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Operational theory of homodyne detection
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We discuss a balanced homodyne detection scheme with imperfect detectors in the framework of the
operational approach to quantum measurement. We show that a realistic homodyne measurement is described
by a family of operational observables that depends on the experimental setup, rather than a single field
guadrature operator. We find an explicit form of this family, which fully characterizes the experimental device
and is independent of a specific state of the measured system. We also derive operational homodyne observ-
ables for the setup with a random phase, which has been recently applied in an ultrafast measurement of the
photon statistics of a pulsed diode laser. The operational formulation directly gives the relation between the
detected noise and the intrinsic quantum fluctuations of the measured field. We demonstrate this with two
examples: the operational uncertainty relation for the field quadratures, and the homodyne detection of sup-
pressed fluctuations in photon statistitg81050-294{®7)00904-9

PACS numbd(s): 42.50.Dv, 03.65.Bz

[. INTRODUCTION However, analysis of the homodyne setup with imperfect
detectorg 7] shows that the relation between the statistics of
Homodyne detection is a well-known technique in detectthe difference counts and the quadrature spectral distribution
ing phase-dependent properties of optical radiation. In quaris, in fact, more complicated. The distribution measured in a
tum optics it has been widely used in studies and applicareal experiment is smoothed by a convolution with a Gauss-
tions of squeezed lightl]. A statistical distribution of the ian function of width dependent on the detector efficiency.
outcomes of a homodyne detector has recently found novélonsequently, realistic homodyne detection cannot be
applications in the measurement of the quantum state of lighatraightforwardly interpreted as a measurement of the intrin-
via optical homodyne tomograpljg] and the direct probing sic field quadratures, .
of quantum phase space by photon counfidh The phase A recent experimental application of homodyne detection
sensitivity of homodyne detection is achieved by performingto the reconstruction of the photon-number distribution of a
a superposition of the signal field with a coherent local osweak field from a pulsed diode lasg8] has shown that a
cillator by means of a beam splittp4]. It was an important  homodyne setup with the fluctuating phagés a powerful
observatior{5] that in a balanced scheme, with a 50%:50%to0l in measuring phase-insensitive properties of light. How-
beam splitter, the local oscillator noise can be canceled bgyer, it is not possible to associate with this setup any spec-
subtracting the photocurrents of the detectors facing two outral measure, even in the case of perfect detectors. Therefore,
going beams. Then, in the limit of a classical local oscillator,homodyne detection with the random phase cannot be de-
the statistics of difference photocounts is simply a signakcribed in terms of measuring any intrinsic quantum observ-
guadrature distribution rescaled by the amplitude of the locajple.
oscillator[6,7]. Therefore, balanced homodyne detection is |t is the purpose of this paper to show that homodyne
an optical realization of an abstract quantum-mechanicafietection provides an interesting and nontrivial example of a
measurement of the field quadratures described by a quarealistic quantum measurement leading to operational quan-
tum observable, . The statistical outcomes of an ideal mea-tum observables, i.e., to quantum operators that depend on
surement ofxy|X,)=X,|X,), are described by the spectral Properties of a specific experimental setup used in homodyne
measure detection. In particular, these operational observables will
depend on the detector losses described by a quantum effi-
P(Xg) ={|Xo){Xg|)- (1)  ciency 5 and on the phasé of the local oscillator used to
_ probe the signal field. Such operational observables provide
Although the spectral measure contains all the relevant stay natural link between the guantum formalism and raw data
tistical information about the homodyne measurement, it COrpecorded in a realistic homodyne experiment.
responds to a quantity that is measured by an ideal noise-free General features of the operational approach, with refer-
detector. Due to this property, will be called anintrinsic ~ ences to earlier literature are given[®]. The main conclu-
homodyne quantum observable sions of this approach, if applied to the homodyne measure-
ment, can be summarized as follows. A quantity delivered by
the homodyne experiment is a propensity densitapPdf a
*Permanent address: Instytut Fizyki Teoretycznej, Uniwersytetertain classical variabla. This density is given by an ex-
Warszawski, Hoz 69, PL-00-681 Warszawa, Poland. pectation value of am-dependent positive operator valued
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Il. GENERATING OPERATOR

measurgPOVM), denoted by’:((a) FOR HOMODYNE DETECTION

Pria)=(H(a)). 2) The family of the operational homodyne quantum observ-
ables defined in Eq4) can be written conveniently with the

