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Nonlinear dynamics of a backward quasi-phase-matched second-harmonic generator

G. D’Alessandro,1 P. St. J. Russell,2 and A. A. Wheeler1
1Department of Mathematics, University of Southampton, Southampton, SO17 1BJ, United Kingdom

2School of Physics, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
~Received 6 December 1996!

We study the stability of the interaction between a pump wave and a counter propagating second-harmonic
wave phase-matched in a periodically poledx (2) material using both analytical and numerical methods. In
contrast to the more usual copropagating case, backward phase-matched frequency doubling displays richer
and more complex behavior, owing to the presence of built-in feedback.@S1050-2947~97!08104-3#

PACS number~s!: 42.65.Ky, 42.79.Nv, 42.65.Sf
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I. INTRODUCTION

The recent high level of interest inx (2) phenomena is due
largely to dramatic improvements in the fabrication of pe
odically poled materials~both crystals and glasses! for quasi-
phase-matching@1–3#. By relaxing the requirement for bire
fringence phase-matching, quasi-phase-matching allows
use of any nonlinear crystal or glass, provided it can be
riodically poled at the correct pitch. This is making possib
efficient frequency doubling of near infrared diode las
into the blue, and parametric generation of tunable radia
at communications and gas sensing wavelengths bey
1mm @4#. It is also significant for experiments on the ‘‘ca
caded’’ nonlinear phase phenomenon@5#, which yields non-
linear phase changes that can greatly exceed those ava
in x (3) materials.

In ‘‘cascading’’ the down-conversion of second-harmon
light is accompanied by a nonlinear change in the phas
the fundamental wave. At perfect phase-matching, do
conversion does not occur~ignoring parametric amplification
of vacuum photons!. In order to observe the cascaded no
linearity, therefore, a phase mismatch is required under
mal copropagating conditions, since some second-harm
light must be generated before down-conversion can p
ceed. If, however, a second-harmonic wave is injected w
an appropriate phase relative to the fundamental wa
down-conversion will occur, resulting in a phase-change
the fundamental wave. Indeed, this process is most effec
at exact phase-matching@10#.

This becomes important in the presence of feedback,
example if second-harmonic light is fed back to the input
a frequency doubling system, when nonlinear phase eff
clearly become possible. Consider, for example, a ring ca
singly resonant at the second harmonic and pumped by
fundamental wave~Fig. 1!. Under these circumstance
second-harmonic light is present at the input of the doub
Since its intensity depends on the fundamental power,
can give rise to nonlinear phase changes in the fundame
wave. Furthermore, not only the amplitude but also the ph
of the feedback second harmonic depends on the p
power. This means that the system will behave in a hig
complex manner as a function of input power, since the
rection of the conversion depends on the relative phase
tween second harmonic and fundamental@6,7#.

It is the aim of this paper to study and analyze the stabi
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of another doubling system with built-in feedback: a bac
ward frequency doubler in which quasi-phase-matching
achieved by small pitch periodic poling. In distributed fee
back frequency doubling, backward phase matching
achieved when the quasi-phase-matching pitch is of or
lSH/2nSH, wherenSH is the refractive index at the second
harmonic wavelengthlSH. For conversion between 1.55 an
0.775mm in lithium niobate, this works out at around 18
nm, which is beyond the current capabilities of electric fie
poling techniques. Noting that the pitch rises in proportion
the order of the Bragg condition, Risket al. @8# have recently
fabricated a third order Bragg reflector in KTP using io
exchange~0.7-mm pitch!. An odd-valued higher order quas
phase-matching condition could be used for backward qu
phase-matching. In lithium niobate, for example, the nin
order condition would require a pitch of 1.6mm, which
should be within reach using current techniques.

