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Generating Schralinger-cat-like states by means of conditional measurements on a beam splitter

M. Dakna, T. Anhut, T. Opatrny L. Knall, and D.-G. Welsch
Friedrich-Schiller-Universita Jena, Theoretisch-Physikalisches Institut, Max-Wien-Platz 1, D-07743 Jena, Germany
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A scheme for generating Sclifinger-cat-like states of a single-mode optical field by means of conditional
measurement is proposed. Feeding a squeezed vacuum into a beam splitter and counting the photons in one of
the output channels, the conditional states in the other output channel exhibit a number of properties that are
very similar to those of superpositions of two coherent states with opposite phases. We present analytical and
numerical results for the photon-number and quadrature-component distributions of the conditional states and
their Wigner and Husimi functions. Further, we discuss the effect of realistic photocounting on the states.
[S1050-294@7)06404-4

PACS numbd(s): 42.50.Dv, 03.65.Bz

[. INTRODUCTION mode radiation fieldwhich also corresponds to a harmonic
oscillatop in a Schralinger-cat-like statésee, e.g.[8] and

It is well known that according to the basic-theoretical references therejnin particular, it has been proposed that

principles of quantum-mechanics, the superposition of maceonditional measurements may be used advantageously to
roscopically distinguishable quantum states can give rise teealize such states. It is well known that if a quantity of a
quantum interferences such that the resulting states amubsystem of a correlated two-part system prepared in some
highly nonclassical. Schdinger[1] illustrated this phenom- entangled state is measured, the state of the other subsystem
enon by a gedankenexperiment to get a cat into a superposieollapses” to a particular state. To produce conditional
tion of a live and a dead cat. A number of systems have beestates of the type of Schilinger-cat-like states, the use of a
studied with the aim of the realization of ScHinger-cat- scheme for optical back-action-evading measurement in non-
like states, where the “cat” is typically a mesoscopic systemlinear media[9] was suggestefll0]. The calculations show

that has both microscopic and macroscofiie., classically that when the photon number of the readout mode is mea-
distinguishablg properties. sured, then a superposition of macroscopically distinguish-

In harmonic oscillators, typical examples of Safirmer-  able quantum states is generated in the signal mbole To

cat-like states are superpositions of two cohefert, most improve the scheme, it was proposed that a squeezed
classical states with opposite phasf]. The superposition vacuum at the signal frequency is injected instead of ampli-
states exhibit some properties similar to those of simple stafying the signal after back-action-evading measurerfiht
tistical mixtures, but they also reveal typical interference fea-Recently, a modification of this scheme was studied, with
tures. Measuring the quadrature-component distribution, ongpecial emphasis on the experimental feasibilities with cur-
observes two peaks that change their mutual distance in deent technologie$12,13.

pendence on the phase of the quadrature component until In this paper we show that Schiioger-cat-like states can
they eventually overlap. In this particular case the differencalready be obtained using a simple beam-splitter scheme for
between a coherent superposition and a statistical mixture & conditional measurement of the type considered recently in
the most distinct. Whereas in the former case quantum intef14,15. The calculations show that when a squeezed vacuum
ferences are observed which give rise to an oscillatory beis injected in one of the input channelthe second input
havior of the quadrature-component distribution, in the latterchannel being unusg¢dnd the photon number of the mode in
case a single peak without interference structure is observedne of the output channels is measured, then the mode in the
The creation of such states in realistic experiments is nobther output channel is prepared in a conditional state that
trivial. Proposals for preparing vibrations in molecules orhas the typical features of a ScHinger-cat-like state. In
crystals in Schrdinger-cat-like states have been mg@el].  particular, the conditional states can be regarded as superpo-
Recently, it has been proposed that Sdimger-cat-like sitions of two quantum states that are well localized in the
states of a single harmonically bouftdapped atom can be phase space and bear a strong resemblance to squeezed co-
produced by appropriately driving the atd®l, and experi- herent states. To demonstrate this, we analyze the states in
ments have successfully been performi@fl The possibility  terms of the photon-number and quadrature-component dis-
of preparing a harmonically bound atom in a superposition ofributions and the Wigner and Husimi functions. We further
two coherent squeezed states with opposite phases has alfiscuss possible modifications of the states in realistic mul-
been studied7]. tichannel photon detection.

