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Generalized phase-matching conditions for high harmonics: The role of field-gradient forces
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We present an approach to describe the phase matching of high harmonics emitted by laser driven atoms in
a nonperturbative regime, for which the atomic response displays an intrinsic intensity-dependent phase. We
show that the traditional phase-matching conditions involving conservation of wave vectors should be modified
by taking into account the gradient of this atomic phase. We investigate various focusing geometries and
interpret the numerical results of Sakiset al. [Phys. Rev. Lett74, 3776(1995]. Within the framework of
the two-step model, we demonstrate that the gradient of the intensity-dependent phase can be considered as the
canonical momentum gained by the electron in the continuum due to acceleration by field-gradient forces,
including in particular the ponderomotive ford&1050-294{@7)07704-4

PACS numbes): 42.65 Ky, 32.80 Rm

[. INTRODUCTION propagation and phase matching. Here, we derive the basic
results of the present paper by applying the stationary phase
When an intense short laser pulse is focused into amethod to the total phase of tieonlineay atomic polariza-
atomic gas medium, extremely high harmonics can be gertion (composed of the individual dynamically induced phase
erated[1,2]. In spite of numerous studies devoted to thisand the contribution due to the phase of the fundamental
phenomenon, some of its characteristics are not yet fulljaser beam This leads to the derivation ofeneralized
understood. The aspect of phase matching is specially chaphase-matching conditiontn Sec. IV, we compare our ana-
lenging: weak-field, perturbative theories fail completely tolytical results with the numerical results of Refg,12]. Fi-
describe how high harmonics are generated, because of thlly, Sec. V contains a discussion of the physical meaning
nonperturbative character of the atomic response. Almost afff the generalized phase-matching conditions; we interpret
nonperturbative atomic models of high harmonic generatiorthese conditions in terms of field-gradient forces, and discuss
predict in particular that harmonics are not in phase with théheir role in maintaining momentum conservation in the
laser, but exhibit phase shifts that depend strongly on th€oupled laser-atom-harmonic field system.
laser intensity. These phase variations have been shown to
affeqt s'_[rongly the an_gular distributions of the emitted har- Il. THE TWO-STEP MODEL
monic field[3-6]. Sgher_es_et al. [7] have studle(_j recently AND THE DYNAMICALLY INDUCED PHASES
the influence of the intrinsic phases on the spatial, temporal,
and spectral coherence properties of high harmonics. In this The origin of intrinsic phases can be best understood
paper, we generalize the traditional phase-matching condiwithin the framework of the so-called two-step model
tions to the strong-field regime, taking such intrinsic phase$8—10. In this semiclassical approach, the electron first tun-
into account. In the framework of the recently proposed two-nels through the Coulomb potential barrier lowered by the
step model for harmonic generatipf—10,, we show that slowly varying laser electric field, at some titie The sub-
field-gradient effects, and in particular ponderomotive forcesequent motion in the continuum is considered as that of a
effects, are absolutely essential to assure momentum consdree electron in the laser field. If the electron returns to the
vation of the coupled atom-laser and harmonic field systemvicinity of the ionic core, it may recombine and emit a burst
This situation may thus be termed a nodghamicalregime  of light at timet;. This process yields a plateau of high
for phase matching. harmonics(with photon energies up to the sum of the ion-
The paper is organized as follows. In Sec. I, we presenization potential and of the maximum kinetic energy of the
in detail the two-step model; in particular we discuss theelectron, which ends up by a sharp cutoff.
phases of individual atomic dipoles and their intensity de- This two-step scenario can be recovered in the fully
pendences from a point of view of Feynman’s interpretationquantum-mechanical approach of Lewenstial.[10], as a
of quantum mechanicEl1]. The atomic dipoles are repre- quasiclassical limit. In the quantum description, however,
sented here as sums of contributions from different quanturone takes directly into account the quantum effects of inter-
paths, and each of the contributions carries a phase related fierence, wave packet spreading, and tunneling. In particular
the classical action along the corresponding path. In Sec. llipne can represent ttggh Fourier component of the atomic
we discuss the physical role of the individual phases indipole moment as a sum over quantum pgth3] (to be
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consistent with Ref[10], we use rescaled units throughout
for which the electron charge and mass and the velocity of
light aree=m=c=1) :

t+ 27w tt
Xq= IimiJ exp(iqwtf)dtff dtif d°p
t 0

t—oo

X d* (p—A(t;))a* (tf)exp< - ;L—S(p,tf ,ti))

