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Quantum theory of noise in phase conjugation by four-wave mixing in a two-level system
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A quantum theory of nearly degenerate backward four-wave mixing in a two-level atomic system is devel-
oped. The theory is used to calculate the quantum noise produced by a phase-conjugate mirror based on this
system. The results indicate that in the case of pure radiative broadening the ideal quantum-noise limit is
reached for relatively small pump-wave strengths and for relatively large probe-pump and pump-resonance
detunings, so that the phase-conjugate reflectivity is far from its maximum value. Conversely, in the collision-
ally broadened case, operation closest to the quantum-noise limit occurs near the point of maximum reflectiv-
ity. [S1050-294{®7)03604-4

PACS numbeps): 42.50.Lc, 42.65.Hw

[. INTRODUCTION Sargent, Holm, and Zubaif81] all developed general for-
malisms for treating nonlinear wave mixing in an atomic
Phase conjugation is an optical process that has drawsystem. Agarwal and Boy[B2] treated Rabi sideband gen-
interest because of its applications in aberration correctioeration by forward four-wave mixing for the specific case of
and image processinfl,2], laser-linewidth reductior3], a two-level system. Levensoet al. [33] studied the noise
and correcting for the effects of dispersion and nonlinearitygenerated by forward four-wave mixing in an optical fiber.
in optical fiberg4—6]. A phase-conjugate mirrdPCM) isa  Reid and Wall§34—-36 analyzed degenerate four-wave mix-
type of optical amplifier that generates the counterpropagaing (both backward and forward geometpiés a two-level
ing phase conjugate of an input signal field. It can be showrsystem, and nearly degenerate forward four-wave mixing in
that any phase-conjugating optical amplifier is required bya two-level system placed in a cavity. In both cases classical,
guantum mechanics to introduce a minimum amount of noiseindepleted pump waves were assumed and attention was
into the conjugate field7,8]. In practice, a PCM operates concentrated on the radiatively broadened limit. Ho, Kumar,
above this ideal quantum-noise linfite., introduces noise in and Shapird37] developed a theory for nondegenerate for-
excess of the required minimum amoyrgnd the generated ward four-wave mixing in a two-level system which in-
noise spectrum depends on the nonlinear mechanism used¢tuded the effects of collisions, probe-pump phase mismatch,
produce the conjugate field. The noise generated by a PCNdoppler broadening, and Gaussian beam profiles. Experi-
impacts on its ability to perform functions such as aberratiormental measurements of the noise generated in four-wave
correction and the conjugation of nonclassica.g., mixing have also been made. Slustetral. [38] measured
squeezepd states of light[9,10]. Furthermore, the noise is the noise generated by four-wave mixing in a sodium beam
predicted to play a role in the dynamics of atoms placed irwithin an optical cavity and achieved 20% squeezing. Shelby
front of the PCM[11]. et al. [39] measured the quadrature noise generated by for-
Four-wave mixing is one of the standard techniques useward four-wave mixing in an optical fiber and achieved 12%
to perform phase conjugation and has been demonstrated sgueezing. Bespalov Matreev, and Pasmik studied the
atomic vaporg12-17, photorefractive materialf18—20, noise properties of a PCM based on Brillouin-enhanced four-
Brillouin-active media[21-23, and semiconductor diode wave mixing(BEFWM) and conjugated pulses with energies
amplifiers[5,6,24. The noise produced in four-wave mixing as small as 10'* J at a signal-to-noise ratitSBNR) of 1:1.
(for both backward and forward geometpiésis been studied Andreevet al.[22] used a laser preamplifier at the input of a
theoretically by a number of researchers. Yuen and ShapirBEFWM-PCM to conjugate pulses with energies as small as
[25], Jansky and Yushii26], and Yurke[27] all treated 4x10 1" J at a SNR of 6:1. Ridley and Scd@3] used a
squeezing via backward four-wave mixing with undepletedPCM based on stimulated Brillouin scattering with a Bril-
classical pump fields in a nonlinear medium characterized bjouin preamplifier to conjugate pulses with energies as small
phenomenological coupling constants. The effects of pumps 3x 10712 J at a SNR of 10:1.
guantization have also been included in four-wave mixing In this paper, we give a quantum-mechanical treatment of
models[28,29, and Bondurangt al. [28] examined the ef- phase conjugation by nearly degenerate backward four-wave
fects of pump absorption. In these studies the nonlinear memixing in a two-level system. The atomic response is treated
dium was treated phenomenologically. Agarw80] and to first order in the quantized signal and conjugate fields and
to all orders in the classical, nondepleted pump waves. The
dephasing effects of collisions are included in the model, but
*Permanent address: Department of Physics, Cornell Universityother effects of atomic motiofi.e., Doppler broadening and
Ithaca, NY 14853. grating wash-oytare not. We calculate the spectrum of the
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whereP(r,t) is the polarization operator arfe(r,t) is the
/ pump, © total electric-field operator. The electric field is composed of
the signal field, the conjugate field, and the two counter-
signal, og propagating pump fields, such that
I 2-level
R S atoms < — — ~ _p ~
conjugate, o, vactmm mode E(r,t) =E4(r,t) + E¢(r,t) + Ey(r,t). (2.3
The total pump field is given by
pump, o

