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Trapped Bose gas: The canonical versus grand canonical statistics

C. Herzog and M. Olshanii*
Lyman Laboratory, Harvard University, Cambridge, Massachusetts 02138

~Received 15 November 1996!

For ensemble of bosons trapped in a one-dimensional harmonic potential well we have found an analytical
formula for the canonical partition function and shown that, for 100 trapped atoms, the discrepancy between
the grand canonical and the canonical predictions for the condensate fraction reaches 10% in the vicinity of the
Bose-Einstein threshold. This discrepancy decreases only logarithmically as the number of atoms increases.
Furthermore, we investigate numerically the case of a three-dimensional ‘‘cigar-shape’’ trap in the range of
parameters corresponding to current Bose-Einstein condensation experiments.@S1050-2947~97!02004-0#

PACS number~s!: 03.75.Fi, 05.30.Jp
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Recently, Bose-Einstein condensation~BEC! in trapped
atomic gases@1,2# has been realized. The trapped atom
cloud possesses two remarkable features: First, the syste
small enough so that finite particle effects are potentia
observable, and second, particle interactions are weak.
thermodynamics of such a system is an interesting and
area for scientific analysis.

The equivalence of the grand canonical and fixed-N ca-
nonical descriptions of a statistical system is an old ques
widely discussed in the textbooks on statistical mechan
@3,4#. For a bosonic gas, where grand canonical fluctuati
of the ground-state population become large at and below
Bose-Einstein threshold, such an equivalence is not obvi
It is shown that in the thermodynamic limitN→` both en-
sembles give the same predictions for the mean value
occupation numbers even in the absence of particle inte
tions @5#. Furthermore, it is well known that for largeN,
interactions between particles lead to suppression of fluc
tions in the grand canonical ensemble@4#. However, for a
finite system with a mesoscopic number of particles,
equivalence of the two ensembles is not ensured.

The main scaling laws for the fluctuations in an ide
canonical bose gas were derived by Fujiwaraet al. @5#. The
fixed-N Bose statistics is shown to be closely related to G
tile’s grand canonical intermediate statistics@6#. Krauth per-
formed fixed-N finite temperature Monte Carlo calculation
for a three-dimensional~3D! harmonic potential@7#. Al-
though the main subject of the paper@7# is the role of inter-
actions, it is shown also that, for macroscopic numbers
particles, the noninteracting grand canonical and canon
ensembles agree very well. These conclusions are consi
with the numerical results of Politzer@8#. In the present pa-
per we considermesoscopicvalues of number of particle
(N;100) confined in a one-dimensional harmonic trap@9#
and in a three-dimensional ‘‘cigar-shape’’ trap. We sho
that the difference between using grand canonical and
nonical statistics issubstantial.

Consider an ensemble ofN noninteracting bosons con
fined in a 1D harmonic potential in thermal~but not in dif-
fusive! equilibrium with a large reservoir. The populatio
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distribution among the different energy levels of th
N-particle system will be given by the Boltzmann law

r~@n# !;exp$2bE~@n# !%, ~1!

@n#5H n0 ,n1 , . . . ,ns , . . .U(
s
ns5NJ , ~2!

where E(@n#)5(snses is the N-particle energy for the
given configuration of occupation numbers@n#, es5\vs
(s50,1,2,. . . ) is thesingle particle energy spectrum,v is
the harmonic-oscillator frequency,b51/kBT, and T is the
temperature of the system. Note that, in the harmon
oscillator case, theN-particle energy is quantized as

E~@n# !5\vK, ~3!

whereK5(snss.
To calculate mean occupation numbers of the oscilla

states, we need to know the partition functionQ and its
derivatives. We show below that in the 1D harmonic osc
lator case, occupation numbers may be calculated ana
cally as finite sums of finite products. The canonical partiti
function Q(b,N) can be represented by a power series
x5exp(2b\v):

Q~b,N!5 (
K50

`

xKG~K,N!. ~4!