XE(tj)-d(p—A(t)))a(t;), (1

Conversion efficiency (arb. units)

where a(t) is the ground state amplitudé(t) the vector
potential,d(p) is the dipole moment of the field-free ground-
continuum transition, ang(t) the electric field. In the above
expressiors(p,t;,t;) is thequasiclassical actioffor an elec-
tron born in the laser field at with a canonical momentum Medium position z (mm)
p, and returning to the origin dt (return timer=t;—t;),

FIG. 1. Conversion efficiency for the 45th harmoi@geb. units
[p—A(t")]? as a function of the position of the center of the mediyrat a peak
2 Ip (2 intensity of 6< 10 W/cm2. The 3D plots show how the harmonic
field is constructed in the mediumat — 1 mm(left) andz=3 mm

W Il th . iclassical b . . . right). The field|E(r,z)| (vertical axig is plotted as a function of
e call the action quasiclassical because It contains, in a 7 (horizontal axi andr (direction perpendicular to the plane of the

dition to the integral of the kinetic energy, a term Propor-fiy,re). Reproduced from Ref7].
tional to the ionization potentidl,, which determines a po-
tential barrier through which the electron tunnels. The above i
expression can clearly be interpreted in Feynman’s spirit as FOr each quantum path, the action can be roughly ap-
an integral over all possible electronic trajectories characteProximated by —7,U, (where 74 is the return time and
ized byt;, t;, andp. Up=E2/4w2 is the ponderomotive potentjaland hence de-
Using a saddle-point analysis, it can be shown that, in thereases linearly with intensifyL2]. The return timerg has an
quasiclassical limit, the integral over all possible paths bealmost constant value as long as the intensity is low enough
comes a sum overlevantpaths, where the relevant paths for the harmonic to belong to the cutoff region, and switches
are determined by the principle of stationary actidr2]. rather abruptly to another almost constant value at higher
This principle thus determines specific valuesoft;, and intensities, for which it belongs to the plateau. The intrinsic
p (denoted in the followingg,). For a given harmonic com- phase thus varies piecewise linearly with the intensity.
ponent in the plateau region of the spectrum, two particular Experimentally, high harmonics are generated by focus-
quantum pathseach being associated to a classical trajecing an intense laser pulse in a gas jet. The intensity distribu-
tory) give the dominant contributions to the dipole moment:tijon in the focal volume results in a spatial distribution of
one with a return timer; =t;—t; rather short with respect to ntrinsic phases, which was shown by Sedieet al. [7] to
the optical period, and one with a return timgalmost equal  pave a major impact on how the harmonic builds up in the
to one optical period. The dipole moment at the harmonicgas medium. Figure 1, reproduced from R&}, shows how

frequency is the coherent sum of amplitudes associated ®e harmonic yield depends on the medium positiorela-
these quantum paths. Since typically both contributions afve to laser focus, for the 45th harmonic of a 825-nm laser,

comparabldalthough the second one is slightly largeheir generated in neon with a confocal paramétess mm. With-

sum exhibits dramatic quantum interference effects. out intrinsic phases, this curve would be symmeficl4).

