PHYSICAL REVIEW A VOLUME 55, NUMBER 4 APRIL 1997
Nonlinear dynamics of a backward quasi-phase-matched second-harmonic generator
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We study the stability of the interaction between a pump wave and a counter propagating second-harmonic
wave phase-matched in a periodically poled material using both analytical and numerical methods. In
contrast to the more usual copropagating case, backward phase-matched frequency doubling displays richer
and more complex behavior, owing to the presence of built-in feedlp8dk50-294P7)08104-3

PACS numbe(s): 42.65.Ky, 42.79.Nv, 42.65.5f

I. INTRODUCTION of another doubling system with built-in feedback: a back-
ward frequency doubler in which quasi-phase-matching is
The recent high level of interest m(Z) phenomena is due achieved by small pitch periodic poling. In distributed feed-
largely to dramatic improvements in the fabrication of peri-back frequency doubling, backward phase matching is
odically poled materialéboth crystals and glassefsr quasi- ~ achieved when the quasi-phase-matching pitch is of order
phase-matchinfil—3]. By relaxing the requirement for bire- Asi/2nsy, Wherengy is the refractive index at the second-
fringence phase-matching, quasi-phase-matching allows thgarmonic wavelengthsy. For conversion between 1.55 and
use of any nonlinear crystal or glass, provided it can be pe0.775um in lithium niobate, this works out at around 180
riodically poled at the correct pitch. This is making possiblenm, which is beyond the current capabilities of electric field
efficient frequency doubling of near infrared diode laserspoling techniques. Noting that the pitch rises in proportion to
into the blue, and parametric generation of tunable radiatiothe order of the Bragg condition, Risk al.[8] have recently
at communications and gas sensing wavelengths beyorfadbricated a third order Bragg reflector in KTP using ion
1um [4]. It is also significant for experiments on the “cas- exchangd0.7-um pitch). An odd-valued higher order quasi-
caded” nonlinear phase phenomer{@i, which yields non- phase-matching condition could be used for backward quasi-
linear phase changes that can greatly exceed those availaflbase-matching. In lithium niobate, for example, the ninth-
in x®® materials. order condition would require a pitch of 1,6m, which
In “cascading” the down-conversion of second-harmonicshould be within reach using current techniques.
light is accompanied by a nonlinear change in the phase of The continuous-wave properties of this system can be
the fundamental wave. At perfect phase-matching, downmodeled by a system of two coupled partial differential
conversion does not occlignoring parametric amplification equationg7) and(8). The steady form of these equations, for
of vacuum photons In order to observe the cascaded non-both the copropagating and counterpropagating cases, has
linearity, therefore, a phase mismatch is required under nobeen studied by Russ¢B,10], who derived the Hamiltonian
mal copropagating conditions, since some second-harmon&nd found solutions expressed in terms of Jacobian elliptic
light must be generated before down-conversion can profunctions. More recently, Trillo and Wabnif1,12 studied
ceed. If, however, a second-harmonic wave is injected witithe copropagating case and used its Hamiltonian structure to
an appropriate phase relative to the fundamental wavegharacterize the solutions. In this paper, we characterize the
down-conversion will occur, resulting in a phase-change irproperties of a backward phase-matched frequency doubling
the fundamental wave. Indeed, this process is most effectiveystem from the Hamiltonian structure of its equations, and
at exact phase-matchirdO0]. analyze the temporal dynamics and stability of the solutions.
This becomes important in the presence of feedback, fove find that the backward phase-matched system displays
example if second-harmonic light is fed back to the input of
a frequency doubling system, when nonlinear phase effects
clearly become possible. Consider, for example, a ring cavity
singly resonant at the second harmonic and pumped by the
fundamental wave(Fig. 1). Under these circumstances,
second-harmonic light is present at the input of the doubler.
Since its intensity depends on the fundamental power, this
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can give rise to nonlinear phase changes in the fundamental K g
wave. Furthermore, not only the amplitude but also the phase _a_ D_X_ — ~ Tf A
of the feedback second harmonic depends on the pump

power. This means that the system will behave in a highly

complex manner as a function of input power, since the di- FIG. 1. Nonlinear interaction of a pump and a second-harmonic

rection of the conversion depends on the relative phase b&eam in ay{? material. The feedback induced by the cavity, singly

tween second harmonic and fundameh6ar]. resonant at the second harmonic, can induce a very rich dynamical
It is the aim of this paper to study and analyze the stabilitybehavior.
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Inserting these forms into the Maxwell wave equation and
making use of the slowly varying amplitude approximation
we obtain two equations coupling the two amplitudgsand

