
PHYSICAL REVIEW A APRIL 1997VOLUME 55, NUMBER 4
Generalized phase-matching conditions for high harmonics: The role of field-gradient forces
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We present an approach to describe the phase matching of high harmonics emitted by laser driven atoms in
a nonperturbative regime, for which the atomic response displays an intrinsic intensity-dependent phase. We
show that the traditional phase-matching conditions involving conservation of wave vectors should be modified
by taking into account the gradient of this atomic phase. We investigate various focusing geometries and
interpret the numerical results of Salie`reset al. @Phys. Rev. Lett.74, 3776~1995!#. Within the framework of
the two-step model, we demonstrate that the gradient of the intensity-dependent phase can be considered as the
canonical momentum gained by the electron in the continuum due to acceleration by field-gradient forces,
including in particular the ponderomotive force.@S1050-2947~97!07704-4#

PACS number~s!: 42.65 Ky, 32.80 Rm
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I. INTRODUCTION

When an intense short laser pulse is focused into
atomic gas medium, extremely high harmonics can be g
erated@1,2#. In spite of numerous studies devoted to th
phenomenon, some of its characteristics are not yet f
understood. The aspect of phase matching is specially c
lenging: weak-field, perturbative theories fail completely
describe how high harmonics are generated, because o
nonperturbative character of the atomic response. Almos
nonperturbative atomic models of high harmonic genera
predict in particular that harmonics are not in phase with
laser, but exhibit phase shifts that depend strongly on
laser intensity. These phase variations have been show
affect strongly the angular distributions of the emitted h
monic field @3–6#. Salières et al. @7# have studied recently
the influence of the intrinsic phases on the spatial, tempo
and spectral coherence properties of high harmonics. In
paper, we generalize the traditional phase-matching co
tions to the strong-field regime, taking such intrinsic pha
into account. In the framework of the recently proposed tw
step model for harmonic generation@8–10#, we show that
field-gradient effects, and in particular ponderomotive fo
effects, are absolutely essential to assure momentum co
vation of the coupled atom-laser and harmonic field syst
This situation may thus be termed a noveldynamicalregime
for phase matching.

The paper is organized as follows. In Sec. II, we pres
in detail the two-step model; in particular we discuss
phases of individual atomic dipoles and their intensity d
pendences from a point of view of Feynman’s interpretat
of quantum mechanics@11#. The atomic dipoles are repre
sented here as sums of contributions from different quan
paths, and each of the contributions carries a phase relat
the classical action along the corresponding path. In Sec
we discuss the physical role of the individual phases
551050-2947/97/55~4!/3204~7!/$10.00
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propagation and phase matching. Here, we derive the b
results of the present paper by applying the stationary ph
method to the total phase of the~nonlinear! atomic polariza-
tion ~composed of the individual dynamically induced pha
and the contribution due to the phase of the fundame
laser beam!. This leads to the derivation ofgeneralized
phase-matching conditions. In Sec. IV, we compare our ana
lytical results with the numerical results of Refs.@7,12#. Fi-
nally, Sec. V contains a discussion of the physical mean
of the generalized phase-matching conditions; we interp
these conditions in terms of field-gradient forces, and disc
their role in maintaining momentum conservation in t
coupled laser-atom-harmonic field system.

II. THE TWO-STEP MODEL
AND THE DYNAMICALLY INDUCED PHASES

The origin of intrinsic phases can be best understo
within the framework of the so-called two-step mod
@8–10#. In this semiclassical approach, the electron first tu
nels through the Coulomb potential barrier lowered by
slowly varying laser electric field, at some timet i . The sub-
sequent motion in the continuum is considered as that o
free electron in the laser field. If the electron returns to
vicinity of the ionic core, it may recombine and emit a bur
of light at time t f . This process yields a plateau of hig
harmonics~with photon energies up to the sum of the io
ization potential and of the maximum kinetic energy of t
electron!, which ends up by a sharp cutoff.

