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Quantum theory of noise in phase conjugation by four-wave mixing in a two-level system
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A quantum theory of nearly degenerate backward four-wave mixing in a two-level atomic system is devel-
oped. The theory is used to calculate the quantum noise produced by a phase-conjugate mirror based on this
system. The results indicate that in the case of pure radiative broadening the ideal quantum-noise limit is
reached for relatively small pump-wave strengths and for relatively large probe-pump and pump-resonance
detunings, so that the phase-conjugate reflectivity is far from its maximum value. Conversely, in the collision-
ally broadened case, operation closest to the quantum-noise limit occurs near the point of maximum reflectiv-
ity. @S1050-2947~97!03604-4#

PACS number~s!: 42.50.Lc, 42.65.Hw
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I. INTRODUCTION

Phase conjugation is an optical process that has dr
interest because of its applications in aberration correc
and image processing@1,2#, laser-linewidth reduction@3#,
and correcting for the effects of dispersion and nonlinea
in optical fibers@4–6#. A phase-conjugate mirror~PCM! is a
type of optical amplifier that generates the counterpropa
ing phase conjugate of an input signal field. It can be sho
that any phase-conjugating optical amplifier is required
quantum mechanics to introduce a minimum amount of no
into the conjugate field@7,8#. In practice, a PCM operate
above this ideal quantum-noise limit~i.e., introduces noise in
excess of the required minimum amount!, and the generated
noise spectrum depends on the nonlinear mechanism us
produce the conjugate field. The noise generated by a P
impacts on its ability to perform functions such as aberrat
correction and the conjugation of nonclassical~e.g.,
squeezed! states of light@9,10#. Furthermore, the noise i
predicted to play a role in the dynamics of atoms placed
front of the PCM@11#.

Four-wave mixing is one of the standard techniques u
to perform phase conjugation and has been demonstrate
atomic vapors@12–17#, photorefractive materials@18–20#,
Brillouin-active media@21–23#, and semiconductor diod
amplifiers@5,6,24#. The noise produced in four-wave mixin
~for both backward and forward geometries! has been studied
theoretically by a number of researchers. Yuen and Sha
@25#, Jansky and Yushin@26#, and Yurke @27# all treated
squeezing via backward four-wave mixing with undeple
classical pump fields in a nonlinear medium characterized
phenomenological coupling constants. The effects of pu
quantization have also been included in four-wave mix
models@28,29#, and Bondurantet al. @28# examined the ef-
fects of pump absorption. In these studies the nonlinear
dium was treated phenomenologically. Agarwal@30# and

*Permanent address: Department of Physics, Cornell Univer
Ithaca, NY 14853.
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Sargent, Holm, and Zubairy@31# all developed general for
malisms for treating nonlinear wave mixing in an atom
system. Agarwal and Boyd@32# treated Rabi sideband gen
eration by forward four-wave mixing for the specific case
a two-level system. Levensonet al. @33# studied the noise
generated by forward four-wave mixing in an optical fibe
Reid and Walls@34–36# analyzed degenerate four-wave mi
ing ~both backward and forward geometries! in a two-level
system, and nearly degenerate forward four-wave mixing
a two-level system placed in a cavity. In both cases class
undepleted pump waves were assumed and attention
concentrated on the radiatively broadened limit. Ho, Kum
and Shapiro@37# developed a theory for nondegenerate fo
ward four-wave mixing in a two-level system which in
cluded the effects of collisions, probe-pump phase misma
Doppler broadening, and Gaussian beam profiles. Exp
mental measurements of the noise generated in four-w
mixing have also been made. Slusheret al. @38# measured
the noise generated by four-wave mixing in a sodium be
within an optical cavity and achieved 20% squeezing. She
et al. @39# measured the quadrature noise generated by
ward four-wave mixing in an optical fiber and achieved 12
squeezing. Bespalov Matreev, and Pasmanik@21# studied the
noise properties of a PCM based on Brillouin-enhanced fo
wave mixing~BEFWM! and conjugated pulses with energi
as small as 10211 J at a signal-to-noise ratio~SNR! of 1:1.
Andreevet al. @22# used a laser preamplifier at the input of
BEFWM-PCM to conjugate pulses with energies as smal
4310217 J at a SNR of 6:1. Ridley and Scott@23# used a
PCM based on stimulated Brillouin scattering with a Br
louin preamplifier to conjugate pulses with energies as sm
as 3310213 J at a SNR of 10:1.