Several proposals have been made to prepare a single- The paper is organized as follows. In Sec. Il the condi-
tional states are derived, and in Sec. lll their properties are
discussed. Section IV is devoted to a realistic detection

*Permanent address: Paladkpiversity, Faculty of Natural Sci- scheme. Finally, a summary and some concluding remarks
ences, Svobody 26, 77146 Olomouc, Czech Republic. are given in Sec. V.
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Il. BASIS EQUATIONS When the photon number of the mode in the second output
channel is measured amd, photons are detected, then the

Let us consider a lossless beam splitter and assume thay
ode in the first output channel is prepared in a quantum

the input fields can be regarded as being effectively smgle
mode fields, with photon destruction and creation operator§tate whose density operatop,; reads as

ay andak , respectively k=1,2). The photon destruction and

creation operators of the output modasand b/, respec- O oua(My) = <m2|9fiut| my) _ )
tively, can then be obtained using the well-known input- o Tri({(My] 0 oud M)

output relations

The probability of such an event is given by

H\M N

b= Thw s (1) R
K'=1 P(m2)=Tr1(<m2|QOU,Jm2>)
where » 0
i i = L1 1T12ym2 T120i—m2) 0 | 5.
" cospe' et singe'?r anmz(m,_,)ﬂ | T[#)™2| T[*M M2 (ny| @i ).
) =gl %o . .
(Tkw)=e —singe™'*rR cogfe™'¢T @ 9

is a SU2) matrix whose elements are given by the complex
transmittances and reflectances of the beam splitter from the
two sides. Equatiolil) corresponds to a unitary transforma- sq

tion of the operators in the Heisenberg picttﬁg;Vékf/T - - ot

(k=1,2). Equivalently, the Schdinger picture can be used, 2in1=S(§)|vag)(vag|S'(¢), (10)
in which the photonic operators are left unchanged and the

density operator is transformed such that the output-stat¢here

density operato@out is obtained from the input-state density

In particular, if the first input mode is prepared in a
ueezed vacuum state, we may write

operatorg;, as S(¢)|vac)=exg{— 3 [&(a])?— &*afl}|vac)
O ou=\V10V. 1]v2
Qout Qin (3) _(1_| | 1/42 1) ] n1|2nl> (11)
The operatoV can be given by16,17
V= e i(er—erilsg2i0lsg-i(er+epls 4) é=|¢le'%t, k=e'%¢ tanh&. Combining Eqs(7) and(8) and
using Egs(6), (10), and(11), we derive that
where
. 1 A g .1 fpn o aga éoutl(m2)2|q,m2><q,m2|: (12
L2:2_(a1a2 ajay), L3=§(a1a1—a2a2), ®)
where
and ¢o=0 (note thate, is a global phase factor that may be
omitted without loss of generality
N_ow, let us assume that the m'ode in the first mput chan- |\1rm2>: |xpm2(a)>: E Cm,, nl(a)|n1> (13
nel is prepared in a state described by a density operator \/Nm2
éinl and the second channel is unused, so that the input-state
density operator reads as " (ny+my)!
~ ~ C )=
0in=Cm®|vag)(vac)|. 6) " TS (g mp) + 1]y
Using Egs.(4) and(6), the output-state density operai@) X[+ (=) ML @)(ntmi2) (14)
can be given by14,15
my+n, a=|ale'¢e, with |a|=|T|?|«| and ¢,=2¢7+¢;. In what

follows we will restrict attention to real values od
(—1=<sa=<l), ie., ¢,=0,m7, since from Eqs(13) and (14)
the effect of other phaseg, is simply a rotation in phase
space. Applying the relatior{®2), (A3), and(A6) in Appen-
dix A, the normalization constant

~ *© * efi(m27n2)<pR
Qout™ 2
vmy!ln,!