This two-step scenario can be recovered in the fu
quantum-mechanical approach of Lewensteinet al. @10#, as a
quasiclassical limit. In the quantum description, howev
one takes directly into account the quantum effects of in
ference, wave packet spreading, and tunneling. In partic
one can represent theqth Fourier component of the atomi
dipole moment as a sum over quantum paths@13# ~to be
3204 © 1997 The American Physical Society
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55 3205GENERALIZED PHASE-MATCHING CONDITIONS FOR . . .
consistent with Ref.@10#, we use rescaled units througho
for which the electron charge and mass and the velocity
light aree5m5c51) :

xq5 lim
t→`

i E
t

t12p/v

exp~ iqvt f !dtfE
0

t f
dtiE d3p

3d* „p2A~ t f !…a* ~ t f !expS 2
i

\
S~p,t f ,t i ! D

3E~ t i !•d„p2A~ t i !…a~ t i !, ~1!

wherea(t) is the ground state amplitude,A(t) the vector
potential,d(p) is the dipole moment of the field-free groun
continuum transition, andE(t) the electric field. In the above
expressionS(p,t f ,t i) is thequasiclassical actionfor an elec-
tron born in the laser field att i with a canonical momentum
p, and returning to the origin att f ~return timet5t f2t i),

S~p,t f ,t i !5E
t i

t f
dt9S @p2A~ t9!#2

2
1I pD . ~2!

We call the action quasiclassical because it contains, in
dition to the integral of the kinetic energy, a term propo
tional to the ionization potentialI p , which determines a po
tential barrier through which the electron tunnels. The ab
expression can clearly be interpreted in Feynman’s spiri
an integral over all possible electronic trajectories charac
ized by t i , t f , andp.

Using a saddle-point analysis, it can be shown that, in
quasiclassical limit, the integral over all possible paths
comes a sum overrelevantpaths, where the relevant path
are determined by the principle of stationary action@12#.
This principle thus determines specific values oft i , t f , and
p ~denoted in the followingpst). For a given harmonic com
ponent in the plateau region of the spectrum, two particu
quantum paths~each being associated to a classical traj
tory! give the dominant contributions to the dipole mome
one with a return timet15t f2t i rather short with respect to
the optical period, and one with a return timet2 almost equal
to one optical period. The dipole moment at the harmo
frequency is the coherent sum of amplitudes associate
these quantum paths. Since typically both contributions
comparable~although the second one is slightly larger!, their
sum exhibits dramatic quantum interference effects.

The phase of each component results from the phase
quired by the electron wave function in the continuum, a
from the phase due to the time delay between the recom
nation timet f and the reference time of the laser period.
reads@12#

Fat5qvt f2
1

\
S~pst ,t i ,t f !, ~3!

whereq stands for the harmonic order,v for the laser angu-
lar frequency, andS(pst ,t i ,t f) for the semiclassical action in
momentum space along the stationary action trajectory c
sidered@10#. pst is the stationary action value of the canon
cal momentum of the electron for which the trajectory sta
ing from the atomic core at timet i returns to it at timet f .
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For each quantum path, the action can be roughly a
proximated by2tsUp ~where ts is the return time and
Up5E2/4v2 is the ponderomotive potential!, and hence de-
creases linearly with intensity@12#. The return timets has an
almost constant value as long as the intensity is low enou
for the harmonic to belong to the cutoff region, and switche
rather abruptly to another almost constant value at high
intensities, for which it belongs to the plateau. The intrins
phase thus varies piecewise linearly with the intensity.

Experimentally, high harmonics are generated by focu
ing an intense laser pulse in a gas jet. The intensity distrib
tion in the focal volume results in a spatial distribution o
intrinsic phases, which was shown by Salie`res et al. @7# to
have a major impact on how the harmonic builds up in th
gas medium. Figure 1, reproduced from Ref.@7#, shows how
the harmonic yield depends on the medium positionz rela-
tive to laser focus, for the 45th harmonic of a 825-nm lase
generated in neon with a confocal parameterb55 mm. With-
out intrinsic phases, this curve would be symmetric@5,14#.
Taking intrinsic phases into account yields a markedly asy
metric curve, with two clear maxima atz521 mm, and
z51 3 mm. How the harmonic is generated at these maxim
is presented in the insets of Fig. 1. The laser propagates fr
left to right along the horizontalz axis at the center of the
figure. When the gas jet is positioned after the laser foc
(z53 mm!, the field is constructed on axis with a smooth
Gaussian-like envelope. On the contrary, when the gas je
located before the focus, the harmonic is constructed
axis, with an annular structure. Strangely enough, the outg
ing harmonic field then turns out to be divergent, eve
though the laser field is convergent at that point. These ph
nomena have been explained in@7,15# in terms of variations
of the total polarization phase. In the following section, w
propose an interpretation based on wave-vector conservat