In this paper, we give a quantum-mechanical treatmen
phase conjugation by nearly degenerate backward four-w
mixing in a two-level system. The atomic response is trea
to first order in the quantized signal and conjugate fields
to all orders in the classical, nondepleted pump waves.
dephasing effects of collisions are included in the model,
other effects of atomic motion~i.e., Doppler broadening and
grating wash-out! are not. We calculate the spectrum of th
y,
3155 © 1997 The American Physical Society
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3156 55SCHIRMER, LANZEROTTI, GAETA, AND AGARWAL
conjugate beam and the phase-conjugate reflectivityRpc of
the PCM for a range of conditions, including both the rad
tively broadened and nonradiatively broadened limits. T
information is used to calculate the photon noise facto
quantity which measures the PCM’s noise performance r
tive to the ideal quantum-noise limit. We find that the co
ditions that maximizeRpc are also the conditions unde
which the atomic fluctuations contribute a significant amo
of excess noise to the conjugate field. For the case of p
radiative broadening, this excess noise causes the PC
operate farthest from the ideal quantum-noise limit in
regime whereRpc is near maximum. Conversely, in the ca
in which the atoms are collisionally broadened, the PC
operates closest to the quantum-noise limit in the reg
whereRpc is near maximum. Our work is motivated prima
rily by recent experimental studies of the noise generated
a continuous-wave potassium-vapor based PCM and by
forts to use it to perform phase conjugation and aberra
correction with very low signal beam powers@40,41#.

II. QUANTUM THEORY

The theory of phase conjugation in a two-level system
be formulated using the general quantum-mechanical the
of multiwave mixing presented by Agarwal@30#. Previous
studies of the spectra produced via wave mixing in two-le
systems using this technique include theoretical analyse
forward four-wave mixing@32#, signal amplification by two-
beam coupling@42#, noise generation in two-beam couplin
in the presence of Doppler broadening@43#, and a theoretica
and experimental investigation of the noise acquired b
single, strong beam passing through a potassium vapor@44#.
Figure 1 shows the backward four-wave mixing geome
Two strong pump beams of frequencyv interact with a sig-
nal field of frequencyvs in a two-level medium with reso
nance frequencyv0 to produce a conjugate field at frequen
vc . The Hamiltonian for the total system is given by

Ĥ5ĤA1ĤF1ĤI , ~2.1!

whereĤA and ĤF are the unperturbed Hamiltonians for th
collection of two-level atoms and the electromagnetic fie
respectively. In the electric-dipole approximation, the int
action HamiltonianĤI is given by

ĤI52E d3r P̂~r ,t !•Ê~r ,t !, ~2.2!

FIG. 1. Backward four-wave mixing geometry.
-
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where P̂(r ,t) is the polarization operator andÊ(r ,t) is the
total electric-field operator. The electric field is composed
the signal field, the conjugate field, and the two count
propagating pump fields, such that

Ê~r ,t !5Ês~r ,t !1Êc~r ,t !1Ep~r ,t !. ~2.3!