Ep(r,t)=A[e ket peritkrtol] e, (2.4
FIG. 1. Backward four-wave mixing geometry. where both pump waves are assumed to have the same am-

. ) ) plitude and are treated classically. The signal field operator is
conjugate beam and the phase-conjugate reflectRityof  given by

the PCM for a range of conditions, including both the radia-

tively broadened and nonradiatively broadened limits. This Eq(r,t)=Beea s oDt H.c., (2.5
information is used to calculate the photon noise factor, a

guantity which measures the PCM’s noise performance relaand the conjugate field operator is given by

tive to the ideal quantum-noise limit. We find that the con- A o

ditions that maximizeR,. are also the conditions under E.(r,t)=B.eae e e+ H.c., (2.6)
which the atomic fluctuations contribute a significant amount .

of excess noise to the conjugate field. For the case of pur@here a; for i=(s,c) is the photon annihilation operator,
radiative broadening, this excess noise causes the PCM 8= —i(27#iw;/V)?, € is the polarization unit vectofall
operate farthest from the ideal quantum-noise limit in thewaves are taken to have the same polarization is the
regime whereR,. is near maximum. Conversely, in the case mode frequency, and is the quantization volume. The sig-
in which the atoms are collisionally broadened, the PCMnal and conjugate frequencies are relatedahy- 20— ws.
operates closest to the quantum-noise limit in the regim&he polarization operator for the collection of two-level at-
whereR, is near maximum. Our work is motivated prima- oms is given by

rily by recent experimental studies of the noise generated by
a continuous-wave potassium-vapor based PCM and by ef-
forts to use it to perform phase conjugation and aberration
correction with very low signal beam powd#0,41].

P(r)=2> mid(r—R)S" +H.c., (2.7)

whereR; is the position of atom, u; is its dipole matrix
element, and its harmonic time dependence has been sup-
pressed. The operatcﬁf“, its Hermitian conjugatéS‘, and

The theory of phase conjugation in a two-level system cargz—[ S+ S-7/2 obey the commutation relations for a spin-
be formulated using the general quantum-mechanical theory> system. It is assumed that the frequencies of the signal
of multiwave mixing presented by AgarwgB0]. Previous  and conjugate waves are sufficiently close to the atomic reso-
studies of the spectra produced via wave mixing in two-levef,gnce at frequency, that the rotating-wave approximation

systems using this technique include theoretical analyses @4 he made. The interaction Hamiltonian then becomes
forward four-wave mixind 32], signal amplification by two-

beam couplind42], noise generation in two-beam coupling . 3 & N . .,

in the presence of Doppler broadenig], and a theoretical Hi=— f d>rP=(r,t)-[Ep (r,) +Es () +Ec (r,t) ]+ H.c,,
and experimental investigation of the noise acquired by a (2.9
single, strong beam passing through a potassium Viagdr

Figure 1 shows the backward four-wave mixing geometrywhere the superscripts) and (—) denote the positive- and
Two strong pump beams of frequeneyinteract with a sig- negative-frequency components of the field, respectively.
nal field of frequencyws in a two-level medium with reso- ~ The density operator for the coupled atom-field system
nance frequency, to produce a conjugate field at frequency p obeys the equation of motion