The continuous-wave properties of this system can
modeled by a system of two coupled partial different
equations~7! and~8!. The steady form of these equations, f
both the copropagating and counterpropagating cases,
been studied by Russell@9,10#, who derived the Hamiltonian
and found solutions expressed in terms of Jacobian elli
functions. More recently, Trillo and Wabnitz@11,12# studied
the copropagating case and used its Hamiltonian structur
characterize the solutions. In this paper, we characterize
properties of a backward phase-matched frequency doub
system from the Hamiltonian structure of its equations, a
analyze the temporal dynamics and stability of the solutio
We find that the backward phase-matched system disp

FIG. 1. Nonlinear interaction of a pump and a second-harmo
beam in ax (2) material. The feedback induced by the cavity, sing
resonant at the second harmonic, can induce a very rich dynam
behavior.
3211 © 1997 The American Physical Society
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3212 55G. D’ALESSANDRO, P. ST. J. RUSSELL, AND A. A. WHEELER
stationary solutions that undergo Hopf bifurcation to se
pulsing solutions as the input intensity is increased.

In the next section we describe the system and derive
nondimensional governing equations. We then go on to c
sider the steady solutions and employ Hamiltonian te
niques to provide a qualitative description of the soluti
structure and the role of the phase mismatch. Further, we
the method of matched asymptotic expansions to give
proximate solutions when the ratio of the second-harmo
input intensity to the pump input intensity is small. In Se
IV we consider the time dependent problem. We emplo
spectral representation of the solutions allied to numer
continuation to study numerically the bifurcation structu
and the nature of the time dependent solutions. We find
for low input powers there is a stable steady solution. T
undergoes a series of Hopf bifurcations to a pulsed outpu
the input power is increased.

II. THE CONFIGURATION

We consider two plane waves, of frequencyv and 2v
counterpropagating through a periodically poledx (2) mate-
rial; see Fig. 2. We neglect polarization effects and so m
express the electric fields of the two waves as

E05
1

2
E0~z,t !exp@ i ~k0•r2vt !#1 c.c., ~1!

E25
1

2
E2~z,t !exp@ i ~k2•r22vt !#1c.c. ~2!

Here E0(z,t),E2(z,t) represent the slowly varying comple
amplitudes andk0 ,k2 the wave vectors of the forward an
backward waves, respectively. We assume that the mat
is periodically poled and that the nonlinear susceptibility
of the form

x~2!5
xm

2
exp@ ikm•r#1 c.c., ~3!

wherekm is the wave vector of the modulation and we a
sume thatxm is a real quantity. The wave vectorsk0 and
k2 are chosen so that

k252k02km . ~4!

FIG. 2. Schematic diagram of the model. Two beams,E0 and
E2, counterpropagate through the nonlinear crystal where they
coupled by the modulated nonlinear susceptibility,x (2).
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Inserting these forms into the Maxwell wave equation a
making use of the slowly varying amplitude approximati
we obtain two equations coupling the two amplitudesE0 and
E2:

@11x~v!#
2iv

c2
]E0
]t

12i ~k0•ez!
]E0
]z

52
v2xm

2c2
E0!E2 , ~5!

@11x~2v!#
4iv

c2
]E2
]t

12i ~k2•ez!
]E2
]z

52
v2xm

c2
E022H 4v2

c2
@11x~2v!#2uk2u2J E2 , ~6!

where we have assumed that dispersion and diffraction
negligible. Herex(v) is the linear susceptibility of the ma
terial,c is the speed of lightin vacuo, and the superscript sta
represents the complex conjugate. The nondimensional f
of these equations may be expressed as

~]t1]z!a5ba* , ~7!

~]t2g]z!b52a21 iqb, ~8!

where dimensionless timet and distancez are defined by

t5Fv~v!

Lk0
~k0•ez!G t, z5

z

L
, ~9!

respectively. HereL is the crystal thickness~see Fig. 2!,
v(v) is the phase velocity of a wave of frequencyv, ez is
the unit vector in thez direction, andki denotes uki u,
i50,2. Under this scaling the interior of the crystal is rep
sented by 0<z<1 and one unit of dimensionless time co
responds to the time taken by the pump beam to traverse
crystal. The relative phase velocity of the two fields is

g52
1

2

v2~2v!

v2~v!

k2•ez
k0•ez

~10!

and the phase mismatch parameter is

q5
v2~2v!

v2~v!

~v2/c2!@11x~2v!#2uk2u2

4~k0•ez!
L. ~11!

Note that, sincev(2v).v(v), g is approximately 1 for
counterpropagating geometries. Finally, the dimension
forms of the complex electric fields are

a5
v~2v!

v~v!

