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Optimal partition of the Coulomb operator
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We set up and solve the problem of optimally partitioning the Coulomb operatantty a sum of two
functionsf(r) andf,(r) such that bottf; and the Fourier transform df, decay as quickly as possible. The
rigorous solution involves a Hermite function, but we find that the conventional Ewald-KWIK partition ap-
pears to be only slightly inferiof.S1050-294{®7)05604-1

PACS numbds): 31.15~p, 02.70.Rw

There has been considerable recent interest in the devetay as rapidly as possible. This makes sense intuitively since
opment of linear solutions to the Coulomb probléi-10. a function with a rapidly decaying Fourier transform must be
Such approaches, often call@dn) methods, yield the Cou- slowly varying and a component of the Coulomb potential
lomb energy of a system of localized charge distributions that is slowly varying can do little more than shift the energy
in computational work that scales only linearly, rather thanorigin: it cannot give rise to large forces.
quadratically, withn. Since the Coulomb problem has gen-  We therefore seek the separatfr) in Eq. (1) that makes
erally been the bottleneck &b initio quantum chemical cal- both the first term and the Fourier transform of the second
culations using Hartree-Fock or density-functional theoriesterm decay as fast as possible. There are many possible ways
O(n) methods are poised to revolutionize the range of appliin which the decay rate of a functiay(r) can be quantified,
cability of these theories. but it is convenient for our purposes to use the second mo-

The first step in all of the linear methods that have beerment ofg?(r). We therefore seek thigr) that minimizes
proposed hitherto is to partition the Coulomb problem into
two subproblems and solve each using an appropriate meth-
odology. The fast multipole method was introduced a decade Z[f]:J fz(r)dr+f k2|ﬁ(k)|2dk, 2
ago by Greengard and Rokhljd] and, more recently, has
been generalized for use in a quantum chemical context and
implemented by a number of groufi8-7]. Its linear costis  \hereL (k) is the Fourier transform of(r). Using Parse-
achieved by partitioning the physical space around a charggy's identity, this becomes
distribution into a small “neighboring” region and an infi-
nite “well-separated” region whose distributions are treated
by an ingenious hierarchical multipole expansion technique.

In the KWIK approach and related treatmen&-11]
rather than splitting physical space, one partitions the Cou-
lomb operator itself by writing

Z[f]zf £2(r)+ |V[ L/ — f(r)/r]|2dr, 3)

and minimizing this using the calculus of variations yields

1 f(ry  1—f(r) the elegant Euler equation
=S +LN=——+——, 1)
f(r)y=r2f(r). 4
where the separatdi(r) decays rapidly and(0)=1. This
splits 1f into a singular short-range functio®(r) and a i
nonsingular long-range functiol.(r). The first can be [ 1 Y g oD
treated in real space and, because it is negligible for large 2.5} ‘.| Long ronge

needs to be applied only to neighboring distributions. The
second can be treated in Fourier spd8¢ll] or, in some
cases, ignored complete[9].

For the KWIK partition to work efficiently, it is essential L.
that the functiorf(r) be chosen carefully. Ideally, we would
like to abandon the last term in Efl) entirely but, even if
this does not prove feasible in general, it would certainly be
convenient to be able to justify treating it approximately and
we would therefore like it to be as physically insignificant as
possible. Although this requirement is not mathematically
well defined as it stands, we have found that it is roughly
equivalent to the requirement that its Fourier transform de- FIG. 1. Optimal partition of the Coulomb operator.
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FIG. 2. Long-range part of the Coulomb operator for various

separatorgsee the text

The solution of Eq(4) is

4 r8
H=A 1+ 32+ 3775t
r5 9
+BIr+ et Teg ot } (5)

and the boundary conditiorf§0)=1 andf(«c)=0 imply that
A=1 andB=—-2I'(3)/T'(). The resulting series for the opti-
mal separator can be expressed in terms of modified Bess
Hermite, or parabolic cylinder functiori42]. In terms of the
latter, it is simply

f(r)=U(0sv2)/U(0,0). (6)

This function decays asymptotically a2 exp(—r?/2), i.e.,
slightly faster than a Gaussian.
Expressing the second term of EG) as a Fourier inte-

gral yields the optimal partition

1 UOr2) 1 1 3 k)% k?

F= U0 22 | P[l‘r(z)ﬁ(ﬂ 2['1’4(5)
K2\1) .

4—1/4(3) ]e'k'rdk (7

(L is a modified Struve functiopl2]), which may be con-
trasted with other partitions such as

1 erfqor) 1 J 1 —Kk? erg o
T T ] @®gz/e dk @
1_1—tanr(wr) km er
T= ; 477 f kcscl’{ ) dk, (9
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TABLE |. Optimized w, Z, and « values for various separators

#(r).

&(r) ® Z[¢] @

1 0 1.6875

exp(—wr) 1.107 9.271 1.405

1-tanh(wr) 0.772 8.627 1.543

erfc(wr) 0.637 8.510 1.580

U(0rv2)/U(0,0) 8.495 1.606
1 exp—or) 1 1 o® |\ ..
s ﬁf P(me dk. (10

The optimal partition is shown in Fig. 1 and its long-range
part L(r) is contrasted with the long-range parts of Egs.
(8)—(10) in Fig. 2. The optimaL (r) is evidently flatter at the
origin than the others. In fact, it is easy to show that the
long-range parts of Eq$7)—(10) are cubic, quadratic, qua-
dratic, and linear, respectively, a£0.

How much better is the optimal partitiqi@) than the par-
titions (8)—(10)? One way to answer this question is to
evaluate the functiondB) for the various separators employ-
ing, in each case, the value efthat yields the smalle<.

able | lists the resultings andZ values. TheZ values are
surprisingly insensitive to the separator and the chei@®
=erfc(wr), which is used in the Ewald and KWIK-based
algorithms[8-11], appears to perform well.

In the CASE approximatiofi9], one neglects the long-
range part of the Coulomb operator completely and, natu-
rally, the success of such an approach depends critically on
the flatness of the neglected function. It is not possible to
infer quantitatively from theZ values in Table | the effects
on CASE calculations of using the various separators in Egs.
(7)—(10). As a very preliminary investigation of this, how-
ever, we have replaced the Coulomb operator in the ‘Schro
dinger equation for a helium atom by the attenuated operator
¢(r)/r and used the variational method to find the optimal
exponent « in the elementary wavefunctionV(r,r,)
=exd —a(r,+r,)]. The @ values obtained are given in the
final column of Table | and we conclude that the wavefunc-
tion from the optimal separator is significantly, but not over-
whelmingly, better than that from the Ewald separator.
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