FIG. 1. Conversion efficiency for the 45th harmonic~arb. units!
as a function of the position of the center of the mediumz, at a peak
intensity of 631014 W/cm2. The 3D plots show how the harmonic
field is constructed in the medium atz521 mm~left! andz53 mm
~right!. The fielduEq(r ,z)u ~vertical axis! is plotted as a function of
z ~horizontal axis! andr ~direction perpendicular to the plane of the
figure!. Reproduced from Ref.@7#.
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III. GENERALIZED PHASE-MATCHING CONDITIONS

In order to interpret this behavior, we consider how t
harmonic fields generated at different points are matche
phase. For the sake of clarity, we neglect in the following
dispersion effects due to the linear atomic polarizability, a
due to ionization, i.e., due to free electrons and ions. T
we take the modulus of the wave vector at the harmo
frequency to bekq5qv/c throughout the medium. Note
however, that other effects, e.g., dispersion, could also
included in the theory.

Optimal phase matching will be obtained in directionkq
in a region of space if the harmonic fields generated at
two pointsr1 and r2 interfere constructively:

arg@Pq~r1!exp„ikq•~r22r1!…#5arg@Pq~r2!#, ~4!

wherePq stands for theqth Fourier component of the atomi
polarization in the medium. It is proportional to the atom
density and to the corresponding Fourier component of
atomic dipole moment as given by Eq.~1!. For r1 and r2
close enough, this results in

kq5¹arg~Pq!, ~5!

where the right-hand side represents the polarization w
vector. For incident plane waves and with harmonics gen
ated in a perturbative regime, the phase of the polarizatio
just q times that of the incident plane wave exp(ik1z), so that
one obtains the standard condition for perfect phase ma
ing in the forward direction:kq5qk1

0, with k1
05v/c. In our

case, two other phase factors are involved: the intrin
intensity-dependent phase~discussed in the preceding se
tion!, and the phase induced by focusing of the fundame
beam~known as the Gouy phase on axis@16#!. According to
Eq. ~5!, the phase-matching condition now involves the s
tial derivative of all these phases. Let us consider them
turn. The Gouy phase for a Gaussian beam can be expre
as

F foc~r ,z!5argF 1

b12iz
expS 2

k1
0r 2

b12izD G . ~6!

We use here cylindrical coordinates (r ,z), andb stands for
the confocal parameter. The total wave vectork1 for the
fundamental Gaussian beam is therefore space depen
and reads

k1~r ,z!5k1
0ez1¹argF 1

b12iz
expS 2

k1
0r 2

b12izD G , ~7!

whereez is the unit vector in thez direction.
Second, we characterize the spatial dependence of

atomic phase by means of an effective wave vectorK such
that

K~r ,z!5¹Fat~r ,z!, ~8!

so that condition~5! for optimum phase matching become

kq5qk11K. ~9!

Figure 2 shows typical maps of the Gaussian beam w
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vector k1(r ,z) @Fig. 2~a!# and of the effective atomic wave
vectorK (r ,z) @Fig. 2~b!# in the focal region. The laser axis i
horizontal at figure center, and the laser pulse is assume
propagate from left to right. As expected,k1 is mostly di-
rected along thez direction, converges towards the foc
point forz,0, and diverges forz.0. In contrast,K points at
a direction opposite to the focal point, yielding a star patte
As a result of these very different distributions, the way the
wave vectors combine differs strongly from point to poi
near the focus.