&y

2|w (950 ) (950 wZXm
[1+X(w)]?2— 7+2|(k0' ez)E_ - 2—02—5652, 5

[1+x( w)]?EJF i( Z'eZ)E

w? 4w?
—- g S 1 2w ko &, (©)
FIG. 2. Schematic diagram of the model. Two beafg,and
E,, counterpropagate through the nonlinear crystal where they arghere we have assumed that dispersion and diffraction are
coupled by the modulated nonlinear susceptibilig?). negligible. Herey(w) is the linear susceptibility of the ma-
. i . i terial, ¢ is the speed of lighin vacuq and the superscript star
stationary solutions that undergo Hopf bifurcation to self'represents the complex conjugate. The nondimensional form

pulsing solutions as the input intensity is increased. of these equations may be expressed as
In the next section we describe the system and derive the
nondimensional governing equations. We then go on to con- (9,+d,)a=ba*, (7)
sider the steady solutions and employ Hamiltonian tech-
niques to provide a qualitative description of the solution (9,— yd)b=—a*+idb, (8

structure and the role of the phase mismatch. Further, we use

the method of matched asymptotic expansions to give apwhere dimensionless time and distance are defined by
proximate solutions when the ratio of the second-harmonic

input intensity to the pump input intensity is small. In Sec.

IV we consider the time dependent problem. We employ a =
spectral representation of the solutions allied to numerical

continuation to study numerically the bifurcation structurerespectively. Herel is the crystal thicknes¢see Fig. 2,
and the nature of the time dependent solutions. We find thaf( ) is the phase velocity of a wave of frequeney e, is

for low input powers there is a stable steady solution. Thighe unit vector in thez direction, andk; denotes|ki|,
undergoes a series of Hopf bifurcations to a pulsed output §s- 0,2, Under this scaling the interior of the crystal is repre-

v(w)

Tk , 9

N

(kOeZ) t, g‘:

the input power is increased. sented by 8/<1 and one unit of dimensionless time cor-
responds to the time taken by the pump beam to traverse the
Il. THE CONFIGURATION crystal. The relative phase velocity of the two fields is
We consider two plane waves, of frequeneyand 2w 1 v2(20) k ‘e,
counterpropagating through a periodically poled mate- y=— ——— 2z (10)
rial; see Fig. 2. We neglect polarization effects and so may 2 vi(w) k&
express the electric fields of the two waves as and the phase mismatch parameter is
1
Eo=50(z.t)exili (ko T—wt)]+ c.C., (1) _v%(2w) (wz/Cz)[1+X(2w)]_|k2|2L 11)
v¥(w) 4(ko &) .
1
E2=§52(Z,t)eXF[i(kz~T—Zwt)]+C-C- (2) Note that, sincev(2w)=v(w), v is approximately 1 for

counterpropagating geometries. Finally, the dimensionless

Here &,(z,t),E,(z,t) represent the slowly varying complex [0rms of the complex electric fields are

amplitudes andg,k, the wave vectors of the forward and 0(20) Lo? L 2
backward waves, respectively. We assume that the material = . Xm &, b=i Z—Xmgz_ (12)
is periodically poled and that the nonlinear susceptibility is v(w) 4c(ko-€,) 4c(ko- &)

of the form . .
As a natural consequence of the configuration the waves are

(2)_ Xm ) specified on input to the medium. We note that the governing
x =% exflikn ]+ c.c., (3)  equations are invariant under a constant phase shift of both
waves and so we may, without loss of generality, set the
wherek,, is the wave vector of the modulation and we as-phase ofa(0}t) to zero. In light of this we will subject the
sume thaty,, is a real quantity. The wave vectokg and ~ governing equation$7) and (8) to the following boundary
k, are chosen so that conditions:

ko= 2ko— K. (4) a(0t)=A, and b(1t)=BexgiBy), (13
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where Ay and B, are the input moduli of the forward and
backward fields, respectively, am} is the phase difference
between the two waves on input.