The total pump field is given by

Ep~r ,t !5Ap@e
i ~k–r2vt !1e2 i ~k–r1vt !#1c.c., ~2.4!

where both pump waves are assumed to have the same
plitude and are treated classically. The signal field operato
given by

Ês~r ,t !5bsesâse
i ~ks•r2vst !1H.c., ~2.5!

and the conjugate field operator is given by

Êc~r ,t !5bcecâce
i ~kc•r2vct !1H.c., ~2.6!

where âi for i5(s,c) is the photon annihilation operato
b i52 i (2p\v i /V)

1/2, ei is the polarization unit vector~all
waves are taken to have the same polarization!, v i is the
mode frequency, andV is the quantization volume. The sig
nal and conjugate frequencies are related byvc52v2vs .
The polarization operator for the collection of two-level a
oms is given by

P̂~r !5(
i

m id~r2Ri !Ŝ
11H.c., ~2.7!

whereRi is the position of atomi , m i is its dipole matrix
element, and its harmonic time dependence has been
pressed. The operatorŜ1, its Hermitian conjugateŜ2, and
Ŝz5@Ŝ1,Ŝ2#/2 obey the commutation relations for a spi
1/2 system. It is assumed that the frequencies of the sig
and conjugate waves are sufficiently close to the atomic re
nance at frequencyv0 that the rotating-wave approximatio
can be made. The interaction Hamiltonian then becomes

ĤI52E d3r P̂2~r ,t !•@Ep
1~r ,t !1Ês

1~r ,t !1Êc
1~r ,t !#1H.c.,

~2.8!

where the superscripts (1) and (2) denote the positive- and
negative-frequency components of the field, respectively

The density operator for the coupled atom-field syst
r̂ obeys the equation of motion

]r̂

]t
5

2 i

\
@ĤA1ĤF1ĤI ,r̂ #1S ]r̂

]t
D
relax

. ~2.9!

The relaxation term in Eq.~2.9!,

S ]r̂

]t
D
relax

5F r22/T1 2r12/T2

2r21/T2 2r22/T1
G , ~2.10!

includes the contributions of spontaneous emission and e
tic dephasing processes. By substituting Eqs.~2.4!–~2.8! into
Eq. ~2.9!, the polarization is calculated to first order in th



m
th
in
n
eld

e
ti
s
p-

an
m
tte

r
d
e
ia
tin
a
n
th

x

ond
ihi-
rent
ess,
ergo
in
om

r a
uf-
ab-

55 3157QUANTUM THEORY OF NOISE IN PHASE . . .
signal and conjugate fields, and to all orders in the pu
fields. Using this expression for the polarization as
source term in the quantized Maxwell equations and mak
the slowly varying-envelope approximation, the equatio
governing the evolution of the signal- and conjugate-fi
operators are found to be

dâs
dz

5a1âs1 ik1* âc
†1L̂1 ~2.11!

and

dâc
†

dz
52a2âc

†1 ik2âs1L̂2 . ~2.12!

The propagation coefficientsa andk are the same as thos
obtained from a semiclassical treatment of phase conjuga
in a two-level system@45# and represent the mean respon
of the atomic medium. Their explicit forms are given in A
pendix A. The Langevin noise operatorsL̂1 and L̂2 are pro-
portional to the deviation of the polarization from its me
value and account for the effects of fluctuations in the ato
medium. The moments of the noise operators may be wri
as

^L1~z!L1
†~z8!&5a0d~z2z8!X̃21~ds!, ~2.13a!

^L2~z!L2
†~z8!&5a0d~z2z8!X̃12~ds!, ~2.13b!

and

^L2~z!L1
†~z8!&5a0d~z2z8!X̃11~ds!, ~2.13c!

where

X̃21~ds!5
1

2pE dt e2 idst lim
t→`

@^Ŝ2~ t !Ŝ1~ t1t!&

2^Ŝ2~ t !&^Ŝ1~ t1t!&#, ~2.14a!

X̃12~ds!5
1

2pE dt e2 idst lim
t→`

@^Ŝ1~ t !Ŝ2~ t1t!&

2^Ŝ1~ t !&^Ŝ2~ t1t!&#, ~2.14b!

and

X̃11~ds!5
1

2pE dt e2 idst lim
t→`

@^Ŝ1~ t !Ŝ1~ t1t!&

2^Ŝ1~ t !&^Ŝ1~ t1t!&#. ~2.14c!