Figure 3 shows examples of resulting phase-matching
grams at different places. Forz50 and r50 @Fig. 3~a!#,
K50 so that one obtains the usual phase misma
kq2qk1(0,0)52q/b due to focusing. On the other hand, fo
points locatedon axis (r50) and after the focus (z.0)
@Fig. 3~b!#, the effective wave vectorK compensates for this
focusing phase mismatch, thus realizingcollinear phase
matching. The harmonic field therefore builds up efficien
close to the axis when the gas jet is placed after the foc

Conversely, for points locatedon axis(r50) but before
the focus (z,0), Fig. 3~c!, the effective wave vectorK fur-
ther deteriorates phase matching, so that the harmoni
emitted very inefficiently around those points. However, o
can find locations for whichnoncollinearphase matching is
achieved, provided we consider pointsoff axis (r.0) and
still beforethe focus (z,0). The dashes in Fig. 3~d! repre-

FIG. 2. ~a! Distribution of the laser beam wave vectork1, taking
focusing into account.~b! Distribution of the effective atomic phas
wave vectorK in the focal region.
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55 3207GENERALIZED PHASE-MATCHING CONDITIONS FOR . . .
sent the locus ofkq ~given by ukqu5qv/c) in k space. The
total polarization wave vectorqk11K may cross this curve if
the negative longitudinal component ofK remains small, im-
plying that the point remains rather close to focus (uzu!b.!
Such points will form a large ring around the laser ax
yielding an annular structure to the emitted harmonic fie
This corresponds to the maximum in the harmonic efficien
at z521 mm shown in Fig. 1, and explains why the ha
monic is generatedoff axisas displayed in the left-hand in
set. Moreover, it can be noticed in the example of Fig. 3~d!
that the transverse components ofqk1 andkq are opposite, so
that the generated harmonic field may be divergent e
though the laser field is convergent. All these qualitative p
dictions are in agreement with both numerical@7# and experi-
mental results@3#. Of course, perfect phase matching c
only be realized at very definite points or curves in the m
dium. At all other places, condition~5! will not be rigorously
fulfilled.

IV. CONTOUR PLOTS OF PHASE MISMATCHES

To investigate in more detail the residual phase m
matches, we introduce a space-dependent mismatch v
field dk(r ,z), in the direction ofqk11K(r ,z), and whose
norm corresponds to

dk5kq2uqk11Ku. ~10!

The harmonic generation will be most efficient when t
norm ofdk is close to zero, and inefficient otherwise. To g

FIG. 3. Examples of phase-matching diagrams arising at dif
ent points in the focal region.~a! On axis, exactly at focus;~b! on
axis, after the focus: collinear phase matching;~c! on axis, before
the focus;~d! off-axis, before the focus: noncollinear phase matc
ing.
,
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insights into the distribution of phase mismatches, Fig
shows contour plots ofudk(r ,z)u in the conditions of Fig. 1.
To help the eye, each figure is shaded with a scale fr
white @ udk(r ,z)u50# to dark grey@large udk(r ,z)u#. To vi-
sualize the direction of harmonic emission, we also repres
by arrows the polarization wave vectorsqk11K. The active
medium should be imagined here as a thin slice along thr
axis, of typically 1 mm width. The straight dashed lines i
dicate the centerz of the medium in either of the two posi
tions z521 mm andz513 mm illustrated in Fig. 1.

As mentioned above, the harmonic phase varies alm
linearly with intensity, but with a different slope dependin
on whether the harmonic is in the cutoff or in the plateau.
the present example, the 45th harmonic phase~in radians!
varies as224.8310214 I ~in W cm22) in the plateau~for
the dominantt2-trajectory!, and as213.7310214 I in the
cutoff. The cutoff–plateau transition occurs here at an int
sity of 2.331014 W cm22. For higher peak intensities, th
active medium is separated into a plateau-regime volu
corresponding to the inside of the dot-dashed line on
figures presented, and a cutoff-regime volume farther fr
focus. In that region, the gradual down slope of laser int
sity with increasing distance from focal point results in
major decrease of the harmonic dipole. For this reason,
can expect the harmonic emission to be most efficient ei
inside the plateau region, or close to the border of the cu
region.