_The phase of each component_res_ults from the phase a"‘r'aking intrinsic phases into account yields a markedly asym-
quired by the electron wave function in the continuum, andmetriC curve. with two clear maxima &= —1 mm. and

from the phase due to the time delay between the recombk-:Jr 3 mm. How the harmonic is generated at these maxima

nation timet; and the reference time of the laser period. ItiS presented in the insets of Fig. 1. The laser propagates from
reads{12] left to right along the horizontat axis at the center of the
figure. When the gas jet is positioned after the laser focus
= qot;— Es(pstvti ), 3) (z=3 r_nm),.the field is constructed on axis with a smoo.th,.
fi Gaussian-like envelope. On the contrary, when the gas jet is
located before the focus, the harmonic is constructed off
whereq stands for the harmonic ordew, for the laser angu- axis, with an annular structure. Strangely enough, the outgo-
lar frequency, an®(ps;,t; ,t;) for the semiclassical action in ing harmonic field then turns out to be divergent, even
momentum space along the stationary action trajectory corthough the laser field is convergent at that point. These phe-
sidered[10]. ps; is the stationary action value of the canoni- nomena have been explained[i)15] in terms of variations
cal momentum of the electron for which the trajectory start-of the total polarization phase. In the following section, we
ing from the atomic core at timk returns to it at time . propose an interpretation based on wave-vector conservation.

tf
S(p,tf !ti): f dt”

t
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Ill. GENERALIZED PHASE-MATCHING CONDITIONS

In order to interpret this behavior, we consider how the (a)
harmonic fields generated at different points are matched in
phase. For the sake of clarity, we neglect in the following the
dispersion effects due to the linear atomic polarizability, and
due to ionization, i.e., due to free electrons and ions. Thus
we take the modulus of the wave vector at the harmonic
frequency to bekq=qw/c throughout the medium. Note,
however, that other effects, e.g., dispersion, could also be
included in the theory.

Optimal phase matching will be obtained in directiky
in a region of space if the harmonic fields generated at any
two pointsr, andr, interfere constructively:

ard Pq(ry)expliky- (ra—ry))]=ard Po(r)l,  (4)

whereP, stands for theth Fourier component of the atomic
polarization in the medium. It is proportional to the atomic
density and to the corresponding Fourier component of the
atomic dipole moment as given by E@L). Forr, andr,
close enough, this results in

kqy=Varg Py), (5
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where the right-hand side represents the polarization wave
vector. For incident plane waves and with harmonics gener-
ated in a perturbative regime, the phase of the polarization is
justg times that of the incident plane wave eig¥), so that

one obtains the standard condition for perfect phase match-
ing in the forward directionquqko, with k3= w/c. In our

case, two other phase factors are involved: the intrinsic,
intensity-dependent phadeiscussed in the preceding sec- FIG. 2. (a) Distribution of the laser beam wave vectqy, taking

tion), and the phase induced by focusing of the fundamem%cusing into accountb) Distribution of the effective atomic phase
beam(known as the Gouy phase on aki$|). According to .-\ c vectork in the focal region.
Eq. (5), the phase-matching condition now involves the spa-

tial derivative of all these phases._ Let us consider them iQ/ectorkl(r,z) [Fig. 2a)] and of the effective atomic wave
turn. The Gouy phase for a Gaussian beam can be expressgduiork (r,2) [Fig. 2(b)] in the focal region. The laser axis is

as horizontal at figure center, and the laser pulse is assumed to
1 KOr 2 propagate from left to right. As expectekl, is mostly di-
_ _ 1
q)f“(r’z)_ar%mzizex’]( b+ 2iz

. (6)  rected along thez direction, converges towards the focal
point forz<0, and diverges for>0. In contrastK points at
N . a direction opposite to the focal point, yielding a star pattern.
We use here cylindrical coordinates,), andb stands for A 5 result of these very different distributions, the way these

the confocal parameter. The total wave veckgrfor the  \ave vectors combine differs strongly from point to point
fundamental Gaussian beam is therefore space depende{i,; the focus.