(_1)m2+n2 _

n2:0 m2:0 T
oralaamaT1alay s (Tialag AT,

Xe'eThtg 2| T|M%p,, [ T|M1%(ay)

X ei“’Té‘Ig‘1®|m2)<n2|] , (7
. . N, = c 2 1
where|T|=cos and|R|=sind, and|n,) are the eigenstates M2 nlzo Gy ny ()] 19

of the photon-number operatoaga, . From Eq.(7) we see
that the output modes are, in general, highly correlatedcan be given by
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2 my
N = 1 o . (a)
21— ol (1-a?)
[my/2] (mzl )2

X 2 =20l (K2

(16)

where the symbd]x] in the summation upper limit denotes
the integral part ok. Similarly, using Eqs(6), (10), and(11)
and applying the relationgA2), (A3), and (A6), Eq. (9)

yields (n)
5 _\/1—7K2 a?(1-|T|?)|™
(m2)_ 1_a2 |T|2(1_a2)
[m,/2] !

X

17

IZO (mp—2k)! (k!)*(2a) %

From Egs.(13) and (14) we easily see that when the de-
tected number of photons in one output channgl, is even
(odo), then the mode in the other output channel is prepared
in a quantum stat¢\lfm2) that contains only contributions

from photon-number states with evésdd numbers of pho-
tons. This property, which gives rise to oscillations in the
photon-number distribution of the output stditEmZ), obvi-

ously reflects the fact that the squeezed vacuum that is fed in
consists of pairs of photons. In particular, when the number
of detected photonsn,, is zero, then the output state is again

a squeezed vacuum, but with the parametein place of 37
K.

Ill. PROPERTIES OF THE CONDITIONAL STATES

—

To study the properties of the conditional states
| P ) =|¥n(a)) in more detail, we will calculate the
photon-number and quadrature-component distributions and or
the Wigner and Husimi functions. Further, we will show that
the stateg¥,,) can be represented as superpositions of two
macroscopically distinguishable ‘“quasicoherent” squeezed 0
states. For notational convenience we will omit the sub-
scripts 1 and 2 introduced above to distinguish between the

two output channels.

A. Photon-number distribution

Recalling Eq.(13), the photon-number distribution

P(n[m)=[(n[¥ ) (18)
of a statg ¥ ,,) reads as
P(n|m) =N Cmn(a)|?, (19

wherec, (@) and A, are given in Eqs(14) and (15), re-
spectively. In particular, the mean photon number

<ﬁ>=N,;1n§O N[Cmn(@)|? (20)

can be given by

FIG. 1. (@ Mean photon numbe¢n) of the conditional state
| ¥ as a function ofa for various numbersn of measured pho-
tons.(b) Dependence on of the MandelQ parameter for the same
values ofm as in(a).

(n)= aﬁ%ln{g—[ﬂ

[m/2]

2 ak,m
k=0

-1

= —+ -
-2 M1—&? 2k§=:0 Kaim

a? 1+ a? (2] {

(21)

where a, = (2a) 2/[(m—2k)!(k!)2]. Examples are
shown in Fig. 1a). We see that the number of photons that
can be found inW¥ ) increases witthm. This is simply a
consequence of the beam-splitter transformation. Since one
of the input channels is unused, the mean numbers of pho-
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tons in the two output channels are proportional to eaclparison shows that they are different. Clearly, the beam-
other, the ratio being given byT/R|2. Note that when no splitter transformation, Eq$3)—(5), cannot be identified, in

photons are detecteth=0, then(n) reduces to the mean general, with the transformation in the back-action-evading
number of photons of a squeezed vacuumn) scheme considered in Ref.1]

=a?/(1-a?).
A measure of the deviation of the photon-number distri- C. Wigner function
bution from a Poissonian is the Mand@l parametef 18], Using Egs.(13) and (26) together with the relationgA3)
Ao Ao and (A6), the Wigner functionW(x,p|m) of the state
(h?)—(n) Vo)
Q=——F—7-—-1, (22) m/s
<n> 1 + o0
which can be given by W(x,p|m)= ;ﬁm dy &P x—y[W W Volx+y), (29
a? 9 [Ngl a o . . : :
Q=— ——In|—|= — —(n)—1 (23  can be calculated in a straightforward way. We obtain
(ny 9| @™ () da '
Zame—)\x2

The dependence om andm of Q is shown in Fig. 1b). In W(x,p|m)=
particular, for everm we find thatQ>0 for all values of

a, which means that the photon-number statisticklof,) is o o
super-Poissonian. For odai and small values ofa| the XJ dy[ e—Ay2+2ipyHm[i A\ /—(y—x)}
statistics becomes sub-Poissonig<(0). Note that the be- - l1ta

havior is typical for Schidinger-cat-like statef3].

