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Nonlinear dynamics of additive-pulse mode-locked lasers in four cavity topologies

U. Morgner and F. Mitschke
Institut für Angewandte Physik, Universita¨t Münster, Corrensstrasse 2/4, D-48149 Mu¨nster, Germany

~Received 20 September 1996!

Coupled-cavity mode-locked lasers, useful as they may be, can have a tendency to display dynamic insta-
bilities; the mechanisms for this phenomenon are poorly understood. We show here by analytic means, supple-
mented with numerics, how these instabilities arise from the coupling of nonlinear resonators and how the
thresholds for instability depend strongly on the topology of the laser. Four different topologies are considered,
the Michelson, the Fabry-Pe´rot, and two further configurations. The results of this comprehensive theory
identify the most stable and the most unstable configuration and explain empirical findings of several authors.
@S1050-2947~97!01204-3#

PACS number~s!: 42.65.Sf, 42.65.Re, 42.60.Da, 42.60.Fc
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INTRODUCTION

Coupled-cavity mode-locked lasers@1#, also known as
soliton lasers@2,3#, interferentially mode-locked lasers@4,5#,
or additive-pulse mode-locked~‘‘APM’’ ! lasers@6–11#, have
been demonstrated to be useful tools for a variety of inv
tigations. In most cases a single mode optical fiber is use
the nonlinear medium because this choice is both effec
and economical. Since no specialized components are
quired, any lab in possession of a Nd:YAG laser could c
figure it as a source of ps pulses by adding just a few s
dard items. On the other hand, any system of coup
nonlinear resonators is likely to be prone to dynamical ins
bilities like period doubling and chaos. In fact, for APM
lasers employing an optical fiber as a nonlinear element,
ocurrence of such instability has been experimentally es
lished @12,13#. Several authors have noted that the way
which the cavities are connected~in other words the cavity
topology! has an influence on the stability of the syste
@6,14–16#. There are indications that this is not a mere te
nical difference but rather deeply rooted in the dynamics
the system@16#. Unfortunately, so far theoretical guidanc
has been lacking on this matter.

By studying this class of lasers, we try to obtain furth
insight into the behavior of coupled nonlinear oscillators
both fundamental and practical reasons. We present ana
cal models for four possible cavity arrangements. The Fab
Pérot and Michelson geometries have been considered
several authors before. We extend our approach to the ‘
and ‘‘Q’’ configurations mentioned by@17#; note that we
prefer to call the latter the ‘‘F ’’ configuration. We begin by
formulating maps for each topology within the framework
a quasicontinuous-wave~CW! treatment. For the limitations
of this treatment, see below.

I. QUASI-CW MODEL

Since we deal here with nonlinear, i.e., power-depend
effects, some value of power must be inserted in the eq
tions to be derived below. This is straightforward in the ca
of constant power; however, we are concerned mainly w
pulses of light which by definition have a temporally varyin
power. We will proceed as follows: To keep the mathema
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manageable, we will consider sufficiently narrow ‘‘tim
slots,’’ or slices, from the pulse and treat them as if th
evolved in independence from neighboring slices. Forma
we can then proceed as in the cw treatment of Ikeda@18,19#.
We call this simplification the ‘‘quasi-cw’’ approximation; i
has been used in the context of passive fiber resonator
several authors@20,21#. In the end, we will return to the
effect of the interaction between slices and argue that
threshold values for instabilities~our central result! are not
affected.

For definiteness and graphical illustration, assume a la
pulse P(t)5P0sech

2(1.76t/t) with the full width at half
maximum~FWHM! t. Split it up into several temporal slice
of some widthDT with powersPi , wherePi50 is at the
pulse peak~see Fig. 1!.

The quasi-cw laser model describes the interaction of
such slice with the gain medium and the fiber nonlinear
according to rules set qualitatively by the topology and qu
titatively by the splitting ratio of the beam splitter. Th
‘‘fast’’ components—splitter and nonlinear phase shift—c
be included in a straightforward manner. On the other ha
gain is ‘‘slow’’ in the sense that it depends on the energy
the whole pulse; within the framework of the quasi-cw a
proximation, we still have to include some global inform
tion on the remainder of the pulse. To this end we note t
the pulse energy is given by

FIG. 1. Separation of the pulse into several slicesPi of width
DT. Ns describes the number of slices in the pulse widtht.
3124 © 1997 The American Physical Society
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55 3125NONLINEAR DYNAMICS OF ADDITIVE-PULSE . . .
W5E P~ t !dt5DT (
i52`

`

Pi'P0t ~1!

and the number of slicesNs in the pulse width is of the orde
of Ns5t/DT. The energy contained in slice ‘‘i ’’ is Wi and
represents the fractionk i of the total energy, with

k i5
Wi

W
5
PiDT

P0t
5

1

Ns
sech2S 1.76 iNs

D . ~2!