and reads

Figure 3 shows examples of resulting phase-matching dia-
1 KOy 2 grams at different places. Fa=0 andr=0 [Fig. 3a)],
ky(r,z) =k, + Var% : exp( ——— (77 K=0 so that one obtains the usual phase mismatch
b+2iz b+2iz kq—aki(0,0)=2q/b due to focusing. On the other hand, for
points locatedon axis (r=0) and after the focus ¢>0)

wheree, is the unit vector in the direction. [Fig. 3(b)], the effective wave vectdt compensates for this
Second, we characterize the spatial dependence of tHg.,qing phase mismatch, thus realiziogliinear phase
atomic phase by means of an effective wave veBlaBuch  aiching. The harmonic field therefore builds up efficiently
that close to the axis when the gas jet is placed after the focus.
_ Conversely, for points locatedn axis(r=0) but before
K(r2)=V®a(r.2), ® the focus £<0), Fig. 3c), the effective wave vectd fur-
so that condition(5) for optimum phase matching becomes the_r deteriorgtes_p_hase matching, so th_at the harmonic is
emitted very inefficiently around those points. However, one
kq= 0k, + K. 9) can find locations for whicimoncollinearphase matching is
achieved, provided we consider poirg# axis (r>0) and
Figure 2 shows typical maps of the Gaussian beam wauvstill beforethe focus ¢<0). The dashes in Fig.(8) repre-
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insights into the distribution of phase mismatches, Fig. 4

E shows contour plots dfsk(r,z)| in the conditions of Fig. 1.
(a) ______ a _____ > To help the eye, each figure is shaded with a scale from
> white [|5k(r,z)|=0] to dark grey[large | sk(r,z)|]. To vi-
q K1 sualize the direction of harmonic emission, we also represent
by arrows the polarization wave vectagk; + K. The active
- medium should be imagined here as a thin slice along the

axis, of typically 1 mm width. The straight dashed lines in-
dicate the centez of the medium in either of the two posi-
tionsz=—1 mm andz=+3 mm illustrated in Fig. 1.

As mentioned above, the harmonic phase varies almost
linearly with intensity, but with a different slope depending
on whether the harmonic is in the cutoff or in the plateau. In
the present example, the 45th harmonic ph@seradians
varies as—24.8<10 * | (in W cm™2) in the plateau(for
the dominantr,-trajectory, and as—13.7x10 | in the
cutoff. The cutoff—plateau transition occurs here at an inten-
sity of 2.3x10* W cm™2. For higher peak intensities, the
active medium is separated into a plateau-regime volume,
corresponding to the inside of the dot-dashed line on the
figures presented, and a cutoff-regime volume farther from
focus. In that region, the gradual down slope of laser inten-
sity with increasing distance from focal point results in a
major decrease of the harmonic dipole. For this reason, one
can expect the harmonic emission to be most efficient either

FIG. 3. Examples of phase-matching diagrams arising at differinside the plateau region, or close to the border of the cutoff
ent points in the focal regior{a) On axis, exactly at focugp) on region.

axis, after the focus: collinear phase matchitg;on axis, before For the sake of clarity, we first present phase-mismatch
the focusi(d) off-axis, before the focus: noncollinear phase match-distributions using the approximate linear intensity depen-
Ing. dence of the atomic phase for the trajectoriggnd r; in the

plateau regimdFigs. 4a) and 4b)], and for the cutoff re-
sent the locus ok, (given by [ky|=qw/c) in k space. The gime [Fig. 4(c)], assuming a fixed intensity of>x610%* W
total polarization wave vectayk, + K may cross this curve if cm~2. One should therefore keep in mind that, because of
the negative longitudinal componentkfremains small, im-  this linear approximation, only the distribution inside the
plying that the point remains rather close to focleg €b.) dot-dashed line is relevant in Figda#tand 4b), and outside
Such points will form a large ring around the laser axis,this line in Fig. 4c). For reference, we also plot the phase-
yielding an annular structure to the emitted harmonic fieldmismatch using the phase of the total polarizatioe., ac-
This corresponds to the maximum in the harmonic efficiencycounting for contributions of all relevant electronic trajecto-
at z=—1 mm shown in Fig. 1, and explains why the har- ries and interferences among theim Fig. 4(d).
monic is generatedff axisas displayed in the left-hand in- The different phase-matching configurations described in
set. Moreover, it can be noticed in the example of Figl) 3 Figs. 3a)—3(d) can indeed be found on Fig(a}, and are
that the transverse componentsyéf andk, are opposite, so indicated by lettersA-D, respectively. The most striking
that the generated harmonic field may be divergent evefeature here is the existence of a large white “walrus-
though the laser field is convergent. All these qualitative premoustache” area for which very good phase-matching is
dictions are in agreement with both numeric&land experi- achieved before the focus and off-axis. It connects an on-axis
mental resultd3]. Of course, perfect phase matching canpoint of collinear phase matchingB] to a large off-axis
only be realized at very definite points or curves in the mezone of noncollinear phase matchinB)( In the latter re-
dium. At all other places, conditiofd) will not be rigorously  gion, harmonic emission is indeed mostly divergent; how-