D>0

Ill. STATIONARY PROBLEM

A. The effect of phase mismatch

We now consider the time independent solutions of Egs.

(7) and (8) and the associated boundary conditioiiS) =
which satisfy the ordinary differential equations g
a’'=ba*, (14
b'=a’—idb, (15

where the prime denotes differentiation with respect/to
Without loss of generality we have set=1 [if y#1 a and

¥ may be rescaled witly to put the equations in the form of
Egs.(14) and(15)]. It may be shown that, as a consequence
of conservation of energy, the energy flux

D<O

FIG. 3. Each plot shows the contours of the Hamiltonian given
by Eq. (22) in (q,p) space; solid and dashed curves repregént
positive and negative, respectively. The ordinatp isnd it ranges
from 0 to 27, the abscissa ig and it ranges from 0 to 2 in all plots
except the three cases for whigh<0, where it ranges from 0 to

a=Aexpia) and b=Bexpip), (17) 5. The solid dots indicate the nonlinear eigenmodes. The shaded
areas represent regions af,p) space that are not physically ac-
whereA,B and «, 8 represent the moduli and phases of thecessible ¢=<—D).
two fields, respectively. The governing equations become

D=la|*~|b|? (16)

is constant throughout the crystal. We now write

In Fig. 3 closed contour@including those which are 2
(18) periodic with respect t@) correspond to solutions in which
A2 the magnitudesa(¢)| and|b(¢)| are periodic in space, as
a'=Bsin(¢), B'=——=-sin(¢)—I, energy is repeatedly exchanged between the two fields. In
B contrast, the phases and 8 are not generally 2-periodic,
see Fig. 4. Henceforth we will refer to such solutions as
“spatially oscillatory.” We also observe from this figure and
Eqg. (18) that 8 and hencep undergo a rapid change when
D+3B2 the magnitude ob is small. We will exploit this property in
sin(¢) — 9. Sec. IlIB below to find an approximate solution.
B We now consider in detail the phase matched situation,
(19 9=0, illustrated in Fig. 3. The casP<0 appears qualita-
A quantitative study of these equations is precluded as thvely different to the case®=0 andD>0, because of the

boundary condition fors cannot be deduced from E€L3).  Presence of closed contours. It may be shown from the defi-
Nevertheless, a qualitative study may be conducted by exdition of 7, Eq. (21), that the closed contours exist for

A'=ABcog¢), B'=A%cog4¢),

where ¢= B—2a. Using the conservation layl6) we may
recast these equations as

B'=(D+B?%cog¢), ¢'=-

pressing them in Hamiltonian forfi®,11,12: g<—D, which is in contradiction to the definition @, Eq.
(16), which impliesq=—D, and so they are not physically
IH IH realizable. We thus deduce that for zero phase mismatch
Q’=%, D'Z—E, (20 there are no spatially oscillatory solutions. Therefore the
only possible solutions have at most one minimungjrthe
wherep= ¢, q=B? and the Hamiltonian is given by intensity of the backward field, and hence in the intensity of
the forward field as wellbecauseD is fixed).
H=2q(D+q)sin(p) + 94, (2D In contrast, for nonzero phase mismatch spatially oscilla-

