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Trapped Bose gas: The canonical versus grand canonical statistics
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For ensemble of bosons trapped in a one-dimensional harmonic potential well we have found an analytical
formula for the canonical partition function and shown that, for 100 trapped atoms, the discrepancy between
the grand canonical and the canonical predictions for the condensate fraction reaches 10% in the vicinity of the
Bose-Einstein threshold. This discrepancy decreases only logarithmically as the number of atoms increases.
Furthermore, we investigate numerically the case of a three-dimensional “cigar-shape” trap in the range of
parameters corresponding to current Bose-Einstein condensation experir8&6&0-294{@7)02004-0

PACS numbsg(s): 03.75.Fi, 05.30.Jp

Recently, Bose-Einstein condensati®EC) in trapped distribution among the different energy levels of the
atomic gaseg1,2] has been realized. The trapped atomicN-particle system will be given by the Boltzmann law
cloud possesses two remarkable features: First, the system is
small enough so that finite particle effects are potentially p([n])~exp{—BE([nD}, (1)
observable, and second, particle interactions are weak. The
thermodynamics of such a system is an interesting and rich E n =N} )
area for scientific analysis. s ’

The equivalence of the grand canonical and fikeda-
nonical descriptions of a statistical system is an old questiowhere E([n])=2nses is the N-particle energy for the
widely discussed in the textbooks on statistical mechanicgiven configuration of occupation numbefs], es=7%ws
[3,4]. For a bosonic gas, where grand canonical fluctuation§s=0,1,2....) is thesingle particle energy spectrur, is
of the ground-state population become large at and below th&e harmonic-oscillator frequencyg=1/kgT, andT is the
Bose-Einstein threshold, such an equivalence is not obviouéemperature of the system. Note that, in the harmonic-
It is shown that in the thermodynamic limi¢— o both en- oscillator case, thél-particle energy is quantized as
sembles give the same predictions for the mean values of
occupation numbers even in the absence of particle interac-
tions [5]. Furthermore, it is well known that for largH, whereK =3 n.s.

interactions between particles lead to suppression of fluctua- To calculate mean occupation numbers of the oscillator

tions in the grand canonical ensemip/. However, for &  giat05 we need to know the partition functign and its

finite system with a mesoscopic number of particles, thejerjyatives. We show below that in the 1D harmonic oscil-

equivalence of the two ensembles is not ensured. |10 case, occupation numbers may be calculated analyti-
The main scaling laws for the fluctuations in an ideal cgjly as finite sums of finite products. The canonical partition

canonical bose gas were derived by Fujiwatal. [5]. The  fynction Q(8,N) can be represented by a power series of

fixed-N Bose statistics is shown to be closely related to Genx=exp(— hw):

tile’s grand canonical intermediate statistjé3. Krauth per-

formed fixedN finite temperature Monte Carlo calculations

for a three-dimensiona(3D) harmonic potential[7]. Al- Q(B,N)= > xKT'(K,N). (4)

though the main subject of the pag@i is the role of inter- K=0

actions, it is shown also that, for macroscopic humbers otl_

particles, the noninteracting grand canonical and canonical

ensembles agree very well. These conclusions are consistent N

with the numerical results of Politz¢8]. In the present pa- T'(K,N)= D 1= D 1 (5

per we considemesoscopiozalues of number of particles N'=0 [nl’

(N~100) confined in a one-dimensional harmonic tfap 3'ng=N’3'ngs=K

and in a three-dimensional “cigar-shape” trap. We show

that the difference between using grand canonical and caquals the number of representatigpartitiong of K as an

[n]={ng,nq,...Ng,...

E(ln)=%wK, ()

©

he microcanonical partition function

[n
3ng=N,2ngs=K

nonical statistics isubstantial unordered sum of at mobt positive integers. Herll’ is the
Consider an ensemble ®f noninteracting bosons con- total population of the excited states,
fined in a 1D harmonic potential in therm@ut not in dif- [n]’={n¢,n,, ... ng,...} is a particular configuration of

fusive) equilibrium with a large reservoir. The population excited state occupation numbers, and the “primed” sum
3'=3¢_, denotes a sum over the excited states.
According to a well-known number theory theorgf0]
*Electronic address: maxim@atomsun.harvard.edu the numberI’(K,N) of partitions of K with at most N

1050-2947/97/58})/32543)/$10.00 55 3254 © 1997 The American Physical Society



55 BRIEF REPORTS 3255

parts equals the numbeP(K,N) of partitions of K with 1
parts not exceeding NHence the canonical partition function

(4) is nothing else but the generating function for the re-

stricted partition functioP(K,N) [10]:

grand canonical —

canonical -----

) Z |
Q(B.N)= X X*P(K,N) A
K=0 (=)
c |
ﬁ - (6) )
a=11—x9’ 1
Derivatives of the partition function 0 : . .
Qs=— B 1(9Qldes) cannot be found directly from expres- 0 1 2
sion (6), which is specific for the 1D harmonic oscillator. T/T
[+