fulfilled. ever, it can be noticed that the emission direction changes
significantly within these areas, so that the harmonic far-field
IV. CONTOUR PLOTS OF PHASE MISMATCHES profile is likely to be far more complex than a simple annular

ring, as is again shown by computations and experiments.
To investigate in more detail the residual phase misdieft to this white area, the effective wave vectoiis either
matches, we introduce a space-dependent mismatch vectipisufficient to compensate for the effect of focusing, or even
field ok(r,z), in the direction ofgk; +K(r,z), and whose worsens it, so thagk; + K| <k (points A and C). On the

norm corresponds to contrary, K overcompensates focusing on the right, so that
|gks+K|>kKq.
ok=kq— |k, +K]|. (10 The harmonic can be efficiently generated if both the

phase mismatch is small and the medium dimensions are
The harmonic generation will be most efficient when thelarge enough for the field to develop. PositioBsand D
norm of 5k is close to zero, and inefficient otherwise. To getdiffer in this respect; the white area is very thin closeBto
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radial position r ( 10 um )
radial positionr ( 10 um)
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FIG. 4. Contour maps of the phase-mismatch amplifuti, for different atomic phase variation laws, and in the following conditions:
Intensity | = 6% 10** W/cm?, harmonic ordeg=45, confocal parametdr=5 mm, neon gas. White areas correspond to very good phase
matching, dark gray areas to poor phase matching. The arrows represent the resulting directions of harmonic emission. The atomic phase is
assumed to vary linearly for the trajectory with the return tirpé€a) and 7, (b) in the plateau regime, and in the cutoff regifeg The total
phase was used ii). The cutoff-plateau transition occurs here at .804 W/cm? (dot-dashed line The relevant area in the focal volume
is inside the dot-dashed curve (@ and(b), and outside ir(c). The gas jet positions for maximum harmonic conversion are represented by
long dashed linegatz=—1 mm andz= +3 mm). In (a), lettersA-D indicate the positions at which the phase-matching diagrams of Figs.
3(a)—3(d) occur, respectively.

and much wider aroun®. Harmonic generation will there- tude, so that the harmonic conversion strongly decreases.
fore be most intense in the latter off-axis configuration. ByThe emission will hence be most efficient when the medium
analogy with the notion of spectrally critical or noncritical lies in a compromise position, close to the plateau-cutoff
phase matching used for instance for optical parametric odorder. This explains qualitatively the origin of the maxi-
cillators, one could therefore talk spatially critical phase  mum in the harmonic efficiency a=3 mm shown in Fig. 1.
matching inB, andspatially noncriticalphase matching in Moreover, the phase mismatch is about constant off axis, or
D. Indeed, the position 0B is extremely close to the mini- even decreases slightly, so that the field builds up smoothly
mum of harmonic conversion seen in Fig. 1, which can bearound the axis, as shown in the right-hand side inset. It is
readily related to the two large symmetrical dark areas ofndeed shown iff15] that the resulting harmonic profile is
poor phase matching a=1 mm. For even largez, phase nearly super-Gaussian in these conditions.

