that eadl) can be expressed in terms
of the coefficientdg,b,, ... b, in Eqg. (23). In fact, taking
successive derivatives of Eq23) and (24) and evaluating
them até=0, we find that

co=(b5—1)*2,
c1=Dbgbs(b3—1)" %2, (25)
co={—b2b3(b5— 1) %2+ (bZ+ 2bgb,)(b3— 1)~ ¥2/2,

and so on. Sincey>1, we haveby>1. Substituting Egs.
(22), (23), and(24) in Eq. (12), we obtain

b2: (3b1/2_ ao)/2C0 y
b3:(—2b2Cl+3b2_al)/6Co, (26)
b4: ( - 2b2C2_ 6b3Cl+ 9b3/2_ az)/12C0 y

and so on. The constitutive law for tlg is, in general, very
complicated. Nevertheless, Eq25) and (26) show that if
we knowby= y(0), andb;= y'(0), then all the coefficients

Now, the boundary conditiondy/dx=(r,/€)E, makes
b1=(2/3)a0=(r§/e)E0, which in turn means thab,=0,
thereby reducing Eq(23) to y= b0+(rS/e) Eqé¢, for all ¢.
However, this function represents the solution only for
0=<¢<2l/ry, as shown in Eq(13). This solution is well
defined for any value of the initial energy and any value of
the jump in the electric field.

For givenby and by, the above construction allows the
finding of a unique solution to the Lorentz-Dirac equation.
Therefore coefficientd, andb; must be completely deter-
mined by the electric fiel&E(x) and the inertial motion ex-
isting for £<¢,. As we already pointed out, the kinetic en-
ergy of the charge must be continuous at @hyarticularly
at £=¢,. This boundary condition can be fulfilled only if
bo= 7, Wherey,, is the value ofy for £<¢,. The determi-
nation ofb, is not as direct as in the case lnf, since there
seems to be no simple closed formula for in terms of
vin and E* (£). However, an approximate evaluation lof
can be obtained by the method of Baylis and Husdhi].

By iterating Eq.(12), these authors found the following for-
mula for y’ in terms ofy and the electric fieldE(x) with its
derivatives.

y' =E+&UuE’'+&%(U’E"+ yEE')+ &3u(2yE' 2+ 3yEE"
(27)

where we use the notation of R¢fL4], that is, the primes
indicate derivatives with respect tq u=(y?—1)Y2 ¢=2,
and the units are such theat m=c=1. For our purpose, the
electric field and the derivatives in ER7) must be evalu-
ated atx=x; using the analytic continuatioB* (x) of the
electric field E(x). Note that for a homogeneous electric

field, Eq.(27) reduces exactly to the boundary condition for

+U%E"+E’E')+0(e%),

b, in Eq.(23) are uniquely determined in a constructive way.dy/dx in Eq. (15).

For a practical application of the above formalism, it is

convenient to see the power seri@®2)—(24) as expansions
around¢é=¢,. For this end, we calE* (£) the analytic con-

tinuation of E(¢) for £é<¢;. In order to clarify the meaning
of the analytic continuation, let us consider a pgint¢; and

Since we have not proven that the coefficients in 6)
lead to a convergent power series in Eg3), nor that this
power series is a solution of E¢l2), our treatment for a
generalE(&) has a rather formal nature. Our conjecture is
that the power serie@3) is convergent and a solution to Eq.
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(12) whenE(¢) is an analytical function of, but this com- E
plex problem will not be discussed here. This is a delicate
matter, given that the nonlinear nature of EtR) leads to a
complex structure for the coefficients, in Eq. (26). Hence

to deal with this problem it seems advisable first to try to
study some specific form fde(¢£) and then attack the gen- Eg f—
eral problem of the convergence of the power se(&3. Ea 1y
However, given the fruitfulness of the power-series method s i
for generating solutions in different areas of mathematical 0 : ‘
physics, its use implies no real restrictions. Thus our method ! m

is a constructive approach for building up a solution without

self-acceleration and without preacceleration. Therefore the £, 2 The full line represents the functitﬁ_(g) that vanishes
solution is the following: forx<x,, we sety=yi,, Where jgentically for £<¢, and &> £,, and is given by Eq(30) in the
¥in is_defined by the initial velocity of the charge. For interval &,<¢<¢,. The dotted line represents the analytic continu-
X1 SX<Xp, ¥(X) is determined by Eq23), where the coef- ationE*(¢) of E(¢).

ficients are given by Eq26), with by andb, determined as
we already explained. Forx=x,, we simply set

Y= Your= Y(X2).

