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Quantum detection for on-off keyed mixed-state signals with a small amount of thermal noise
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The detection strategy proposed previously by the authors for binary pure-state signals, which consists of a
unitary transformation and photon counting afterwgtlys. Rev. A54, 2728(1996], can also be applied to
the case of on-off keyed signals of coherent states with a small amount of thermal noise. It yields an error level
almost the same as the quantum minimum bound in practical parameter fi680-294{@7)03904-9

PACS numbd(s): 03.65.Bz, 42.50.Lc

The optimal decision problem for nonorthogonal quantumingly, and|m) being them-photon Fock state. In the practi-
states, i.e., how to discriminate between them with minimuntal case of communication using optical frequenay, is
error probability, is one of the fundamental problems invery small, less than, at most, 0.01 leading to a rapid de-
quantum physic§1—3]. This problem is also important in crease of the weight factav,,, asm becomes larger. So in
applications of quantum communication. Much work hasnumerical estimation of the error probability, the expression
been done to understand how to deal with pure states, buaff Eq. (18 can be replaced by a sum of a finite number of
comprehensive treatment for mixed states is still lackingpasis vectorsp, as,

Most work relevant to mixed states has been concerned with

theoretical predictions of the minimum error bound. The cor- M
responding detection operators have never been given explic- 52: E W Y)Yl (2a)
itly. Only several practical methods have been proposed m=0
which achieve performance close to the optimutw9].
In this paper, we will show that the strategy proposed bywhere the new weight factors are
the authors for decision between binary pure-coherent-state
signals can also give the optimum for a signal with a small , 1-
amount of thermal noise. The strategy consists of a unitary Wm= 1_gv+i€ (2b)

transformation of the signal states and photon counting after-

wards. This transformation can be effected by a mumphOtorbefiningsz(nth/1+ Ny) ~Ng,. The numbeM is taken to be
nonlinear optical procedsd0—12. It will be shown that its large enough to satisfy

direct application to the mixed-state signals can achieve the

optimum performance in a practical parameter region. o
We consm_ler the case in which the signals are on-off > w,<Po(op), 3)
keyed by an imperfect laser and only the on-state signal has m=M+1

thermal noise, while the off-state signal is the pure vacuum

state. The impure coherent state with thermal npigg,is ~ Wherewp, is the exact weight in Eq(1b) andP¢(opt) repre-
expressed as sents the minimum error probability.

Hereafter we assume thfa;z represents the on-state sig-
nals from an imperfect laser. The off-state signal is repre-

[

Peoh-th™ mZ:O Winl ) (i (13 sented by the vacuum state
with the weight p1=10)(0]. 4
1 nth A ~

Wm:1+n T+n./ (1b)  We shall start with the binary signa{e,,p,} with the re-

th th spective prior probabilitiesé; ,&,} (&,+&,=1). The Hilbert

and the states spaceH,, describing these signal states, is & ¢2) di-

mension corresponding to the number of linearly indepen-
|hm) =D (a)|m), (1) dent basis vectors involved iy, andp,.

) ) Knowing the above kinds d priori knowledge about the
whereny, is the mean number of the thermal noisy photon,yransmitted signal states, the optimal decision strategy , i.e., a

a T*Dt* H 1 1 ~ ~ . . .
D(a)=e*® " @ is the displacement operatat, being the  set of POM{II,,II,} (II;+11,=1, wherel, is the identity
complex amplitude of the coherent componeatand a' operator onH,), is determined so as to minimize the error
being the annihilation and creation operators, correspondarobability
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Pe= szr(Aazﬁl)“‘flTr(;lﬁz):ﬁ*' §2Tr[(;;2—)\;)1)l:[1], U@ =expy(| 710 nal = | m2){ml). (13a
5

with the interaction parameter chosen as

wherex = §1/§2 That is, we choosE[l minimizing the term 12
Tr[(p2—Apy)II1]. It can easily be made by taking VI—4£,6,c5— 1+ 28¢5

y=—tan ! \/7 (13b
- 1-4£1£,C5+1-2£,¢5
o= > |o)ol, (6)
;<0 and
with the eigenvectors|w;) of the Hermite operator 0 _1 2 2
A 0 =3{1-A—(1+N)°—4rcgt (<0), (130

p>—\p; and the corresponding eigenvalues. To find the

negative eigenvalue is easy in this case, as done by Helstrom 00— Li1—n+ \/m} (>0). (130
[13]. Actually, reflecting the fact that the state is the pure 2 °

state, it can be obtained as a single solution by solving th®bviously the detection operators are

following equation:

=—>\+>\2

oW —o’ (7 As ¢ increases gradually, the negative eigenvalue continu-

ously varies fromw(lo) to wi(=w_) in the extent of

2 _ . . .. ~
wherec?,=|(0| ¢,)|%. Denoting it asw_, the minimum er- e<PO=[&+&w{0=1/2 (1- J1-4£,6,cD)]. So I,

W IO=00 )50, (i=12. (14)

ror probability is written as =|w_){w_| should be given afw)(w,|. Namely, the de-
PL(Op) = &+ £00_ . ®) cision strategy is the following:

The corresponding eigenvectp® ) can also be derived ﬁ1=LAJT|771><771|0, for py, (1539

some.h.ow, but to connect it to a physical detection method is M2

noa'tél\éfpl).e with the problem, let us set the suitable complete 1,=0" kzz [ m){md 0, for po, (15b)

orthonormal sef| 7 )|k=1,2,...,M+2} onHy. It is con-
structed from the constituent vectors pf and p,, i.e.,, By substituting Eq.(153 into Eq. (5), the minimum error

{10),|#0), - - - |m)}, by the Schmidt orthogonalization as Probability is written as
|72)=10), Pe(opt =&+ £x( 71| 0(p2=Xp0) 0l m1).  (16)
| /o) — Co|0) iz This structure means that transforming the signal states by
|72) = ﬁ (co=(0|pp)=€"1“"9), the unitary procest) and then detecting by the projectors
1-¢cp {7, =M 52 m){ml}, corresponds to the optimal de-

tection. Physically, the projectors can be replaced by the
©) photon counting distinguishing whether photon is registered

|¢M> ML ] ¢M> or not,{|0><0|,2ﬁ:1|n><_n|}, since| 7,) is the vacuum state

E while | 7,) (k>2) only include the Fock states with a finite
M+2 \/1 EM+1|<7]k| ¢M>| photon number. On the other hand, how to implement the

processU is not trivial. So we apphJ(®, Eq. (133, to it.

Sincep,—\p; is an Hermite operator, there exists a unitaryU(®) can be generated by a Hamiltonian describing a multi-
operator orHg which diagonalizes it as photon nonlinear process, as shown in our previous work
[12]. Consequently we consider the following strategy:

M+2
(5= o) T= ~ N -
U(po—Apy)U'= k; okl M) 7l (10 f1x =0©|0)(0|0©, (173
The eigenvectorbw,) with the eigenvalues are then ex- A N - .
pressed as 3= U(O)Tzl In)(n|U, (17b
o) =07 7). (19

Here one should note that the operatbk$ are defined on
In the pure-state limit—0, Eq.(10) is written as the whole Fock space. And if the unitary process is con-
structed correctly instead &f(?), the optimum bound in the
NP ~ A error probability can be available. But in the practical param-
U(O)(pz_)‘pl)U(O)T:gl o'l ma(md, 12 eter region, the strateg1*} is enough. Actually this strat-
egy Yyields the error probability that coincides with the opti-
where mum bound up to the first order ef, as shown below.
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FIG. 1. The error probabilities in several decision strategies vs FIG. 2. The error probabilities ws,, as in Fig. 1 but in the case
the mean photon number of the thermal noisy compongnn the of N.=5 h
~ s=5.

case ofNg=2. It shows how the strateg)lI;} (dotted ling devi-

ates from the optimal ongsolid line). The broken line indicates the \yhich is derived by substituting Eq&a), (4), and(13a into
SQL. Eq. (18). P,(opt) (solid lineg can be evaluated by solving
Eq. (7) numerically and by substituting the negative solution
w_ into Eq.(8). As a referential quantity, the error probabil-
~ gy, n A ity obtained by the conventional method, which consists of
Py =&+ &m0 (p2—Np1) U 7). 18 girect photon counting and the decision of setting an appro-
priate threshold, is also plottédashed lines Figure 1 cor-
responds to the case bi;=2 whereN is the mean photon
number of the coherent compondad? in the on-state sig-
~ A nal, while Fig. 2 is the casd=5. For both cases, the num-
P2~ p1= o) (ol = MOXO|+ & (| ) (Yl = | o) o) ber M appearing in the assumed on-state signal 26). is
+0(&?). (19) taken as 10. Compared to the gap between the optimum
bound(solid lineg and the conventional error lev&ashed
Next the unitary operatdd can be expanded in the follow- lines), the deviationAP, is very small for the region
ing form: n:»<<0.05 in both figures. Adlg becomes larger under fixing
e~ny,, the error probability itself becomes smaller and,
0=U(°)[TS+8Q+O(82)]. (200  therefore, 0£2) term starts to contribute as a meaningful
quantity. The strategyIl} is then inapplicable. On the
Up to the first order ire, the unitarity condition is written as other hand, a®,, increases, the gap between the optimum
L bound and the conventional error level decreases, meaning
Q+Q'=o. (2)  the quantum nature causing the performance improvement
from the conventional one becomes weaker.
Substitute Eqs(19) and(20) into Egs.(16) and(18), and use Before concluding this paper, we shall comment on the
the unitarity condition Eq(21) and the fact that)(®) diago-  origin of the error reduction from the conventional leyei-

