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We use the Lewis and Riesenfeld invariant method@J. Math. Phys.10, 1458 ~1969!# to obtain the exact
Schrödinger wave functions for a harmonic oscillator with time-dependent mass and frequency. Exact coherent
states for such system are also constructed.@S1050-2947~97!01703-4#

PACS number~s!: 03.65.Ca, 03.65.Ge, 03.65.Fd
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I. INTRODUCTION

The study of time-dependent harmonic oscillators has
tracted considerable interest in the literature in the past
years @1–8#. The time-dependent oscillator has invok
much attention because it gives a good example of an exa
solved model and has applications in many areas of phys

In recent papers, some authors have considered the
monic oscillator with time-dependent mass and freque
@5,7,8#. The wave function obtained in Ref.@5# satisfies the
Schrödinger equation only when the mass is constant an
which case the equivalent wave function also appears
Refs. @3,6#. However, for the case where the mass is a
time dependent the wave function of Ref.@5# is not correct,
i.e., it does not satisfy the Schro¨dinger equation. On the othe
hand, the wave function of Ref.@8# satisfies the Schro¨dinger
equation for the case where mass and frequency are
time dependent.

The main purpose of this paper is to obtain an ex
Schrödinger wave function for the harmonic oscillator wi
time-dependent mass and frequency and to correct som
sults of Ref.@5#. To this end, we use a unitary transformati
and the Lewis and Riesenfeld invariant method. The w
function found in this paper is in agreement with those
Refs.@3,5,6# for the case with constant mass and agrees w
that in Ref.@8# for the general case where the mass is a
time dependent. We also constructed coherent states fo
oscillator with time-dependent mass and frequency.

This paper is organized as follows. In Sec. II we brie
review the Lewis and Riesenfeld invariant method for t
time-dependent oscillator. In Sec. III we find the wave fun
tion for the harmonic oscillator with time-dependent ma
and frequency. In Sec. IV we construct exact coherent st
for our system and Sec. V summarizes our overall result

II. EXACT INVARIANTS AND THE SCHRO ¨ DINGER
EQUATION

Consider the Hamiltonian of a time-dependent harmo
oscillator
551050-2947/97/55~4!/3219~3!/$10.00
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H~ t !5
1

2M ~ t !
p21

1

2
M ~ t !v2~ t !q2, ~1!

whereq andp are canonically conjugate with@q,p#5 i\ and
M (t) ev(t) are, respectively, the mass and frequency of
oscillator. From Eq.~1! we obtain the equation of motion

q̈1g~ t !q̇1v2~ t !q50, ~2!

where

g~ t !5
d

dt
@ lnM ~ t !#. ~3!

It is known that an exact invariant for Eq.~1! is given by
@4,5#

I5
1

2 F S qr D 1/21~pr2M ṙq!2G , ~4!

whereq(t) satisfies Eq.~2! andr(t) is a c-number quantity
satisfying the auxiliary equation

r̈1gṙ1v2~ t !r5
1

M2r3
. ~5!

The invariantI (t) is a constant Hermitian operator and sa
isfies the equation@1,2#

dI

dt
5

]I

]t
1

1

i\
@H,I #50. ~6!

The eigenfunctionsfn(q,t) of I (t) are assumed to form a
complete orthonormal set corresponding to the tim
independent eigenvalueln . Thus

Ifn~q,t !5lnfn~q,t !, ~7!

where^fn8ufn&5dn8,n .
Now consider the time-dependent Schro¨dinger equation
3219 © 1997 The American Physical Society
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i\
]

]t
c~q,t !5H~ t !c~q,t !, ~8!

with

H~ t !52
\2

2M ~ t !

]2

]q2
1
1

2
M ~ t !v2~ t !q2, ~9!

where p52 i\ ]/]q has been used. Lewis and Riesenfe
@1,2# showed that the solutioncn(q,t) to the Schro¨dinger
equation~8! is related tofn(q,t) by the relation

cn~q,t !5exp@ ian~ t !#fn~q,t !, ~10!

where the phase functionsan(t) satisfy the equation

\
dan~ t !

dt
5 K fnU i\ ]

]t
2H~ t !UfnL . ~11!

Then, since eachcn(q,t) satisfies the Schro¨dinger equation,
the general solution of Eq.~8! may be written as

c~q,t !5(
n

Cnexp@ ian~ t !#fn~q,t !, ~12!

where theCn are constant.

III. SCHRÖ DINGER WAVE FUNCTIONS

To obtain the exact Schro¨dinger wave function for the
time-dependent oscillator~1! we proceed as follows. Con
sider the unitary transformation

fn8~q,t !5Ufn~q,t !, ~13!

with

U5expS 2
iM ~ t !ṙ

2\r
q2D . ~14!

Under this unitary transformation the eigenvalue equation~7!
is mapped into

I 8fn8~q,t !5lnfn8~q,t !, ~15!

with

I 85UIU†52
\2

2

r2]2

]q2
1
1

2

q2

r2
. ~16!