;. The Hamiltonian for the total system is given by

IIl. QUANTUM THEORY

ia _i[ﬂ +He+H,,p]+ op (2.9
N~ A N N — = P - .
A=Fat A, 2.0 o b relax
- - o The relaxation term in Eq2.9),
whereH, andHg are the unperturbed Hamiltonians for the
collection of two-level atoms and the electromagnetic field, ap Pl Ty —piolTo
respectively. In the electric-dipole approximation, the inter- — = , (2.10
) A ot —p21/Ty —p2alTy
action HamiltoniarH, is given by relax

includes the contributions of spontaneous emission and elas-
tic dephasing processes. By substituting Egsh—(2.8) into

N 3 2 e
Hi= f drP(r,t)-E(r,0), (2.2 Eqg. (2.9, the polarization is calculated to first order in the
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signal and conjugate fields, and to all orders in the pummoise operators being correlated inz [i.e., 5(z—2')]. By
fields. Using this expression for the polarization as theintroducing the propagation matrik, where
source term in the quantized Maxwell equations and making

the slowly varying-envelope approximation, the equations | @ iKY
governing the evolution of the signal- and conjugate-field K= ik, —ayl (219
operators are found to be
) and the two vectors
d - PO
d—?=a1a5+ix*1‘a§+ L, (2.12) a
v=| . (2.19
a
and ¢
- and
dal ap e
E=—a2ac+m2a3+ L,. (2.12 [,
L=|."|. (2.17
Lo

The propagation coefficientg and « are the same as those
obtained from a semiclassical treatment of phase CO”jUQatiOEquations(z.lj) and(2.12 may be rewritten as
in a two-level systenf45] and represent the mean response
of the atomic medium. Their explicit forms are given in Ap-
pendix A. The Langevin noise operatdrg andL, are pro- a7 - K¥+L. (2.18
portional to the deviation of the polarization from its mean
value and account for the effects of fluctuations in the atomigntegration of Eq(2.18 gives the general solution
medium. The moments of the noise operators may be written
as W (7)= oKz fz K(z—9)
(z2)=e"*¥(0)+ | dée L(&). (2.19
(Li2)LI(2)) = apd(z—2)X"*(8), (2.133 °
_ We take the conjugate field at=L (whereL is the length of
(Lz(z)LE(z’)>=aoé(z—z’)x**(és), (2.13b the medium to be in a vacuum state and use E2.19 to
calculate the output conjugate field a=0. Using
and [as,al]1=1, the photon-number spectrum( 5,) for the out-
o v put conjugate field at=0 is found to be
(Lo(2)L1(Z"))=agd(z—2")XT7(5s), (2.130

Ne(Js) = <ézé—c> = Rpc( Os)Ns(Ss) + Rpc( 0s) +Ny(9s),

where (22@
X+ (5= if dr e 1%lim (3 ()8 (t+ 7)) whereng( ;) =(ala,) is the input photon number at=0,
> 2w t—oo the phase-conjugate reflectivity is given bR,(Js)
A A =[Myy(L)[?/[MAL)|% M;; are the elements of the matrix
—(ST(ONST(t+ )], (2149  M=exp(Kz), and the excess noidé,(d,) is given by
X+ (89)= if dr e 9Tlim[(SH(1)S (t+ 7)) Nn(8s) = szLdf[le(é)l&’*(és)
S 2@ e IMax(L)[“Jo
n ” o0+ — Y+
(B )G (t+ )], (2.14b +[M o )X (8) +{M3(E)M oo )X (85)
+c.c}]. 2.2
and c.c}] (220
The first term on the right-hand side of H§-20 represents
>~(++(5s)=ij dTe—iasf|im[<§+(t)ﬂs+(t+7)> the conjugate-reflected input signgl photons. The secpnd
27 o term results from the noncommutative nature of the annihi-
A A lation and creation operators and represents the inherent
—(ST(ONST(t+7))]. (2.149 quantum noise introduced by the phase-conjugation process,

