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Quantum detection for on-off keyed mixed-state signals with a small amount of thermal noise
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The detection strategy proposed previously by the authors for binary pure-state signals, which consists of a
unitary transformation and photon counting afterward@Phys. Rev. A54, 2728~1996!#, can also be applied to
the case of on-off keyed signals of coherent states with a small amount of thermal noise. It yields an error level
almost the same as the quantum minimum bound in practical parameter region.@S1050-2947~97!03904-8#

PACS number~s!: 03.65.Bz, 42.50.Lc
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The optimal decision problem for nonorthogonal quant
states, i.e., how to discriminate between them with minim
error probability, is one of the fundamental problems
quantum physics@1–3#. This problem is also important in
applications of quantum communication. Much work h
been done to understand how to deal with pure states,
comprehensive treatment for mixed states is still lacki
Most work relevant to mixed states has been concerned
theoretical predictions of the minimum error bound. The c
responding detection operators have never been given ex
itly. Only several practical methods have been propo
which achieve performance close to the optimum@4–9#.

In this paper, we will show that the strategy proposed
the authors for decision between binary pure-coherent-s
signals can also give the optimum for a signal with a sm
amount of thermal noise. The strategy consists of a uni
transformation of the signal states and photon counting a
wards. This transformation can be effected by a multipho
nonlinear optical process@10–12#. It will be shown that its
direct application to the mixed-state signals can achieve
optimum performance in a practical parameter region.

We consider the case in which the signals are on
keyed by an imperfect laser and only the on-state signal
thermal noise, while the off-state signal is the pure vacu
state. The impure coherent state with thermal noiser̂coh-th is
expressed as

r̂coh-th5 (
m50

`

wmucm&^cmu, ~1a!

with the weight

wm5
1

11nth
S nth
11nth

Dm, ~1b!

and the states

ucm&5D̂~a!um&, ~1c!

wherenth is the mean number of the thermal noisy photo
D̂(a)5eaâ†2a* â is the displacement operator,a being the
complex amplitude of the coherent component,â and â†

being the annihilation and creation operators, correspo
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ingly, andum& being them-photon Fock state. In the pract
cal case of communication using optical frequency,nth is
very small, less than, at most, 0.01 leading to a rapid
crease of the weight factorwm , asm becomes larger. So in
numerical estimation of the error probability, the express
of Eq. ~1a! can be replaced by a sum of a finite number
basis vectors,r̂2 as,

r̂25 (
m50

M

wm8 ucm&^cmu, ~2a!

where the new weight factors are

wm8 5
12«

12«M11«
m, ~2b!

defining«5(nth/11nth);nth . The numberM is taken to be
large enough to satisfy

(
m5M11

`

wm!Pe~opt!, ~3!

wherewm is the exact weight in Eq.~1b! andPe(opt) repre-
sents the minimum error probability.

Hereafter we assume thatr̂2 represents the on-state sig
nals from an imperfect laser. The off-state signal is rep
sented by the vacuum state

r̂15u0&^0u. ~4!

We shall start with the binary signals$r̂1 ,r̂2% with the re-
spective prior probabilities$j1 ,j2% (j11j251). The Hilbert
spaceHs , describing these signal states, is of (M12) di-
mension corresponding to the number of linearly indep
dent basis vectors involved inr̂1 and r̂2.

Knowing the above kinds ofa priori knowledge about the
transmitted signal states, the optimal decision strategy , i.
set of POM$P̂1 ,P̂2% (P̂11P̂25 Î s , whereÎ s is the identity
operator onHs), is determined so as to minimize the err
probability
3222 © 1997 The American Physical Society
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55 3223BRIEF REPORTS
Pe5j2Tr~ r̂2P̂1!1j1Tr~ r̂1P̂2!5j11j2Tr@~ r̂22lr̂1!P̂1#,
~5!

wherel5j1 /j2. That is, we chooseP̂1 minimizing the term
Tr@( r̂22lr̂1)P̂1#. It can easily be made by taking

P̂15 (
v i,0

uv i&^v i u, ~6!

with the eigenvectors uv i& of the Hermite operator
r̂22lr̂1 and the corresponding eigenvaluesv i . To find the
negative eigenvalue is easy in this case, as done by Hels
@13#. Actually, reflecting the fact that the stater̂1 is the pure
state, it can be obtained as a single solution by solving
following equation:

v52l1l (
m50

M wm8 cm
2

wm8 2v
, ~7!

wherecm
2 5u^0ucm&u2. Denoting it asv2 , the minimum er-

ror probability is written as

Pe~opt!5j11j2v2 . ~8!

The corresponding eigenvectoruv2& can also be derived
somehow, but to connect it to a physical detection metho
not trivial.