ap=(3)sinhé; —sinhé;costy,

_ (3 H
VI. AN EXACT SOLUTION WITH A NONLINEAR  y(X) a,=(3)costt; —costtéy —sintfs; @D
Since for the potential well and for the linear potential a,=(3)sinh¢; — 2 sink¢; coske ,
wall y(x) is a linear function ofx, the nonlinear radiative
reaction term of Eq(12) vanishes identically. In particular, @nd so on. Now, in order to build an exact analytic solution,
this simplification allows the finding of exact solutions for We choose the following boundary conditionséat &;:
these cases for any initial energy of the charge. On the other

hand, when the nonlinear term is different from zero, we bo=y(£1)=coslt,,

expect to find exact solutions only for very special electro- b= ' L (32
static fields and for exceptional values of the initial energy of 1= 7' (&) =sinh;.

the charge. Let us consider the motion of a chagge) in Then, from Egs(31), (32), (25), and(26) we obtain

the following electrostatic field:
b,=(3)coslt,,

wo0={ sl )| oot
X)=|5z|sinff —|{ 5 —cosh —
3r3 ro/ | 2 ro by=(%)sink¢,, (33

for 0<x;<x<X,, (28 bs=(Z)cosk,,

wherex; is a certain positive number less thap, the point  and so on. Coefficienté32) and (33) correspond to the ex-
at which E(x) reaches its maximum, ang, is defined pansion of the function

throughx; by means ofE(x,) =E(X;)=E,. In the interval

(x1,X,), the charge density(x) generating the electric field y(§)=costg (34)

(28) is given by . . .
aroundé=¢;. It is easy to verify that Eq(34) is indeed an

e 3 X X X exact solution to Eq12) for E* (£) given by Eq.(30). Then,
p(X)=| =—3]{ 5 cosh — —cosh| —| —sink?| —| ¢, the exact solution without preacceleration in the electric field
677!‘0 2 ro ro ro
(28) reads
(29)
' Xl _
with p(x)=0, for x<x; and x>x,. Figure 2 shows the cosh P for x<x;
graph of E=(3r3/2e)E(x) in terms of the dimensionless 0
variable &=x/ry, where &,=Xi/rg, &=X,/ry, and Y(X) =4 cosh(zj for X;<x=Xx, (35)
Em=XmlTo. _ 0
The analytic continuatioe™ (¢) of E(&) defined in the X, _
preceding section is given by cosh(r— for x=x,.
\ 0
E* (&) =sinh&(2 — coste) (30)  This solution is such that at=x,, dy/dx has a jump given
by
for any ¢. If we apply the formalism of the preceding section 1
aroundé = ¢;, we find that the coefficients, of Eq. (22) are —sint‘(ﬁ). (36)
given by o o
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If we apply Eq.(15) to obtain the jump ak=Xx;, instead of Larmor and Schott terms vanishes identically, while the Lar-
Eq. (36) we would obtain mor term itself is different from zero.
Important simplifications in the structure of the in Eq.
1 r<X1> 2 '_(Xl r{xl (26) occur in the ultrarelativistic case, since in this case the
—sinh — | — =—sinh —|cosh —|. (37) ; .
ro ro/ 3rg ro ro C, in Eq. (24) become equal to the, in Eq. (23). But Eg.
(26) is not wholly appropriate for studying the nonrelativistic

The difference between Eq&6) and(37) shows that the  |imit, as may be seen from the form of the coefficients in
valuek, of E* (¢), determining the jump of the electric field Egs.(25) and(26).
até= ¢4, is not enough to calculate coefficidnt, a fact that If the electric field always points in a positive direction on
is also clear from Eq(27). The simplification which is the X axis, then a positive charge coming from the left will
present in the cases of the potential well and the linear pohave a velocity that is positive for any and the formulation
tential wall —where coefficienb, is entirely determined by developed in the preceding section will need no changes.
the jump of the electric field— is due to the homogeneousHowever, if the electric field changes direction, the charge
character of the electric field. may stop at a point, and then turn back. In this case, our

