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Operational theory of homodyne detection
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We discuss a balanced homodyne detection scheme with imperfect detectors in the framework of the
operational approach to quantum measurement. We show that a realistic homodyne measurement is described
by a family of operational observables that depends on the experimental setup, rather than a single field
quadrature operator. We find an explicit form of this family, which fully characterizes the experimental device
and is independent of a specific state of the measured system. We also derive operational homodyne observ-
ables for the setup with a random phase, which has been recently applied in an ultrafast measurement of the
photon statistics of a pulsed diode laser. The operational formulation directly gives the relation between the
detected noise and the intrinsic quantum fluctuations of the measured field. We demonstrate this with two
examples: the operational uncertainty relation for the field quadratures, and the homodyne detection of sup-
pressed fluctuations in photon statistics.@S1050-2947~97!00904-9#

PACS number~s!: 42.50.Dv, 03.65.Bz
ct
a
ic

ov
ig

in
os

%
b

ou
or
na
c
i
ic
ua
a
al

st
o
-fr

ect
of
tion
n a
ss-
cy.
be
rin-

ion
f a

w-
ec-
fore,
de-
rv-

ne
f a
an-
d on
yne
will
effi-

ide
ata

fer-

re-
by

-
d

yte
I. INTRODUCTION

Homodyne detection is a well-known technique in dete
ing phase-dependent properties of optical radiation. In qu
tum optics it has been widely used in studies and appl
tions of squeezed light@1#. A statistical distribution of the
outcomes of a homodyne detector has recently found n
applications in the measurement of the quantum state of l
via optical homodyne tomography@2# and the direct probing
of quantum phase space by photon counting@3#. The phase
sensitivity of homodyne detection is achieved by perform
a superposition of the signal field with a coherent local
cillator by means of a beam splitter@4#. It was an important
observation@5# that in a balanced scheme, with a 50%:50
beam splitter, the local oscillator noise can be canceled
subtracting the photocurrents of the detectors facing two
going beams. Then, in the limit of a classical local oscillat
the statistics of difference photocounts is simply a sig
quadrature distribution rescaled by the amplitude of the lo
oscillator @6,7#. Therefore, balanced homodyne detection
an optical realization of an abstract quantum-mechan
measurement of the field quadratures described by a q
tum observablex̂u . The statistical outcomes of an ideal me
surement ofx̂uuxu&5xuuxu&, are described by the spectr
measure

p~xu!5^uxu&^xuu&. ~1!

Although the spectral measure contains all the relevant
tistical information about the homodyne measurement, it c
responds to a quantity that is measured by an ideal noise
detector. Due to this propertyx̂u will be called anintrinsic
homodyne quantum observable.

*Permanent address: Instytut Fizyki Teoretycznej, Uniwers
Warszawski, Hoz˙a 69, PL-00-681 Warszawa, Poland.
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However, analysis of the homodyne setup with imperf
detectors@7# shows that the relation between the statistics
the difference counts and the quadrature spectral distribu
is, in fact, more complicated. The distribution measured i
real experiment is smoothed by a convolution with a Gau
ian function of width dependent on the detector efficien
Consequently, realistic homodyne detection cannot
straightforwardly interpreted as a measurement of the int
sic field quadraturesx̂u .

A recent experimental application of homodyne detect
to the reconstruction of the photon-number distribution o
weak field from a pulsed diode laser@8# has shown that a
homodyne setup with the fluctuating phaseu is a powerful
tool in measuring phase-insensitive properties of light. Ho
ever, it is not possible to associate with this setup any sp
tral measure, even in the case of perfect detectors. There
homodyne detection with the random phase cannot be
scribed in terms of measuring any intrinsic quantum obse
able.