matching is seen to improve significantly, in particular for It is worth noticing at this point why plotting of the results
the trajectoryr; [Fig. 4b)] and even more in the cutoff- corresponding tcsingle electronic trajectory makes sense.
regime area shown in Fig.(@, which should enhance the After all, the harmonics are generated by the total atomic
conversion efficiency. However, when the medium is dis-polarization, which is a coherent sum of contributions corre-
placed to largee in the cutoff region, the intensity becomes sponding to all relevant trajectories. Figuré@shows the
rapidly too low to generate a significant polarization ampli-phase-mismatches distribution arising from the phase of this
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total atomic polarization. Clearly the resulting figure lacks —A(Xg,t")]dt". (12)
the clarity of the previous ones. Due to quantum interference

effects, the total phase presents indeed rapid and apparently We note that the electron velocity(t') is given by
irregular variations with intensity, which yield complicated v(t’) =ps;—A(t’"), so that this integral contains a vanishing
contours. As a result, the plot is not so clear to interpretfirst term (Vpst).f:_fv(t’)dt’. We have therefore

although the basic structures present in Figs)-4(c) are :

still visible. Moreover, it is obvious from Figs.(#—4(c) t

that, due to different intensity dependent phases, different ﬁK=f {VA(Xq,t").[ psi(Xo) —A(Xg,t")]}dt". (13
contributions will in general propagate in a different manner. b

In fact, we have recently demontrated that propagation and
phase matching may lead to single trajectory selection in thvﬁ1
macroscopic signdll7]. In other words, for an appropriately fi
chosen focusing geometry, the macroscopic harmonic sign
contains only the contribution of a selected trajectory. ThereIo
fore, it is both legitimate and more simple to consider phasq:_|
mismatches for a single trajectory only.

This expression can be interpreted if one considers how
e electron trajectory and dynamical variables in the spa-
lly varying laser field are perturbed with respect to those
a uniform field. The electron canonical momentprs no
nger a constant of motion, but varies according to the
amilton equation:

Introducing contour plots of phase mismatches thus al- dp
lows us to recover completely the conclusions of Ré&, qi —VHY,
concerning phase-matching in strong fields. However, these
results were obtained by numerically integrating the propa- =(VA)-(p—A), (14)

gation equation, whereas the presgraphical method does
not require extensive calculations. This approach is alsahereH” denotes the velocity gauge Hamiltonian, and the
completely general and could be applied to any phasespatial derivatives ofA are taken at the electron position

matching problem. Xo+ 6Xx(t"). The typical electron excursiodx with respect
to the atom is much smaller than the scale of variation of the
V. PHASE-MATCHING AND FIELD-GRADIENT FORCES laser intensity, so that we can identify and its derivatives

) ] ) taken at the atom and electron position. We obtain thus
We have introduced so far the effective atomic wave vec-

tor K as a tool to understand phase matching in strong laser tdp
fields. We now wish to stress that it possesses a simple dy- hK= . gt =pt) —p(t). (15
namical interpretation in the framework of the semiclassical :

model. As explained previously and detailed [it2], the The effective wave vectdK times# is therefore nothing

dominant term to the atomic phase is proportional t0 th&n,re than thecanonicalmomentum gained by the electron
action of the electron in the continuum, so that its gradient is, the continuum.

proportional to the spatial derivative of an action, i.e., a mo- 1o origin of the momentum gain can be further ascer-

mentum. | th  thi i | tained by considering the expression for the acBas given
To unravel the nature of this momentum, we first calcu-j, ret. [10] for each quantum path:

late the gradient o6 and then interpret the result by studying

the dynamics of the ionizing electron in the continuum. S=(l,+U,)7e—2U [1—cog 7o)/ 7
. . X . p p/’s o] S s
Let us first examine the dependence of the semiclassical ' .
action'S on the atom positiorx,. From Eq.(2) , S reads —U[sin(7g) —4sinf(4/2)/ 7s]cogti+1g).  (16)
ty 1 The dominant contribution t8§ is just 7U,, so thatAK
S(Xo,ti 1tf):Jt lp+ E[pst(xo)_A(XOyt,)]z dt’, is given to first order as
i