For the sake of clarity, we first present phase-misma
distributions using the approximate linear intensity dep
dence of the atomic phase for the trajectoriest2 andt1 in the
plateau regime@Figs. 4~a! and 4~b!#, and for the cutoff re-
gime @Fig. 4~c!#, assuming a fixed intensity of 631014 W
cm22. One should therefore keep in mind that, because
this linear approximation, only the distribution inside th
dot-dashed line is relevant in Figs. 4~a! and 4~b!, and outside
this line in Fig. 4~c!. For reference, we also plot the phas
mismatch using the phase of the total polarization~i.e., ac-
counting for contributions of all relevant electronic traject
ries and interferences among them! in Fig. 4~d!.

The different phase-matching configurations described
Figs. 3~a!–3~d! can indeed be found on Fig. 4~a!, and are
indicated by lettersA–D, respectively. The most striking
feature here is the existence of a large white ‘‘walru
moustache’’ area for which very good phase-matching
achieved before the focus and off-axis. It connects an on-
point of collinear phase matching (B) to a large off-axis
zone of noncollinear phase matching (D). In the latter re-
gion, harmonic emission is indeed mostly divergent; ho
ever, it can be noticed that the emission direction chan
significantly within these areas, so that the harmonic far-fi
profile is likely to be far more complex than a simple annu
ring, as is again shown by computations and experime
Left to this white area, the effective wave vectorK is either
insufficient to compensate for the effect of focusing, or ev
worsens it, so thatuqk11Ku,kq ~pointsA andC). On the
contrary,K overcompensates focusing on the right, so t
uqk11Ku.kq .

The harmonic can be efficiently generated if both t
phase mismatch is small and the medium dimensions
large enough for the field to develop. PositionsB and D
differ in this respect; the white area is very thin close toB,

r-

-
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FIG. 4. Contour maps of the phase-mismatch amplitudeudku, for different atomic phase variation laws, and in the following conditio
Intensity I5631014 W/cm2, harmonic orderq545, confocal parameterb55 mm, neon gas. White areas correspond to very good ph
matching, dark gray areas to poor phase matching. The arrows represent the resulting directions of harmonic emission. The atom
assumed to vary linearly for the trajectory with the return timet2 ~a! andt1 ~b! in the plateau regime, and in the cutoff regime~c!. The total
phase was used in~d!. The cutoff-plateau transition occurs here at 2.331014W/cm2 ~dot-dashed line!. The relevant area in the focal volum
is inside the dot-dashed curve in~a! and~b!, and outside in~c!. The gas jet positions for maximum harmonic conversion are represente
long dashed lines~at z521 mm andz513 mm!. In ~a!, lettersA–D indicate the positions at which the phase-matching diagrams of F
3~a!–3~d! occur, respectively.
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and much wider aroundD. Harmonic generation will there
fore be most intense in the latter off-axis configuration.
analogy with the notion of spectrally critical or noncritic
phase matching used for instance for optical parametric
cillators, one could therefore talk ofspatially critical phase
matching inB, andspatially noncriticalphase matching in
D. Indeed, the position ofB is extremely close to the mini
mum of harmonic conversion seen in Fig. 1, which can
readily related to the two large symmetrical dark areas
poor phase matching atz51 mm. For even largerz, phase
matching is seen to improve significantly, in particular f
the trajectoryt1 @Fig. 4~b!# and even more in the cutoff
regime area shown in Fig. 4~c!, which should enhance th
conversion efficiency. However, when the medium is d
placed to largerz in the cutoff region, the intensity become
rapidly too low to generate a significant polarization amp
s-

e
f

-

-

tude, so that the harmonic conversion strongly decrea
The emission will hence be most efficient when the medi
lies in a compromise position, close to the plateau-cut
border. This explains qualitatively the origin of the max
mum in the harmonic efficiency atz53 mm shown in Fig. 1.
Moreover, the phase mismatch is about constant off axis
even decreases slightly, so that the field builds up smoo
around the axis, as shown in the right-hand side inset. I
indeed shown in@15# that the resulting harmonic profile i
nearly super-Gaussian in these conditions.