It is the purpose of this paper to show that homody
detection provides an interesting and nontrivial example o
realistic quantum measurement leading to operational qu
tum observables, i.e., to quantum operators that depen
properties of a specific experimental setup used in homod
detection. In particular, these operational observables
depend on the detector losses described by a quantum
ciencyh and on the phaseu of the local oscillator used to
probe the signal field. Such operational observables prov
a natural link between the quantum formalism and raw d
recorded in a realistic homodyne experiment.

General features of the operational approach, with re
ences to earlier literature are given in@9#. The main conclu-
sions of this approach, if applied to the homodyne measu
ment, can be summarized as follows. A quantity delivered
the homodyne experiment is a propensity density Pr(a) of a
certain classical variablea. This density is given by an ex
pectation value of ana-dependent positive operator value
t
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measure~POVM!, denoted byĤ(a)

Pr~a!5^Ĥ~a!&. ~2!

Thus, the POVM given byĤ(a) corresponds to a realisti
homodyne detection and is the mathematical representa
of the device dependent measurement. In one way of look
at quantum measurements, the emphasis is put on the
struction and properties of such POVMs. In such an
proach, in realistic homodyne detection, the spectral dec
position dxuuxu&^xuu of the intrinsic observablex̂u , is
effectively replaced by the POVM daĤ(a). Consequently
the moments of Pr(a) can be represented as

an5E daanPr~a!5^x̂uH
~n!&, ~3!

defining in this way a family ofoperational homodyne quan
tum observables

x̂uH
~n!5E daanĤ~a!, ~4!

where the indexH stands for the homodyne detectio
scheme associated with the given POVM. This family ch
acterizes the experimental device and is independent o
specific state of the measured system.

In this paper we derive and discuss the family of ope
tional observables for balanced homodyne detection with
perfect photodetectors. We show that for balanced ho
dyne detection an exact reconstruction of the POVMĤ(a)
and of the corresponding operational quantum quadrat
x̂uH
(n) can be performed. Thus, homodyne detection provide

nontrivial measurement scheme for which an exact der
tion of the corresponding POVM and the operational obse
ables is possible. The interest in construction of this ope
tional algebra is due to the fact that the number of phys
examples, where the operational description can be fo
explicitly, is very limited @10#. We show that the algebrai
properties of thex̂uH

(n) differ significantly from those of the

powers ofx̂u . In particular,x̂uH
(2)Þ( x̂uH

(1))2. This property will

have immediate consequences in the discussion of the op
tional uncertainty relation for dispersions measured in a
alistic setup.

This paper has the following structure. First, in Sec. II,
derive the POVM and the generating operator for the ope
tional observables. Their explicit form is found in the limit o
a classical local oscillator in Sec. III. Given this result, w
discuss the operational uncertainty relation in Sec. IV.
Sec. V we derive the family of operational homodyne o
servables for the homodyne detector with a random ph
between the signal and the local oscillator fields, and re
them to the intrinsic photon-number operator. These calc
tions link the homodyne noise with fluctuations of the phot
statistics, and can be useful in the time-resolved meas
ment of the properties of pulsed diode lasers. Finally, Sec
summarizes the results.
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II. GENERATING OPERATOR
FOR HOMODYNE DETECTION

The family of the operational homodyne quantum obse
ables defined in Eq.~4! can be written conveniently with the
help of the generating operator

ẐH~l!5E daeilaĤ~a!. ~5!

Operational quantum observables are given by derivative
the generating operator atl50

x̂H
~n!5

1

i n
dn

dlnẐH~l!U
l50

. ~6!

This compact representation will noticeably simplify furth
calculations.

We will start the calculations by finding the generatin
operator for the homodyne detector. In a balanced setup
signal field described by an annihilation operatorâ, is super-
imposed on a local oscillatorb̂ by means of a 50%:50%
beam splitter. The annihilation operators of the outgo
modes are given, up to the irrelevant phase factors, by
relation

S ĉ
d̂
D 5

1

A2 S 1 1

1 21D S âb̂D . ~7!