Solution (35) is such that the jum@36) can be made formalism is not appropriate, because the power s€fi8s
arbitrarily small ifx, is chosen very close to zero. So, in this cannot be written around the turning point, singex) will
limit, Eq. (35) gives an analytic solution with an acceleration be defined only to the left of the turning point. The same
that vanishes identically fox<x; and which is very small difficulty arises in Eq(24), given that ¢>— 1)2 vanishes at
immediately to the right ok,. In other words, for very small the turning point. This problem is of a purely technical na-
values ofx,, the acceleration in Eq35) changes in an al- ture, having nothing to do with preacceleration, since inertial
most continuous way arounsl,. This kind of behavior— motion can be imposed anyway in the free-field region. A
where both the velocity and the acceleration of the chargavay to deal with this complication seems to be to write a
change continuously—is what is generally expected for thgpower series fox(t) in terms of the laboratory time, and
motion of the charge in a spatially localized electric field thatwork directly with the Lorentz-Dirac equatid@), instead of

vanishes smoothly in the borders. Eq. (12).
The electrostatic field of the solution considered in this
VIl. SOME REMARKS paper is generated by a set of sheets, each one with a uniform

density of charge. For this reason, the total amount of energy

In the absence of an electromagnetic field, the coefficientstored in the electric field is necessarily infinite, a fact which
a, in Eq.(22) are equal to zero; thus the boundary conditionsdoes not allow a quantitative discussion of energy conserva-
in Egs.(14) and(15), along with Eq.(26), imply that all the  tion. This trouble can be avoided by considering the electro-
b, in Eq. (23), except forb,, are equal to zero. That is, we static field generated by a set of spherical shells with a uni-
obtain y=1y;,, for anyx, as the only solution. Thus in the form charge each, such that the electric field is spatially
absence of an external force an inertial motion cannot belocalized. In this case, a one-dimensional motion still is pos-
come self-accelerating. sible along a straight line across the center of the charge

The existence of preacceleration is illustrated in Dirac’sdistribution, and the change in the kinetic energy of the
paper with the motion of an electron disturbed by a pulse. licharge can be directly compared to the energy radiated away
we choose appropriate parameterslf@and E, in the exact by the charge. This methodology has already been employed
solution (13), we may approximate a Diraé function with by Comay[16], who solved the old controversy around
the potential well; however, Eq413) does not present preac- Eliezer's problem[17] regarding the motion of a particle
celeration for any choice of the parametérand E,. The  with chargee and massan, attracted towards an infinitely
nonexistence of preacceleration can also be seen in Fig. nassive charge of opposite sign. Eliezer and several other
Moreover, the solutioli13) has a perfectly well-defined non- authors[14,18,19 claimed that, in this case, all solutions to
relativistic limit, which certainly does not present preaccel-the Lorentz-Dirac equation violate energy conservation.
eration. Nevertheless, by replacing the field of the infinitely massive

For a motion along a straight line, the usual non-point charge by the field of a uniformly charged spherical
relativistic procedure of neglecting the Larmor term, com-shell, Comay was able to construct the correct solution and
pared to the Schott term, needs careful examination. In facghow that it is in full agreement with energy conservation.
for the sake of consistency, neglecting tefhl) would also  The idea of replacing the point charge by a charge distribu-
imply neglecting the second term on the right-hand side ofion of finite extension was first suggested by Rohr(i2f].
Eq. (10) leading thus to Eq12), which is the exact equation In order to avoid self-accelerating solutions to Ef),
and not the approximation we are looking for. A similar Dirac[2] suggested the idea that besides the initial condition
finding, although within a somewhat different context, is re-regarding the position and velocity of the charge fer0,
ported by RohrlicH15]. The above analysis seems to indi- the vanishing of the acceleration for a large value afust
cate that the Larmor non-linear term is an essential elemerite imposed as a boundary condition as well. The develop-
of the equation of motion that may not be neglected. Thisment of this idea led to the integro-differential formulation of
would also explain why the solution of the truncated linear-the Lorentz-Dirac equation. Unfortunately, however, as is
ized version(1) of Eq. (2) presents some pathologies. We well known, this formulation implies the existence of preac-
plan to study this issue further in the future. Let us remarkceleration. On the other hand, the exact solutions discussed
though, that our exact solutions for a homogeneous electran this paper are without preacceleration and without self-
static field in Secs. Ill and IV are such that the sum of theacceleration, and cannot be obtained from the integro-
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differential equation. These results privilege the differential Although our approach has been developed for motions in
form of the Lorentz-Dirac equation over its integro- only one dimension, its generalization to the cases of more
differential formulation. than one dimension seems natural considering that its essen-
Our focus on the Lorentz-Dirac equation is motivated bytial features could be formulated for such cases. These fea-
the wide attention it has received in the literature, and by thdures are the following(1) The charge has inertial motion in
fact that this equation follows quite naturally from the for- any region where the external electromagnetic field vanishes
malisms of classical electrodynamics. Furthermore, the exad@entically; (2) the Cartesian components of the charge posi-
solutions without preacceleration presented in this paper givion vector are analytic functions of time in the regions
insight into the issue of the violation of causality so far con-Where the external electromagnetic field is analytic; €8)d

sidered inherent to the Lorentz-Dirac equation. In connectiortnhe inertial motion present in a free-field region matches with

with this, other alternative equations of motion of secon the solution of the non-free-field region by imposing the con-

order have been proven to be inconsistent with fundamentfﬂnuity O_f the vel_ocity and_an eventual jump in the acqelera-
physical requirementi21—24. tion. This jump is determinated by the electromagnetic field