N help of the generating operator
Thus, the POVM given byH(a) corresponds to a realistic P g g op

homodyne detection and is the mathematical representation R o
of the device dependent measurement. In one way of looking Zy(N)= f dae'*@H(a). (5)
at quantum measurements, the emphasis is put on the con-

struction and properties of such POVMS. In such an appperational quantum observables are given by derivatives of
proach, in realistic homodyne detection, the spectral decon}he generating operator at=0

position dky|x,)(x, of the intrinsic observablex,, is

effectively replaced by the POVMad{(a). Consequently ~m_ L
the moments of Pg) can be represented as XH = ghn

n

Zy(\) (6)

A=0

— - This compact representation will noticeably simplify further
an:J daa'Pr(a) = (xij}), ©)  calculations.

We will start the calculations by finding the generating

defining in this way a family obperational homodyne quan- operator for the homodyne detector. In a baIaAnced setup, the
tum observables signal field described by an annihilation operadois super-

imposed on a local oscillatdb by means of a 50%:50%
~(m) oo beam splitter. The annihilation operators of the outgoing
X0H=f daaH(a), (49 modes are given, up to the irrelevant phase factors, by the

relation

where the indexH stands for the homodyne detection A 1 1\ /3
scheme associated with the given POVM. This family char- ¢ _ i a 7)
J2\1 —1/\p/’

acterizes the experimental device and is independent on a d
specific state of the measured system.

In this paper we derive and discuss the family of opera\we will assume that the local oscillator is in a coherent state
tional observables for balanced homodyne detection with imhg),_o_ If another state of the local oscillator is considered,
perfect photodetectors. We show that for balanced homoour formulas can be generalized in a straightforward manner
dyne detection an exact reconstruction of the POYAR) by averaging the results over an appropriate GlaubBr's
and of the corresponding operational quantum quadraturgepresentation.

;(g;z can be performed. Thus, homodyne detection provides a A quantity recorded in the experiment is the statistics of

. . . _the difference counts between photodetectors facing the
nontrivial measurement scheme for which an exact deriva-

tion of the corresponding POVM and the operational observmodesc andd. The difference of the countsN corresponds
ables is possible. The interest in construction of this operal0 the classical variable, denoted beforeagsecorded in a
tional algebra is due to the fact that the number of physicahomodyne detection experiment. The POVN(AN) de-
examples, where the operational description can be foungcribing this detection scheme can be easily derived. It is
explicitly, is very limited[10]. We show that the algebraic clear that this POVM is an operator acting in the Hilbert
properties of thé((e:z differ significantly from those of the SPace of the signal mode. Its explicit form can be found with

- _ ~2) s AANZ ) the help of standard theory of photodetectjdd]
powers ofxX,. In parUcuIar,x,,H#(xaH) . This property will

have immediate consequences in the discussion of the opera- e m‘;‘f{;)nl
tional uncertainty relation for dispersions measured in a re- H(AN)= > TfLo| |1B)Y(B |Lo:e™ ™ CT
alistic setup. M1=Nz=AN o

This paper has the following structure. First, in Sec. II, we - (naTa)nz
derive the POVM and the generating operator for the opera- x e~ d—l'] , (8)
tional observables. Their explicit form is found in the limit of nz:

a classical local oscillator in Sec. lll. Given this result, we h is th t fici d to be identical
discuss the operational uncertainty relation in Sec. IV. inVNere 7 1S the guantum etniciency, assumed 1o be identica