773/2Nm[2(a+ 1)]m+1

o
X Hppl i —(x+y)H, (30)
B. Quadrature distributions " 1ta
In order to -calculate the conditional quadrature- 1-a
component distributior(i.e., the phase-parametrized field- A=—0!, (31)
strength distribution 1ta
p(x, ¢|m)=[(x, 0| ¥ ), (249 which after calculation of the integrf20] can be given by
which can be measured in balanced homodyne detection, we 2 m B K
first expand the eigenvectols, ¢) of the quadrature compo- W(x,p|m)= eXF{ —AX2— p_) ﬂz
nent TN1m N [0 kI[(m—k)!]
- B .. 2
x(@)=2"Y%(e"ea+e'fal) (25 X Hp_yl i /a)\(x+i§ } , (32)
in the photon-number basis AE9]
. where
elne
X, @)= ()" Y4exp — % x? ———Hy(x)|n) (26
| §D> (m) p— 2 )nZO \/ﬁ n( )| > (26) N _[m/2] (2|a’|)m72k i
M & (m—2k)! (k) (33

(H, is the Hermite polynomial Using Egs.(13) and (26)
and applying the relation§A3) and (A6), the conditional

quadrature-component distributié24) reads Equation(32) reveals that when no photons are detected,

m=0, then the Wigner function exhibits a single peak and

|la|™ 1—a? simply corresponds to a squeezed-vacuum Gaussian, as al-
p(X,<p|m)=—eX[{ - x2> ready mentioned in Sec. Il. Examples a&W(x,p|m)
NpymA™12m a (m>0) are shown in Fig. 3. From the plots, two separated
(@€ = a?)/A ]2 peaks and an oscillatory regime between them can be
X[Hul V(e o)A X]I%, @7 seen—a shape that is typical of Satliriger-cat-like states.
where the abbreviation The separation of the two peaks is seen to increase with the
numberm of detected photons. Since with increasimghe
A=1+a?—2acoq2¢) (28) number of photons in the conditional stqdt ) also in-
creases, which is a consequence of the beam-splitter trans-
has been used. formation, the behavior is quite similar to that of a superpo-

From Fig. 2 we see that fop near /2 the quadrature- sijtion of two coherent states.
component distributiop(x, ¢|m) (m>0) exhibits two sepa-
rated peaks, whereas far close to 0 orm an interference
pattern is observed. It should be noted that although the
quadrature-component distributid27) bears a strong re- The Husimi functionQ(x,p|m) of the statgV,) is de-
semblance to that obtained in REE1], a more detailed com- fined by

D. Husimi function
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FIG. 2. Quadrature distributiop(x,|m) of the conditional stat¢¥ ) for «=0.6 and various numbers of measured photor{a)

m=1, (b) m=2, (¢c) m=3, (d) m=4].

1 2
QUx,plm) = 5 KBV )P,

where | 8) is a coherent state and=2"Y2(x+ip). It is

As expected, form=0 the Husimi function is Gaussian,
whereas form>0 a two-peak structure is observed. Since
the Husimi function is always non-negative, the interference
properties of the state are not so apparent as in the case of the

worth noting that, contrary to the Wigner function, the Hu- Wigner function.
simi function is a phase-space function that can directly be

measured in multiport balanced homodyning using six-port
[21,22 or eight-port scheme®3,24]. Expanding| 8) in the

Fock basis,

©

a2 B"
—a-l8l72 A
p-e o773 Loy,

and recalling Eq(13) and the relationgA3) and (A7), the
scalar productB| ¥, can easily be calculated. After some
algebra we find tha®(x,p|m) can be written as

|a|™

Q(X,P|m)=W Hm

xexp{— 3 [(1—a)x?+ (1+a)p?]}. (36)