1D Bty —p(t) = (= YU, (r,2))7s, X))

where we have indicated explicitly that both the ‘“station- where we take advantage of the near-constancy, of ei-

ary” momentumps,= E(Xo)[cos¢) —cos)l/(ti—t) (i.e., the  yhar the cutoff or the plateau regime. The right-hand side is
momentum that allows the electron to return to the core aFeadin seen to be the momentum gained during timen-

t; [10]), and the vector potentidd=— E(xo)sin(t) now de- der the effect of a force- VU, that is, under the pondero-
pend onx, through the electric field(xo). Strictly speak- 1 qive force. The next to Ieaging terms¥& also depend on
ing, the ionization and recombination timgsandt; also the ponderomotive potential gradiefit,, now modulated

depenﬁ on the el?ctrzic fri]eld am%litutﬁa(xo). Ho:/lvevTr, it by an almost periodic function of, andt;, that vanishes in
was shown in Ref[12] thatt; andt; are actually almost o deep plateau regimerd=2s). The momentum gain

constant, provided the laser intensity is well into either thegpy 44 - ricas therefore from field-gradient forces, domi-
cutoff or the plateau regime. For simplicity, we will therefore __ &€ ’

o . nated by the ponderomotive force.
assume throughout thgtandt; are constant. Deriving with We can now propose the following quantum interpreta-
respect tax, yields

tion for the effect of the atomic phase on phase-matching.
4 The electron is accelerated in the continuum by field-
ﬁK:_f [Vpsi(Xo) — VA(Xo,t) ] [ Pse(Xo) gradient forces, including in particular the ponderomotive

ti force. When it returns to the ionic core, it has thus gained a
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canonical momentundPq. Which is transferred to the har- one case of collinear phase-matching, resulting in a smooth
monic photon, and should be taken into account in the phaséaussian-like harmonic beam, and one case of noncollinear
matching condition, now viewed as the momentum conserphase matching, yielding an annular beam. We can thus in-
vation equation: terpret simply existing numerical calculations and experi-
mental results.
fikq=Qqftky + 6Pgjec. (18 Our approach also explains simply why propagation may
) ) select the contribution of only one of the two dominant quan-
The momentum of the harmonic photon is thus no longek,m paths, as shown ifL7]. Indeed, the momentum gained
due solely to the sum of momenta of the incident laser phopy the electron under the effect of field-gradient forces de-
tons, but also to that excess momentum borrowed to the las@nds on which trajectory it follows. In particular, the mo-
beam by the ionizing electron. Of course, as the medium ignentum gain will be much smaller along the trajectory with
not of infinite extent, photons can be generated even though sma| return timer, than along that with a long return time
this condition is not exactly fulfilled, as is customary for 7. As a result, the phase-matching diagrams also depend on
phase matching. A more detailed study is required to ascefne quantum path. At a specific position in the medium, the
tain the effect of the finite interaction length, of the Spatia'generalized phase-matching conditiéi8) may turn out to
variations of the residual phase mismatches, and of the atoly fuifilled for one quantum path only, so that the corre-
momentum. sponding contribution will dominate after propagation.
Finally, a basic result of this work is to suggest methods
VI. CONCLUSION to control the harmonic generation process by inducing suit-

We have proposed an interpretation to phase matching iﬁblg perturbations on th(_e electron trajectory.. While the ca-
a nonperturbative regime, for which harmonics displaynomcal momentum acquired by the electron is cgrrently due
intensity-dependent phases. The gradient of this phase wé% Fhe ponderomotlve force_ on'Iy, one can also imagine ap-
shown to represent the canonical momentum gained by thgy'Ng inhomogeneous static fleld§ or other laser bea_ms to
electron in the continuum due to field-gradient effects, and i odify the electron dynamics. Th's. could hopefully stimu-
particular to the ponderomotive force. This momentum gai ate the Qevelopment of new experimental methods in non-
shows up very naturally in the phase-matching condition,perturb""t've nonlinear optics.
viewed as a momentum conservation equation.

We searched how the different wave vectors and the elec-
tron momentum gain combine, and unraveled two geom- We wish to thank Anne Dederichs for reproducing the
etries for which good phase matching is achieved. We findiumerical calculations presented in this work.
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