II. APM COMPONENTS

A. Gain medium

We are mainly concerned here with solid-state las
which have a very small emission cross section. It is the
fore a reasonable approximation to neglect dynamical con
butions to gain saturation. The power gainḠ(W) of a double
pass through the laser medium as a function of the intrac
ity pulse energyW is then written as@22#

Ḡ~W!5expS g0
11W/Ws

D , ~3!

with g0 the small signal gain of a double pass andWs the
saturation energy.g0 can be measured from the relaxatio
oscillation frequency@23#. We use here values as measur
for our Nd:YAG laser, namely,g050.7 andWs5130 nJ.

Estimating the energyW of the whole pulse from the
power of the slice with indexi we arrive at the power gain

G~Pi !5g2~Pi !5Ḡ~DTPi /k i !, ~4!

5ḠS Pit

sech2~1.76i /Ns!
D , ~5!

whereg(Pi) is the field amplitude gain. We assume here
pulse width oft510 ps. Obviously, the slice withi50 is the
most interesting; all results given below will refer to th
slice.

B. Beam splitter

We will use the following convention for the notation o
properties of the beam splitter: Reflectivities are denoted
the letterR or r , and transmissivities by the letterT or t,
where upper case refers to power and lower case to
amplitude. The relationR5r 2512T512t2 is understood
~lossless beam splitter!.

At the beam splitter, two incident complex field amp
tudesa1 ,a2 interfere. The resulting amplitudesb1 ,b2 are
given as@24#

b15ra11ta2 , ~6!

b25ta12ra2 , ~7!

where the negative sign in Eq.~7! refers to the phase jump o
p due to the reflection at the medium of higher refract
index.
s
-
i-

v-

d

a

y
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C. Fiber nonlinearity

The optical Kerr effect in monomode fibers leads to
intensity-dependent refractive indexn according to

n5n01n2P/Aeff , ~8!

wheren0 is the classical, or small-signal, index,n2 the non-
linearity coefficient, andAeff the modal cross section. Th
resulting self-phase modulation in a fiber of lengthL leads to
a nonlinear phase shiftwnl(t) given by @25#

wnl5
2pn2
lAeff

LP5gLP ~9!

(l is the wavelength!.

III. JACOBIAN AND LYAPUNOV EXPONENTS OF MAPS

A useful tool to describe the dynamical behavior of a m
quantitatively is the use of Lyapunov exponents. Their nu
ber corresponds to the dimension of phase space. Their
parts describe the stability against small perturbations; a
tem is stationary if all real parts are smaller than zero.~The
existence of at least one exponent with positive real part
been used as a definition for a chaotic system@26#.!

For anN-dimensional map

xW ~n11!5 fW~xW ~n!! ~10!

the Jacobian~or Floquet matrix! J is defined as

J~n!:5S ] f 1~xW !

]x1
U
xW ~n!

•••

] f 1~xW !

]xN
U
xW ~n!

A A

] f N~xW !

]x1
U
xW ~n!

•••

] f N~xW !

]xN
U
xW ~n!

D , ~11!

and the Lyapunov multipliersLW as @27#

LW 5 lim
n→`

uEV~J~n!J~n21!•••J~0!!u1/n, ~12!

with xW (n) a sequence generated by the map Eq.~10!, and
EV(J) the eigenvalues. In practice Eq.~12! is computed by

LW 'F )
k51

N2

uEV~J~kN121!•••J~kN12N1!!u1/N1G1/N2, ~13!

whereN1 describes the number of matrices to multiply, a
N2 the number of eigenvalues to average. Without loss
generality, we enumerate the multipliers as

L1<L2<•••<LN . ~14!

We find thatL1 can be calculated with high precision usin
the standard floating point unit on a digital computer w
N1'100 in a straightforward manner. Let us remark that d
to small inaccuracies in the calculation of the eigenvecto
the estimators for all other multipliers converge toL1 after a
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3126 55U. MORGNER AND F. MITSCHKE
few tens of matrix multiplications. Still, we could determin
LN with the same high precision by using the time invert
system

LN
215 limsup

n→`

uEV~J[21]~n!
•••J[21]~0!!u1/n. ~15!

