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Nonlinear dynamics of additive-pulse mode-locked lasers in four cavity topologies
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Coupled-cavity mode-locked lasers, useful as they may be, can have a tendency to display dynamic insta-
bilities; the mechanisms for this phenomenon are poorly understood. We show here by analytic means, supple-
mented with numerics, how these instabilities arise from the coupling of nonlinear resonators and how the
thresholds for instability depend strongly on the topology of the laser. Four different topologies are considered,
the Michelson, the Fabry-Pat, and two further configurations. The results of this comprehensive theory
identify the most stable and the most unstable configuration and explain empirical findings of several authors.
[S1050-294{@7)01204-3

PACS numbe(s): 42.65.5f, 42.65.Re, 42.60.Da, 42.60.Fc

INTRODUCTION manageable, we will consider sufficiently narrow “time
slots,” or slices, from the pulse and treat them as if they
Coupled-cavity mode-locked lasef4], also known as evolved in independence from neighboring slices. Formally,
soliton laserg2,3], interferentially mode-locked lasef4,5],  we can then proceed as in the cw treatment of I{d@a19.
or additive-pulse mode-lockgtAPM” ) laserd6—11], have  We call this simplification the “quasi-cw” approximation; it
been demonstrated to be useful tools for a variety of inveshas been used in the context of passive fiber resonators by
tigations. In most cases a single mode optical fiber is used aseveral author$20,21. In the end, we will return to the
the nonlinear medium because this choice is both effectiveffect of the interaction between slices and argue that the
and economical. Since no specialized components are r¢hreshold values for instabilitie®@ur central resujtare not
quired, any lab in possession of a Nd:YAG laser could con-affected.
figure it as a source of ps pulses by adding just a few stan- For definiteness and graphical illustration, assume a laser
dard items. On the other hand, any system of couplegulse P(t)=Pyseci(1.7@/7) with the full width at half
nonlinear resonators is likely to be prone to dynamical instamaximum(FWHM) . Split it up into several temporal slices
bilities like period doubling and chaos. In fact, for APM of some widthAT with powersP;, whereP;_, is at the
lasers employing an optical fiber as a nonlinear element, thpulse peaksee Fig. 1
ocurrence of such instability has been experimentally estab- The quasi-cw laser model describes the interaction of one
lished[12,13. Several authors have noted that the way insuch slice with the gain medium and the fiber nonlinearity,
which the cavities are connectéih other words the cavity according to rules set qualitatively by the topology and quan-
topology has an influence on the stability of the systemtitatively by the splitting ratio of the beam splitter. The
[6,14—164. There are indications that this is not a mere tech-‘fast” components—splitter and nonlinear phase shift—can
nical difference but rather deeply rooted in the dynamics obe included in a straightforward manner. On the other hand,
the system{16]. Unfortunately, so far theoretical guidance gain is “slow” in the sense that it depends on the energy of
has been lacking on this matter. the whole pulse; within the framework of the quasi-cw ap-
By studying this class of lasers, we try to obtain furtherproximation, we still have to include some global informa-
insight into the behavior of coupled nonlinear oscillators fortion on the remainder of the pulse. To this end we note that
both fundamental and practical reasons. We present analytihe pulse energy is given by
cal models for four possible cavity arrangements. The Fabry-
Paot and Michelson geometries have been considered by
several authors before. We extend our approach to the “P”
and “Q” configurations mentioned by17]; note that we B AT
prefer to call the latter the ®” configuration. We begin by P, N=
formulating maps for each topology within the framework of |
a quasicontinuous-wave€W) treatment. For the limitations
of this treatment, see below.

POWER

I. QUASI-CW MODEL

Since we deal here with nonlinear, i.e., power-dependent J k
effects, some value of power must be inserted in the equa-
tions to be derived below. This is straightforward in the case TIME
of constant power; however, we are concerned mainly with

pulses of light which by definition have a temporally varying  FIG. 1. Separation of the pulse into several sli€gsof width
power. We will proceed as follows: To keep the mathematicAT. N describes the number of slices in the pulse width
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% C. Fiber nonlinearity
W:f P(t)dt=ATi:Z_m Pi~Po7 @) The optical Kerr effect in monomode fibers leads to an
intensity-dependent refractive indexaccording to
and the number of slices, in the pulse width is of the order n=na+n-P/A 8
of Ng=7/AT. The energy contained in sliced™ is W, and 0"z eff ®
represents the fractior; of the total energy, with wheren, is the classical, or small-signal, index, the non-
. linearity coefficient, andA.+ the modal cross section. The
oW PAT 1 ele (2  resulting seif-phase modulation in a fiber of lengtteads to
"W  Pgr N ' 6N_S ' a nonlinear phase shif,(t) given by[25]
27Tn2
Il. APM COMPONENTS ep=——LP=9LP 9
Mg