It is worth noticing at this point why plotting of the result
corresponding tosingle electronic trajectory makes sens
After all, the harmonics are generated by the total atom
polarization, which is a coherent sum of contributions cor
sponding to all relevant trajectories. Figure 4~d! shows the
phase-mismatches distribution arising from the phase of
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55 3209GENERALIZED PHASE-MATCHING CONDITIONS FOR . . .
total atomic polarization. Clearly the resulting figure lac
the clarity of the previous ones. Due to quantum interfere
effects, the total phase presents indeed rapid and appar
irregular variations with intensity, which yield complicate
contours. As a result, the plot is not so clear to interp
although the basic structures present in Figs. 4~a!–4~c! are
still visible. Moreover, it is obvious from Figs. 4~a!–4~c!
that, due to different intensity dependent phases, diffe
contributions will in general propagate in a different mann
In fact, we have recently demontrated that propagation
phase matching may lead to single trajectory selection in
macroscopic signal@17#. In other words, for an appropriatel
chosen focusing geometry, the macroscopic harmonic si
contains only the contribution of a selected trajectory. The
fore, it is both legitimate and more simple to consider ph
mismatches for a single trajectory only.

Introducing contour plots of phase mismatches thus
lows us to recover completely the conclusions of Ref.@7#,
concerning phase-matching in strong fields. However, th
results were obtained by numerically integrating the pro
gation equation, whereas the presentgraphicalmethod does
not require extensive calculations. This approach is a
completely general and could be applied to any pha
matching problem.

V. PHASE-MATCHING AND FIELD-GRADIENT FORCES

We have introduced so far the effective atomic wave v
tor K as a tool to understand phase matching in strong la
fields. We now wish to stress that it possesses a simple
namical interpretation in the framework of the semiclassi
model. As explained previously and detailed in@12#, the
dominant term to the atomic phase is proportional to
action of the electron in the continuum, so that its gradien
proportional to the spatial derivative of an action, i.e., a m
mentum.

To unravel the nature of this momentum, we first calc
late the gradient ofS and then interpret the result by studyin
the dynamics of the ionizing electron in the continuum.

Let us first examine the dependence of the semiclass
actionS on the atom positionx0. From Eq.~2! , S reads

S~x0 ,t i ,t f !5E
t i

t f S I p1 1

2
@pst~x0!2A~x0 ,t8!#2Ddt8,

~11!

where we have indicated explicitly that both the ‘‘statio
ary’’ momentumpst5E(x0)@cos(tf)2cos(ti)#/(tf2ti) ~i.e., the
momentum that allows the electron to return to the core
t f @10#!, and the vector potentialA52E(x0)sin(t) now de-
pend onx0 through the electric fieldE(x0). Strictly speak-
ing, the ionization and recombination timest i and t f also
depend on the electric field amplitudeE(x0). However, it
was shown in Ref.@12# that t i and t f are actually almost
constant, provided the laser intensity is well into either
cutoff or the plateau regime. For simplicity, we will therefo
assume throughout thatt i and t f are constant. Deriving with
respect tox0 yields

\K52E
t i

t f
@¹pst~x0!2¹A~x0 ,t8!#•@pst~x0!
e
tly

t,

nt
.
d
e

al
-
e
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-
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e

2A~x0 ,t8!#dt8. ~12!

We note that the electron velocityv(t8) is given by
v(t8)5pst2A(t8), so that this integral contains a vanishin
first term (¹pst).* t i

t fv(t8)dt8. We have therefore

\K5E
t i

t f
$¹A~x0 ,t8!.@pst~x0!2A~x0 ,t8!#%dt8. ~13!