Lv2xm

4c2~k0•ez!
E0 , b5 i

Lv2xm

4c2~k0•ez!
E2 . ~12!

As a natural consequence of the configuration the waves
specified on input to the medium. We note that the govern
equations are invariant under a constant phase shift of b
waves and so we may, without loss of generality, set
phase ofa(0,t) to zero. In light of this we will subject the
governing equations~7! and ~8! to the following boundary
conditions:

a~0,t !5A0 and b~1,t !5B0exp~ ib0!, ~13!

re
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55 3213NONLINEAR DYNAMICS OF A BACKWARD QUASI- . . .
whereA0 andB0 are the input moduli of the forward an
backward fields, respectively, andb0 is the phase difference
between the two waves on input.

III. STATIONARY PROBLEM

A. The effect of phase mismatch

We now consider the time independent solutions of E
~7! and ~8! and the associated boundary conditions~13!
which satisfy the ordinary differential equations

a85ba* , ~14!

b85a22 iqb, ~15!

where the prime denotes differentiation with respect toz.
Without loss of generality we have setg51 @if gÞ1 a and
q may be rescaled withg to put the equations in the form o
Eqs.~14! and~15!#. It may be shown that, as a consequen
of conservation of energy, the energy flux

D5uau22ubu2 ~16!

is constant throughout the crystal. We now write

a5Aexp~ ia! and b5Bexp~ ib!, ~17!

whereA,B anda,b represent the moduli and phases of t
two fields, respectively. The governing equations becom

A85ABcos~f!, B85A2cos~f!,
~18!

a85Bsin~f!, b852
A2

B
sin~f!2q,

wheref5b22a. Using the conservation law~16! we may
recast these equations as

B85~D1B2!cos~f!, f852SD13B2

B D sin~f!2q.

~19!

A quantitative study of these equations is precluded as
boundary condition forf cannot be deduced from Eq.~13!.
Nevertheless, a qualitative study may be conducted by
pressing them in Hamiltonian form@9,11,12#:

q85
]H
]p

, p852
]H
]q

, ~20!

wherep5f, q5B2 and the Hamiltonian is given by

H52Aq~D1q!sin~p!1qq, ~21!

and therefore the quantitiesD and H are conserved, i.e.
independent of position. We exploit this to understand
solution structure by plotting the level sets ofH in (q,p)
space for fixed values ofD and the phase mismatchq, see
Fig. 3. The abscissa isq and the ordinate isp. We note from
the definition of the Hamiltonian that its level sets are 2p
periodic with respect top and hence the range of the ordina
is 2p. We have only plotted examples ofq positive because
of the propertyH→2H if p,q→2p,2q.
s.

e

e

x-

e

In Fig. 3 closed contours~including those which are 2p
periodic with respect top) correspond to solutions in which
the magnitudesua(z)u and ub(z)u are periodic in space, a
energy is repeatedly exchanged between the two fields
contrast, the phasesa andb are not generally 2p-periodic,
see Fig. 4. Henceforth we will refer to such solutions
‘‘spatially oscillatory.’’ We also observe from this figure an
Eq. ~18! that b and hencef undergo a rapid change whe
the magnitude ofb is small. We will exploit this property in
Sec. III B below to find an approximate solution.

We now consider in detail the phase matched situati
q50, illustrated in Fig. 3. The caseD,0 appears qualita-
tively different to the casesD50 andD.0, because of the
presence of closed contours. It may be shown from the d
nition of H, Eq. ~21!, that the closed contours exist fo
q,2D, which is in contradiction to the definition ofD, Eq.
~16!, which impliesq>2D, and so they are not physicall
realizable. We thus deduce that for zero phase misma
there are no spatially oscillatory solutions. Therefore
only possible solutions have at most one minimum inq, the
intensity of the backward field, and hence in the intensity
the forward field as well~becauseD is fixed!.