even in the case of a nonlinear medium that does not undergo
Here ap=4mu’NwT,/hc is the small-signal, line-center any real excitatio[9]. The third term represents noise in
absorption coefficient,N is the density of atoms, and excess of the required minimum amount that results from
ds= ws— w is the probe-pump detuning. The right-hand sidesspontaneous emission and collisions in the medium.
of Egs. (2.143—(2.149 have been averaged over a spatial The expressiong(2.143—(2.149] for the polarization
period of the grating created by the counterpropagatingorrelation functions that appear in EQ.21) are evaluated
pump waves to eliminate non-phase-matched terms. We aby solving the optical Bloch equations in steady state for a
sume that the fluctuations in the polarizations of differenttwo-level atom in the presence of the pump fields. It is suf-
atoms are uncorrelated, which results in the moments of thficient to solve the semiclassical Bloch equations in the ab-
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sence of the probe and conjugate fields in order to obtain the
field evolution equation$2.11) and (2.12 to first order in
the probe and conjugate fields. A summary of this calcula-
tion is given in Appendix B.

Since the minimum number of noise photons produced by
an ideal PCM at frequencys is equal toR,(s), we intro-
duce a photon-noise factor

O[T | | i
107 0L = 40

Nn(65)
Rpce(8s)

Npn(89)=1+ (2.22

which compares the total noise generated by the PCM to that
which would be generated by an ideal quantum-noise limited
PCM of the same reflectivity. We define the ideal quantum-
noise limit to be the case whel¢,,=1. Note thatN,, also
measures the strength of the total generated noise relative to
the gain of the four-wave mixing procefise., R,c). There-
fore, minimizingN,j, corresponds to maximizing the gain of
the PCM relative to the noise it produces.

IIl. NUMERICAL RESULTS

We examine the noise properties of this system by nu-
merically evaluating the expressions for the reflectivity and
photon-noise factor derived in Sec. Il. The normalized model
parameters upon which the reflectivity and photon-noise fac-
tor depend are the absorption path lengtfl, the decay
time ratioT,/T,, the probe-pump detuningT,, the pump-
resonance detuning\T,, and the pump strengtlf),T,,
where A=w—wq and Qo=4u|Ay|/% is the on-resonance
Rabi frequency of the total pump field. Since we do not treat
the effects of pump absorption, the model is expected to be
most accurate foeegL/[ 1+ (AT2)2+QST1T2]< 1 where the
effects of pump absorption are less significant.

We first maximize the reflectivity by varying the pump-
resonance detuning and pump strength while holding the
probe-pump detuning and the absorption path length fixed.
The behavior of the maximum reflectivity is examined as a
function of the ratiol, /T, (see Fig. 2 The pump-resonance
detuning and pump fstrength. are sglected for optimization FIG. 2. Results of maximizing the reflectivioR,, for
because they are typically adjusted in actual experiments tg | —g 2 2 and 40 while holding the probe-pump detuning fixed
achieve the maximum reflectivity. We hold the absorptiong; 5. 1,=5. (a) Maximum Roc VS T,/2Ty. (b) The pump-resonance
path length fixed since, in the absence of pump absorption ifletuningA T, vs T,/2T; that produces the maximuRy,. shown in
the model, larger values afoL always yield larger reflec- (a). (c) Pump-field strength) T, vs T,/2T; that produces the
tivities. The probe-pump detuning is held fixed at a nonzeranaximumR,,. shown in(a). (d) The photon noise factaX, vs
value, despite the fact that the maximum reflectivity typically T,/2T, for the conditions giving the maximizeR, of (a).
occurs até;T,=0, because in any experiment the classical
noise of the pump waves will dominate all other noisefluctuations in the medium and lowers the maximum achiev-
sources at the degenerate frequency. Figae $hows the able reflectivity[as shown in Fig. @)]. Thus, the presence
maximum reflectivity as a function of the ratib,/2T, for of collisions always causes the PCM to operate farther from
0sT>,=5 and apL=40, 2, and 0.2. The plot demonstratesthe ideal quantum-noise limit. We also see that increasing
that the maximum reflectivity drops with increasing colli- a(L at fixed T,/T, causes the PCM to operate relatively
sions and decreasinggL. Figures 2b) and 4c) show the closer to the ideal quantum-noise linjiEig. 2(d)], which
values of AT, andQ,T,, respectively, that produce the re- indicates that the maximum reflectivity grows faster than the
flectivity curves shown in Fig. @). The optimized values of corresponding excess noise @g. increases. Pump absorp-
these two parameters are changing in such a way that thteon may begin to play an important role at larger values of
Rabi sidebandsd ;= Q3+ A?) remain atdr,,T,~5 over  the absorption path length.
the full range ofT, /T4, near where the signal beam is tuned. We next consider the behavior of the system as a function
Figure 2d) shows the corresponding photon-noise factorof the pump-resonance detuniag, for three values of the
curves and indicates that,,, increases a3,/T, decreases. decay-time ratioT,/T; (Fig. 3. In all cases,aglL =40,
This result is expected, since decreasingT, increases the JsT,=5, and the pump strength is chosen to be approxi-