Here a054pm2NvT2 /\c is the small-signal, line-cente
absorption coefficient,N is the density of atoms, an
ds5vs2v is the probe-pump detuning. The right-hand sid
of Eqs. ~2.14a!–~2.14c! have been averaged over a spat
period of the grating created by the counterpropaga
pump waves to eliminate non-phase-matched terms. We
sume that the fluctuations in the polarizations of differe
atoms are uncorrelated, which results in the moments of
p
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noise operators beingd correlated inz @i.e., d(z2z8)#. By
introducing the propagation matrixK, where

K5F a1 ik1*

ik2 2a2
G , ~2.15!

and the two vectors

C5F âs
âc
†G ~2.16!

and

L5F L̂1
L̂2

G . ~2.17!

Equations~2.11! and ~2.12! may be rewritten as

dC

dz
5KC1L. ~2.18!

Integration of Eq.~2.18! gives the general solution

C~z!5eKzC~0!1E
0

z

dj eK~z2j!L~j!. ~2.19!

We take the conjugate field atz5L ~whereL is the length of
the medium! to be in a vacuum state and use Eq.~2.19! to
calculate the output conjugate field atz50. Using

@ âs ,âs
†#51, the photon-number spectrumnc(ds) for the out-

put conjugate field atz50 is found to be

nc~ds!5^âc
†âc&5Rpc~ds!ns~ds!1Rpc~ds!1Nn~ds!,

~2.20!

wherens(ds)5^âs
†âs& is the input photon number atz50,

the phase-conjugate reflectivity is given byRpc(ds)
5uM21(L)u2/uM22(L)u2, Mi j are the elements of the matri
M5exp(Kz), and the excess noiseNn(ds) is given by

Nn~ds!5
a0

uM22~L !u2E0
L

dj@ uM21~j!u2X̃21~ds!

1uM22~j!u2X̃12~ds!1$M21* ~j!M22~j!X̃11~ds!

1c. c.%#. ~2.21!

The first term on the right-hand side of Eq.~2.20! represents
the conjugate-reflected input signal photons. The sec
term results from the noncommutative nature of the ann
lation and creation operators and represents the inhe
quantum noise introduced by the phase-conjugation proc
even in the case of a nonlinear medium that does not und
any real excitation@9#. The third term represents noise
excess of the required minimum amount that results fr
spontaneous emission and collisions in the medium.

The expressions@~2.14a!–~2.14c!# for the polarization
correlation functions that appear in Eq.~2.21! are evaluated
by solving the optical Bloch equations in steady state fo
two-level atom in the presence of the pump fields. It is s
ficient to solve the semiclassical Bloch equations in the
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3158 55SCHIRMER, LANZEROTTI, GAETA, AND AGARWAL
sence of the probe and conjugate fields in order to obtain
field evolution equations~2.11! and ~2.12! to first order in
the probe and conjugate fields. A summary of this calcu
tion is given in Appendix B.

Since the minimum number of noise photons produced
an ideal PCM at frequencyds is equal toRpc(ds), we intro-
duce a photon-noise factor

Nph~ds!511
Nn~ds!

Rpc~ds!
, ~2.22!

which compares the total noise generated by the PCM to
which would be generated by an ideal quantum-noise lim
PCM of the same reflectivity. We define the ideal quantu
noise limit to be the case whereNph51. Note thatNph also
measures the strength of the total generated noise relativ
the gain of the four-wave mixing process~i.e.,Rpc). There-
fore, minimizingNph corresponds to maximizing the gain o
the PCM relative to the noise it produces.