The microcanonical partition function

G~K,N!5 (
[n]

Sns5N,Snss5K

15 (
N850

N

(
[n] 8

S8ns5N8,S8nss5K

1 ~5!

equals the number of representations~partitions! of K as an
unordered sum of at mostN positive integers. HereN8 is the
total population of the excited state
@n#85$n1 ,n2 , . . . ,ns , . . . % is a particular configuration o
excited state occupation numbers, and the ‘‘primed’’ su
S85Ss51

` denotes a sum over the excited states.
According to a well-known number theory theorem@10#

the numberG(K,N) of partitions of K with at most N
3254 © 1997 The American Physical Society
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parts equals the numberP(K,N) of partitions of K with
parts not exceeding N. Hence the canonical partition functio
~4! is nothing else but the generating function for the
stricted partition functionP(K,N) @10#:

Q~b,N!5 (
K50

`

xKP~K,N!

5 )
q51

N
1

12xq
. ~6!

Derivatives of the partition function
Qs52b21(]Q/]es) cannot be found directly from expres
sion ~6!, which is specific for the 1D harmonic oscillato
Instead, we have found ageneralrecursion relation betwee
the canonical partition function and its derivatives:

Qs~b,N11!5exp~2bes!@Qs~b,N!1Q~b,N!#. ~7!

This relation can be applied to any fixed-N, noninteracting,
bosonic system.

Finally, the mean occupation numbers are given by

^ns&5
Qs

Q
5 (

q51

N

x~N2q11!s)
q5q

N

~12xq!. ~8!

This expression is easy to analyze in the continuous li
with respect toN. For example, below the BEC threshol
the condensate population is approximately given by

^n0&
N

'12
kBT

N\v
„ln~kBT/\v!1C1o~1!…

→
N→`

12
T

Tc
, ~9!

whereC'0.5772 is the Euler constant. The transition te
perature is given by

N5
kBTc
\v

lnS const3kBTc
\v D , ~10!

where the choice of const is a matter of convention. N
that the thermodynamic limit~9! coincides with the one pre
dicted for grand canonical statistics@9#.

Now we are ready to compare the canonical and gr
canonical predictions for the condensate population^n0&. In
Fig. 1 we plot the population of the ground state for differe
numbers of particles. For the grand canonical predictions
simply repeat the finite-system calculations of@9#. To facili-
tate the comparison, we made the same choice const52 in
expression~10!. Both curves approach the thermodynam
limit ~9! as the number of particles increases. However, fo
finite number of particles the discrepancy between the
models is quite significant. In the vicinity of the BEC thres
old, the relative deviation (^n0

gr. canon.&2^n0
canon.&)/^n0

canon.&
decreases slowly withN and goes from 10% for 100 atom
to 5% for 10 000 atoms. We have checked that this devia
decreases according to a 1/ln(N) scaling law for a fixed
T/Tc . Note that the rate at which both the grand canoni
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@9# and canonical@Eq. ~9!# populations approach the thermo
dynamic limit also obeys this law.

We turn now to the 3D trap. To our knowledge there is
simple analytic expression for the canonical partition fun
tion in this case. Numerically, it can be calculated by in
gration of the grand canonical partition function in the co
plex plain of chemical potential@5,8#. Indeed

Q~b,N!5 (
[n]

Sns5N

exp$2bE~@n# !%

5(
[n]

dSns ,N
exp$2bE~@n# !%

5
b

2p i E2p i

1p i

dm exp~2Nm!Z~b,m!, ~11!

where

Z~b,m!5 )
sx ,sy ,sz50

`
1

12expF2bS (
a5x,y,z

\vasa2m D G
~12!

is the grand canonical partition function,va(a5x,y,z) are
the trap frequencies, and the expressiondq,q8
5(2p i )21*2p i

1p idj exp@(q2q8)j# for the the Kronecker delta
has been used. Derivatives of the partition function can
expressed throughZ(b,m) in the same way.