L j with j52, . . . ,N21 could only be obtained with re
duced precision usingN1'10. However, sinceL1 is the
most relevant multiplier anyway for our purposes here,
further attempts were made to increase the precision on
intermediate multipliers. The Lyapunov exponentslW are then
defined as

l j5 lnuL j u, j51, . . . ,N. ~16!

In a one-dimensional system the JacobianJ is a scalar and
equal to its eigenvalue. A fixed point of the map wi
uJu,1 is attractive and thus stable, whereas a fixed po
with uJu.1 is repulsive and thus unstable.J,21 is a nec-
essary condition for the system to reach a two cycle, a
possibly the beginning of a period-doubling sequence, q
siperiodicity, or chaos. We call such a fixed point adynami-
cal fixed point.

IV. APM CAVITY TOPOLOGIES

In most published studies@1–3,7–13# APM lasers were
configured in the Fabry-Pe´rot ~‘‘FP’’ ! topology. In several
cases, however, a Michelson~‘‘M’’ ! topology was used with
good success@4–6,14,15#. Meanwhile, some additional con
figurations have been realized@17,28#. Note that some seem
ingly different arrangements turn out to be topologica
equivalent so that the total number of possible configurati
is limited. For example, a figure-8 laser with two unidire
tional rings is equivalent to the FP configuration. Whi
some authors concluded that the M configuration is supe
to the FP in terms of stability, it is not entirely clear ye
which configuration is best for which purpose. We therefo
discuss, one by one, all four topologies mentioned above

A. The Michelson configuration

Consider a resonator formed by two highly reflectin
~HR! mirrors M1 and M3, containing a gain medium and
partial reflector as a beam splitter M2. The latter splits the
light from the gain medium between the fiber branch and
air branch~see Fig. 2!. The quantitiesai andbi in Fig. 2 refer

FIG. 2. The Michelson configuration.ai , bi denote field ampli-
tudes; M2 is the beam splitter.
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to complex field amplitudes; for the sake of clarity in th
equations below we use the shorthand notationP:5upu2,
wherep:5a1. The beam steered towards the fiber carries
power ub3u25PR. A finite coupling efficiency from a free
space propagating beam into a fiber is taken into accoun
h,1. The fiber is terminated at the distal end with a perf
reflection at mirror M4. Thus the powerh

2ub3u2 reenters the
main cavity at the beam splitter. The reentrant light interfe
with the light in the main cavity. The optical path leng
M2–M3 matches the length M2–M4 of the fiber branch, ex-
cept for a tiny difference expressed as a phase offsetwstat. In
the fiber, self-phase modulation produces a nonlinear ph
shift

wnl52gLRhP. ~17!

The time evolution of a continuous laser fieldp(n) after the
nth cavity round trip is given by the Michelson map

p~n11!5g~P~n!!p~n!@T1Rhei [wnl~P
~n!!1wstat] #, ~18!

with the gain term and the characteristic two beam interf
ence of the linear and the nonlinear branch. It has the st
solution

p~n!5AP0e
ink. ~19!

We see that there is a fixed point of the power,P0, while
there is no fixed point for the field since the phase rota
with a velocityk, determined by

sink5Rhg~P0!sin@wnl~P0!1wstat#. ~20!

To findP0, we can restrict ourselves to a consideration
the evolution of power. It follows from Eq.~18! that

P~n11!5G~P~n!!$T21R2h212hTR

3cos@wnl~P
~n!!1wstat#%P

~n!

5:G~P~n!!Reff~P
~n!!P~n!5:F~P~n!!P~n!. ~21!

In the absence of nonlinearity (g50), this one-
dimensional map has exactly one fixed point. If 2gL exceeds
some threshold, simultaneously two more fixed points
pear. At even higher nonlinearities, more pairs of fix
points appear, and one gets a possibly large odd numbe
fixed points~see Fig. 3!. The stability of each fixed point is
determined by the pertinent Jacobian. For the map Eq.~21!
the Jacobian at the fixed pointP0 with F(P0)51 is given by

J511P0

]F~P!

]P U
P0

. ~22!