III. NUMERICAL RESULTS

We examine the noise properties of this system by
merically evaluating the expressions for the reflectivity a
photon-noise factor derived in Sec. II. The normalized mo
parameters upon which the reflectivity and photon-noise
tor depend are the absorption path lengtha0L, the decay
time ratioT2 /T1, the probe-pump detuningdsT2, the pump-
resonance detuningDT2, and the pump strengthV0T2,
whereD5v2v0 and V054muApu/\ is the on-resonance
Rabi frequency of the total pump field. Since we do not tr
the effects of pump absorption, the model is expected to
most accurate fora0L/@11(DT2)

21V0
2T1T2#,1 where the

effects of pump absorption are less significant.
We first maximize the reflectivity by varying the pump

resonance detuning and pump strength while holding
probe-pump detuning and the absorption path length fix
The behavior of the maximum reflectivity is examined as
function of the ratioT2 /T1 ~see Fig. 2!. The pump-resonanc
detuning and pump strength are selected for optimiza
because they are typically adjusted in actual experiment
achieve the maximum reflectivity. We hold the absorpti
path length fixed since, in the absence of pump absorptio
the model, larger values ofa0L always yield larger reflec-
tivities. The probe-pump detuning is held fixed at a nonz
value, despite the fact that the maximum reflectivity typica
occurs atdsT250, because in any experiment the classi
noise of the pump waves will dominate all other noi
sources at the degenerate frequency. Figure 2~a! shows the
maximum reflectivity as a function of the ratioT2/2T1 for
dsT255 and a0L540, 2, and 0.2. The plot demonstrat
that the maximum reflectivity drops with increasing col
sions and decreasinga0L. Figures 2~b! and 2~c! show the
values ofDT2 andV0T2, respectively, that produce the re
flectivity curves shown in Fig. 2~a!. The optimized values o
these two parameters are changing in such a way that
Rabi sidebands (dRabi

2 5V0
21D2) remain atdRabiT2;5 over

the full range ofT2 /T1, near where the signal beam is tune
Figure 2~d! shows the corresponding photon-noise fac
curves and indicates thatNph increases asT2 /T1 decreases
This result is expected, since decreasingT2 /T1 increases the
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fluctuations in the medium and lowers the maximum achi
able reflectivity@as shown in Fig. 2~a!#. Thus, the presence
of collisions always causes the PCM to operate farther fr
the ideal quantum-noise limit. We also see that increas
a0L at fixed T2 /T1 causes the PCM to operate relative
closer to the ideal quantum-noise limit@Fig. 2~d!#, which
indicates that the maximum reflectivity grows faster than
corresponding excess noise asa0L increases. Pump absorp
tion may begin to play an important role at larger values
the absorption path length.

We next consider the behavior of the system as a func
of the pump-resonance detuningDT2 for three values of the
decay-time ratioT2 /T1 ~Fig. 3!. In all cases,a0L540,
dsT255, and the pump strength is chosen to be appro

FIG. 2. Results of maximizing the reflectivityRpc for
a0L50.2, 2, and 40 while holding the probe-pump detuning fix
at dsT255. ~a! MaximumRpc vs T2/2T1. ~b! The pump-resonance
detuningDT2 vs T2/2T1 that produces the maximumRpc shown in
~a!. ~c! Pump-field strengthV0T2 vs T2/2T1 that produces the
maximumRpc shown in~a!. ~d! The photon noise factorNph vs
T2/2T1 for the conditions giving the maximizedRpc of ~a!.
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55 3159QUANTUM THEORY OF NOISE IN PHASE . . .
mately equal to the optimum pump strength given in F
2~c!. Thus V0T257 for T2 /T152, V0T256 for
T2 /T151, andV0T255 for T2 /T150.1. Figure 3~a! shows
the resulting reflectivity curves. The reflectivity has multip
peaks off resonance, with the maximumRpc occurring for
uDT2u;1, where the best compromise is reached betw
the nonlinear gain and the absorption. Figure 3~b! shows the
corresponding curves for the photon-noise factor. As the
lision rate increases, the combination of the drop in the
flectivity @see Fig. 3~a!# and the increase in the excess no
results in larger values ofNph at smaller values ofT2 /T1.
For T2 /T152, the quantum-noise limit is most closely a
proached (Nph→1) by tuning far off resonance
(uDT2u@1), where the reflectivity is much less than max
mum. In this case, the excess noise falls off faster than
reflectivity as the pump-resonance detuning increases. In
nonradiatively broadened limit, however,Nph first reaches a
minimum and then increases asuDT2u increases. This chang
in behavior may be explained as follows: increasing the c
lision rate broadens the excess noise spectrum significa
while leaving the rate at which the reflectivity falls off wit
detuning relatively unchanged@see Fig. 3~a!#. Thus as more
collisions are introduced, a point is reached where the ex
noise falls off more slowly than the reflectivity, andNph then
increases asuDT2u increases at large detunings. The phot
noise factor reaches its absolute minimum at approxima
the same detuning that produces the farthest-off-reson
peaks in the reflectivity curve of Fig. 3~a!, rather than at the
detuning which gives the maximum reflectivity. The detu
ing that minimizesNph achieves the best compromise b
tween the increase in the reflectivity as one tunes the pu