T T g [,
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FIG. 3. The behavior oR,. and Ny, as functions of pump-
resonance detunin§T,. Curves are shown fof,/T;=2, 1, and
0.1. All curves are foregL=40 and6;T,=5. For each value of
T,/T,, the pump strength is fixed at its optimum value from Fig. 2:
QoT2:7 for T2/T1:2, QoT2:6 for T2/T1:1, QoT2:5 for
T,/T;=0.1. (@ Rpc vs AT,. (b) Npp vs AT, For T,/T,=2, -
Nph—1 as|AT,| increases while fofT,/T;<2, N, reaches a 107 H . [ | s
minimum and then increases |@sT,| increases.

mately equal to the optimum pump strength given in Fig.
Z(C) Thus QoT2:7 for T2/T1:2, QoT2:6 for
T,/T,=1, andQ,T,=5 for T,/T;=0.1. Figure 8) shows

the resulting reflectivity curves. The reflectivity has multiple
peaks off resonance, with the maximuRy. occurring for
|AT,|~1, where the best compromise is reached between

the nonlinear gain and the absorption. Figufie) 3hows the wn L1
corresponding curves for the photon-noise factor. As the col- 40 -20 0 20 40

lision rate increases, the combination of the drop in the re- 8Ty

flectivity [see Fig. 8a)] and the increase in the excess noise

results in larger values dfl,, at smaller values of,/T;. FIG. 4. Curves ofR,. and Ny as functions of 5T, for

For T,/T,=2, the quantum-noise limit is most closely ap- {oT2=3, 7, and 25. In all caseg,L =40. The pump strengths are
proached K\'ph—>1) by tuning far off resonance chosen to be less than, approximately equal to, and greater than the

(|AT,|>1), where the reflectivity is much less than maxi- p“TTp S_;Lengthl that fz‘?"imizeeplc at dasTZZ_O' given arol alndh
mum. In this case, the excess noise falls off faster than the2  * 'eblvaru?IS (i_ o afrterse"e?:]e t?hg:ve ?pprotxmateyft_ ed
reflectivity as the pump-resonance detuning increases. In thi . POSSIDIE refectivity atter-ali the ofher parameters are fixed.
L2 L ‘ us AT,=-1 for QgT,=3, AT,=-2 for QyT,=7, and

nonradiatively broadened limit, howeve,, first reaches a AToz—4 for OoTom25 R 5T for To/T-=2. (b

ini d then increases [dsT,| increases. This change ~, 2 . or £2oT,=25. (& Ryc Vs &T, for Tp/Ty=2. (D)
mlgln;um an b lained 2f I o ) h ICurves 0fNpp vs 8T, for T,/T,=2 corresponding to the reflec-
:n e av'orbmai/j e e>;]p ained as O_OWS' 'ncreas'n,g t_f? co tivity curves in(a). (¢) Ry Vs 8T, for T,/T,;=1. (d) Curves of
Ision rate broadens the excess noise spectrum signi 'Qanthh vs 8T, for T,/T,;=1 corresponding to the reflectivity curves
while leaving the rate at which the reflectivity falls off with jy"(¢).

detuning relatively unchangddee Fig. 8a)]. Thus as more

collisions are introduced, a point is reached where the excegeequency closer to the atomic resonance and the increase in
noise falls off more slowly than the reflectivity, aht}, then  the excess noise resulting from the resonant scattering of the
increases afAT,| increases at large detunings. The photonpump fields.