One finds that the fixed points are alternately stable
unstable. From any of the stable fixed points a perio
doubling scenario may occur, provided other parameters
adjusted such thatJ becomes smaller thanJ521. Thus the
condition for the onset of instability is

]F~P!

]P U
P0

522/P0 . ~23!



on
s

t
to

if
is

k

, i
re

tru

ul-

n-
in
g
a
in-
in
w-
er

m-
sh
we
e

d
n

-
ion

fts,

i
ra

ty

,

55 3127NONLINEAR DYNAMICS OF ADDITIVE-PULSE . . .
Figure 4 illustrates this condition. It shows the smallest n
linear phase for which this condition can be satisfied a
function of the reflectivity of the beam splitterR, where the
phase is obtained from power through Eq.~17!. At large
reflectivities the instability threshold tends townl'p. For
R50.12 as used, e.g., in@14#, the threshold is at abou
wnl52.5p, and atR50.05 and below, the threshold rises
enormous nonlinear phase values.

It should be noted, however, that nonlinear phase sh
significantly larger thanp cannot occur for a reason that
not included in this quasi-cw model: During start-up, som
initially rather broad pulses will form; at this time the pea
nonlinear phase shiftŵnl will be much less thanp. As the
pulses then get shorter,ŵnl will approachp. As soon as
ŵnl.p, however, further pulse shortening ends. Indeed
extensive numerical modeling we never encounte
ŵnl.1.6p. Normal operation is thus expected atŵnl'p, so
that there is constructive interference at pulse peak, des

FIG. 3. Michelson mapP(n11)(P(n)) and its second iterate
P(n12)(P(n)). Parameters:R50.07, h250.7, gL55kW21, and
wstat5p/2. One of the unstable fixed points is labeled as ‘‘dynam
cal’’; it generates two more stable fixed points in the second ite
indicative of a period doubling.

FIG. 4. Onset of instability as a function of coupling reflectivi
R, ‘‘M’’ configuration. Parameters:h250.7,wstat andgL were ad-
justed such that the minimum value ofwnl resulted. The line at
'1.6p indicates the maximum possible nonlinear phase shift~see
text!.
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tive interference in the far wings of the pulse, and no m
tiple pulsing.

This additional constraint is shown in Fig. 4 as a horizo
tal line at 1.6p. One sees that the threshold of instability
the ‘‘M’’ configuration can be reached only with couplin
reflectivities larger thanR50.16. Only high gain laser medi
would be used with this substantial output coupling, and
stabilities are unlikely to be a problem. We conclude that
an APM laser in Michelson topology with a reasonably lo
beam-splitter reflectivity no dynamical instabilities can ev
occur.

B. The ‘‘P’’ configuration

This configuration received its name due to its rese
blance to the letter ‘‘P.’’ Since here we have to distingui
the reflectivity, etc., of several beam splitters and mirrors,
label the respective quantities with indices, as in Fig. 5. W
assumeR15R351. Again the coupling efficiencies into an
back from the fiber areh. The optical path lengths betwee
M2 and M4 either via M3 or via the fiber and M5 are adjusted
to be equal.

Similar to the ‘‘M’’ configuration this system can be de
scribed by a one-dimensional map: The temporal evolut
of the laser fieldp(n):5a3

(n) , P:5ua3u2 at the nth cavity
round trip is given by

p~n11!5g~P!p~n!@r 4~R2R5h
2ei ~w251w52!2T2!

2t2t4r 2r 5h~eiw521eiw25!#. ~24!

In this equation there are two nonlinear phase shi
where

w255wstat1gLhR2P, ~25!

refers to the direction from M2 towards M5, and

w525wstat1gLR5h~T2T41R2R4R5h
2

22hr 2r 4r 5t2t4cosw25!P ~26!

-
te

FIG. 5. The ‘‘P’’ configuration.ai , bi denote field amplitudes
M2, M4 are beam splitters, and M5 is the output coupler.
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3128 55U. MORGNER AND F. MITSCHKE
refers to the opposite direction. Equation~24! leads to a map
for the powers

P~n11!5G~P~n!!$@r 4„R2R5h
2cos~w251w52!2T2…

2t2t4r 2r 5h~cosw521cosw25!#
2

1@r 4R2R5h
2sin~w251w52!

2t2t4r 2r 5h~sinw521sinw25!#
2%P~n!

5F~P~n!!P~n!. ~27!