FIG. 3. The behavior ofRpc and Nph as functions of pump-
resonance detuningDT2. Curves are shown forT2 /T152, 1, and
0.1. All curves are fora0L540 anddsT255. For each value of
T2 /T1, the pump strength is fixed at its optimum value from Fig.
V0T257 for T2 /T152, V0T256 for T2 /T151, V0T255 for
T2 /T150.1. ~a! Rpc vs DT2. ~b! Nph vs DT2. For T2 /T152,
Nph→1 as uDT2u increases while forT2 /T1,2, Nph reaches a
minimum and then increases asuDT2u increases.
.
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frequency closer to the atomic resonance and the increas
the excess noise resulting from the resonant scattering o
pump fields.

Finally, we consider the behavior of the system as a fu
tion of the probe-pump detuningdT2 for several values of
the pump-field strengthV0T2 ~Fig. 4!. In Figures 4~a! and
4~b!, we fix T2 /T152, a0L540, and DT2521 for
V0T253, DT2522 for V0T257, and DT2524 for
V0T2525. GivenT2 /T1 anda0L, the maximum reflectivity

:

FIG. 4. Curves ofRpc and Nph as functions ofdsT2 for
V0T253, 7, and 25. In all casesa0L540. The pump strengths ar
chosen to be less than, approximately equal to, and greater tha
pump strength that maximizesRpc at dsT250, given a0L and
T2 /T1. The values ofDT2 are selected to give approximately th
best possible reflectivity after all the other parameters are fix
Thus DT2521 for V0T253, DT2522 for V0T257, and
DT2524 for V0T2525. ~a! Rpc vs dsT2 for T2 /T152. ~b!
Curves ofNph vs dsT2 for T2 /T152 corresponding to the reflec
tivity curves in ~a!. ~c! Rpc vs dsT2 for T2 /T151. ~d! Curves of
Nph vs dsT2 for T2 /T151 corresponding to the reflectivity curve
in ~c!.
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3160 55SCHIRMER, LANZEROTTI, GAETA, AND AGARWAL
at dsT250 is achieved forV0T257 andDT2522. The
other two pump strengths are chosen to be less t
(V0T253) and greater than (V0T2525) the optimum pump
strength, and the corresponding pump-resonance detun
give the best possible reflectivity atdsT250 after the pump
strength is fixed. Figure 4~a! shows that the reflectivity ha
peaks atdsT250 and at the Rabi sidebands. The effect
saturation can be seen forV0T2525; the peak reflectivity
decreases but the width of the reflectivity curve increas
Figure 4~b! shows the corresponding photon-noise fac
curves. Except for small changes in the pump strength w
dT2 is near a reflectivity peak, lowering the reflectivity b
weakening the pump fields at a fixed probe-pump detun
allows operation closer to the quantum-noise limit. Furth
more,Nph→1 asudsT2u increases beyond;udRabiT2u, so in
the radiatively broadened regime the excess noise falls
faster than the reflectivity as the pump fields are weake
and as the probe-pump detuning increases bey
udRabiT2u. Figures 4~c! and 4~d! show curves for the sam
parameter values shown in Figs. 4~a! and 4~b! except that
hereT2 /T151. We see that in the nonradiatively broaden
case, the broadening of the excess noise spectrum a
causes the photon-noise factor to increase with probe-p
detuning whenudsT2u*udRabiT2u. ThusNph is minimized at
a given pump strength for probe-pump detunings appro
mately equal to those that produce the reflectivity peaks
Fig. 4~c!.