We will assume that the local oscillator is in a coherent st
ub&LO . If another state of the local oscillator is considere
our formulas can be generalized in a straightforward man
by averaging the results over an appropriate Glauber’sP
representation.

A quantity recorded in the experiment is the statistics
the difference counts between photodetectors facing
modesĉ andd̂. The difference of the countsDN corresponds
to the classical variable, denoted before asa, recorded in a
homodyne detection experiment. The POVMĤ(DN) de-
scribing this detection scheme can be easily derived. I
clear that this POVM is an operator acting in the Hilbe
space of the signal mode. Its explicit form can be found w
the help of standard theory of photodetection@11#

Ĥ~DN!5 (
n12n25DN

TrLOH ub&^b uLO :e2h ĉ†ĉ
~h ĉ†ĉ!n1

n1!

3e2hd̂†d̂
~hd̂†d̂!n2

n2!
:J , ~8!

whereh is the quantum efficiency, assumed to be identi
for both the detectors. In this formula the partial trace is o
the local oscillator mode and a marginal average with a fix
value ofDN is performed. We will now convert this POVM
into the generating operator according to Eq.~5!. As we will
discuss later, the POVMĤ and, consequently, the generatin
operatorẐH have their natural parametrization, independe
of the LO intensity. Before we find this scaling, we will us
j instead ofl as a parameter of the generating operator
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55 3119OPERATIONAL THEORY OF HOMODYNE DETECTION
ẐH~j!5 (
DN52`

`

ei jDNĤ~DN!

5TrLO$ub&^buLO :exp@h~ei j21!ĉ†ĉ

1h~e2 i j21!d̂†d̂#:%. ~9!

Let us transform this expression to the form which do
not contain the normal ordering symbol. For this purpose
will use the technique developed by Yuen and Shapiro@4#
consisting of extending the Hilbert space by two additio
modesĉv and d̂v and constructing the field annihilation op
erators

ĉd5Ah ĉ1A12h ĉv , d̂d5Ahd̂1A12hd̂v . ~10!

The generating operator can be written in the extended f
mode space using these operators as

ẐH~j!5TrLO,v$ub&^buLO

^ u0&^0uv:exp@~ei j21!ĉd
†ĉd1~e2 i j21!d̂d

†d̂d#:%,

~11!

where Trv denotes the trace over both the vacuum mo
ĉv and d̂v . We can now apply the relation@12#

:exp@~ei j21!v̂†v̂#:5exp~ i j v̂†v̂ ! ~12!

valid for an arbitrary bosonic annihilation operatorv̂, which
finally gives

ẐH~j!5TrLO,v$ub&^buLO^ u0&^0uvexp@ i j~ ĉd
†ĉd2d̂d

†d̂d!#%.
~13!

This expression contains the most compact form of the
modyne POVM. The exponent in Eq.~11! resembles the one
from Eq. ~9!, with ĉ,d̂ replaced byĉd ,d̂d and the detector
efficiency equal to one. It is known@4#, that there is a physi-
cal picture behind this similarity. An imperfect photodetec
can be equivalently described by an ideal detector prece
by a beam splitter with the power transmissivity equal to
quantum efficiency of the real detector, assuming that
vacuum state enters through the unused port of the b
splitter. Mathematically, this construction corresponds to
so-called Naimark extension of the POVM into a projecti
measure on a larger Hilbert space@10#.

III. APPROXIMATION OF A CLASSICAL
LOCAL OSCILLATOR

When the local oscillator is in a strong coherent state,
bosonic operatorsb̂,b̂† can be replaced byc numbers
b,b* . However, this approximation violates the boson
commutation relations for the pairsĉ,ĉ† and d̂,d̂†, which
have been used implicitly several times in the manipulati
involving ẐH(j). Therefore, some care should be taken wh
considering the classical limit of the local oscillator.