In contrast, for nonzero phase mismatch spatially osci
tory solutions are possible. The geometry of the level set
H is organized by its saddle points. In particular, they co
trol the existence of closed contours; there are spatially
cillatory solutions only if there is a saddle point. The sadd
points are sometimes termed ‘‘nonlinear eigenmodes’’@9,13#
and represent solutions in which the two waves propag
through the crystal with constant amplitude as if they are
interacting. From Eq.~21! there is a pair of saddle point
whenD,0 anduqu<2A2D, for which q52D. They cor-
respond to a mode of operation where the pump field is z

FIG. 3. Each plot shows the contours of the Hamiltonian giv
by Eq. ~21! in (q,p) space; solid and dashed curves represenH
positive and negative, respectively. The ordinate isp and it ranges
from 0 to 2p, the abscissa isq and it ranges from 0 to 2 in all plots
except the three cases for whichD,0, where it ranges from 0 to
5. The solid dots indicate the nonlinear eigenmodes. The sha
areas represent regions of (q,p) space that are not physically ac
cessible (q<2D).
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3214 55G. D’ALESSANDRO, P. ST. J. RUSSELL, AND A. A. WHEELER
and the higher frequency field,b, propagates unaltere
through the crystal. In addition there are more physica
interesting saddle points at

Aq5
1

6
@2q6Aq2212D#, p5

p

2
, ~22!

Aq5
1

6
@1q6Aq2212D#, p5

3p

2
. ~23!

As Aq is real and positive, it follows that ifD<0 spatially
oscillatory solutions exist for allqÞ0, whereas forD.0
they only existuqu.2A3D. However, as discussed abov
for the caseq50, spatially oscillatory solutions are onl
physically realizable ifq>2D, which for negativeD is
equivalent to uqu>2A2D. Therefore, for all nonzeroD
physically realizable spatially oscillatory solutions only ex
for sufficiently large values of the phase mismatch. This
havior is confirmed in Fig. 3.

B. The phase-matched case

The Hamiltonian formulation discussed above provide
powerful vehicle for describing the qualitative nature of t
stationary solutions. We now seek a more quantitative re
sentation of these solutions and to this end we hencef
study the equations in the perfectly phase-matched c
q50, which is the most physically relevant situation.

In this subsection we employ the method of match
asymptotic expansions@14,15# in the limit B0 /A0→0, which
corresponds to the configuration where this device is used
second-harmonic generation. We note from the govern

FIG. 4. Examples of spatially oscillatory solutions. Each co
tour plot shows the level sets of the Hamiltonian in (q,p) space.
The dashed line is the contour of the solution shown in the adja
right-hand plots. The parameter values for both sets of plots
B050.8, b05p/2, q512 but in ~a! A053 while in ~b!
A053.305.
y
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equations~18! and Fig. 4 that whenB/A is smallb varies
rapidly, which suggests the presence of athin region~termed
a ‘‘boundary layer’’ or ‘‘inner region’’! in the crystal adja-
cent to the endz51, whereb varies significantly from its
input value. The method of matched asymptotic expansi
represents the solution as two perturbation expansions
small parameter proportional toB0 /A0: one in the boundary
layer ~the ‘‘inner expansion’’! and one outside it~the ‘‘outer
expansion’’!. These expansions are then matched togethe
order to satisfy the boundary conditions.

It is convenient to introduce the notatione5B0 and we
will seek the solution of Eq.~18! in the limit e→0 with
q50 andA05O(1):

A85ABcos~b22a!, B85A2cos~b22a!,
~24!

a85Bsin~b22a!, b852
A2

B
sin~b22a!,

with boundary conditions

A~0!5A0 , a~0!50, B~1!5e, b~1!5b0 . ~25!

1. The inner expansion

The boundary layer width and the backward field are b
O(e). Hence we write

A5Â~j!1O~e!, B5eB̂~j!1O~e2!,
~26!

a5â~j!1O~e!, b5b̂~j!1O~e!,

wherej5(12z)/e represents distance from the end of t
crystal,z51, scaled to the width of the boundary layer, a
the caret denotes quantities within the boundary layer.
leading order ine the equations in the boundary layer are

Âj50, B̂j5Â2cos~ b̂22â !,
~27!

âj50, b̂j52
Â2

B̂
sin~ b̂22â !,

with boundary conditionsB̂(0)51, b̂(0)5b0, which deter-
mine two constants of integration. The other two are de
mined by matching to the solution in the outer region. T
leading-order solution is found, after matching, to be

Â5AD, B̂5A162Dcos~b0!j1D2j2,
~28!