nalizes the termiyo)(yol —\|0)(O0| in {|7:).|7,)} represen-  rect photon counting Let the signal observable Beand its
tation. Then one can see that the first-order terng ian- spectral decomposition l§e=fx|x><x|dx. It keys the binary

ishes in the deviatio P, and nonzero values arises only . IS5 51 Th tional detect ist
from the second-order terms, i.AP,=O(s2). Therefore, >IN s{p1.p2}. The conventional detection process consists
the strateav [T* ! coincides with the ootimal one to the e of the standard measurement describedbyx| and the
¢ tSfth g]?_{ ti }d incl tsk;NIt' e ptlh b b'IX- optimal division of the decision regiofR;,R,} in the set of
iteyn ot the first-order perturbation mor the error probabil- e 55 rement resul{s}. The obtained error probability
So there exists a parameter region of a small value, of . ~
where the strateg§I1*} works as well as the optimal one. Pe(SQL):flf dX<X|P1|X>+§2f dx(x|pa|x), (23)
. . . Ry Ry
This is demonstrated in Figs. 1 and 2 for the case of

§1=¢£;=1/2. The parametes is converted to the thermal corresponds to the bound in the classical detection theory
noisy photon bys=ny,/(1+ny,). Pg (dotted line$ can be  and is especially called thsemiquantum limitsemi-QL).

The error probability is expressed as

Deviation from the minimum bound P.= P — P.(opt) can
be expanded in a power ef At first,

calculated by the following formulas: One of the most remarkable features in quantum measure-
ment is the quantum interference appearing in the above
1 1+y1-c2 Y " - ~ - "
P* =~ (14w (1—I—cD)+ Ch J probability ampl!tude$>$|pi|x). Due to it, the probability for
¢ 4 0 0 4(1-cf) m=p ™M each outcome is not, in general, the sum of the separate

(22)  probabilities pertaining to possible paths. The unitary trans-
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formation used in our scheme induces the quantum interfeffhe detection scheme is simply realized by installing the
ence to reduce the error probability, E83). By writing this  nonlinear optical process specified b¥® in front of the
transformation ag) =€ ?F*"), where the operatoY repre-  photon counter. Concerning a physical implementation of

sents the conjugate observable AV\fitDAK, satisfying  U(©, we point out that the cavity QED scheme with a two
[X,Y]=i/2, the generating functiofr(X,Y) should be at channel Raman transitidi5] is a possible candidate. It al-
least a higher-order Hermite form thani, (XY lows the vacuum state to evolve to an arbitrarily prescribed

+¥X)+\,X+\sY, as the necessary condition for the errors_uperposition of Fock states, which is exactly the same func-

reduction below the Semi-Q[14]. In fact, the correspond- tion as U?. _ ,

ing F(X,Y) to our strategy{IT} includes highly nonlinear f In surfr;n;ary, a physllcal fdetectrzon scheme W"?‘Sh pLOposeld
process of photons and satisfies this condifibB]. Unlike or on-o eyed signais ot a co erent state with therma
the case of binary pure-state signals, the quantum interfefl2!>: It consists of the unitary transformation ca_lused by the
ence should be optimized for every pair betwégg) and nonl_lnear_ opt|cz_il process and the_photon counting. The nu-
|0), depending on the weight,, in this case. And the avail- merical s;mulauon_ ;howed tha’? this scheme pfo"'o_"?s an al-
able quantum interference for error reduction is strongly “m_mostlop?UmaI decision _bound in the error probability in a
ited by the decoherence character of the classical noise, i_é:?,ractma parameter region.

the summation of the projectors |p,). Our strategy opti-

mizes the most significant paif{0),|yo)} to the error- The authors would like to thank Dr. M. Ban of Hitachi
reducing quantum interference. Consequently, the obtaineddvanced Research Laboratory, Dr. K. Yamazaki and Dr.
error performance coincides with the optimal one in the lin-M. Osaki of Tamagawa University, Tokyo, for their helpful
ear expansion of the noise power for the error probability discussions.
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