Sec. V we derive the family of operational homodyne ob-0r both the detectors. In this formula the partial trace is over

servables for the homodyne detector with a random phastge local oscillator mode and a marginal average with a fixed

between the signal and the local oscillator fields, and relaté{alue OfAN is performed. We will now convert this POVM

them to the intrinsic photon-number operator. These calculan® the generating operator according to ). As we will

tions link the homodyne noise with fluctuations of the photondiscuss later, the POV and, consequently, the generating

statistics, and can be useful in the time-resolved measur@peratorZ,, have their natural parametrization, independent
ment of the properties of pulsed diode lasers. Finally, Sec. Vbf the LO intensity. Before we find this scaling, we will use

summarizes the results. ¢ instead of\ as a parameter of the generating operator
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[’

|B) by insertingB,3* in place ofb,b™ and keep only the

ZH(f):ANE_w e ANTY(AN) terms linear inB. This gives
_ . iE_qyathn R o R c +d
TrLO{|€><ﬂ|L?-?Xq n(es—1)c'c Cng—dgdd:\/;ﬁ* \/;a+ \/rncv\'}'i ) 4y He.
+ (e ¥-1)d"d]:}. ) (14)

Let us transform this expression to the form which doesTh tor in th thesis h f | to E
not contain the normal ordering symbol. For this purpose we N OPera orin ef pa_renn €s1s has a form analogous to Q.
will use the technique developed by Yuen and Shapio (10 with the combination ¢, +d,)/y2 as a vacuum mode.
consisting of extending the Hilbert space by two additionalConsequently, the imperfectness of the photodetectors in the

modesc, andd, and constructing the field annihilation op- balanced homodyne detection can be modeled by superpos-
ing the signal on a fictitious vacuum mode before superpos-
erators A ) : ;

ing it with the local oscillator and attenuating the amplitude

PR S e T o WY - of the local oscillator field byy7. This observation was
Ca=ne+ 1 7Cs, g Vnd+11 7d, . (10 originally made by Leonhardt and P4ul3], and is an ex-

The generating operator can be written in the extended fou@Mple of the Naimark extension involving a nonquantized

mode space using these operators as local oscillator. o _ _ _
Under the approximation of a classical local oscillator, it
bd =Tr is now easy to perform the trace over the vacuum modes
() Lol B){Blo with the help of the Baker-Campbell-Hausdorff formula.
®|0)(0|,:exd (e'¢—1)clcg+ (e '€= 1)d]d4]:}, This yields
11

Zy(§) =exi — € n(1- n)| BI*2]exili En(Ba’+ B*@)].
where Tf denotes the trace over both the vacuum modes (15

C, andd, . We can now apply the relatidri2] The exponent exfp-&7(1—7)|8%2] introduces a specific

ordering of the creation and annihilation operators in the
generating operator. Therefore, the detector efficien@an
be related to the ordering of the operational
observables. For example, fop=1/2 we get ZH(g)
=exp(éB*al2)exp(£Ball2), i.e., the generating operator is
Z4()=Tri0,,{| B)(BlLo®[0)(0] exi&(Clca—dldy)]}. ~ ordered antinormally. _ _
’ (13) The expansion of the generating operator into a power
series ofi ¢ gives
This expression contains the most compact form of the ho-
modyne POVM. The exponent in E(L1) resembles the one 1 d"Z,, 1 p(1—n)\¥? T\
=T 18| Hi{ =] %
£=0

from Eqg. (9), with c,d replaced bycy,dq and the detector — jn "ggn
efficiency equal to one. It is knowd], that there is a physi- (16)
cal picture behind this similarity. An imperfect photodetector
can be equwallently _descnbed by an 'de"?" Qgtector prece<jevghereHn denotes theath Hermite polynomial an&g is the
by a beam splitter with the power transmissivity equal to the
L ; standard quadrature operator
guantum efficiency of the real detector, assuming that thé
vacuum state enters through the unused port of the beam
splitter. Mathematically, this construction corresponds to the
so-called Naimark extension of the POVM into a projective
measure on a larger Hilbert spadd].

rexf (eé—1)oTv]:=expiéo ) (12)

valid for an arbitrary bosonic annihilation operatarwhich
finally gives

elfaf+e i3
J2

expressed in terms of the creation and annihilation operators
ll. APPROXIMATION OF A CLASSICAL of the signal field, and dependent on the local oscillator
LOCAL OSCILLATOR phased defined agd=|g|e'’. In the terminology of the op-

grational approach to quantum measuremepts called an

) e intrinsic quantum observahlsince it refers to internal prop-

bosgmc operatorsh,b” can be replaced by numbers  gries of the system independent of the measuring dégice