noise factor reaches its absolute minimum at approximately Finally, we consider the behavior of the system as a func-
the same detuning that produces the farthest-off-resonand¢®n of the probe-pump detuningT, for several values of
peaks in the reflectivity curve of Fig(&®, rather than at the the pump-field strengtlf),T, (Fig. 4). In Figures 4a) and
detuning which gives the maximum reflectivity. The detun-4(b), we fix T,/T;=2, aoL=40, and AT,=-1 for

ing that minimizesN,, achieves the best compromise be-QT,=3, AT,=—-2 for QT,=7, and AT,=—4 for
tween the increase in the reflectivity as one tunes the pum@T,=25. GivenT,/T; andagL, the maximum reflectivity
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at 5;T,=0 is achieved forQQyT,=7 andAT,=—2. The APPENDIX A: EXPRESSIONS FOR THE

other two pump strengths are chosen to be less than PROPAGATION COEFFICIENTS

(2oT,=3) and greater tha'ﬂo_TZZ 25) the optimum pump . This Appendix gives the explicit forms of the propagation
strength, and the corresponding pump-resonance detuninggetricientse and . See Ref[45] for the full derivation. In

give the best possible reflectivity aT,=0 after the pump  magix form, the optical Bloch equations governing the po-
strength is fixed. Figure(d) shows that the reflectivity has |5rization of the two-level atoms are

peaks até;T,=0 and at the Rabi sidebands. The effect of

saturation can be seen f6l,T,=25; the peak reflectivity od

decreases but the width of the reflectivity curve increases. E:AQH’ (A1)
Figure 4b) shows the corresponding photon-noise factor

curves. Except for small changes in the pump strength whewhere r=t/T,, ®,=(S"), ®,=®% , &;=(), I,=1,=0,
6T, is near a reflectivity peak, lowering the reflectivity by andlz;=—T,/2T;. The matrixA is given by

weakening the pump fields at a fixed probe-pump detuning

allows operation closer to the quantum-noise limit. Further- —(1+iATy) 0 10T,
more,Npp—1 as|8sT,| increases beyonet | SrapTo|, SO in A= 0 —(1-iATy) —iQT, |. (A2)
the radiatively broadened regime the excess noise falls off iOT,/2 —iQ*T,2  —T,IT,

faster than the reflectivity as the pump fields are weakened
and as the probe-pump detuning increases beyonHere()=cosk-r) isthe on-resonance Rabi frequency for
| SrabiT2|. Figures 4c) and 4d) show curves for the same the total pump fieldQo=4u|Ay|/%, andA=w— wy is the
parameter values shown in Figs@adand 4b) except that detuning of the pump field from the atomic resonance. By
hereT,/T,;=1. We see that in the nonradiatively broadenedintroducing the matrices

case, the broadening of the excess noise spectrum again

causes the photon-noise factor to increase with probe-pump 0 0 0
detuning when 85T,/ = | 8rapiT2|. ThusNp, is minimized at At= 0 0 —iQT, (A3)
a given pump strength for probe-pump detunings approxi- iQT,/2 0 0
mately equal to those that produce the reflectivity peaks in
Fig. 4(c). and
0 0 iQ*T,
IV. CONCLUSIONS A =|0 0 0 , (A4)

Our results for the noise spectrum of the conjugate beam 0 —iQ*T,/2 0

lead to several conclusions. First, a radiatively broadenegnd by defining

PCM operates close to the quantum-noise limit for large

pump-resonance and signal-pump detunings, and at pump- ) B B

field strengths such that the atoms are very weakly saturated. K™(35)= %: (i 53T2+A)2j1(A+)j|(A a0l (A5)
In this case, the excess noise produced by the PCM falls off

faster than the reflectivity of the mirror as the nonlinearityand

decreases, which signifies that the reflectivity of the nearly

guantum-noise limited PCM will be relatively small com- K=(8 ):—E (16T~ A)5 Y (A) (A1) (AB)
pared to that which would be obtained at larger pump s Tt A I b
strengths and smaller detunin@dl other parameters remain- ) N

ing fixed). These results are in agreement with the conditiondh® Propagation coefficients may be expressed as
predicted in previous works for optimum squeezing via four-

wave mixing in two-level systemi84—36. In the collison- =
ally broadened regime, operation closest to the ideal 2
guantum-noise limit is achieved under conditions close to .
those that yield the maximum reflectivity. In this case, the = — ﬂ[K*(—é )]* (A8)
excess noise falls off more slowly than does the reflectivity 2 2 ¥

when the nonlinearity is too weak. These results are in quali-
tative agreement with recent experimental stu@is41].