â50, b̂5arctanF sin~b0!

Dj6cos~b0!
G ,

where the plus-minus sign refers tob0P@p,2p) and b0
P@0,p), respectively.

2. The outer expansion

In the outer region the solution is given by a regular p
turbation expansion of Eq.~24! in powers ofe. At leading
order matching with the inner solution requires th
a(z)→0 andb(z)→0,p as z→1, depending on whethe
D is negative or positive, respectively. However, the ca
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55 3215NONLINEAR DYNAMICS OF A BACKWARD QUASI- . . .
D,0 requires thatA,B, which is inconsistent with the as
sumption thatB0 /A05e!1 and henceforth we restrict ou
attention to the situationD.0. Consequently from Eq.~24!
the phases are constant at leading order,a50 andb5p,
and the equations for the leading order amplitudes simp
to

A852AB, B852A2. ~29!

Their solutions are

A5ADsec@AD~12z!#, B5ADtan@AD~12z!#.
~30!

The boundary condition uponA at z50 gives thatD must
satisfy

ADsec~AD!5A0 . ~31!

We note that for allA0 there is always a solution with
0,D,p2/4. Further, ifA0 is sufficiently large, there are
additional solutions withD.p2/4. However, they are no
physically realizable because the corresponding amplitu
A andB are singular with an infinite energy density with
the crystal@9#.

The inner and outer expansions may be combined in
composite expansion that represents the solution throug
the whole crystal. This gives

A5ADsec@AD~12z!#1O~e!, ~32!

B5ADtan@AD~12z!#2D~12z!

1eA162Dcos~b0!
~12z!

e
1FD~12z!

e G21O~e2!,

~33!

a5O~e!, ~34!

b56arctanF usin~b0!u
D~12z!/e6cos~b0!

G1O~e!, ~35!

where, as before, the plus-minus sign refers tob0P@p,2p)
andb0P@0,p), respectively.

Figure 5 displays a comparison of the leading order co
posite expansion forb with the result of a numerical inte
gration of the governing equations~24! for e50.05. It indi-
cates they are in good agreement and clearly shows
boundary layer structure inb.

We define the conversion efficiency,h, of the device for
second-harmonic generation as

h5B~0!2/A~0!2. ~36!

From the composite expansion ofA andB this is given by

h5sin2~AD!1O~e!, ~37!

which along with Eq.~31! implicitly gives the conversion
efficiency as a function of the input intensity of the pum
field. In Fig. 6 we plot the leading order conversion ef
ciency as a function ofA0. We observe that the efficiency o
the device increases monotonically with the pump intens
y

es

a
ut

-

he

.

IV. TIME DEPENDENT PROBLEM

In the preceding section we have studied the nature
time stationary solutions. A question that now natura
arises concerns their temporal stability and the related is
of the existence and character of othertime dependentsolu-
tions of the governing equations. To address these ques
we now study the fully time dependent equations~7! and~8!
using numerical methods based on a Chebyshev spe
technique@16#, which we now describe.

The solutions are represented on a nonuniformly spa
~Gauss-Lobatto! grid of N11 pointsz0 ,z1 , . . . ,zN defined
by

z j5
1

2 F11cosS p j

N D G , j50, . . . ,N, ~38!

which allows us to easily and accurately calculate the spa
derivative of the solutions by approximating them as a s
of N11 Chebyshev polynomials. In fact the spatial deriv

FIG. 5. The solid curve isb(z) obtained from a numerical so
lution of Eq. ~24!. The dashed curve represents the leading or
term in the composite expansion ofb(z) given by Eq.~35!. The
parameters areA053, B0[e50.05, b051, q50.