Figure 6 shows the ‘‘P’’ map Eq.~27! ~solid line!. At
small powers the graph follows the bisector closely; in t
regime there is one attractive and one repulsive fixed p
~5 intersections with the bisector!, indicated as filled and
open circles, respectively. The first dynamical fixed po
(J,21) occurs at elevated powers, where the graph tran
into undulations around the bisector. The undulations app
when cosw25(P) has negative slope and thusdw52/dP is
large.

The first dynamical fixed point~the one occurring at the
lowestw52) is shown in Fig. 7 as a function ofR2. In com-
parison with Fig. 4, it is readily apparent that for the sa
nonlinear phase~i.e., power!, the threshold of instability is
reached at much smaller reflectivity. In conclusion we c
say that although both ‘‘M’’ and ‘‘P’’ configurations can b
described by one-dimensional maps, unstable output oc
at a considerably lower threshold for the ‘‘P’’ case, a
should be observable experimentally.

C. The Fabry-Pérot configuration

This configuration has been the most popular until now
is schematically shown in Fig. 8. The main resonator has
output coupler M2; for notation of reflectivity, etc., see
above. It is coupled to a fiber cavity of the same opti
length except for a phase biaswstat. With the optical-field
amplitudespi :5bi and powersPi in each cavity the nonlin-
ear phase shift and the total phase are defined as

wnl52gLhT3P2 , ~28!

FIG. 6. ‘‘P’’ map P(n11)(P(n)). Parameters:R250.04,
R450.8, h50.7, R550.6, gL56.8 kW21, and wstat5p. In the
lower plot cosw25 is shown.
s
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w5wnl1wstat. ~29!

In our quasi-cw treatment we formulate the Fabry-Pe´rot
map

p1
~n11!5r 2g~P1

~n!!p1
~n!1t2hT3e

iwp2
~n! , ~30!

p2
~n11!5t2g~P1

~n!!p1
~n!2r 2hT3e

iwp2
~n! .

The corresponding expressions for the powers are

P15R2G~P1!P11T2h
2T3

2P2

1r 2t2hT3g~P1!~p1p2* e
2 iw1p1* p2e

iw!, ~31!

P25T2G~P1!P11R2h
2T3

2P2

2r 2t2hT3g~P1!~p1p2* e
2 iw1p1* p2e

iw!.

In contrast to the ‘‘M’’ and the ‘‘P’’ configurations this sys
tem is described by two coupled equations. This is relate
the fact that energy can be stored in either cavity, so t
there is a twofold memory effect. From Eqs.~31! we can
derive the general relation between the two intracavity po
ers

P25
G~P1!21

12h2T3
2 P1 . ~32!

FIG. 7. Nonlinear phase shift at the first dynamical fixed po
as a function of the coupling reflectivityR2, ‘‘P’’ configuration.
Parameters:h50.7,R450.8;wstat, R5, andgL were adjusted such
that the minimum value ofw52 is obtained. The discontinuities in
the curve are caused by transitions between the undulations o
map ~see Fig. 6!.

FIG. 8. The Fabry-Pe´rot configuration.ai and bi denote field
amplitudes, M2 is a beam splitter, M3 the output coupler.
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The fixed points of the fields (pi
(n11)5pi

(n)5:pi) must
fulfill @remember thatw5w(up2u2) andg(P1)5g(up1u2)#

@12rg~P1!#@cos~w!1r 2hT3#

5ThT3g~P1!, ~33!

⇒g~P1!5
cos~w!1r 2hT3
hT31r 2cos~w!

. ~34!

Additionally, the net phase shift per round trip must van
to provide fixed points of the phase. So the constra
wnl1wstat5np, n integer must be fulfilled. However, th
static phase is an external parameter, so that generally
condition is not satisfied and no fixed points of the fie
amplitudes occur. Nevertheless, Eq.~30! can be solved by
the solution

p1
~n!5APf ,1e

i ~nk1c!, ~35!

p2
~n!5APf ,2e

ink ,

which turns out to be stable in numerical experiments. Si
lar to the above, these solutions rotate in phase at a rak
with a phase differencec. The squares of these expressio
provide two fixed-point solutions of Eq.~31!, which we call
Pf ,1 andPf ,2 . Pf ,i can be calculated by the balance of ga
and loss

15G~Pf ,1!Reff@w~Pf ,2!#

5G~Pf ,1!