IV. CONCLUSIONS

Our results for the noise spectrum of the conjugate be
lead to several conclusions. First, a radiatively broade
PCM operates close to the quantum-noise limit for la
pump-resonance and signal-pump detunings, and at pu
field strengths such that the atoms are very weakly satura
In this case, the excess noise produced by the PCM falls
faster than the reflectivity of the mirror as the nonlinear
decreases, which signifies that the reflectivity of the nea
quantum-noise limited PCM will be relatively small com
pared to that which would be obtained at larger pu
strengths and smaller detunings~all other parameters remain
ing fixed!. These results are in agreement with the conditio
predicted in previous works for optimum squeezing via fo
wave mixing in two-level systems@34–36#. In the collison-
ally broadened regime, operation closest to the id
quantum-noise limit is achieved under conditions close
those that yield the maximum reflectivity. In this case, t
excess noise falls off more slowly than does the reflectiv
when the nonlinearity is too weak. These results are in qu
tative agreement with recent experimental studies@40,41#.
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APPENDIX A: EXPRESSIONS FOR THE
PROPAGATION COEFFICIENTS

This Appendix gives the explicit forms of the propagatio
coefficientsa andk. See Ref.@45# for the full derivation. In
matrix form, the optical Bloch equations governing the p
larization of the two-level atoms are

]F

]t
5AF1I , ~A1!

wheret5t/T2, F15^Ŝ1&, F25F1* , F35^Ŝz&, I 15I 250,
and I 352T2/2T1. The matrixA is given by

A5F 2~11 iDT2! 0 iV*T2
0 2~12 iDT2! 2 iVT2

iVT2/2 2 iV*T2/2 2T2 /T1
G . ~A2!

HereV5V0cos(k•r ) is the on-resonance Rabi frequency f
the total pump field,V054muApu/\, andD5v2v0 is the
detuning of the pump field from the atomic resonance.
introducing the matrices

A15F 0 0 0

0 0 2 iVT2

iVT2/2 0 0
G ~A3!

and

A25F 0 0 iV*T2
0 0 0

0 2 iV*T2/2 0
G , ~A4!

and by defining

K1~ds!5(
j l

~ idsT21A!2 j
21~A1! j l ~A

21I ! l ~A5!

and

K2~ds!52(
j l

~ idsT22A!2 j
21~A2! j l ~A

21I ! l , ~A6!

the propagation coefficients may be expressed as

a15
ia0

2
K1~ds!, ~A7!

a252
ia0

2
@K1~2ds!#* , ~A8!

ik1*5
ia0

2
K2~ds!, ~A9!

and

ik25
ia0

2
@K2~2ds!#* , ~A10!

where ds5vs2v is the probe-pump detuning
a054pm2NvT2 /\c is the small-signal, line-center absorp
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tion coefficient, andN is the number density of atoms. Th
ratio of the spontaneous emission time to the dephasing
is defined asG5T1 /T2. The following definitions are made
to condense the explicit expressions for the propagation
efficients:

s511~DT2!
2, ~A11!

g15~GdsT21 i !~dsT21DT21 i !~dsT22DT21 i !,
~A12!

j152~dsT21 i !, ~A13!

b1852 1
4a0G~V0T2!