B.B*. However, this approximation violates the bosonic i will be convenient to change the parameter of the gen-

commutation relations for the paisc’ and d,d', which  erating operator in order to make the derivativé§) inde-

have been used implicitly several times in the manipulationgendent of the amplitude of the local oscillator. A scaling

involving Z,,(£). Therefore, some care should be taken wherfactor which can be directly obtained from an experiment is

considering the classical limit of the local oscillator. the square root of the intensity of the local oscillator field
We will perform the approximation on the exponent of measured by the photodetector. We will multiply it kg in

Eq. (13). We will replace the quantum average over the staterder to get the intrinsic quadrature operdtbr) in the limit

(17)

ng

When the local oscillator is in a strong coherent state, th
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n—1. Thus substituting=\/27|B|? yields the generat- 5 1
ing operator independent of the amplitude of the local oscil- &HH:W((AN) —(AN)). (22)
lator

- . o From the definitions of the operational operators it is clear
z =exgd —NA(1—n)/4+inyni2(e'%a’+e fa)]. ) : : : ~ ~
r(h ) =exd =M (1= m)/atiryn/2(eTa +e a)(]18) that this operational variance involves? and x{). The
combination of these two operators is in general different
The derivatives OQH()\ 9) give the final form of the family from the intrinsic variance. Because of this the operational
of the operational observables for the homodyne detec- dispersion ofx, is
tor 1-7

AX§+ 2—7]) , (23

2 _ /52 Sl —
- Ox= (32 ~ (2= 7

1—

by, > Xg!. (19

. Vi—7\"
x(“)=( 77) Hyl i

where Ax,= V(x3)—(X,)? is the intrinsic quantum disper-
The algebraic properties of the operational observableg§ion of the quadrature,. This intrinsic dispersion is en-

. . Ly . hanced by a term coming from the imperfectness of the de-
are quite complicated, smoé,H is not simply amth power tectors. Thus the imperfectness of the photodetectors

of >A<%1H) Thus a single operator does not suffice to describéntroduces an additional noise to the measurement and dete-

the homodyne detection with imperfect detectors. Completéiorates its resolution. _ _
characterization of the setup is provided by the whole family Using the above result we can derive the operational un-

of operational observables. In fact the opera&fj% define  certainty relation for the quadratures related to the angles
H

o . and ¢’
an infinite algebra of operational homodyne observables for

an arbitrary state of the signal mode. As mentioned above,

for n=50%, the general formula reduces to antinormally X Xy s =
L oHOR' H= T]

ordered powers of the intrinsic quadrature operators

1-9
AX&AXG,+_27] . (24

~n)_ 1 .. Again, an additional term is added to the intrinsic uncertainty
Xp, = oo (Xp)":. (20) product. This situation is similar to that in RgL4], where it
was argued that taking into account the measuring device
This expression shows that the operational operators are, [iSes the minimum limit for the uncertainty product. How-
some sense, equivalent to a prescription of ordering of th&ver, that discussion concernedimultaneousneasurement

intrinsic operators. This prescription is dynamical in characOf canonically conjugate variables, which is not the case in

ter, i.e., it depends on the efficienayof the detectors used homodyne detection. Using the intrinsic uncertainty relation
in the homodyne detection. In fact the homodyne operationalXsAX s =[Sin(6—6')|/2 we get the result that the right-hand
algebra is defined by a one-parameter family of dynamicaf'd® in the operational relatiof24) is not smaller than

orderings defined by the generating operator derived in thig77|3i”(‘9_ 0| +1~ ’7]/,2' _ L
section. One may wonder if the definition of squeezing is affected

by the operational operators. Let us consider the two quadra-
tures 6Xgy, and oX g (2~ In this case the operational un-

IV. OPERATIONAL UNCERTAINTY RELATION certainty,

With explicit forms of operational observables in hand,
we can now analyze their relation to the intrinsic quadrature XX g 21> 3 (25
operator. For this purpose, let us look at the first lowest-order

operational quadrature observables is independent of;. However, it has to be kept in mind that
only a part of the operational dispersion comes from the field

o " - -~ 1—7 fluctuations. The easiest way to discuss this is to rewrite Eq.
X\ = pliZ X =gl X2+ —— ;
o= X0 Xo T XeT 5] (23) in the form of