~r 22hT3!
214r 2hT3cos

2
w

2

~12r 2hT3!
214r 2hT3cos

2
w

2

~36!

and the relation Eq.~32!. With Pf ,1 andPf ,2 , k andc can be
calculated by

eik2hT3ge
i ~w2k!5r 2g2r 2hT3e

iw. ~37!

The solution is

tan
k

2
5

A112ghT3cos~w!1Gh2T3
22R2h

2T3
2sin2~w!

hT3~g1r 2!sin~w!

2
11ghT3cos~w!

hT3~g1r 2!sin~w!
, ~38!

cos~c!5
T2Pf ,11~R22h2T3

2!Pf ,2

2r 2t2APf ,1Pf ,2

. ~39!

The stability of this solution depends onw and its power
dependence viawnl , compare Eq.~29!and Eq.~28!. wnl at the
onset of unstable behavior is shown in Fig. 9 as a function
h2T3

2. This quantity describes the fraction of power returni
to the main cavity and at the same time provides a mea
for the finesse of the fiber branch. The operational state
scribed by these fixed points is thus stable for very we
nonlinearity; at the first bifurcation it becomes unstable.
expected, the threshold decreases with increasing feed
from the auxiliary resonator, corresponding also to incre
t

his

i-

s

f

re
e-
k
s
ck
s-

ing fiber cavity finesse. A comparison with the ‘‘M’’ topol
ogy shows that for parameters as typically used in exp
ments, instabilities are much more likely to occur in t
‘‘FP’’ configuration. This is reasonable, because one wo
intuitively assume that multiple-beam interference would
more prone to instability than two-beam interference.

For this topology experiments have been reported ab
the regime of instability; therefore, we also performed a n
merical study of the map at and beyond the threshold
instability. Figure 10 shows the result for some represen
tive set of parameter values. We chose to display a sca
the nonlinearity coefficient 2gL; while this choice has no
immediate experimental counterpart, it shows the influe
of the amount of instability most clearly. Figure 10 has thr
parts: The top panel shows a bifurcation diagram, the sec
panel a spectrogram obtained from a Fourier transform of
data in the top panel. The bottom panel displays the spect
of Lyapunov exponents from Eq.~13! obtained by the itera-
tion of Eq. ~30!. Since Eq.~30! is a two-dimensional com-
plex map, the Jacobian is four-dimensional, and there
four Lyapunov exponents. Note that the broadband in
bifurcation diagram at 2gL55.3 . . . 6 kW21 ~disregarding
the periodic window near 2gL55.6kW21) has a corre-
sponding broadband spectrum and a positive Lyapunov
ponent and is thus clearly identified as chaotic, wherea
similar band in the bifurcation diagram at 2gL51.9 . . . 3.2
kW21 has discrete spectral lines and no positive Lyapun
exponent and is thus identified as quasiperiodic.

D. The ‘‘F ’’ configuration

This configuration, resembling the letter ‘‘F ’’ in its
shape, is unique in that it has no unused output or input fr
a beam splitter~see Fig. 11!. A laser resonator contains
beam splitter M2 which steers part of the intracavity ligh
towards a fiber; light at the other fiber end returns to
main cavity from the other side of M2. The fiber subcavity
has the same optical length as the main cavity except for
phase biaswstat ~see Fig. 11!. Note that light propagation
through the fiber is bidirectional. Due to this bidirectionali
a description requires three coupled maps

FIG. 9. Nonlinear phase at the onset of instability as a funct
of the fraction of powerh2T3

2 returning from the fiber branch
‘‘FP’’ configuration. Parameters:R2,0.8; wstat and gL were ad-
justed such that the minimum value ofwnl is obtained.
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FIG. 10. Route to chaos calculated for the Fabry-Pe´rot configuration. Parameters:R250.8,h2T3
250.04, andwstat521,16. For each value

of gL, 11 000 iterations were calculated. The first 1000 were disregarded to let transients die out. Then, data were plotted in the
way: Top: Bifurcation diagram~power in fiber armP2 vs nonlinearity coefficientgL!. The next 50 iterations are plotted. Middle: Spectr
gram, frequenciesn for which the power density exceeds a threshold. Fourier transforms of 512 iterations ofP2 are used. Threshold wa
chosen at 40 dB below the maximum power occurring at thisgL; in the chaotic regime threshold was increased to limit the number of po
Bottom: Lyapunov spectrum, calculated using all 10 000 remaining data points (N1510,N251000). Finally,gL was incremented; the las
iterates were kept as new initial values to simulate a continuous scan. Note that due to hysteresis effects, different choices
conditions, e.g., a downward scan, would result in a somewhat different picture.
for
fi-

ult
have
ical

be

lo-
or
e
nd
a4
~n11!5@ t2a4

~n!2r 2g~b1!b1
~n!#heiwcw, ~40!

b1
~n11!5t2r 3@r 2a4

~n!1t2g~b1!b1
~n!#2r 2b4

~n!heiwccw,

b4
~n11!5r 2r 3@r 2a4

~n!1t2g~b1!b1
~n!#1t2b4

~n!heiwccw.