To cope with the problem, let us set the suitable comp
orthonormal set$uhk&uk51,2, . . . ,M12% onHs . It is con-
structed from the constituent vectors ofr̂1 and r̂2, i.e.,
$u0&,uc0&, . . . ,ucM&%, by the Schmidt orthogonalization as

uh1&5u0&,

uh2&5
uc0&2c0u0&

A12c0
2

, ~c0[^0uc0&5e2uau2/2!,

A ~9!

uhM12&5
ucM&2(k51

M11uhk&^hkucM&

A12(k51
M11u^hkucM&u2

.

Sincer̂22lr̂1 is an Hermite operator, there exists a unita
operator onHs which diagonalizes it as

Û~ r̂22lr̂1!Û
†5 (

k51

M12

vkuhk&^hku. ~10!

The eigenvectorsuvk& with the eigenvaluesvk are then ex-
pressed as

uvk&5Û†uhk&. ~11!

In the pure-state limit«→0, Eq. ~10! is written as

Û ~0!~ r̂22lr̂1!Û
~0!†5 (

k51

2

vk
~0!uhk&^hku, ~12!

where
m

e

is

te

Û ~0!5expg~ uh1&^h2u2uh2&^h1u!, ~13a!

with the interaction parameterg chosen as

g52tan21S A124j1j2c0
22112j2c0

2

A124j1j2c0
21122j2c0

2D 1/2

~13b!

and

v1
~0!5 1

2 $12l2A~11l!224lc0
2% ~,0!, ~13c!

v2
~0!5 1

2 $12l1A~11l!224lc0
2% ~.0!. ~13d!

Obviously the detection operators are

P̂ i
~0!5Û ~0!†uh i&^h i uÛ ~0!, ~ i51,2!. ~14!

As « increases gradually, the negative eigenvalue conti
ously varies fromv1

(0) to v1(5v2) in the extent of

«,Pe
(0)5@j11j2v1

(0)5 1/2 (12A124j1j2c0
2)#. So P̂1

5uv2&^v2u should be given asuv1&^v1u. Namely, the de-
cision strategy is the following:

P̂15Û†uh1&^h1uÛ, for r̂1 , ~15a!

P̂25Û† (
k52

M12

uhk&^hkuÛ, for r̂2 , ~15b!

By substituting Eq.~15a! into Eq. ~5!, the minimum error
probability is written as

Pe~opt!5j11j2^h1uÛ~ r̂22lr̂1!Û
†uh1&. ~16!

This structure means that transforming the signal states
the unitary processÛ and then detecting by the projecto
$uh1&^h1u,(k52

M12uhk&^hku%, corresponds to the optimal de
tection. Physically, the projectors can be replaced by
photon counting distinguishing whether photon is registe
or not, $u0&^0u,(n51

` un&^nu%, sinceuh1& is the vacuum state
while uhk& (k.2) only include the Fock states with a finit
photon number. On the other hand, how to implement
processÛ is not trivial. So we applyÛ (0), Eq. ~13a!, to it.
Û (0) can be generated by a Hamiltonian describing a mu
photon nonlinear process, as shown in our previous w
@12#. Consequently we consider the following strategy:

P̂1*5Û ~0!†u0&^0uÛ ~0!, ~17a!

P̂2*5Û ~0!†(
n51

`

un&^nuÛ ~0!, ~17b!

Here one should note that the operatorsP̂ i* are defined on
the whole Fock space. And if the unitary process is co
structed correctly instead ofÛ (0), the optimum bound in the
error probability can be available. But in the practical para
eter region, the strategy$P̂ i* % is enough. Actually this strat-
egy yields the error probability that coincides with the op
mum bound up to the first order of«, as shown below.
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The error probability is expressed as

Pe*5j11j2^h1uÛ ~0!~ r̂22lr̂1!Û
~0!†uh1&. ~18!

Deviation from the minimum boundDPe5Pe*2Pe(opt) can
be expanded in a power of«. At first,

r̂22lr̂15uc0&^c0u2lu0&^0u1«~ uc1&^c1u2uc0&^c0u!

1O~«2!. ~19!

Next the unitary operatorÛ can be expanded in the follow
ing form:

Û5Û ~0!@ Î s1«Q̂1O~«2!#. ~20!

Up to the first order in«, the unitarity condition is written as

Q̂1Q̂†50. ~21!

Substitute Eqs.~19! and~20! into Eqs.~16! and~18!, and use
the unitarity condition Eq.~21! and the fact thatÛ (0) diago-
nalizes the termuc0&^c0u2lu0&^0u in $uh1&,uh2&% represen-
tation. Then one can see that the first-order term in« van-
ishes in the deviationDPe and nonzero values arises on
from the second-order terms, i.e.,DPe5O(«2). Therefore,
the strategy$P̂ i* % coincides with the optimal one to the ex
tent of the first-order perturbation in« for the error probabil-
ity.