tory solutions are possible. The geometry of the level sets of
and therefore the quantitie® and H are conserved, i.e., H is organized by its saddle points. In particular, they con-
independent of position. We exploit this to understand therol the existence of closed contours; there are spatially os-
solution structure by plotting the level sets &f in (q,p) cillatory solutions only if there is a saddle point. The saddle
space for fixed values dP and the phase mismatah, see points are sometimes termed “nonlinear eigenmodés13|
Fig. 3. The abscissa s and the ordinate ip. We note from and represent solutions in which the two waves propagate
the definition of the Hamiltonian that its level sets arg 2 through the crystal with constant amplitude as if they are not
periodic with respect tp and hence the range of the ordinate interacting. From Eq(21) there is a pair of saddle points
is 277. We have only plotted examples 6fpositive because whenD<0 and|9|<2/— D, for which q= —D. They cor-
of the propertyH— —H if p,9——p,— 3. respond to a mode of operation where the pump field is zero
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equations(18) and Fig. 4 that whem/A is small 8 varies
rapidly, which suggests the presence ofia region(termed
a “boundary layer” or “inner region’) in the crystal adja-
cent to the end,=1, whereg varies significantly from its
input value. The method of matched asymptotic expansions
represents the solution as two perturbation expansions in a
small parameter proportional 8,/A: one in the boundary
layer (the “inner expansion) and one outside ithe “outer
expansion’). These expansions are then matched together in
order to satisfy the boundary conditions.

It is convenient to introduce the notatier= By and we

(b) will seek the solution of Eq(18) in the limit e—0 with
2n . \ o 0 1?:0 andA0=O(1):
S o2 A’=ABcogS—2a), B'=AZcosf-2a),
. - B N_/\ 18 ) 18 ) (24
T e 22_/\ _ A?
9 a’'=Bsin(8—2a), ,8’=—ESIH(B—2a),
B
00 2 4 6 8 0 1 with boundary conditions

A(0)=Ag, a(0)=0, B(1)=e¢, pB(1)=po. (25
FIG. 4. Examples of spatially oscillatory solutions. Each con-
tour plot shows the level sets of the Hamiltonian i) space. 1. The inner expansion
The dashed line is the contour of the solution shown in the adjacent The boundary layer width and the backward field are both

right-hand plots. The parameter values for both sets of plots ar%)(e)_ Hence we write
By=0.8, Bo=7/2, =12 but in (8 Ayg=3 while in (b)

Ao=3.305. A=A(£€)+0(e), B=eB(&)+0(€d), 26
and the higher frequency field), propagates unaltered - -
through the crystal. In addition there are more physically a=a(§)+0(e), B=B(§)+0(e),
interesting saddle points at where &= (1—¢)/e represents distance from the end of the
crystal,{=1, scaled to the width of the boundary layer, and
Ja=1[—19i \/m] p= m (22) the caret denotes quantities within the boundary layer. At
6 ' 2’ leading order ine the equations in the boundary layer are

1 3 A;=0, B,=A’coqpB-2a),
Va=g[+9=\9?=12D), p="5-. (23) ¢ ¢ 4h-2a) (27)
. . Az
As +/q is real and positive, it follows that iP<0 spatially =0, Be=— Esm(,B—Za),
oscillatory solutions exist for all¥#0, whereas forD>0

they only exist|9|>23D. However, as discussed above with houndary condition§(0)=1, 3(0)=B,, which deter-

for the cased=0, spatially oscillatory solutions are only mine two constants of integration. The other two are deter-
physically realizable ifg=—D, which for negativeD is  mined by matching to the solution in the outer region. The
equivalent to|9|=2\—D. Therefore, for all nonzer® |eading-order solution is found, after matching, to be
physically realizable spatially oscillatory solutions only exist

for sufficiently large values of the phase mismatch. This be- A=\D, B=\1+2DcogBy)Eé+ D&,
havior is confirmed in Fig. 3. (28)
“0 B sin(Bo)
B. The phase-matched case a=0, p=arcta Dé+cod Bo) |’

The Hamiltonian formulation discussed above provides a . .
powerful vehicle for describing the qualitative nature of the Where the plus-minus sign refers f8 <[ m,2m) and S,
stationary solutions. We now seek a more quantitative repre€ [0:77), respectively.
sentation of these solutions and to this end we henceforth
study the equations in the perfectly phase-matched case,
=0, which is the most physically relevant situation. In the outer region the solution is given by a regular per-

In this subsection we employ the method of matchedurbation expansion of Eq24) in powers ofe. At leading
asymptotic expansiorjd4,15 in the limit B;/Aq— 0, which  order matching with the inner solution requires that
corresponds to the configuration where this device is used fox({)—0 and B({)— 0,7 as {—1, depending on whether
second-harmonic generation. We note from the governin@® is negative or positive, respectively. However, the case