A. Gain medium

We are mainly concerned here with solid-state Iaseré)‘ 's the wavelength

which have a very small emission cross section. It is there-
fore a reasonable approximation to neglect dynamical contril!l- JACOBIAN AND LYAPUNGV EXPONENTS OF MAPS

butions to gain saturation. The power g&GW) of a double A useful tool to describe the dynamical behavior of a map
pass through the laser medium as a function of the intracawyuantitatively is the use of Lyapunov exponents. Their num-
ity pulse energyV is then written a$22] ber corresponds to the dimension of phase space. Their real
parts describe the stability against small perturbations; a sys-
G—(W)=exp( L) 3) tem is stationary if all real parts are smaller than z€fte
1+WIW;)' existence of at least one exponent with positive real part has
been used as a definition for a chaotic sys{@®l.)
with go the small signal gain of a double pass am the For anN-dimensional map
saturation energyg, can be measured from the relaxation
oscillation frequency23]. We use here values as measured X+ = f(x(M) (10)

for our Nd:YAG laser, namelyg,=0.7 andWy= 130 nJ.
Estimating the energW of the whole pulse from the the Jacobiarior Floquet matrix J is defined as
power of the slice with index we arrive at the power gain

_ dt1(x) 3t1(x)
G(P,):gZ(PI)ZG(ATP, /Ki), (4) X1 () OXN M)
Pi7 JM:= ‘ : . (1D
=Gl sechL.7a/Ny) | ® )| ot
07X1 <) &XN <)
whereg(P;) is the field amplitude gain. We assume here a
pulse width ofr=10 ps. Obviously, the slice with=0 is the .
most interesting; all results given below will refer to this and the Lyapunov multipliera. as[27]
slice.
A= lim |[EV(IMI—D... 301 (12

n—o

B. Beam splitter

We will use the following convention for the notation of with x(" a sequence generated by the map Bd), and
properties of the beam splitter: Reflectivities are denoted b¥V(J) the eigenvalues. In practice E(.2) is computed by
the letterR or r, and transmissivities by the lettdr or t,

- IN
where upper case refers to power and lower case to field - N2 Nz

. . . ~ kN;— kNp— /
amplitude. The relatioR=r?=1—T=1—t? is understood A~ kﬂl [EV(IKNm DL kMmN (I (13)

(lossless beam splitter

At the beam splitter, two incident complex field ampli- \yhereN, describes the number of matrices to multiply, and
tudesa,,a; interfere. The resulting amplitudes; ,b, are N, the number of eigenvalues to average. Without loss of
given as[24] generality, we enumerate the multipliers as

b,=ra,+ta,, (6) A<A,<---<Ay. (14

b,=ta;—ra,, (7)  We find thatA; can be calculated with high precision using
the standard floating point unit on a digital computer with
where the negative sign in E€Y) refers to the phase jump of N;~100 in a straightforward manner. Let us remark that due
7 due to the reflection at the medium of higher refractiveto small inaccuracies in the calculation of the eigenvectors,
index. the estimators for all other multipliers convergeig after a
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to complex field amplitudes; for the sake of clarity in the
equations below we use the shorthand notatities|p|?,
wherep:=a,. The beam steered towards the fiber carries the
power |bs|>=PR. A finite coupling efficiency from a free
space propagating beam into a fiber is taken into account by
n<1. The fiber is terminated at the distal end with a perfect
A reflection at mirror M. Thus the power)?|bs|? reenters the
GAIN main cavity at the beam splitter. The reentrant light interferes
— : with the light in the main cavity. The optical path length
Ml M3 M,—M; matches the length p4M, of the fiber branch, ex-
cept for a tiny difference expressed as a phase offggt In
FIG. 2. The Michelson configuratiom, , b; denote field ampli-  the fiber, self-phase modulation produces a nonlinear phase

tudes; M is the beam splitter. shift

FIBER

few tens of matrix multiplications. Still, we could determine eni=2YLR7P. (17)
Ay with the same high precision by using the time invertedryq time evolution of a continuous laser figl after the
system nth cavity round trip is given by the Michelson map