So there exists a parameter region of a small value o«,
where the strategy$P̂ i* % works as well as the optimal one
This is demonstrated in Figs. 1 and 2 for the case
j15j251/2. The parameter« is converted to the therma
noisy photon by«5nth /(11nth). Pe* ~dotted lines! can be
calculated by the following formulas:

Pe*5
1

4
~11w08!~12A12c0

2!1
11A12c0

2

4~12c0
2! (

m51

M

wm8 cm
2 ,

~22!

FIG. 1. The error probabilities in several decision strategies
the mean photon number of the thermal noisy componentnth in the

case ofNs52. It shows how the strategy$P̂ i* % ~dotted line! devi-
ates from the optimal one~solid line!. The broken line indicates the
SQL.
f

which is derived by substituting Eqs.~2a!, ~4!, and~13a! into
Eq. ~18!. Pe(opt) ~solid lines! can be evaluated by solvin
Eq. ~7! numerically and by substituting the negative soluti
v2 into Eq.~8!. As a referential quantity, the error probab
ity obtained by the conventional method, which consists
direct photon counting and the decision of setting an app
priate threshold, is also plotted~dashed lines!. Figure 1 cor-
responds to the case ofNs52 whereNs is the mean photon
number of the coherent componentuau2 in the on-state sig-
nal, while Fig. 2 is the caseNs55. For both cases, the num
berM appearing in the assumed on-state signal Eq.~2a! is
taken as 10. Compared to the gap between the optim
bound~solid lines! and the conventional error level~dashed
lines!, the deviationDPe is very small for the region
nth,0.05 in both figures. AsNs becomes larger under fixing
«;nth , the error probability itself becomes smaller an
therefore, 0(«2) term starts to contribute as a meaningf
quantity. The strategy$P̂ i* % is then inapplicable. On the
other hand, asnth increases, the gap between the optimu
bound and the conventional error level decreases, mea
the quantum nature causing the performance improvem
from the conventional one becomes weaker.

Before concluding this paper, we shall comment on
origin of the error reduction from the conventional level~di-
rect photon counting!. Let the signal observable beX̂ and its
spectral decomposition beX̂5*xux&^xudx. It keys the binary
signals$r̂1 ,r̂2%. The conventional detection process consi
of the standard measurement described byux&^xu and the
optimal division of the decision region$R1 ,R2% in the set of
measurement results$x%. The obtained error probability

Pe~SQL!5j1E
R2

dx^xur̂1ux&1j2E
R1

dx^xur̂2ux&, ~23!

corresponds to the bound in the classical detection the
and is especially called thesemiquantum limit~semi-QL!.
One of the most remarkable features in quantum meas
ment is the quantum interference appearing in the ab
probability amplitudeŝxur̂ i ux&. Due to it, the probability for
each outcomex is not, in general, the sum of the separa
probabilities pertaining to possible paths. The unitary tra

s FIG. 2. The error probabilities vsnth as in Fig. 1 but in the case
of Ns55.
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formation used in our scheme induces the quantum inter
ence to reduce the error probability, Eq.~23!. By writing this
transformation asÛ5eigF(X̂,Ŷ), where the operatorŶ repre-
sents the conjugate observable withX̂, satisfying

@X̂,Ŷ#5 i /2, the generating functionF(X̂,Ŷ) should be at
least a higher-order Hermite form thanl1(X̂Ŷ
1ŶX̂)1l2X̂1l3Ŷ, as the necessary condition for the err
reduction below the Semi-QL@14#. In fact, the correspond
ing F(X̂,Ŷ) to our strategy$P̂ i* % includes highly nonlinear
process of photons and satisfies this condition@12#. Unlike
the case of binary pure-state signals, the quantum inte
ence should be optimized for every pair betweenucm& and
u0&, depending on the weightwm in this case. And the avail
able quantum interference for error reduction is strongly li
ited by the decoherence character of the classical noise,
the summation of the projectors inur2&. Our strategy opti-
mizes the most significant pair$u0&,uc0&% to the error-
reducing quantum interference. Consequently, the obta
error performance coincides with the optimal one in the l
ear expansion of the noise power for the error probabil
ry

ys
r-

r

r-

-
e.,

ed
-
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The detection scheme is simply realized by installing

nonlinear optical process specified byÛ (0) in front of the
photon counter. Concerning a physical implementation

Û (0), we point out that the cavity QED scheme with a tw
channel Raman transition@15# is a possible candidate. It al
lows the vacuum state to evolve to an arbitrarily prescrib
superposition of Fock states, which is exactly the same fu
tion as U(0).

In summary, a physical detection scheme was propo
for on-off keyed signals of a coherent state with therm
noise. It consists of the unitary transformation caused by
nonlinear optical process and the photon counting. The
merical simulation showed that this scheme provides an
most optimal decision bound in the error probability in
practical parameter region.
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