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. INTRODUCTION 1 1
H(t)=mp2+ EM(t)wz(t)qz, (1)
The study of time-dependent harmonic oscillators has at-

tracted considerable interest in the literature in the past fewyhereq andp are canonically conjugate wifly, p]=i% and

years [1—8]._ The time-dependent oscillator has invokedM(t) ew(t) are, respectively, the mass and frequency of the
much attention because it gives a gqod example of an exa.CtBSCillator. From Eq(1) we obtain the equation of motion
solved model and has applications in many areas of physics.

In recent papers, some authors have considered the har- = : 2 _
monic oscillzftoﬁj with time-dependent mass and frequency a+y(Ha+©i(Hg=0, @
[5,7.8. The wave function obtained in Rdf] satisfies the \yhere
Schralinger equation only when the mass is constant and in
which case the equivalent wave function also appears in d
Refs.[3,6]. However, for the case where the mass is also y(t)= a['nM(t)]- ©)
time dependent the wave function of RE#] is not correct,
i.e., it does not satisfy the Scldimger equation. On the other |t js known that an exact invariant for E¢l) is given by
hand, the wave function of Reff8] satisfies the Schdinger  [4,5]
equation for the case where mass and frequency are both
time dependent. 1[(q\*?
The main purpose of this paper is to obtain an exact ' 2 ;
Schralinger wave function for the harmonic oscillator with
time-dependent mass and frequency and to correct some rethereq(t) satisfies Eq(2) andp(t) is ac-number quantity
sults of Ref[5]. To this end, we use a unitary transformation satisfying the auxiliary equation
and the Lewis and Riesenfeld invariant method. The wave
function found in this paper is in agreement with those in b+ yp+ (1) p= 1 )
Refs.[3,5,6] for the case with constant mass and agrees with prypr@ilp M2p3"
that in Ref.[8] for the general case where the mass is also
time dependent. We also constructed coherent states for tHd1e invariantl (t) is a constant Hermitian operator and sat-
oscillator with time-dependent mass and frequency. isfies the equatiofl,2]
This paper is organized as follows. In Sec. Il we briefly
review the Lewis and Riesenfeld invariant method for the ﬂ: ‘9_| + i [H,1]=0 (6)
time-dependent oscillator. In Sec. lll we find the wave func- dt ot in- " '
tion for the harmonic oscillator with time-dependent mass ) ]
and frequency. In Sec. IV we construct exact coherent states The eigenfunctiong,(q,t) of I (t) are assumed to form a

for our system and Sec. V summarizes our overall results. COmplete orthonormal set corresponding to the time-
independent eigenvalue,. Thus

+(pp— Mbq)z}, (4

Il. EXACT INVARIANTS AND THE SCHRO DINGER
EQUATION I n(Q,1) =Nnebn(q,t), (7)

Consider the Hamiltonian of a time-dependent harmoniavhere(,|¢n) =8y .
oscillator Now consider the time-dependent Safirmer equation
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J
ihﬁlp(q,t):H(t)l,//(q,t), (8)
with
(N R | o s
H(t)z—ma—qfriM(t)w (Hag*, 9

where p=—i# d/dq has been used. Lewis and Riesenfeld

[1,2] showed that the solutiow,(q,t) to the Schrdinger
equation(8) is related tog,(q,t) by the relation

¢n(q't):equan(t)]¢n(q1t)1
where the phase functiong,(t) satisfy the equation
dan(t)

Then, since eacly,(q,t) satisfies the Schdinger equation,
the general solution of Eq8) may be written as

(10

11

9
i~ = H(D)| b))

¢<q,t>=; Crexian(t)]dn(a,t), (12)

where theC,, are constant.

Ill. SCHRO DINGER WAVE FUNCTIONS

To obtain the exact Schdinger wave function for the
time-dependent oscillatafl) we proceed as follows. Con-
sider the unitary transformation

#én(Q,1) =Upn(q,1), (13)
with
iM(t)p
U=exp(— 2%p qz)- (14)

Under this unitary transformation the eigenvalue equaffon
is mapped into

with
ﬁZ p2(92 1 q2
r= - 41
l"=uid 5 a7 T2 (16)

If we now define a new independent varialte=qg/p, we
can write the eigenvalue equation in the form

72 92 o2
- 7P+7}¢n(0):)\n¢n(a) (17)
or
Il@n(a):)\n@n(a): (18)
where
1 1
#n(Q,t)= p—m@n(a)= F/zson(q/p)- (19
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The factor 16*? is introduced into Eq(19) so that the nor-
malization conditions

f ¢:'(q,t)¢é(q,t)dq:f@E(U)%(U)do:l (20

hold. Now Eg.(17) is an ordinary one-dimensional Schro
dinger equation, whose solution is given by