If we now define a new independent variables5q/r, we
can write the eigenvalue equation in the form

F2
\2

2

]2

]s2 1
s2

2 Gwn~s!5lnwn~s! ~17!

or

I 8wn~s!5lnwn~s!, ~18!

where

fn8~q,t !5
1

r1/2
wn~s!5

1

r1/2
wn~q/r!. ~19!
The factor 1/r1/2 is introduced into Eq.~19! so that the nor-
malization conditions

E fn* 8~q,t !fn8~q,t !dq5E wn* ~s!wn~s!ds51 ~20!

hold. Now Eq.~17! is an ordinary one-dimensional Schro¨-
dinger equation, whose solution is given by

wn~s!5F 1

p1/2\1/2n!2nG
1/2

exp@2s2/2\#HnF S 1\ D 1/2sG ,
~21!

where

ln5\~n1 1
2 !, ~22!

andHn is the usual Hermite polynomial of ordern. Thus, by
using Eqs.~13!, ~14!, ~19!, and~21! we find that

fn~q,t !5F 1

p1/2\1/2n!2nr
G1/2expF iM ~ t !

2\
S ṙ

r
1

i

M ~ t !r2
D q2G

3HnF S 1\ D 1/2q
r
G . ~23!

There remains the problem of finding the phasesan(t) which
satisfy Eq.~11!. Carrying out the unitary transformationU
the right-hand side of Eq.~11! becomes

\ȧn~ t !5K fn8U i\ ]

]t
1 i\

ṙ

r
q

]

]q
1 i\

ṙ

2r
2

I 8

Mr2
Ufn8L ,

~24!

where we have used the auxiliary equation~5! to eliminate
v2(t) fromH(t). Next substituting Eq.~19! into Eq.~24! we
find

\ȧn~ t !5 K wnU2 I 8

Mr2 UwnL . ~25!

Using Eq.~18! and the normalization ofwn we have

an~ t !52S n1
1

2D E0t 1

M ~ t8!r2
dt8. ~26!

Finally, using Eq.~10! and ~23! we find that the exact solu
tion of the Schro¨dinger equation~8! is

cn~q,t !5exp@ ian~ t !#F 1

p1/2\1/2n!2nr
G1/2

3expF iM ~ t !

2\
S ṙ

r
1

i

M ~ t !r2
D q2GHnF S 1\ D 1/2q

r
G ,
~27!

where the phase functionsa(t) are given by Eq.~26!.
When the mass is constant, i.e.,M (t)5m, our new wave

function ~27! reduces to those obtained in Refs.@3,5,6#. On
the other hand, for the general case where the mass is
dependent the Schro¨dinger wave function~27! agrees with
that of Ref.@8# by settingr2(t)5g2(t)/v I . Also note that
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the result~27! is different from that obtained in Ref.@5#,
which as we have already mentioned, is not correct.

IV. COHERENT STATES

Consider the time-dependent creation and annihilation
erators defined as

a85F 12\ G1/2F S qr D1 irpG , ~28!

a8†5F 12\ G1/2F S qr D2 irpG , ~29!

where p52 i\]/]q and @a8,a8†#51. In terms ofa8 and
a8† the invariantI 8 can be written as

I 85\~a8†a1 1
2 !. ~30!

Now coherent states forI 8 have the form@9,10#

wa~s,t !5exp@2uau2/2#(
n

an

~n! !1/2
exp@ ian~ t !#wn~s!,

~31!

wherean(t) is given by Eq.~26! anda is an arbitrary com-
plex number.

Now using Eqs.~13!, ~14!, ~19!, and~31! we obtain that
the coherent states for the time-dependent system desc
by the Hamiltonian~1! are given

fa~q,t !5
1

r1/2
expF iM ~ t !ṙ

2\r
q2Gwn~s,t !, ~32!

wheres5q/r. These states satisfy the eigenvalue equat

afa~q,t !5a~ t !fa~q,t !, ~33!

where

a5U†a8U5F 12\ G1/2F S qr D1 i ~rp2M ṙq!G , ~34!

and

a~ t !5aexp@2ia0#, ~35!

a0~ t !52
1

2E0
t dt8

M ~ t8!r2
. ~36!
. A
p-

ed

n

Observe that operator~34! factors the invariant~4! as
I5\(a†a11/2).

From Eqs.~28!, ~29!, and ~33! we find that the expecta
tion value ofq in the statefa(q,t) is given by

^q&5~2\uau2r2!1/2sin~V~ t !1d!, ~37!

where d is the argument of the complex numbera and
V(t)522a0(t). Also after some calculation we find th
uncertainties inq andp in the statefa(q,t) are given by

~Dq!25
\

2
r2, ~38!

~Dp!25
\

2 S 1r2 1m2ṙ2D . ~39!

Thus the uncertainty product is expressed as

~Dq!~Dp!5
\

2
@11M2~ t !r2ṙ2#1/2, ~40!

and, in general, does not obtain its minimun value. Howev
we have already shown in Ref.@11# that the statesfa(q,t)
are equivalent to well-known squeezed states whose cha
teristic aspect is the squeezing. On the other hand, note
the results~38! and ~39! agreee with those of Ref.@7# by
setting r25g2(t)/v I and are different from those of Re
@5#.

V. SUMMARY

In this paper we have used a unitary transformation a
the Lewis and Riesenfeld invariant method to obtain a Sch¨-
dinger wave function for the harmonic oscillator with tim
dependent mass and frequency. Our wave function ag
with that of Ref.@8# which has been obtained by using th
Heisenberg picture approach.We have also constructed
herent states for the time-dependent oscillator and found
expectation value ofq which reproduces the classical mo
tion. Futhermore, we have calculated the uncertanity pr
uct, whose result coincides with that of Ref.@7#. Finally , we
would like to mention that our overall results correct t
analogous one presented previously in Ref.@5#.
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