Instead, we have foundgeneralrecursion relation between

the canonical partition function and its derivatives: _ _ _
FIG. 1. The condensate fraction for the 1D harmonic oscillator

Q(BN+1)=exp —Be)[Q«(BN)+Q(B,N)]. (7) as a function of temperature. Both grand canonical and canonical
predictions are shown. The straight line is the thermodynamic

This relation can be applied to any fix&d-noninteracting, ~ limit (9).
bosonic system.
Finally, the mean occupation numbers are given by 9] and canonicalEq. (9)] populations approach the thermo-

N N dynamic limit also obeys this law.
(n)= Qs _ S xN-aDsT] (1-x) ) ~ We turn now to the 3D trap. To our knowledge there is no
¥ Q & 4=q ' simple analytic expression for the canonical partition func-

tion in this case. Numerically, it can be calculated by inte-
This expression is easy to analyze in the continuous limigration of the grand canonical partition function in the com-
with respect toN. For example, below the BEC threshold, plex plain of chemical potentidb,8]. Indeed
the condensate population is approximately given by

(no) kT
~ =155 (n(kgT/fiw)+ C+0(1)) Q(BN)= 2 exp{—BE([n])}
N N w tni
Sng=N
N— o T
- 1-= 9) =2, 5o, nexp{— BE([N])}
c [n]
whereC~0.5772 is the Euler constant. The transition tem- B [t
perature is given by T oai) duexp—Np)Z(B,p),  (11)
kgT. (const<kgT
N=— °:n( B °), (10
ho ho where
where the choice of const is a matter of convention. Note
that the thermodynamic limi©9) coincides with the one pre- % 1
dicted for grand canonical statistifg]. Z(B,u)= H
Now we are ready to compare the canonical and grand S8y %270 4 o y 2 ho. s —
canonical predictions for the condensate populafiag). In asxyz o H
Fig. 1 we plot the population of the ground state for different (12)

numbers of particles. For the grand canonical predictions we

simply repeat the finite-system calculationg ®f. To facili-

tate the comparison, we made the same choice edhsh  is the grand canonical partition functiow,,(e¢=X,y,z) are
expression(10). Both curves approach the thermodynamicthe trap frequencies, and the expressiody o

limit (9) as the number of particles increases. However, for a= (27i) X[ T 7 d¢ exd (q—q')£] for the the Kronecker delta
finite number of particles the discrepancy between the twhas been used. Derivatives of the partition function can be
models is quite significant. In the vicinity of the BEC thresh- expressed through(3, ) in the same way.

old, the relative deviation (03" “"°% —(ng"")/(ng"°" In Fig. 2 we plot the condensate fraction as a function of
decreases slowly with and goes from 10% for 100 atoms temperature for both grand canonical and canonical en-
to 5% for 10 000 atoms. We have checked that this deviatiosembles. We have chosen the “cigar-shape” configuration
decreases according to a 1M)(scaling law for a fixed ,=17.78,, wherew, =w,=w,. The three-dimensional
T/T.. Note that the rate at which both the grand canonicaBose-Einstein transition temperature is given by
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-k

grand canonical ——
canonical ———

g

N T, (14

For 100 particles, depending on the temperature, the system
exhibits both 3D and 1D characteristics. At-0.4 T, the
temperature reaches the zero-point enefgy, /2 for tran-
verse oscillations. The discrepancy between the grand ca-
nonical and canonical predictions is less than in the purely
1D system but is still close to 10%.

In the above discussion we neglected particle interactions.
To estimate the importance of interactions in our model, we
consider the “worst” case of zero temperature where the
spatial density is the highest and therefore the interactions
are strongest. For typical loffe-Pritchard trap paramdtkt$
(w, =27X101 Hzw,=27X5.7 Hz,N=100) for sodium
atoms (scattering lengtha=92 bohr, atomic mas#l =23

FIG. 2. The condensate fraction for a 3D “cigar-shape” trap asamu the mean-field corrections to the oscillation frequencies
a function of temperature. Both grand canonical and canonical preare quite small:dw, =0.03w, and dw,=0.15», . To esti-

dictions are shown. Here, =27 X101 Hz, w,=27X5.7 Hz,
N=100, andT.= 6.5 nK. The thermodynamic limN=c«, Eq.(14)
is also shown.

(keTe)? 2w,

kgTo)® 1 asxy,
N=ga(1) (kgTe) +92;) XY,z
7311 H W, 73 H W,
a=X.,Y,z a=X,Y,Z
+O(kgT /i w), (13

where the second line is the finité-correction[9]. Here
gd(z)zE}’leJ/jd is the Bose-Einstein function. For com-
parison, we have also plotted the thermodynamic limit

mate the corrections, we minimized the Gross-Pitaevskii en-
ergy functional with a ground-state oscillator wave function
seeded with unknown frequencig&?]. Note that for the pa-
rameters chosen, the system exhibits a BEC transition at
T,=6.5 nK.
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