A,glznm sug EV(JL- 1M .. gl=11(0)y 1, (15)

n—oo

p(n+ 1) g( P(n)) p(n)[-H_ Rnei[‘Pm(P(n))Hpstaﬂ], (18

Aj with j=2,... N—1 could only be obtained with re- with the gain_ term and the cha_racteristic two beam interfer-
duced precision using\;~10. However, sinceA; is the ~€NCe of the linear and the nonlinear branch. It has the stable

most relevant multiplier anyway for our purposes here, nosolution
further attempts were made to increase the precision on the -
p p p(n):\/P_oemK'

intermediate multipliers. The Lyapunov exponextare then

defined as We see that there is a fixed point of the powep, while
)\J—=In|AJ-|, i=1,...N. (16) there is no fixed point for the field since the phase rotates

with a velocity «, determined by
In a one-dimensional system the Jacohlds a scalar and N ;
= + .
equal to its eigenvalue. A fixed point of the map with i =Rng(Po)sil ¢n(Po) + siad 20

[9]<1 is attractive and thus stable, whereas a fixed point 1 find P, we can restrict ourselves to a consideration of

with |J[>1 is repulsive and thus unstablk< —1 is a nec-  he evolution of power. It follows from Eq18) that
essary condition for the system to reach a two cycle, and

p_ossibly the beginning of a period—doubling sequence, qua- PN D=G(PM){T2+R?»?+279TR
siperiodicity, or chaos. We call such a fixed poindynami- - -
cal fixed point X cog @ni(P'™) + @stad } P

=:G(PM)Res(PM)PMW=F(PM)PM, (21

(19

IV. APM CAVITY TOPOLOGIES

In most published studiglsl—-3,7—-13 APM lasers were
configured in the Fabry-Pet (“FP” ) topology. In several
cases, however, a Michels¢tM” ) topology was used with
good succespt—6,14,1%. Meanwhile, some additional con-
figurations have been realiz€tl7,28. Note that some seem-
ingly different arrangements turn out to be topologically
equivalent so that the total number of possible configuration
is limited. For example, a figure-8 laser with two unidirec-

In the absence of nonlinearity y&0), this one-
dimensional map has exactly one fixed point. $#fl2exceeds
some threshold, simultaneously two more fixed points ap-
pear. At even higher nonlinearities, more pairs of fixed
points appear, and one gets a possibly large odd number of
fixed points(see Fig. 3 The stability of each fixed point is
%etermined by the pertinent Jacobian. For the map(E&d.

e Jacobian at the fixed poiRt, with F(Pg) =1 is given by

tional rings is equivalent to the FP configuration. While IF(P)
some authors concluded that the M configuration is superior J=1+P, (22
to the FP in terms of stability, it is not entirely clear yet P Po

which configuration is best for which purpose. We therefore
discuss, one by one, all four topologies mentioned above.  One finds that the fixed points are alternately stable and
unstable. From any of the stable fixed points a period-
A. The Michelson configuration doubling scenario may occur, provided other parameters are

, . . adjusted such that becomes smaller thaih=—1. Thus the
Consider a resonator formed by two highly reflecting .ongition for the onset of instability is

(HR) mirrors M; and M, containing a gain medium and a

partial reflector as a beam splitter,MThe latter splits the IF(P)

light from the gain medium between the fiber branch and the op =—2/P,. (23
air branch(see Fig. 2. The quantities; andb; in Fig. 2 refer Po
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P@ (kW) P® (kW) FIG. 5. The “P” configuration.a;, b; denote field amplitudes,

M,, M, are beam splitters, and dMs the output coupler.
FIG. 3. Michelson mapP""Y(PM) and its second iterate
P2 (P). ParametersR=0.07, 7*=0.7, yL=5kW~*, and tjve interference in the far wings of the pulse, and no mul-
osia= 7/2. One of the unstable fixed points is labeled as “dynami-»[ip|e pulsing.
cal”; it generates two more stable fixed points in the second iterate This additional constraint is shown in Fig. 4 as a horizon-
indicative of a period doubling. tal line at 1.6r. One sees that the threshold of instability in