FIG. 6. A plot of the leading order conversion efficiency as
function of the pump intensity given by Eqs.~31! and ~37!.
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3216 55G. D’ALESSANDRO, P. ST. J. RUSSELL, AND A. A. WHEELER
tive is given by multiplying the vector comprising values
the solution on the grid by a constant matrixD ~whose ex-
pression can be found in Ref@16#, p. 69!. This approximation
to the spatial derivative is employed in the governing eq
tions ~7! and ~8! to obtain a system of nonlinear ordina
differential equations in time for the values of the solution
each grid point:

ȧ j52 (
k50

k5N

D jkak1bjaj
! , ḃ j5g (

k50

k5N

D jkbk2aj
21 iqbj ,

j50, . . . ,N, ~39!

where the dot denotes differentiation with respect to time
aj5a(z j ),bj5b(z j ). The advantage of using a spectr
method over a more standard finite difference method is
spectral methods often exhibit exponential accuracy with
number of grid points. In fact we wrote two codes, one e
ploying the above spectral method and the other an upw
finite difference technique@17#, and found that we could ob
tain the same accuracy between the two by, for exam
using 1000 points in the latter and only 20 grid points in t
spectral code. It is this feature of the spectral technique
has allowed us to efficiently obtain the results presented
low. We have~i! obtained steady solutions as a function
the control parametersA0 ,B0 andb0, ~ii ! assessed their lin
ear stability, and~iii ! found temporally periodic solution
and investigated their linear stability. All the numerical r
sults given below refer to the situationg51 andq50. We
have in fact also done a limited number of computations
other values ofg andq, which suggest that the results give
here are qualitatively typical of the behavior of the syste

Steady solutions of Eq.~39! were obtained by using a
modified Powell hybrid method, implemented in theSNSQE
software@18#. They were compared with the composite e
pansion obtained from the asymptotic analysis in Sec. I
and shown to be in good agreement~see Fig. 5!.

The linear stability of the steady solutions was determin
by evaluating the eigenvalues@18# of the Jacobian of the
right-hand sides of Eq.~39! evaluated at the steady solutio
By monitoring the sign of the real part of the leading eige
value we were able to determine the marginal stability s
face in (A0 ,B0 ,b0) space, see the lower surface in Fig.
This indicates that the steady solution loses stability as ei
A0 or B0 are increased and their threshold values stron
depend on the phase difference of the input fields,b0. We
found that on the marginal stability surface the system
dergoes a Hopf bifurcation the frequency of which is ve
weakly dependent onb0 andB0. We also found that above
the threshold the unstable stationary solution undergoe
further Hopf bifurcation at larger values ofA0 ~for given
values ofb0 andB0), see the upper surface in Fig. 7. Ov
the range of parameters we investigated the two Hopf bi
cations of the steady solution, which occur at distinct valu
of A0 and so they are never degenerate. The marginal st
ity surface has a single minimum with respect tob0. At
b050 and p the system is much more stable~from our
calculations we are unable to determine whether the thr
old for A0 is finite at these points!. In Fig. 8 we show the
intensities of the two fields through the crystal forb05p.
We observe that throughout a large part of the crystal
-
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pump beam is essentially zero so that the interaction betw
the two beams is confined to the end of the crystal where
pump is injected. This suggests that the effective length
the crystal is reduced and hence the stability of the ste
solution is enhanced.

The linear stability analysis does not indicate whether
Hopf bifurcation is supercritical or subcritical, that i
whether the system changes smoothly to a temporally p
odic solution or jumps discontinuously from the stationa
solution to another state~see@19#!. To investigate this issue
and more generally determine the solution structure of
time periodic solutions that emerge at the bifurcation poin
we have coupled the discretized time dependent nonlin
equations~39! to the softwareAUTO @20#, which implements
numerical continuation and bifurcation methods for syste
of nonlinear ordinary differential equations. This has allow
us to track the steady solutions through the bifurcation po
and confirmed the results obtained from the linear code
scribed above. Further, we have used it to follow the tem
rally periodic solutions that emanate from the Hopf bifurc
tion points, assess their stability, and monitor for t
appearance of further bifurcation points. From this inform
tion we were able to obtain bifurcation diagrams, see Fig
which is typical of the results we obtained. We found th

FIG. 7. The lower surface is the marginal stability surface
the steady solution in (b0 ,B0 ,A0) space. The upper surface repr
sents the locus of the next bifurcation points of the steady solut

FIG. 8. A plot of the intensity of the two fields through th
crystal for the caseA05B054 andb05p.
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there are at least three supercritical Hopf bifurcations fro
the steady solution branch and that there are no bifurcat
or limit points along time periodic branches. As a cons
quence the solution branch emanating from the first Ho
bifurcation is stable.