%iﬁ(xﬂp)

Schralinger-cat-like states are commonly defined as su-
perpositions of two macroscopically distinguishable quantum

E. Component states

states. From Eqg13) and (14) it is seen that¥,,) can be

regarded as a superposition of stat#s.”)) and|¥{ ")) as

follows:
(W) =AW+ [P)),
where
(x) . < (*)
W)= \/ano Cm’n(a)|n>,
m
with

(37

(38)
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FIG. 3. Wigner functionV(x,p|m) of the conditional statg¥ ) for «=0.6 and various numbers of measured photoriga) m=1, (b)

m=2, (c) m=3, (d) m=4].

C(i)( )= (n+m)! (+ E )n+m (39)
o (e my2+ 1]yt V2%

The normalization factalV ) is calculated to bésee Egs.
(B3) and(B11)]

N(i)ZZN‘ _ M
m M 72" (m+3/2)

XF[3(m+1),%(m+1),}(2m+3),1-a?],

(40

Ny, being given in Eq.(16). In Eq. (40, F(a,8,7,2)

stantA in Eq. (37) is simply given byA= 3\ (/N Y2
Note that\ ()~2\,, i.e., A~1/2 for largerm (the ap-
proximation is very good fom>4).

Plots of the Wigner function of the state}slfﬁ]:’))
are given in Fig. 4. The behavior of the statgB(,’)
is quite similar. From the figure we see that the states
|w() (and also the state$¥( ))) are very close to
squeezed coherent states. For chasdhe squeezing effect
decreases with increasing. The small deviation from
Gaussian states is indicated by the negative values of the
Wigner function(which in our case are of the order of mag-
nitude of —10~°). To illustrate the difference between the
states| ")) and the squeezed coherent states, let us con-
sider the Husimi functiorQ*)(x,p|m) of |¥{")). Accord-

is the hypergeometric function, and the normalization conding to Eq.(B13) we obtain
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FIG. 4. Wigner functionW(*)(x,p|m) of the state| (") for
a=0.6 and various numbers of measured photori$a) m=1, (b)
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(*) - 7
Q (x,p|m) 772./\/(mi)

e ——
s ——
2 —,
== S
>
 am— 4

e exi § a( B2+ 5*2)]

X|D_m-1(=Vap)|?,

where 8= (x+ip)/+/2, andD,(z) is the parabolic cylinder
function (which indicates the deviation from a Gaussian
Recalling the asymptotic behavior of tBe_,,_,(z) for large
values ofm [26], we find that

Q=) (x,p|m)exd — | B|?+ M(BvLB*)—IMIZ]MZ)
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(m—oe), which corresponds to the scalar prodl(g| y)|?
between the coherent statg3) and |y), with y= =+ Jam.
Thus for sufficiently large numbers of detected photans,
the component staté@ﬁ?) approach coherent states. This
kind of behavior has also been found in REf1] for the
states studied therein.

IV. REALISTIC PHOTON COUNTING

In order to produce the conditional stateg,,), highly
efficient and precise photocounting is needed. Unfortunately,
there have been no highly efficient photodetectors available
which precisely distinguish between and m+1 photons.
Recently the proposal has been made to measure the photon-
number statistics using photon choppir&p]. The mode to
be detected is used as an input of an opticdtgrt, the
other input ports being unused. To each of the output ports a
highly efficient avalanche photodiode is connected which
can distinguish between photons being present or absent. The
photon-number statistics of the input mode can then be ob-
tained from the recorded output coincident-event statistics.

In particular, if m photons are present in the input, the
probability of recordind coincident events is given 5]

N k
k I

k
> (-1
I=0

~ 1
PN<k|m>=m( (k=h" (43

for k=m, and Py(km)=0 for k>m. Note that
Pn(k|m)— &y for N—oo. In Eq. (43) perfect detection is
assumed. The effect of nonperfect detection corresponds to a
random process such that photons are excluded from detec-
tion with probability 1- 7, n being the efficiency of the
photodiodes (8. »=<1). The probability of recordinds co-
incident events then modifies to

EN,,7<k|m>=2I Pr(KIDM, (), (44)

where the matriXM | (#) is given by

M|,m(77)=(r|n) 7(1= )" (45)

for I<sm, andM; (%) =0 for I>m.