We will perform the approximation on the exponent
Eq. ~13!. We will replace the quantum average over the st
s
e

l

r-

s

-

r
ed
e
e
m
e

e

s
n

e

ub& by insertingb,b* in place of b̂,b̂† and keep only the
terms linear inb. This gives

ĉd
†cd2d̂d

†d̂d5Ahb* S Ahâ1A12h
ĉv1d̂v

A2 D 1H.c.

~14!

The operator in the parenthesis has a form analogous to
~10! with the combination (ĉv1d̂v)/A2 as a vacuum mode
Consequently, the imperfectness of the photodetectors in
balanced homodyne detection can be modeled by super
ing the signal on a fictitious vacuum mode before superp
ing it with the local oscillator and attenuating the amplitu
of the local oscillator field byAh. This observation was
originally made by Leonhardt and Paul@13#, and is an ex-
ample of the Naimark extension involving a nonquantiz
local oscillator.

Under the approximation of a classical local oscillator,
is now easy to perform the trace over the vacuum mo
with the help of the Baker-Campbell-Hausdorff formul
This yields

ẐH~j!5exp@2j2h~12h!ubu2/2#exp@ i jh~bâ†1b* â!#.
~15!

The exponent exp@2j2h(12h)ubu2/2# introduces a specific
ordering of the creation and annihilation operators in
generating operator. Therefore, the detector efficiencyh can
be related to the ordering of the operation
observables. For example, forh51/2 we get ẐH(j)
5exp(ijb* â/2)exp(ijbâ†/2), i.e., the generating operator
ordered antinormally.

The expansion of the generating operator into a pow
series ofi j gives

1

i n
dnẐH
djn

U
j50

5F1i S h~12h!

2 D 1/2ub uGnHnF i S h

12h D 1/2x̂uG ,
~16!

whereHn denotes thenth Hermite polynomial andx̂u is the
standard quadrature operator

x̂u5
eiuâ†1e2 iuâ

A2
~17!

expressed in terms of the creation and annihilation opera
of the signal field, and dependent on the local oscilla
phaseu defined asb5ubueiu. In the terminology of the op-
erational approach to quantum measurement,x̂u is called an
intrinsic quantum observable, since it refers to internal prop
erties of the system independent of the measuring device@9#.

It will be convenient to change the parameter of the g
erating operator in order to make the derivatives~16! inde-
pendent of the amplitude of the local oscillator. A scali
factor which can be directly obtained from an experimen
the square root of the intensity of the local oscillator fie
measured by the photodetector. We will multiply it byA2 in
order to get the intrinsic quadrature operator~17! in the limit
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3120 55KONRAD BANASZEK AND KRZYSZTOF WÓDKIEWICZ
h→1. Thus substitutingj5l/A2hubu2 yields the generat-
ing operator independent of the amplitude of the local os
lator

ẐH~l,u!5exp@2l2~12h!/41 ilAh/2~eiuâ†1e2 iuâ!#.
~18!

The derivatives ofẐH(l,u) give the final form of the family
of the operational observablesx̂uH

(n) for the homodyne detec

tor

x̂uH
~n!5SA12h

2i D nHnF i S h

12h D 1/2x̂uG . ~19!

The algebraic properties of the operational observab
are quite complicated, sincex̂uH

(n) is not simply annth power

of x̂uH
(1). Thus a single operator does not suffice to descr

the homodyne detection with imperfect detectors. Comp
characterization of the setup is provided by the whole fam
of operational observables. In fact the operatorsx̂uH

(n) define

an infinite algebra of operational homodyne observables
an arbitrary state of the signal mode. As mentioned abo
for h550%, the general formula reduces to antinorma
ordered powers of the intrinsic quadrature operators

x̂uH
~n!5

1

2n/2
A~ x̂u!nA. ~20!

This expression shows that the operational operators ar
some sense, equivalent to a prescription of ordering of
intrinsic operators. This prescription is dynamical in char
ter, i.e., it depends on the efficiencyh of the detectors used
in the homodyne detection. In fact the homodyne operatio
algebra is defined by a one-parameter family of dynam
orderings defined by the generating operator derived in
section.