We found that asB0 increases~for A0 andb0 fixed! the
temporal period of the stable solution slowly decreases,
Fig. 10. It is interesting to note that the period of the osc
lations is approximately equal to the crossing time throu
the crystal, although the physical mechanism for this is u
clear. In contrast to the period, the amplitude of the oscil
tions depends strongly on the input intensity of the backwa
field with the peaks of the output field rapidly becomin
sharper and more intense, see Fig. 9. Finally, in Fig. 11
show a typical temporally periodic field configuration insid
the crystal. The most noticeable feature is that the peaks
the pump beam are both sharper and more intense than t
of the second harmonic. Moreover, the forward and bac
ward fields are approximately in antiphase. This is remin
cent of a similar phenomenon that occurs when two bea
counterpropagate in a defocusing Kerr medium@21#. In this

FIG. 9. Left: Bifurcation diagram of Eqs.~39! for A053 and
b05p/2. The bifurcation parameter is the input modulus of th
backward fieldB0. The solid ~dashed! lines indicate stable~un-
stable! solutions. Right: plots of the four periodic orbits that corre
spond to the four dots on the stable Hopf branch. They are arran
in the same vertical order as the dots in the left-hand figure.

FIG. 10. Period of the stable periodic solution as a function
the backward field input modulus,B0. Same parameter values as i
Fig. 9,A053, b05p/2.
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case the two counterpropagating fields have a transverse
mension and they arrange themselves so that they are s
tially in antiphase one with the other. In the case studied
this paper we do not allow for any transverse spatial depe
dence of the two fields: however, the two fields arrang
themselves in order to be temporally out of phase.

V. CONCLUSIONS

We have shown that this device can be operated in tw
modes. At low input intensities it acts as a second-harmon
generator. It may also be switched into oscillatory mode b
increasing the input intensity whereby a constant input bea
is transformed into a pulsed beam on output. The period
the pulses is approximately the crossing time through t
crystal. The oscillator is stable; increasing the input intensi
changes the amplitude of the output but has little effect on
period. In this study we have not included transverse effec
Therefore it is possible that the system could become u
stable to transverse modes and adopt a transversely inho
geneous configuration in a similar way to that observed in
Kerr medium@21#.

In the copropagating case, the state of the fields at a
position depends entirely on propagation distance into t
doubling medium. In backward phase-matching, howeve
the amplitude and phase of the fundamental and seco
harmonic fields at any given position depend in a comple
manner on the fields at every other point. This is because

FIG. 12. A schematic diagram of the system comprising
lithium niobate crystal periodically poled with a pitch of 180 nm
when the two input beams both have a power of 30 W and are
antiphase.

ed

f

FIG. 11. Forward and backward field intensities across the cry
tal as a function of time. Parameter valuesA053.0, B053.0, and
b05p/2.
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the distributed feedback nature of the interaction. The c
sequence is that self-consistent solutions are not necess
always possible. If a solution is not self-consistent, osci
tion or instability is likely to ensue. Backward phas
matched second-harmonic generators therefore display m
richer physics than the more usual forward phase-matc
devices.

The effects described in this paper could be observed
perimentally in a lithium niobate waveguide, periodica
poled for backward phase matching. For a 1 cmlong inter-
action in a waveguide with mode area 10mm2, the power
level of both the input pump and second-harmonic bea
required to trigger the self-pulsing solution described in F
9 at a pump wavelength of 1550 nm is roughly 30 W
The output of the device under these conditions is sho
J.
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schematically in Fig. 12. The pitch required is of ord
lpump/4n5180 nm, which lies beyond the current limit
of electric field poling techniques. Higher order backwa
phase matching may be used, the effective interaction len
going approximately as the reciprocal of the order. F
a 10th-order backward interaction over 1 cm, therefo
the power level increases one hundred fold to 3 kW wh
the pitch increases to 1.8mm, which is within reach of
current techniques. However, these power levels may ind
crystal damage and future realizations of this dev
must trade the available pitch to the allowable pow
The unusual operating characteristics of this device may
uses in future parametric oscillators and amplifiers, in int
cavity doubled waveguide lasers, and in passive m
locking.
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