Since detection ok coincident events can result from
various numbersn of photons, the conditional state is in
general a statistical mixture. Therefore in place of B}
we now have

éoum:; P, (MKW ), (46)

where| ¥ ) is given in Eq.(13), andPy ,(m|k) is the prob-
ability of m photons being present under the condition that
k coincidences are recorded. The conditional probability
PNY”(m|k) can be obtained using the Bayes rule as

1 ~
P, ,(mk)= = P, »(K[m)P(m). (47)
N,7
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FIG. 5. Wigner function of the conditional state with realistic photodetect®r {0, 7=0.8) for x=0.75, |T|?=0.8 (=0.6), and
various numbersk of coincident event$(a) k=1, PN 2(K)=10.99%;(b) k=2, Py ,(k)=2.95%;(c) k=3, PN 2(K)=0.69%; (d) k=4,
PN 2(K)=0.16%)], the probabllltlesPN ,(K) of the coincidences being calculated according to (&48).

Here P(m) is the prior probability(17) of m photons being 0.16% fork = 4 in the case whefiT|? = 0.8). Neverthe-
present, and accordinglﬁN'n(k) is the prior probability of less, with a sufficiently high repetition frequency of the input
recordingk coincident events, states the method could assure a comparatively efficient
source of the catlike states. The interference structuf®is
_ _ chosenN and ) more and more smeared with increasing
PN',,(k)=E Pn,,(klm)P(m). (48) k. Clearly, a larger number of detected coincidences implies
m (for chosenN and ) a larger probability of “losing” some
of the photons. Any lost photon switches the parity of the
Examples of the Wigner function and the quadraturegngitional statéfrom even to odd and vice vensand there-

component distributions of the conditionahixed states fore destroys the interference pattern.
(46) are plotted in Figs. 5 and 6, respectively. We see that the

guantum interferences can still be preserved also for realistic
values of the number of photodiodes and their efficiencies,
such asN=10 and»=280%. As expected, the probabilities  We have shown that Schidimger-cat-like states can be

of observing the conditional stateBy ,(k), Eq. (48), de-  generated by conditional measurements using a simple beam
crease with increasingg (from about 11% fork = 1 to  splitter scheme. When a squeezed vacuum and an ordinary

V. CONCLUSION
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FIG. 6. Quadrature distribution of the conditional state with re-
alistic photodetection N=10, »=0.8) for the phase parameters
¢=0 (full line) and ¢=#/2 (broken ling, various numbergk of
coincident eventd(a) k=2, (b) k=3], and k=0.75, |T|?=0.8
(«=0.6).

ing transmittance implies a decrease of the probability of
photons being present, so that the “better” Salinger-cat-
like states appear more rarely.

We have also discussed the problem of producing the
Schralinger-cat-like states under the conditions of realistic
photocounting. For this purpose we have assumed multi-
channel detection using highly efficient avalanche photo-
diodes. As expected, the measurement smears the interfer-
ence structure. However, for properly chosen parameters the
interference structure can still be found even for a realistic
arrangement of detectors.

ACKNOWLEDGMENTS

We would like to thank W. Vogel for stimulating discus-
sions on the topic. This work was supported by the Deutsche
Forschungsgemeinschatft.

APPENDIX A: SUM RULES

Using the expansion in the Fock basis|®¥f,,,), Eq. (13),
various photon-number summations must be performed in
the further calculations, which can be done advantageously
by means of Hermite polynomials. For this purpose we re-
write the coefficients,,,, » (@), Eq.(14), as

L2tk
C =
mon () 2T o)

where 6=0 for n;=2n and m,=2k, and =1 if
n,=2n+1 andm,=2k+1. Note thatcmz,nl(a)=0 other-

wise. Recalling the relation

(% a)n+k+5, (Al)

Hon(0)=(—1)"(2n)!/n!, (A2)
we see that
_ 1 1 n+k+é6
Cm, n (@)= mHzm+k+ 5(0)(— 3 a) :
(A3)