2~DT21 i !dsT2 , ~A14!
th
r

ri
t
c
io

la
e

o-

b152a0s~GdsT21 i !~dsT22DT21 i !, ~A15!

z152 1
4a0sG~V0T2!

2
dsT212i

DT21 i
, ~A16!

D15sg1H S 11
G~V0T2!

2

s D 1/2S 11
Gj1~V0T2!

2

g1
D 1/2

3F S 11
G~V0T2!

2

s D 1/21S 11
Gj1~V0T2!

2

g1
D 1/2G J ,

~A17!

and
N15

sj1G~V0T2!
2S 11

G~V0T2!
2

s D 1/22g1G~V0T2!
2S 11

j1G~V0T2!
2

g1
D 1/2

4g1sF S 11
j1G~V0T2!

2

g1
D 1/22S 11

G~V0T2!
2

s D 1/2G . ~A18!
um
ion
The quantitiesg2, j2, b28 , b2, z2, D2, andN2 are obtained
from the corresponding expressions above by making
replacementds→2ds and taking the complex conjugate, fo
example, g2(ds)5g1* (2ds). In terms of the quantities
above, the propagation coefficients may be written as

a15
b1N11b18

iD 1
, ~A19!

a252
b2N21b28

iD 2
, ~A20!

ik1*52
z1
iD 1

, ~A21!

and

ik252
z2
iD 2

. ~A22!

To obtain these coefficients, an average over a spatial pe
of the grating formed by the pump waves is performed
eliminate non-phase-matched terms, and the wave-ve
mismatch associated with the four-wave mixing interact
coupling the signal and conjugate fields is neglected.

APPENDIX B: CALCULATION OF THE
CORRELATION FUNCTIONS

This Appendix summarizes the calculation of the corre
tion functions ~2.14a!–~2.14c!. In matrix form, the Bloch
equations are
e

od
o
tor
n

-

]F

]t
5AF1I , ~B1!

as discussed at the begining of Appendix A. The quant
regression theorem allows the evaluation of all correlat
functions in terms of the steady-state solutions to Eq.~B1!,
which are given by

F152
V*T2~ i1DT2!

2D~0!

T2
T1

, ~B2!

F252
VT2~2 i1DT2!

2D~0!

T2
T1

, ~B3!

and

F352
11~DT2!

2

2D~0!

T2
T1

, ~B4!

whereD(ds) is given by

D~ds!5det~U !5S T2T1 1 idsT2D @~11 idsT2!
21~DT2!

2#

1~11 idsT2!uVT2u2. ~B5!

The matrixU5( idsT22A)21 is given by



3162 55SCHIRMER, LANZEROTTI, GAETA, AND AGARWAL
U5
1

D~ds!F@11i~ds2D!T2#~T2 /T11idsT2!1uVT2u2/2

~VT2!
2/2

2VT2@~ds2D!T22 i #/2

~V*T2!
2/2 2V*T2@~ds2D!T22 i #

@11 i ~ds1D!T2#@T2 /T11 idsT2#1uVT2u2/2 VT2@~ds1D!T22 i #

V*T2@~ds1D!T22 i #/2 @~11 idsT2!
21~DT2!

2#
G ~B6!
a
to
By introducing the matrixV5U(ds→2ds) and the two vec-
tors

c5F 1
22F32F2F1

2F2F2

1
2F22F2F3

G ~B7!

and

L5F 1
21F32F2F1

2F2F2

2 1
2F22F2F3

G , ~B8!

the correlation functions can be expressed as
um

n

n

K

J

M

b

X̃21~ds!52 ReF(
j
U1 jc j G , ~B9!

X̃12~ds!52 ReF(
j
V1 jL j G , ~B10!

and

X̃11~ds!5(
j

@V2 jL j1U2 jc j #* . ~B11!

In Eqs. ~B9!–~B11!, the right-hand side is averaged over
spatial period of the grating formed by the pump waves
eliminate non-phase-matched terms.
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