2. The outer expansion
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D<0 requires thah<B, which is inconsistent with the as- '
sumption thatBy/Ay;=€<<1 and henceforth we restrict our

attention to the situatio®>0. Consequently from Eq24) 1.0
the phases are constant at leading order,0 and 8=,

and the equations for the leading order amplitudes simplify

to |
S
A'=—AB, B'=-A2 (29 a
0.5
Their solutions are
A=\Dse¢\D(1-¢)], B=\Dtar{\D(1-)]. - 1
(30)
The boundary condition upoA at {=0 gives thatD must 0.0 : : '
satisfy 0.0 0.5 ¢ 1.0
VDsed¢ VD)=A,. (31)

FIG. 5. The solid curve i$({) obtained from a numerical so-
lution of Eq. (24). The dashed curve represents the leading order
term in the composite expansion B{¢{) given by Eq.(35). The
parameters ar@,=3, By=€¢=0.05, By=1, 9=0.

We note that for allAy there is always a solution with
0<D<?/4. Further, ifA, is sufficiently large, there are
additional solutions withD> 7%/4. However, they are not
physically realizable because the corresponding amplitudes
A andB are singular with an infinite energy density within
the crystal[9]. In the preceding section we have studied the nature of
The inner and outer expansions may be combined into #ime stationary solutions. A question that now naturally
composite expansion that represents the solution throughoatises concerns their temporal stability and the related issue

IV. TIME DEPENDENT PROBLEM

the whole crystal. This gives of the existence and character of otliene dependergolu-
tions of the governing equations. To address these questions
A=Dse¢\D(1-{)]+O(e), (32 we now study the fully time dependent equati¢iisand (8)
using numerical methods based on a Chebyshev spectral
B=/Dtar{ VD(1-{)]-D(1-¢) technique[16], which we now describe.
5 The solutions are represented on a nonuniformly spaced
+e\/1i2DCOE{ﬁO)(1:§) . D(1;§) +0(ed), Sauss-Lobattbgrid of N+1 points¢g, &y, - . . ,{y defined
(33 .
1 | .
a=0(e), (34) szz 1+CO<W”' i=0,... N, (39
B=- arcta+ |sin(Bo)| +0(e), (35) Whi_ch z_;\llows us to eagily and accurat_ely <_:a|cu|ate the spatial
D(1- )/ e*cog By) derivative of the solutions by approximating them as a sum

. ] of N+ 1 Chebyshev polynomials. In fact the spatial deriva-
where, as before, the plus-minus sign refergge [ 7,27)

and B, e[0,7), respectively.

Figure 5 displays a comparison of the leading order com- 1.0
posite expansion fop with the result of a numerical inte-
gration of the governing equatiorig4) for e=0.05. It indi-
cates they are in good agreement and clearly shows the
boundary layer structure iB.

We define the conversion efficiency, of the device for 0.6
second-harmonic generation as

0.8

T
I

=
7=B(0)*/A(0)%. (36) 0.4} :
From the composite expansion AfandB this is given by
n=si?(\D)+O(e), 37 “ |
which along with Eq.(31) implicitly gives the conversion 0.0 —
efficiency as a function of the input intensity of the pump 0 10 As 20

field. In Fig. 6 we plot the leading order conversion effi-
ciency as a function o,. We observe that the efficiency of  FIG. 6. A plot of the leading order conversion efficiency as a
the device increases monotonically with the pump intensityfunction of the pump intensity given by Eq®1) and(37).
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tive is given by multiplying the vector comprising values of
the solution on the grid by a constant matbx(whose ex-
pression can be found in REE6], p. 69. This approximation

to the spatial derivative is employed in the governing equa-
tions (7) and (8) to obtain a system of nonlinear ordinary
differential equations in time for the values of the solution at
each grid point:

k=N k=N
. * - 2 .
aj=—k§=:O Djkak+bjaj , bj=’)/k§=:0 Djkbk_aj +|'&bjy

i=0,... N, (39

where the dot denotes differentiation with respect to time and
aj=a({;),bj=b(¢;). The advantage of using a spectral
method over a more standard finite difference method is that
spectral methods often exhibit exponential accuracy with the
number of grid points. In fact we wrote two codes, one em- FIG. 7. The lower surface is the marginal stability surface for
ploying the above spectral method and the other an upwinthe steady solution inf,,By,A,) space. The upper surface repre-
finite difference techniquEl7], and found that we could ob- sents the locus of the next bifurcation points of the steady solution.
tain the same accuracy between the two by, for example,
using 1000 points in the latter and only 20 grid points in thePump beam is essentially zero so that the interaction between
spectral code. It is this feature of the spectral technique thdhe two beams is confined to the end of the crystal where the
has allowed us to efficiently obtain the results presented bé2ump is injected. This suggests that the effective length of
low. We have(i) obtained steady solutions as a function ofthe crystal is reduced and hence the stability of the steady
the control parameterd,,B, and By, (ii) assessed their lin- solution is enhanced.
ear Stab”ity, and(m) found tempora"y periodic solutions The linear Stabl'lty analysis does not indicate whether the
and investigated their linear stability. All the numerical re- Hopf bifurcation is supercritical or subcritical, that is,
sults given below refer to the situation=1 and9=0. We  Whether the system changes smoothly to a temporally peri-
have in fact also done a limited number of computations foredic solution or jumps discontinuously from the stationary
other values ofy and 9, which suggest that the results given Solution to another statsee[19]). To investigate this issue
here are qualitatively typical of the behavior of the system.@nd more generally determine the solution structure of the
Steady solutions of Eq(39) were obtained by using a time periodic solutions that emerge at the bifurcation points,
modified Powell hybrid method, implemented in thesQe ~ We have coupled the discretized time dependent nonlinear
software[18]. They were compared with the composite ex-€quations39) to the softwarexuto [20], which implements
pansion obtained from the asymptotic analysis in Sec. Ill Bhumerical continuation and bifurcation methods for systems
and shown to be in good agreemésee Fig. 5. of nonlinear ordinary differential equations. This has allowed
The linear stability of the steady solutions was determined’s to track the steady solutions through the bifurcation points
by evaluating the eigenvalud48] of the Jacobian of the @and confirmed the results obtained from the linear code de-
right-hand sides of Eq(39) evaluated at the steady solution. Scribed above. Further, we have used it to follow the tempo-
By monitoring the sign of the real part of the leading eigen-rally periodic solutions that emanate from the Hopf bifurca-
value we were able to determine the marginal stability surfion points, assess their stability, and monitor for the
face in (Ag,By,Bo) space, see the lower surface in Fig. 7.appearance of further bifurcation points. From this informa-
This indicates that the steady solution loses stability as eithion we were able to obtain bifurcation diagrams, see Fig. 9,
A, or By, are increased and their threshold values stronglyvhich is typical of the results we obtained. We found that
depend on the phase difference of the input fiefgls, We

found that on the marginal stability surface the system un- 40¢
dergoes a Hopf bifurcation the frequency of which is very
weakly dependent o, andB,. We also found that above 30 E

the threshold the unstable stationary solution undergoes a
further Hopf bifurcation at larger values & (for given
values of By andBy), see the upper surface in Fig. 7. Over
the range of parameters we investigated the two Hopf bifur-
cations of the steady solution, which occur at distinct values 107
of Ay and so they are never degenerate. The marginal stabil- 5
ity surface has a single minimum with respect fg. At 0¢

0=0 and 7 the system is much more stab{om our 0.0 . 1.0
calculations we are unable to determine whether the thresh-
old for A is finite at these poinjsIn Fig. 8 we show the
intensities of the two fields through the crystal 16g= . FIG. 8. A plot of the intensity of the two fields through the
We observe that throughout a large part of the crystal therystal for the casé,=B,=4 andg,= .