This enables us to apply standard summation rules, such as
Mehler’'s formula[26]

vacuum are mixed by a beam splitter and the number of

photons is measured in one of the output channels , then the 1 o L
conditional quantum state in the other output channel reveals gfo HkIH(Y) (2 2)"= N
all the properties of a Schdinger-cat-like state.
To demonstrate this, we have analyzed the conditional 2xyz— (x2+y?)z?
states in terms of the photon-number and quadrature- X ex 1-72

component distributions and the Wigner and Husimi func-

tions and have presented both analytical and numerical re- (Ad)
sults. We have studied the component states and shown that ) o .

they are very close to squeezed coherent states and approac®ing thelth andjth derivatives with respect t andy,
coherent states for sufficiently large numbers of detectefeSpectively, of both sides of this equation and using the
photons. We have found that the basic features of€lation

Schralinger-cat-like states, such as the appearance of two g K

separated peaks and the interference pattern, become more () =2 Hye_ (%), (A5)

pronounced for larger values of the transmittance of the dxt

(k=)

beam splitter, the squeezing parameter of the input state, and
the number of detected photons. On the other hand, increasse derive that
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o

1
2 e OOH (15 2)*

B 1 2xyz— (x?+y?)7?
T(1-A)TEIR €Xx 1-72

min(l,j) | J
X kgo (k)<k)(22)kk!H|_k

Another useful sum rule is

©

1
2 (03D =expxz= § 2 His(x= 3 2),
(A7)

which may be derived by taking thgh derivative of the
generating function of the Hermite polynomials,

o k
z

> Hi(X) — = exp(2xz— z2).

K=0 k!

(A8)
APPENDIX B: DERIVATION OF THE RELATIONS
(40) AND (41
From Egs.(13), (14), and(37)—(39) we see that
Cmn(@)=> [c<*><a>+c (@], (B1)

and hence

o0 1 o]
> |cm,n<a>|2=z[2 |Chna )|2+2 lCha(e)l?
n=0 n=0

+2R{2 e (a)c )(a) } (B2)
Thus,
=2 chn(a@)?=2Nn— T, (B3)
n=0
whereN,, is given in Eq.(16), and
In= E (=)™ M) (B4)
Combining Egs(B4) and (39) yields
2(m+n+1) N nm
I 2 2[(m+n+2)/2]n|(_5| |) " . (BS)
Using the relation
rn) 4" . 56
r(n+12) 2/x (n) (B6)

3193
from Eq. (B5) we obtain
2 2[5 (m+n +1>]ﬂ (B7)
7Tn— n '

Substituting in Eq(B7) for theI" function the integral rep-
resentation, we may write

I:ﬂj“dtfdt
m - 0 10 2

e—tle—tz(tltz)(m— 1)/2

—2|a| Vi,
n:O n'
which reduces to
T _JJ dt —tl(t )(m 1)/2
m T 1
XJ’wdtze‘Z(tz)(m1)’2e2“m} (B9)
0
We first calculate thé, integral[26] to obtain
m!(_\/§|a|)m ® a2 B
Imzfx fo dt12 (1 ozt1/2)t1(tl)(m 1)/2
XD _m_1(y2a%y). (B10)

Calculating the resulting; integral[26], we eventually ob-
tain

mi2(—|al)™
Jm2™ (m+ 3/2)

m=

XF[3(m+1),5(m+1),m+ $,1-a?], (B1)

whereF(«a,B,7v,2) is the hypergeometric function.
The calculation of ()| 8) can be performed in a simi-
lar way. Using Eqs(13), (14), (35), and(B6), we have

(2a)"

(TIBy=(=1)™ 7T/V(mt)ef\ﬁlzlz
Z @B) ———T[3(n+m+1)].

(B12)

Substituting in Eq{(B12) the integral representation for the

I" function again, we arrive at an integral of the type of the
t, integral in Eq.(B9), which may be calculated using stan-

dard formulagd26]. We then obtain

m
NG

> e—|/3|2/2+ ,Bza/4D
—m

(Vi1B)=(+1)"m!

(=N ap),

whereD (2) is the parabolic cylinder function.

(B13)
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