12 12
en(o)= s T eXF{—Uz/Zﬁ]Hn[ %) ol
(21
where
Ap=h(n+3), (22)

andH, is the usual Hermite polynomial of ordar Thus, by
using Egs(13), (14), (19), and(21) we find that

O e LV TC T I R
én(Q,t)= 72107, X025 ;+M(t)P2q
1)1/2q
nlopl

There remains the problem of finding the phasg&) which
satisfy Eq.(11). Carrying out the unitary transformatidn
the right-hand side of Eq11) becomes

)

(29)

X H, (23

b ’

2p Mp?

faq(t)= "ﬁa 'hb J i%
an(t)— ¢nl E—H EQ£+I

where we have used the auxiliary equati®n to eliminate
w?(t) from H(t). Next substituting Eq(19) into Eq.(24) we
find

ﬁdn(t>=<¢n e qon>. (25

Using Eq.(18) and the normalization op,, we have
t)= + ! jt ! dt’ 26
ap()=—|n+5 oM p2dt (26)

Finally, using Eq.(10) and (23) we find that the exact solu-
tion of the Schrdinger equatior(8) is

1 1/2
lﬁn(q,t):exqian(t)][m}

iM(t) [ p i 1\*q
Xexp[ 2% (E*M(t)pz)qz}H”Hﬁ) P

(27)

’

where the phase functiong(t) are given by Eq(26).

When the mass is constant, i.8(t) =m, our new wave
function (27) reduces to those obtained in R€f3,5,6). On
the other hand, for the general case where the mass is time
dependent the Schdmger wave function27) agrees with
that of Ref.[8] by settingp?(t)=g_(t)/w,. Also note that



55 BRIEF REPORTS 3221

the result(27) is different from that obtained in Ref5], Observe that operato(34) factors the invariant(4) as

which as we have already mentioned, is not correct. I=h(ata+1/2).
From Egs.(28), (29), and(33) we find that the expecta-
IV. COHERENT STATES tion value ofq in the stateg,(q,t) is given by

Consider the time-dependent creation and annihilation op- .
erators defined as (a)=(24] al?p?) s Q (1) + 9), (37)
. 28 where § is the argument of the complex number and

; tlep), (28) Q(t)=—2ag(t). Also after some calculation we find the

a'=
uncertainties irg and p in the state¢,(q,t) are given by
1 1/2] q
| il
a = 2% p) Ipp|, (29) ) A )
(Ag)"=5p", (38)
where p=—i%d/dq and[a’,a’T]=1. In terms ofa’ and
a’" the invariantl’ can be written as
Al :
I'=#(a'Ta+1). (30) (Ap)*=3 ;wzpz)- (39

Now coherent states fdr have the forn{9,10|

. Thus the uncertainty product is expressed as

ealot)=exd ~|al2]> ﬁmexmanan%(a), .
(31) (Aa)(Ap) = 5[1+M2(1)p%?)" (40)

wherea,(t) is given by Eq.(26) and« is an arbitrary com-

plex number. and, in general, does not obtain its minimun value. However,
Now using Egs(13), (14), (19), and(31) we obtain that we have already shown in RdfL1] that the statesp,(q,t)

the coherent states for the time-dependent system describage equivalent to well-known squeezed states whose charac-

by the Hamiltonian(1) are given teristic aspect is the squeezing. On the other hand, note that

the results(38) and (39) agreee with those of Ref7] by

1 IM(t)p setting p2=g_(t)/w, and are different from those of Ref.

whereo=q/p. These states satisfy the eigenvalue equation

a B =a(t)d,(q,1), 33 . . .
$u(AD=a(dala.1) 33 In this paper we have used a unitary transformation and
where the Lewis and Riesenfeld invariant method to obtain a Schro
y dinger wave function for the harmonic oscillator with time-
1
= T 4 =| —
a=U'a'l [ Zh} 2[

V. SUMMARY

. . dependent mass and frequency. Our wave function agrees
P +i(pp—Mpq)|, (34 \ith that of Ref.[8] which has been obtained by using the
Heisenberg picture approach.We have also constructed co-

and herent states for the time-dependent oscillator and found the
) expectation value off which reproduces the classical mo-
a(t) = aex 2iac], (35 tion. Futhermore, we have calculated the uncertanity prod-
10 dr uct, whc_)se result cqincides with that of RET]. Finally , we
ap(t)=— _J 5. (36) would like to mention that our overgll results correct the
2JoM(t")p analogous one presented previously in R8f.
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