iao

K*(3y), (A7)

iK’1‘=%K_(5S), (A9)
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tion coefficient, andN is the number density of atoms. The B1=2ag0(F 8T o+i)(8T,—AT,+1i), (A15)
ratio of the spontaneous emission time to the dephasing time
is defined ad" =T, /T,. The following definitions are made . ,0sT2+2
to condense the explicit expressions for the propagation co- {1= — 300l (Q0T) AT, (A16)
efficients:
FQTZI/Z r QT21/2
o=1+(AT,)?, (Al11) D1:0'71[(1+ (+2)) (1+ w)
1
Y1= (L 0sTo+1)(SsTot ATo+1) (65T~ AT +i), [(QnT.)2\ V2 L E(QnT, )2 12
(A12) X[(HM) +(1+M) H
] o Y1
&= —(6:Tr+i), (A13) (A17)
B1=— 7ol (QoT)?(AT,+i) 8T, (A14)  and
FQT21/2 FQT21/2
oglr(ﬂoTzﬁ(H—( o2 ) —71F<90T2>2(1+—§1 Chol2) )
N,= 7 e (A18)
1= T(QOAT 2\ 172 QT 2\ 1/2 .
4710(1+§1( 02)) _(1+ ( 02)) }
Y1 o

The quantitiesy,, &, B3, B2, {», D,, andN, are obtained

from the corresponding expressions above by making the o7 AP (B1)

replacement;— — &5 and taking the complex conjugate, for

example, y,(8s)=7v;(—35s). In terms of the quantities

above, the propagation coefficients may be written as as discussed at the begining of Appendix A. The quantum
regression theorem allows the evaluation of all correlation
functions in terms of the steady-state solutions to @&1.),

N;+ 81 which are given by
q PN By (A19)
iDq
Q*T,(i+AT,) T,
N+ 8. b= -, B2
S B2 N2 /32, (A20) 1 2D(0) T, (B2)
iD,
. & QTo(—i1+ATy) T,
* __ T - = = _“
=15 (A21) P 2D(0) T, (B3)
and
and
i Kp=— 2 (A22)
iD, Oz 1+(AT,)? T, B4
. - : . 3 2D(0) Ty’ B4
To obtain these coefficients, an average over a spatial period
of the grating formed by the pump waves is performed to
eIi_minate non-phase-mgtched terms, and _the \(vave-ve_ct%hereDws) is given by
mismatch associated with the four-wave mixing interaction
coupling the signal and conjugate fields is neglected.
T2 ; 2 2
APPENDIX B: CALCULATION OF THE D(6;)=de(U)= T_lJr'ésT2 [(1+16:T2)"+(AT2)"]
CORRELATION FUNCTIONS . 5
+(1+i6sT,)|QT,|% (B5)

This Appendix summarizes the calculation of the correla-
tion functions (2.148—(2.149. In matrix form, the Bloch
equations are The matrixU= (i 8;T,—A) ! is given by
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[1+i(8— AT (To /Ty +i8.T,)+|QT,%2

(QT,)?/2
—QT,[(6—A)T,—i]/2
(Q*T,)%2

V=B

[14i(8s+ M) T [To/Ti+i8:T,]+|QT,|%/2

Q*T[(8+A)To—i1/2

By introducing the matriy=U(§;— — &) and the two vec-
tors

2= D= 0yd,y
— PP,
%@2—(1)2@3 .

(B7)

and

3+ D~ DD,
—®,d,

— 3D, D, D3

A , (BY)

the correlation functions can be expressed as

55
—QFT[(6—A)To—i]
OT,[(8+A)Tp—i] (B6)
[(1+185T2)%+(AT)?]
[
X~ (89)=2 Re{; ul,-wj}, (B9)
X7 (89)=2 RE{Z vlej}, (B10)
J
and
X+ (89)=2, [V Aj+Ug]*. (B1D

i

In Egs. (B9)—(B11), the right-hand side is averaged over a
spatial period of the grating formed by the pump waves to
eliminate non-phase-matched terms.
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