20:
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FIG. 9. Left: Bifurcation diagram of Eq439) for A;=3 and FIG. 11. Forward and backward field intensities across the crys-

Bo=m/2. The bifurcation parameter is the input modulus of thetal as a function of time. Parameter valuks= 3.0, B;=3.0, and
backward fieldB,. The solid (dashed lines indicate stabl€un- Bo=ml2.
stablg solutions. Right: plots of the four periodic orbits that corre-
spond to the four dots on the stable Hopf branch. They are arrangeghse the two counterpropagating fields have a transverse di-
in the same vertical order as the dots in the left-hand figure. mension and they arrange themselves so that they are spa-
tially in antiphase one with the other. In the case studied in
there are at least three supercritical Hopf bifurcations fronthis paper we do not allow for any transverse spatial depen-
the steady solution branch and that there are no bifurcatiodence of the two fields: however, the two fields arrange
or limit points along time periodic branches. As a conse-themselves in order to be temporally out of phase.
guence the solution branch emanating from the first Hopf
bifurcation is stable.
We found that a3, increasegfor A, and 3, fixed) the V. CONCLUSIONS
temporal period of the stable solution slowly decreases, see We have shown that this device can be operated in two
Fig. 10. It is interesting to note that the period of the oscil-modes. At low input intensities it acts as a second-harmonic
lations is approximately equal to the crossing time througlgenerator. It may also be switched into oscillatory mode by
the crystal, although the physical mechanism for this is unincreasing the input intensity whereby a constant input beam
clear. In contrast to the period, the amplitude of the oscillais transformed into a pulsed beam on output. The period of
tions depends strongly on the input intensity of the backwardhe pulses is approximately the crossing time through the
field with the peaks of the output field rapidly becoming crystal. The oscillator is stable; increasing the input intensity
sharper and more intense, see Fig. 9. Finally, in Fig. 11 wehanges the amplitude of the output but has little effect on its
show a typical temporally periodic field configuration inside period. In this study we have not included transverse effects.
the crystal. The most noticeable feature is that the peaks dfherefore it is possible that the system could become un-
the pump beam are both sharper and more intense than thostable to transverse modes and adopt a transversely inhomo-
of the second harmonic. Moreover, the forward and backgeneous configuration in a similar way to that observed in a
ward fields are approximately in antiphase. This is reminisKerr medium[21].
cent of a similar phenomenon that occurs when two beams In the copropagating case, the state of the fields at any
counterpropagate in a defocusing Kerr medii&tt]. In this  position depends entirely on propagation distance into the
doubling medium. In backward phase-matching, however,
the amplitude and phase of the fundamental and second-
2.0 ' . ‘ harmonic fields at any given position depend in a complex
manner on the fields at every other point. This is because of

Output S.H.
8 Constant
3 1.51 i Second harmonic
o
Output pump
A=1550nm I
1.0 ) ) Constant Pump
3 4 5 0 100 200 300

t[ps]

B,

FIG. 12. A schematic diagram of the system comprising a
FIG. 10. Period of the stable periodic solution as a function oflithium niobate crystal periodically poled with a pitch of 180 nm
the backward field input moduluB,. Same parameter values as in when the two input beams both have a power of 30 W and are in
Fig. 9,Ay=3, Bo= /2. antiphase.
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the distributed feedback nature of the interaction. The conschematically in Fig. 12. The pitch required is of order
sequence is that self-consistent solutions are not necessarily,,,d4n=180 nm, which lies beyond the current limits
always possible. If a solution is not self-consistent, oscilla-of electric field poling techniques. Higher order backward
tion or instability is likely to ensue. Backward phase- phase matching may be used, the effective interaction length
matched second-harmonic generators therefore display mugoing approximately as the reciprocal of the order. For
richer physics than the more usual forward phase-matched 10th-order backward interaction over 1 cm, therefore,
devices. the power level increases one hundred fold to 3 kW while
The effects described in this paper could be observed exhe pitch increases to 1.g2m, which is within reach of
perimentally in a lithium niobate waveguide, periodically current techniques. However, these power levels may induce
poled for backward phase matching.rpl cmlong inter-  crystal damage and future realizations of this device
action in a waveguide with mode area 30m?, the power must trade the available pitch to the allowable power.
level of both the input pump and second-harmonic beam3he unusual operating characteristics of this device may find
required to trigger the self-pulsing solution described in Fig.uses in future parametric oscillators and amplifiers, in intra-
9 at a pump wavelength of 1550 nm is roughly 30 W.cavity doubled waveguide lasers, and in passive mode
The output of the device under these conditions is showmocking.
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