IV. OPERATIONAL UNCERTAINTY RELATION

With explicit forms of operational observables in han
we can now analyze their relation to the intrinsic quadrat
operator. For this purpose, let us look at the first lowest-or
operational quadrature observables

x̂uH
~1!5h1/2x̂u , x̂uH

~2!5hS x̂u
21

12h

2h D ,
x̂uH

~3!5h3/2S x̂u
31

3

2

12h

h
x̂uD . ~21!

The imperfectness of photodetectors influences the op
tional observables in two ways. The first one is a triv
rescaling of the observables by the powers ofAh, the second
way is a contribution of the lower-order terms to the ope
tional counterparts ofx̂u

n . In order to see its consequences
us investigate the rescaled operational varia
(DN)22(DN)2
l-

s

e

te
y

or
e,

in
e
-

al
l
is

,
e
r

a-
l

-
t
e

dxu
2
H5

1

2hubu2
„~DN!22~DN!2…. ~22!

From the definitions of the operational operators it is cle
that this operational variance involvesx̂uH

(2) and x̂uH
(1). The

combination of these two operators is in general differ
from the intrinsic variance. Because of this the operatio
dispersion ofxu is

dxu
2
H5^x̂uH

~2!&2^x̂uH
~1!&25hS Dxu

21
12h

2h D , ~23!

whereDxu5A^x̂u
2&2^x̂u&

2 is the intrinsic quantum disper
sion of the quadraturexu . This intrinsic dispersion is en
hanced by a term coming from the imperfectness of the
tectors. Thus the imperfectness of the photodetec
introduces an additional noise to the measurement and d
riorates its resolution.

Using the above result we can derive the operational
certainty relation for the quadratures related to the angleu
andu8

dxuHdxu8H>hS DxuDxu81
12h

2h D . ~24!

Again, an additional term is added to the intrinsic uncertai
product. This situation is similar to that in Ref.@14#, where it
was argued that taking into account the measuring de
raises the minimum limit for the uncertainty product. How
ever, that discussion concerned asimultaneousmeasurement
of canonically conjugate variables, which is not the case
homodyne detection. Using the intrinsic uncertainty relat
DxuDxu8>usin(u2u8)u/2 we get the result that the right-han
side in the operational relation~24! is not smaller than
@husin(u2u8)u112h#/2.

One may wonder if the definition of squeezing is affect
by the operational operators. Let us consider the two qua
turesdxuH anddxu1(p/2)H . In this case the operational un
certainty,

dxuHdxu1p/2H> 1
2 , ~25!

is independent ofh. However, it has to be kept in mind tha
only a part of the operational dispersion comes from the fi
fluctuations. The easiest way to discuss this is to rewrite
~23! in the form of

dxuH5Fh~Dxu!21~12h!S 1

A2D
2G 1/2, ~26!

which shows that the operational dispersion is a quadr
average of the intrinsic field dispersionDxu and the detector
noise 1/A2 that corresponds to the vacuum fluctuation lev
These contributions enter with the weightsh and 12h, re-
spectively. Therefore, if a squeezed quadrature is meas
with imperfect detectors, the observed dispersion is lar
than the intrinsic one.
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55 3121OPERATIONAL THEORY OF HOMODYNE DETECTION
V. HOMODYNE DETECTION WITH RANDOM PHASE

Homodyne detection is used primarily to detect pha
dependent properties of light. However, it has been rece
shown that even a setup with a random phase between
signal and local oscillator fields can be a useful tool in op
cal experiments@8,15#. Although in this case the phase se
sitivity is lost, the homodyne detector can be applied to m
sure phase-independent quantities and such a setup pre
some advantages over a single photodetector. First, the in
mation on the statistics of the field is carried by the pho
current difference between the two rather intense fie
Within existing detector technology, this quantity can
measured with a significantly better efficiency than the we
field itself. Secondly, the spatiotemporal mode that is ac
ally measured by the homodyne detector is defined by
shape of the local oscillator field. Consequently, applicat
of the local oscillator in the form of a short pulse allows t
measurement to be performed with an ultrafast samp
time. This technique has been used in Ref.@8# to measure the
time resolved photon-number statistics from a diode la
operating below threshold. The achieved sampling time w
significantly shorter than that of previously used methods