) ) ) N the “M” configuration can be reached only with coupling
Figure 4 illustrates this condition. It shows the smallest Nonygfiectivities larger thaR=0.16. Only high gain laser media

linear phase for which this condition can be satisfied as g,.1d be used with this substantial output coupling, and in-
fuhnct|on of Lhe_ ref(lje}:tlvny of the bheam ip“tta’ w:e:e the  gtabilities are unlikely to be a problem. We conclude that in
phase is obtained from power through EQy7). At large an APM laser in Michelson topology with a reasonably low-

reflectivities the instability threshold tends tg,~ . For enl; - o
R=0.12 as used, e.g., ifild], the threshold is at about gigzr: splitter reflectivity no dynamical instabilities can ever

¢n=2.5m7, and atR=0.05 and below, the threshold rises to
enormous nonlinear phase values.

It should be noted, however, that nonlinear phase shifts
significantly larger thanr cannot occur for a reason that is
not included in this quasi-cw model: During start-up, some This configuration received its name due to its resem-
initially rather broad pulses will form; at this time the peak blance to the letter “P.” Since here we have to distinguish

nonlinear phase shifp, will be much less thanr. As the the reflectivity, etc., of several beam splitters and mirrors, we

pulses then get shorteg, will approach . As soon as label the respective qugntities with.indice:s-, as _in Eig. 5. We
- . assumeR; = R3=1. Again the coupling efficiencies into and

e, however, further pulse shortening ends. Indeed, i ack from the fiber are;. The optical path lengths between

extensive numerical modeling we never encountere'%)ﬂ . . . . .
~ L g - > and M, either via M; or via the fiber and M are adjusted
¢n>1.6r. Normal operation is thus expected @t~ 7, SO to be equal

that there is constructive interference at pulse peak, destruc- Similar to the “M" configuration this system can be de-

scribed by a one-dimensional map: The temporal evolution

B. The “P” configuration

— —— T 6n of the laser fieldp™:=a{", P:=|ay|? at the nth cavity
= . 1 round trip is given by
< | THRESHOLD OF 1sn _
%—1 g INSTABILITY ) p" D =g(P)p"V[r 4(R,Rs € (¢25% ¢52 —T )
- 4 . .
> 17 —totar o gp(el¥se+ ei¢2s)], (24)
% 107 DOMAINOF 4 3r
2 INSTABILITIES _ _ _ _
E \ don In this equation there are two nonlinear phase shifts,
Ao e N where
S’ / AL
4 | MAXIMUM ATTAINABLE fteseto In
PHASE SHIFT :
0 — or @25~ @start YL RSP, (25
000 005 010 0I5 020 025 030
REFLECTIVITY R

refers to the direction from Mtowards M, and
FIG. 4. Onset of instability as a function of coupling reflectivity
R, “M” configuration. Parametersy?=0.7, o.;and yL were ad-
justed such that the minimum value ¢f, resulted. The line at ©57= @siart YLRs (T, T4+ RyR4Rs 72
~ 1.6 indicates the maximum possible nonlinear phase ghie
text). -2 nror 4r5t2t4COS(P25) P (26)
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FIG. 6. “P" map PUD(PM). j’arameters: R,=0.04, FIG. 7. Nonlinear phase shift at the first dynamical fixed point
R,=08, 7=0.7, Rs=0.6, yL =6.8 kW™%, and ¢su=7. In the 45 5 function of the coupling reflectivitiz,, “P” configuration.
lower plot cogs is shown. Parametersy=0.7,R;=0.8; o Rs, andyL were adjusted such

] ] ) ) that the minimum value obs, is obtained. The discontinuities in
refers to the opposite direction. Equati@#) leads to a map  the curve are caused by transitions between the undulations of the
for the powers map(see F|g ﬁ

P+ D =G(PM™){[r,(R,Rs7%CO @5+ ¢050) — T
(P™){[r4(R:Rsn"CcOq ¢ o5t ¢s50) — T5) ©=@nt+ Pstat- (29

— 1,4 oF 577(COSpsp+ CO 2 )
24l 2l s7(COSps2 Sp2s)] In our quasi-cw treatment we formulate the Fabrye®e
+[r4RoRs7°sin( o5+ ¢5) map

—totaf of 57(SiNgs,+ SiNg9) 12 P p "V =r,g(P{")p\V+1t,7Tse¢py?, (30

=F(pMpMm. 2
(= @7 P P =t,g(PY")pi” 1, Tae'¥psY.