This expression can be interpreted if one considers h
the electron trajectory and dynamical variables in the s
tially varying laser field are perturbed with respect to tho
in a uniform field. The electron canonical momentump is no
longer a constant of motion, but varies according to
Hamilton equation:

dp

dt
52¹Hv,

5~¹A!•~p2A!, ~14!

whereHv denotes the velocity gauge Hamiltonian, and t
spatial derivatives ofA are taken at the electron positio
x01dx(t8). The typical electron excursiondx with respect
to the atom is much smaller than the scale of variation of
laser intensity, so that we can identifyA and its derivatives
taken at the atom and electron position. We obtain thus

\K5E
t i

t f dp

dt
dt85p~ t f !2p~ t i !. ~15!

The effective wave vectorK times\ is therefore nothing
more than thecanonicalmomentum gained by the electro
in the continuum.

The origin of the momentum gain can be further asc
tained by considering the expression for the actionSas given
in Ref. @10# for each quantum path:

S5~ I p1Up!ts22Up@12cos~ts!#/ts

2Up@sin~ts!24sin2~ts/2!/ts#cos~ t i1t f !. ~16!

The dominant contribution toS is just tsUp , so that\K
is given to first order as

p~ t f !2p~ t i !5„2¹Up~r ,z!…ts , ~17!

where we take advantage of the near-constancy ofts in ei-
ther the cutoff or the plateau regime. The right-hand side
readily seen to be the momentum gained during timets un-
der the effect of a force2¹Up , that is, under the pondero
motive force. The next to leading terms to¹Salso depend on
the ponderomotive potential gradient¹Up , now modulated
by an almost periodic function ofts andt f , that vanishes in
the deep plateau regime (ts52p). The momentum gain
dPelec5\K arises therefore from field-gradient forces, dom
nated by the ponderomotive force.

We can now propose the following quantum interpre
tion for the effect of the atomic phase on phase-matchi
The electron is accelerated in the continuum by fie
gradient forces, including in particular the ponderomoti
force. When it returns to the ionic core, it has thus gaine
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canonical momentumdPelec which is transferred to the har
monic photon, and should be taken into account in the ph
matching condition, now viewed as the momentum cons
vation equation:

\kq5q\k11dPelec. ~18!

The momentum of the harmonic photon is thus no lon
due solely to the sum of momenta of the incident laser p
tons, but also to that excess momentum borrowed to the l
beam by the ionizing electron. Of course, as the medium
not of infinite extent, photons can be generated even tho
this condition is not exactly fulfilled, as is customary f
phase matching. A more detailed study is required to as
tain the effect of the finite interaction length, of the spat
variations of the residual phase mismatches, and of the a
momentum.

VI. CONCLUSION

We have proposed an interpretation to phase matchin
a nonperturbative regime, for which harmonics disp
intensity-dependent phases. The gradient of this phase
shown to represent the canonical momentum gained by
electron in the continuum due to field-gradient effects, and
particular to the ponderomotive force. This momentum g
shows up very naturally in the phase-matching conditi
viewed as a momentum conservation equation.

We searched how the different wave vectors and the e
tron momentum gain combine, and unraveled two geo
etries for which good phase matching is achieved. We fi
v

e

oc

.
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e-
r-

r
-
er
is
gh
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one case of collinear phase-matching, resulting in a smo
Gaussian-like harmonic beam, and one case of noncollin
phase matching, yielding an annular beam. We can thus
terpret simply existing numerical calculations and expe
mental results.

Our approach also explains simply why propagation m
select the contribution of only one of the two dominant qua
tum paths, as shown in@17#. Indeed, the momentum gaine
by the electron under the effect of field-gradient forces
pends on which trajectory it follows. In particular, the m
mentum gain will be much smaller along the trajectory w
a small return timet1 than along that with a long return tim
t2. As a result, the phase-matching diagrams also depen
the quantum path. At a specific position in the medium,
generalized phase-matching condition~18! may turn out to
be fulfilled for one quantum path only, so that the corr
sponding contribution will dominate after propagation.

Finally, a basic result of this work is to suggest metho
to control the harmonic generation process by inducing s
able perturbations on the electron trajectory. While the
nonical momentum acquired by the electron is currently d
to the ponderomotive force only, one can also imagine
plying inhomogeneous static fields or other laser beams
modify the electron dynamics. This could hopefully stim
late the development of new experimental methods in n
perturbative nonlinear optics.
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