FIG. 11. The ‘‘F ’’ configuration. ai , bi denote field ampli-
tudes; M2 is the beam splitter, and M3 is the output coupler.
Again, there are two different nonlinear phase shifts
clockwise and counterclockwise propagation through the
ber, respectively

wcw5gLhub3u21wstat, ~41!

wccw5gLhub4u21wstat. ~42!

A system of three coupled equations is much more diffic
to treat than the cases described before. Therefore, we
not yet attempted an analytical treatment. From numer
exploration, we can tentatively say that~1! the threshold ap-
pears to be low in comparison, and~2! the range of possible
types of behavior in the instability regime appears to
much wider—which is not surprising, of course.

V. DISCUSSION

We have shown that the models for four different topo
gies of APM lasers differ in their degree of complexity. F
the much-studied Fabry-Pe´rot case we also venture into th
unstable domain. We find period doubling into chaos a
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quasiperiodicity, which were indeed both observed exp
mentally by Suchaet al. @12# and by Morgner, Rolefs, and
Mitschke @13#. Quasiperiodicity was explained in@13# as a
result of cavity length mismatch; obviously, another mec
nism exists in the absence of such mismatch. For a Mic
son configuration, the observation of instabilities is unlike
for all reasonable parameter values. For a ‘‘P’’ or a Fab
Pérot configuration, period doubling and chaos should
much more readily observable. This conclusion is confirm
by Sucha, Bolton, and Chemla@16# who reported on a re
markable difference in stability behavior for the Michels
and the Fabry-Pe´rot case in both numerical simulation an
experiment. By the same logic, the dynamical behavior
the ‘‘F ’’ configuration is expected to be even more prone
various kinds of instabilities. Experimental findings report
by Groninga and Harde@17# seem to support this conclusion
but a full experimental verification is presently lacking. O
results suggest that in search for the most stable config
tion, further effort on the ‘‘f’’ topology is not warranted.

Our treatment apparently describes the relative stability
the various topologies correctly. We pointed out above, ho
ever, that the quasi-cw approximation misses important
tors of the dynamics. Let us assess the influence of this
proximation by way of analogy: For a passive fiber ri
resonator it has been shown in detail that dispersion
major factor in the dynamics of pulses in a resonator,
cause it represents a coupling between temporal slices@29–
31#. Depending on dispersion sign, there may even be op
turbulence@31–33# or a soliton gas@34#. Note, however, that
all these shaping processes occur above the first instab
threshold. In fact, the quasi-cw treatment by Ikeda and
workers@18,19# correctly predicts the instability threshold i
spite of its simplifications.

Therefore, to determine conditions for the first thresh
we chose the same simplified approach in the expecta
that coupling mechanisms like dispersion, bandwidth limi
c
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tion, gain depletion, etc., will not affect the threshold con
tions precisely because all these phenomena begin to e
significant influence onlyafter destabilization.

CONCLUSION

Different APM cavity topologies have been investigat
analytically by a quasicontinuous-wave treatment. Thre
olds for dynamical instability were derived, and the over
dynamical complexity categorized. We conclude that
Michelson configuration is the most robust in that it ma
tains a regular pulse stream except for extreme choice
parameters. This superior stability has also been found
pirically; however, it was attributed to technical factors b
fore @14#, whereas we have shown that there is a dee
physical root. The other configurations will exhibit dynam
cal instabilities at parameter values typical for operation. T
degree of complexity increases as one passes from the ‘
through the ‘‘FP,’’ to the ‘‘F ’’ topology. This is in accord
with previous observations of such differences in stability.
conclusion, we showed that there can be period doubling
chaos in additive-pulse mode-locked lasers due to the in
action of the gain medium with the Kerr nonlinearity, an
that the cavity arrangement plays the crucial role.
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