~e 31—,
3
X0+§TX0

3/2

§<<9~°;1>= 7 . (22) X g =

1 \2]v2
W(AX0)2+(1_71)(E)1 , (26)

The imperfectness of photodetectors influences the opergghich shows that the operational dispersion is a quadratic
tional observables in two ways. The first one is a trivial ayerage of the intrinsic field dispersidrk, and the detector
rescaling of the observables by the powers/gf the second noise 14/2 that corresponds to the vacuum fluctuation level.
way is a contribution of the lower-order terms to the operaThese contributions enter with the weighisand 1— 7, re-
tional counterparts afjy. In order to see its consequences letspectively. Therefore, if a squeezed quadrature is measured
us investigate the rescaled operational variancevith imperfect detectors, the observed dispersion is larger
(AN)?—(AN)? than the intrinsic one.
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V. HOMODYNE DETECTION WITH RANDOM PHASE Since the homodyne statistics averaged over the phase is

Homodyne detection is used primarily to detect phase?ven‘ the odd derivatives disappear. A straightforward calcu-

dependent properties of light. However, it has been recentlilatlon yields the operators for evem=2m

shown that even a setup with a random phase between theA(2 ,(2m-1)!!
m)_
=—m

signal and local oscillator fields can be a useful tool in opti- X3

cal experiment$8,15]. Although in this case the phase sen-

sitivity is lost, the homodyne detector can be applied to mea- m-1)t " (m\ 29k, . .

sure phase-independent quantities and such a setup presents =-——/——=— ( )—ln(n—l)---(n—k+ 1).
some advantages over a single photodetector. First, the infor- 2 o\ k/ ki

mation on the statistics of the field is carried by the photo- (30)
current difference between the two rather intense fields.

Within existing detector technology, this quantity can beThis formula shows thax?™ is a polynomial ofn of the
measured with a significantly better efficiency than the wealorder of m. Therefore, the firsm moments of the photon-
field itself. Secondly, the spatiotemporal mode that is actunumber distribution can be computed from
ally measured by the homodyne detector is defined by thg;(%)% o ,<;(ga2m)>. The two lowest-order observables are

shape of the local oscillator field. Consequently, applicatiorwgiven explicitly by
of the local oscillator in the form of a short pulse allows the

‘Ln(—2nata):

measurement to be performed with an ultrafast sampling ;(<2>:77r‘1+;
time. This technique has been used in R&fto measure the R 2
time resolved photon-number statistics from a diode laser ~ A A
, X'= 3w+ m(2 = )i 31 (31

operating below threshold. The achieved sampling time was
significantly shorter than that of previously used methods. It is seen that even in the case of ideal noise-free detectors

The photon-number distribution and other phase- 4y, o2 d the familv of th ional ob bl
independent quantities are reconstructed from the average Bf #(xz")* and the family of the operational observables

the random-phase homodyne statistics calculated with thg@S nontrivial algebraic properties. Equatiof®®) can be
so-called pattern functions[16,17. For commonly used inverted using the method presented in the Appendix, which

guantities, such as the diagonal elements of the density m ields an expression for the normally Qrdered moments of
trix in the Fock basis, these pattern functions take a quité e photon statistics in terms of the family of the operational
complicated form. In this section we will consider obsery-observables

ables that are related to the experimental data in the most 2 N _qyn-mym
direct way, the moments of the homodyne statistics with ran- (pata): = (n!) D (1) x2M (32
domized phase. We will derive the family of operational ob- 2" #=o (2m)!I(n—m)I" %

servables and relate them to the powers of the photon- ] )
number operaton=a'a. For example, the first two moments are given by:

The generating operator for homodyne detection with ran- 1. 1
dom phaseZ, (R stands for the random phase obtained a'a= ;(X%)— 5)’
readily fromZH by averaging it over the phage This gives

npn 1/2. - 1
27 do :(aTa)2:=;z(§x(7§)—2x§§>+§ . (33

Zn(h)=f ZZH(A,a)=e**2’4zJo(>\\/2néTé):,
0

(27 As an illustration, let us express the normalized photon-

number varianceQ= ((n?)—(ny2—(n))/(n) [18] in terms
whereJ, is the Bessel function of the Oth order. With the of the expectation values of?) andx{s’. This variance is
help of the result derived in the Appendix, the normally or-used to characterize the sub-Poissonian statistics of light. Af-
dered form of the Bessel function can be transformed intder some simple algebra we arrive at
the following expression: . . .
§() — ()P ) + 4
E)—1

where the index of the Laguerre polynomial is the theThus, the varianc&® can be read out from the two lowest

photon-number operator. The Laguerre polynomials with gnoments of the homodyne statistics with the randomized
operator valued index is defined by the decomposition in thé@hase. The photodetector efficiengyenters into the above

1
Za(\) =e ML), 29) Q=7 (34

Fock basis. formula only as an overall scaling factor. This result is analo-
The family of operational observables is given by the de-gous to that obtained for the setup with a single imperfect
rivatives of the generating operator detector, and is due to the fact th@t describes normally
ordered field fluctuations.
d We have shown in this section, that there is a one-to-one
)}gg):i_nWZR()\) . (290  correspondence between the powers of the photon-number

A=0 operator and the operational observables describing the ho-
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modyne setup with the random phase. However, the POVMExpanding the normally ordered Bessel function in Exy)
representing this scheme does not have properties of a speand applying the above identity gives

tral measure due to missing information about the phase of

the local oscillator. Consequently, the intrinsic quantum ob- " ook

servable cannot be identified. In contrast, the family of the 3 ()\m)_: — n\°/2) af)kAk
operational observables is well defined, and reflects the na- o 7 TE (K2

ture of the experimental data collected in a realistic setup.

Z [ n\ (= paF2)k
VI. CONCLUSIONS - kZO k k!
We have presented the operational description of the bal- =L:(m\2/2), (A3)

anced homodyne detection scheme with imperfect photode-
tectors. For homodyne detection it is possible to derive exact
expressions for the POVM and the corresponding algebra gfjhere the Laguerre polynomial with the photon-number op-
operational operators. The result of these calculations showsator index

that a whole family of operational observables rather than a

single operator should to be used to discuss a realistic setup.

This family allows one to relate easily the experimentally -

observed fluctuations to the intrinsic properties of the mea- Lﬁ(X)=nZO L) |n)(n| (A4)
sured system.
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o = 1 néTé
APPENDIX J'O :JO()\\/ZnaTa):exp(—q)\z))\d)FE:exp(— 2 )

(A5)

In this Appendix we present mathematical details of ma-
nipulations with the generating operaté,(\) for homo-

dyne detection with the random phase. First we will showsypstituting q=1/2¢ and Jo(A V27ata):=Z,(\)expA¥
how to convert it into the form that does not contain they) gives

normal ordering symbol. Let us start by rewriting Efj2) to
the form :expéa'a):=(1+¢)" and decomposing its right-
hand side in the Fock basfgn)} :exq—gnéTé):zlwaR()\)exp{—(i— E))\Z})\d)\.
gJo 2; 4
o (A6)
033 =3 (1+6)"n)(n|
n=o We now insert the expansion of the generating operator in

© n n N
= k
_nZO kZO (k)8 [nXn

‘ S 7 = S ﬂA(Zm)
=k20 SKZK(E)|V‘><”|- (A1) ZR()\)_mz:O (2m)! xR (A7)

) and perform the integrals ovar, which gives
If we now assume the convention thg) €0 for n<k, the

lower bound of the second sum in the last expression can be

changed ton=0. It is then natural to denote this sum as a g (=1)™m! o™ . om)
L . ~ . exp(—¢nata)i= D) X

binomial coefficient of the operater. Comparing the equal m=o (2m)! (1-1¢/2)

powers ofe in Eq.(Al) yields a very compact representation (A8)

of the normally ordered powers af'a in terms ofn

. Expanding both sides of this equation into the power series
(ahkak=k! n _ (A2) in g and comparing coefficients multiplying equal powers of
{ yields Eq.(32).
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