In Fig. 2 we plot the condensate fraction as a function
temperature for both grand canonical and canonical
sembles. We have chosen the ‘‘cigar-shape’’ configurat
v'517.78vz , wherev'5vx5vy . The three-dimensiona
Bose-Einstein transition temperature is given by

FIG. 1. The condensate fraction for the 1D harmonic oscilla
as a function of temperature. Both grand canonical and canon
predictions are shown. The straight line is the thermodyna
limit ~9!.
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N5g3~1!
~kBTc!

3

\3P )
a5x,y,z

va

1
g2~1!

2

~kBTc!
2 (

a5x,y,z
va

\3 )
a5x,y,z

va

1O~kBTc /\v!, ~13!

where the second line is the finite-N correction @9#. Here
gd(z)5( j51

` zj / j d is the Bose-Einstein function. For com
parison, we have also plotted the thermodynamic limit

FIG. 2. The condensate fraction for a 3D ‘‘cigar-shape’’ trap
a function of temperature. Both grand canonical and canonical
dictions are shown. Herev'52p3101 Hz, vz52p35.7 Hz,
N5100, andTc56.5 nK. The thermodynamic limitN5`, Eq. ~14!
is also shown.
^n0&
N

512S TTcD
3

. ~14!

For 100 particles, depending on the temperature, the sys
exhibits both 3D and 1D characteristics. AtT;0.4 Tc the
temperature reaches the zero-point energy\v'/2 for tran-
verse oscillations. The discrepancy between the grand
nonical and canonical predictions is less than in the pur
1D system but is still close to 10%.

In the above discussion we neglected particle interactio
To estimate the importance of interactions in our model,
consider the ‘‘worst’’ case of zero temperature where
spatial density is the highest and therefore the interacti
are strongest. For typical Ioffe-Pritchard trap parameters@11#
(v'52p3101 Hz,vz52p35.7 Hz,N5100) for sodium
atoms ~scattering lengtha592 bohr, atomic massM523
amu! the mean-field corrections to the oscillation frequenc
are quite small:dv'50.03v' and dvz50.15v' . To esti-
mate the corrections, we minimized the Gross-Pitaevskii
ergy functional with a ground-state oscillator wave functi
seeded with unknown frequencies@12#. Note that for the pa-
rameters chosen, the system exhibits a BEC transition
Tc56.5 nK.

We acknowledge fruitful discussions with H. D. Politze
T. H. Bergeman, J. H. Thywissen, E. Heller, L. You, M
Prentiss, and W. Ketterle. M.O. was supported by the N
tional Science Foundation grant for light force dynamics N
PHY-93-12572. C.H. was supported by Harvard Univers
This work was partially supported by the NSF through
grant for the Institute for Theoretical Atomic and Molecul
Physics at Harvard University and the Smithsonian Ast
physical Observatory.

s
e-
,

@1# M. H. Andersonet al., Science269, 198 ~1995!.
@2# K. B. Daviset al., Phys. Rev. Lett.75, 3969~1995!.
@3# C. Kittel and H. Kroemer,Thermal Physics, 2nd ed.~Freeman,

San Francisco, 1980!.
@4# K. Huang,Statistical Mechanics, 2nd ed.~Wiley, New York,

1987!.
@5# I. Fujiwaraet al., J. Stat. Phys.2, 329 ~1970!
@6# G. Gentile, Nuovo Cimento17, 493 ~1940!.
@7# W. Krauth, Phys. Rev. Lett.77, 3695~1996!.
@8# H. D. Politzer, Phys. Rev. A54, 5048~1996!.
@9# W. J. Mullin ~unpublished!; W. Ketterle and N. J. van Druten

Phys. Rev. A54, 656 ~1996!.
@10# L. E. Dickson,Diophantine Analysis, History of the Theory of

Numbers Vol. II~Chelsea, New York, 1952!.
@11# T. Bergemanet al., Phys. Rev. A35, 1535~1987!; D.E. Prit-

chard, Phys. Rev. Lett.51, 1336~1983!.
@12# G. Baym and C. J. Pethick, Phys. Rev. Lett.76, 6 ~1996!.