Figure 6 shows the “P” map Eq(27) (solid line). At
small powers the graph follows the bisector closely; in thisThe corresponding expressions for the powers are
regime there is one attractive and one repulsive fixed point
(= intersections with the bisectorindicated as filled and P1=R,G(Py)P1+T,7°T3P,
open circles, respectively. The first dynamical fixed point i %o
(J<—1) occurs at elevated powers, where the graph transits 12ty T30(Py)(papz e '+ prpae™),  (31)
into undulations around the bisector. The undulations appear
when co®,5(P) has negative slope and thakps,/dP is
large.

The first dynamical fixed poinfthe one occurring at the
lowest ¢5,) is shown in Fig. 7 as a function &,. In com-
parison with Fig. 4, it is readily apparent that for the sam
nonlinear phaséi.e., powey, the threshold of instability is

reached at much smaller reflectivity. In conclusion we CaNpeare is a twofold memory effect. From Eq&1) we can

say that although both “M” and "P" configurations can be yejye the general relation between the two intracavity pow-
described by one-dimensional maps, unstable output OCCULS o

at a considerably lower threshold for the “P” case, and
should be observable experimentally. G(Py)—1

2= g

P,=T,G(P,)P;+R,7°T3P,
— 1oty Tag(Py)(p1pse '+ plp,e'®).

In contrast to the “M” and the “P” configurations this sys-
€em is described by two coupled equations. This is related to
the fact that energy can be stored in either cavity, so that

(32
C. The Fabry-Peaot configuration

This configuration has been the most popular until now; it

is schematically shown in Fig. 8. The main resonator has an FIBER
output coupler M; for notation of reflectivity, etc., see I/ @ |
above. It is coupled to a fiber cavity of the same optical GAIN

length except for a phase bias;. With the optical-field & I
amplitudesp; :=b; and powers; in each cavity the nonlin- 1 M; M,

ear phase shift and the total phase are defined as
FIG. 8. The Fabry-Pet configuration.a; and b; denote field

on=2yL7T3P5, (28)  amplitudes, M is a beam splitter, Mthe output coupler.
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The fixed points of the fieldsp{"*Y=p(W=:p,) must — —— .
fulfill [remember that= ¢(|p,|2) andg(P1)=g(|p1|?]

[«
v 1

[
T T T

Additionally, the net phase shift per round trip must vanish
to provide fixed points of the phase. So the constraint
ent esa= N, N integer must be fulfilled. However, the . . . L
static phase is an external parameter, so that generally this 800 o0z 004 0.06 0.08 0‘18"
condition is not satisfied and no fixed points of the field 2.2

. T.” OF THE FIBER BRANCH
amplitudes occur. Nevertheless, E§0) can be solved by FEEDBACK 7 T, O

[1-rg(Py)[cog )+ o7 Ts] S
~TyTog(Py), @ I
=
_cogg)+rynTy <3t 1t
ig(Pl)—m- (34) 2
2
Z

—_

the solution _ . . .
FIG. 9. Nonlinear phase at the onset of instability as a function
p(ln): /P_f 1ei(n;<+¢1), (35) of the frac_:tion _of powernzTg returning from the fiber branch,
' “FP” configuration. ParametersR,<0.8; ¢4, and yL were ad-
p(zn): meink, justed such that the minimum value @f, is obtained.

which turns out to be stable in numerical experiments. simiN9 fiber cavity finesse. A comparison with the "M" topol-

lar to the above, these solutions rotate in phase at axdate ogy ShO.WS th‘fi.t _for parameters as typically used in _experi-
with a phase differencé. The squares of these expressionsments’ |n§tabll|§|es are mUCh more likely to occur in the
provide two fixed-point solutions of Eq31), which we call FP” configuration. This is reasonable, because one would

P, andP;,. Py, can be calculated by the balance of gainmtumvely assume tha_lt' multiple-beam mterference would be
and loss more prone to instability than two-beam interference.