Let us also point out that the integro-differential equationand by the velocity present in the free-field region. A further

has been of little help to the construction of solutions to thelreatment in order to find the explicit formalism for the de-
Lorentz-Dirac equation. The only known exact solutions totermlnatlon of the Jump 1S S.t'” pendlng, however, a generali-
the integro-differential equation are those found by Plass foFat'?jn of t.he Bayllst-HLchschlt ,tehx?r?ns'dﬂgl) seems to be a
the potential well and the linear potential wall. Plass was alsé’O?I_h starting plglnt 0 er? Wi h IS pro elm].c lated. th
able to obtain the solution for a one-dimensional motion us it would seem that, when properly formulated, the

along a straight line for a rather general time-dependen'l‘oremz.'Dirac equation has a salution that is iree of preac-
force. As a consequence of this, a great number of exa&eleratlon and self-acceleration for rather general external

solutions to the Lorentz-Dirac equation seem to be known ir?lectrpmagnetlc f[elds. The most immediate way of con-
this case. Yet, if we consider that the natural forces orptructing the solution is by means of power Series in labora-
charged particles are those due to electric and magnetF@ry time. We hope that this procedure will be useful, at least

fields, Plass’s formula represents just a restriction on the mc;-pr some particular space-time-dependent electromagnetic

tion rather than a solution. This point becomes clear by cont'elds'

sidering one of the simplest possible cases, that is, the mo-
tion in a straight line in an electrostatic field like the one
discussed in Sec. V. In fact, if we substitute the trajectory The author wishes to thank O. Espinosa and S. Parrott for
x(t) in the electrostatic fielE(x), the latter can be seen as a useful discussions. Thanks are also due to the Comisia
time-dependent force€E(x(t)), and, consequently, Plass’s cional de Investigacio Cientfica y Tecnolajica de Chile,
formula applies. But the problem is that we do not knowCONYCYT, for its unwavering support throughout the de-
x(t), since this function is precisely the solution we arevelopment of FONDECYT Projects No. 92-0808 and No.
looking for. 1960179.

ACKNOWLEDGMENTS

[1] J. D. JacksongClassical ElectrodynamicéWViley, New York, [11] W. E. Baylis and J. Huschilt, Phys. Rev. I3, 3237(1976.
1962, pp. 584—589. [12] F. Rohrlich, Ref[3], p. 113.

[2] P. A. M. Dirac, Proc. R. Soc. London, Ser.167, 148(1938. [13] F. Rohrlich, Ref[3], p. 172.

[3] F. Rohrlich, Classical Charged ParticlesAddison-Wesley, [14] W. E. Baylis and J. Huschilt, Phys. Rev. I3, 3262(1976.

Reading, MA, 196k [15] F. Rohrlich, Ref[3], p. 156.

[4] G. N. Plass, Rev. Mod. Phy83, 37 (1961). [16] E. Comay, Appl. Math. Lett4, 11 (1991); 5, 67 (1992.

[5] S. Parrott,Relativistic Electrodynamics and Differential Ge- [17] C. J. Eliezer, Proc. Cambridge Philos. S86, 173(1943.
ometry(Springer-Verlag, New York, 1987p. 211. [18] J. C. Kasher, Phys. Rev. D4, 939 (1976.

[6] 3. A. Wheeler and R. P. Feynman, Rev. Mod. PHys.157 [19] See S. ParrottRelativistic Electrodynamics and Differential
(1945. Geometry(Ref. [5]), Chap. 5.

[7] C. Teitelboim, D. Villarroel, and Ch. G. van Weert, Riv. [20] F. Rohrlich,Classical Charged ParticleéRef.[3]), p. 186.
Nuovo Cimento3, 1 (1980. [21] J. Huschilt and W. E. Baylis, Phys. Rev. ) 2479(1974).

[8] A. Valentini, Phys. Rev. Lett61, 1903(1988. [22] E. Comay, Phys. Lett. A25 155(1987).

[9] E. Comay, Found. Phys. Le®, 221 (1990. [23] E. Comay, Int. J. Theor. Phy29, 75 (1990.

[10] Referencd4], p. 41. [24] E. Comay, Phys. Lett. A48 295 (1990.