For this topology experiments have been reported about

1=G(Pt )Rerl @(Ps2)] the regime of instability; therefore, we also performed a nu-
' ’ merical study of the map at and beyond the threshold of

_ 2 Sg_@ instability. Figure 10 shows the result for some representa-
(ra=7T3)"+4r,nTsco 2 tive set of parameter values. We chose to display a scan of

=G(Pt1) (36 the nonlinearity coefficient gL; while this choice has no

(1—r,5T3)%+4r,nTacoe = immediate experimental counterpart, it shows the influence

2 of the amount of instability most clearly. Figure 10 has three
and the relation Eq32). With P, ; andP ,, x andy can be parts: The top panel shows a bifurcation d?agram, the second
calculated by : : pane_l a spectrogram obtained from a Fou_rler transform of the
data in the top panel. The bottom panel displays the spectrum

ef— pTage ¢ =r,g—r,nT4e®. (37)  of Lyapunov exponents from E@13) obtained by the itera-

tion of Eq. (30). Since Eq.(30) is a two-dimensional com-
The solution is plex map, the Jacobian is four-dimensional, and there are
four Lyapunov exponents. Note that the broadband in the

Kk 1+299T3c08 @) +G7?T5— R, 7’ T5sin (o) bifurcation diagram at 2L=5.3...6 kW ! (disregarding

ans = nT3(g+r2)sin(e) the periodic window near 2L =5.6kW™!) has a corre-
sponding broadband spectrum and a positive Lyapunov ex-
1+gnTscog ) 39 ponent and is thus clearly identified as chaotic, whereas a

similar band in the bifurcation diagram atyR=1.9...3.2
kW ~! has discrete spectral lines and no positive Lyapunov
T,oP; 1+ (Ry— ,72-|-§)pf ) exponent and is thus identified as quasiperiodic.

(39
215ty Py 1Py 2

The stability of this solution depends am and its power This configuration, resembling the letter®" in its
dependence via,, compare Eq(29and Eq.(28). ¢, atthe  shape, is unique in that it has no unused output or input from
onset of unstable behavior is shown in Fig. 9 as a function o& beam splittesee Fig. 11 A laser resonator contains a
772T§. This quantity describes the fraction of power returningbeam splitter M which steers part of the intracavity light
to the main cavity and at the same time provides a measuttewards a fiber; light at the other fiber end returns to the
for the finesse of the fiber branch. The operational state demain cavity from the other side of M The fiber subcavity
scribed by these fixed points is thus stable for very wealhas the same optical length as the main cavity except for the
nonlinearity; at the first bifurcation it becomes unstable. Asphase biasp,; (see Fig. 11 Note that light propagation
expected, the threshold decreases with increasing feedbatkrough the fiber is bidirectional. Due to this bidirectionality
from the auxiliary resonator, corresponding also to increasa description requires three coupled maps

~ 9Ta(g+ro)sine)’

cog ¢) =
D. The “®” configuration
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-6 1 — T T T
0,0 0,5 1,0 1,5 2,0 2.5 3,0

NONLINEARITY yL (kW)

FIG. 10. Route to chaos calculated for the FabryePeonfiguration. ParameterR;=0.8, 7;2T§:0.04, andyg,—= —1,16. For each value
of yL, 11 000 iterations were calculated. The first 1000 were disregarded to let transients die out. Then, data were plotted in the following
way: Top: Bifurcation diagranfpower in fiber armP, vs nonlinearity coefficientL). The next 50 iterations are plotted. Middle: Spectro-
gram, frequencies for which the power density exceeds a threshold. Fourier transforms of 512 iteratiéhsané used. Threshold was
chosen at 40 dB below the maximum power occurring atthisin the chaotic regime threshold was increased to limit the number of points.
Bottom: Lyapunov spectrum, calculated using all 10 000 remaining data pdipts 10, N,=1000). Finally,yL was incremented; the last
iterates were kept as new initial values to simulate a continuous scan. Note that due to hysteresis effects, different choices of initial
conditions, e.g., a downward scan, would result in a somewhat different picture.

a"V=[t,ay" —r,g(b;)b{"]ne¢ew, (40) Again,'there are two differelnt nonlinear' phase shifts for
clockwise and counterclockwise propagation through the fi-
ber, respectively

(n+1) _ (n) (n)y_ (n) i ocew
by =tora[roay” +1,g(by) by ] —roby” nel feow, @ow= YL 7|D3*+ Osaps (41

(n+1)_ ) - M) i ®cow= YL 77| b4|2+ Pstat- (42)
by " =rars[raay’ +tg(by) by ]+ toby” nel foow, . . -
A system of three coupled equations is much more difficult
to treat than the cases described before. Therefore, we have
not yet attempted an analytical treatment. From numerical
exploration, we can tentatively say tha) the threshold ap-
pears to be low in comparison, af@) the range of possible
types of behavior in the instability regime appears to be
much wider—which is not surprising, of course.

Ii GAIN

V. DISCUSSION

We have shown that the models for four different topolo-
gies of APM lasers differ in their degree of complexity. For

FIG. 11. The '®” configuration. a;, b; denote field ampli- the much-studied Fabry-Re case we also venture into the
tudes; M is the beam splitter, and Ms the output coupler. unstable domain. We find period doubling into chaos and
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quasiperiodicity, which were indeed both observed experition, gain depletion, etc., will not affect the threshold condi-
mentally by Suchat al. [12] and by Morgner, Rolefs, and tions precisely because all these phenomena begin to exert
Mitschke [13]. Quasiperiodicity was explained [13] as a  significant influence onlyfter destabilization.
result of cavity length mismatch; obviously, another mecha-
nism exists in the absence of such mismatch. For a Michel-
son configuration, the observation of instabilities is unlikely
for all reasonable parameter values. For a “P” or a Fabry- Different APM cavity topologies have been investigated
Peot configuration, period doubling and chaos should beanalytically by a quasicontinuous-wave treatment. Thresh-
much more readily observable. This conclusion is confirmeg|ds for dynamical instability were derived, and the overall
by Sucha, Bolton, and Chem[d6] who reported on a re- dynamical complexity categorized. We conclude that the
markable difference in stability behavior for the Michelson Michelson configuration is the most robust in that it main-
and the Fabry-Ret case in both numerical simulation and tains a regular pulse stream except for extreme choices of
experiment. By the same logic, the dynamical behavior ofarameters. This superior stability has also been found em-
the “®” configuration is expected to be even more prone topirically; however, it was attributed to technical factors be-
various kinds of instabilities. Experimental findings reportedfore [14], whereas we have shown that there is a deeper
by Groninga and Hardgl 7] seem to support this conclusion, physical root. The other configurations will exhibit dynami-
but a full experimental verification is presently lacking. Our cal instabilities at parameter values typical for operation. The
results suggest that in search for the most stable configurglegree of complexity increases as one passes from the “P,”
tion, further effort on the ‘¢ topology is not warranted. through the “FP,” to the ‘D™ topology. This is in accord
Our treatment apparently describes the relative stability ofyith previous observations of such differences in stability. In
the various topologies correctly. We pointed out above, howgonclusion, we showed that there can be period doubling and
ever, that the quasi-cw approximation misses important facchaos in additive-pulse mode-locked lasers due to the inter-
tors of the dynamics. Let us assess the influence of this agction of the gain medium with the Kerr nonlinearity, and
proximation by way of analogy: For a passive fiber ringthat the cavity arrangement plays the crucial role.
resonator it has been shown in detail that dispersion is a
major factor in the dynamics of pulses in a resonator, be-
cause it represents a coupling between temporal Jk@s ACKNOWLEDGMENTS
31]. Depending on dispersion sign, there may even be optical
turbulencd 31-33 or a soliton ga$34]. Note, however, that
all these shaping processes occur above the first instability Discussions with and assistance from L. Rolefs, R.
threshold. In fact, the quasi-cw treatment by Ikeda and coHartwigk, and D. Jacob are gratefully acknowledged. We
workers[18,19 correctly predicts the instability threshold in also benefited from fruitful discussions with H. Harde and H.
spite of its simplifications. Groninga who shared their expertise on the “P” and the
Therefore, to determine conditions for the first threshold* @ cavity arrangements with us. Financial support from
we chose the same simplified approach in the expectatioReutsche Forschungsgemeinschaft is gratefully acknowl-
that coupling mechanisms like dispersion, bandwidth limita-edged.
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