The photon-number distribution and other pha
independent quantities are reconstructed from the averag
the random-phase homodyne statistics calculated with
so-called pattern functions@16,17#. For commonly used
quantities, such as the diagonal elements of the density
trix in the Fock basis, these pattern functions take a q
complicated form. In this section we will consider obser
ables that are related to the experimental data in the m
direct way, the moments of the homodyne statistics with r
domized phase. We will derive the family of operational o
servables and relate them to the powers of the pho
number operatorn̂5â†â.

The generating operator for homodyne detection with r
dom phaseẐR (R stands for the random phase! is obtained
readily fromẐH by averaging it over the phaseu. This gives

ẐR~l!5E
0

2p du

2p
ẐH~l,u!5e2l2/4:J0~lA2hâ†â!:,

~27!

whereJ0 is the Bessel function of the 0th order. With th
help of the result derived in the Appendix, the normally o
dered form of the Bessel function can be transformed i
the following expression:

ẐR~l!5e2l2/4Ln̂~hl2/2!, ~28!

where the index of the Laguerre polynomial is the t
photon-number operator. The Laguerre polynomials wit
operator valued index is defined by the decomposition in
Fock basis.

The family of operational observables is given by the d
rivatives of the generating operator

x̂R
~n!5

1

i n
dn

dlnẐR~l!U
l50

. ~29!
-
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Since the homodyne statistics averaged over the phas
even, the odd derivatives disappear. A straightforward ca
lation yields the operators for evenn52m

x̂R
~2m!5

~2m21!!!

2m
:Lm~22hâ†â!:

5
~2m21!!!

2m (
k50

m Smk D ~2h!k

k!
n̂~ n̂21!•••~ n̂2k11!.

~30!

This formula shows thatx̂R
(2m) is a polynomial ofn̂ of the

order ofm. Therefore, the firstm moments of the photon
number distribution can be computed fro

^ x̂R
(2)&, . . . ,̂ x̂R

(2m)&. The two lowest-order observables a
given explicitly by

x̂R
~2!5hn̂1 1

2

x̂R
~4!5 3

2 @h2n̂21h~22h!n̂1 1
2 #. ~31!

It is seen that even in the case of ideal noise-free detec
x̂R
(4)Þ( x̂R

(2))2 and the family of the operational observabl
has nontrivial algebraic properties. Equations~30! can be
inverted using the method presented in the Appendix, wh
yields an expression for the normally ordered moments
the photon statistics in terms of the family of the operatio
observables

:~hâ†â!n:5
~n! !2

2n (
m50

n
~21!n2m4m

~2m!! ~n2m!!
x̂R

~2m! . ~32!

For example, the first two moments are given by:

â†â5
1

h S x̂R~2!2
1

2D ,
:~ â†â!2:5

1

h2 S 23x̂R~4!22x̂R
~2!1

1

2D . ~33!

As an illustration, let us express the normalized photo
number varianceQ5(^n̂2&2^n̂&22^n̂&)/^n̂& @18# in terms
of the expectation values ofx̂R

(2) and x̂R
(4) . This variance is

used to characterize the sub-Poissonian statistics of light.
ter some simple algebra we arrive at

Q5
1

h

2
3 ^x̂R

~4!&2^x̂R
~2!&22^x̂R

~2!&1 1
4

^x̂R
~2!&2 1

2

. ~34!

Thus, the varianceQ can be read out from the two lowes
moments of the homodyne statistics with the randomiz
phase. The photodetector efficiencyh enters into the above
formula only as an overall scaling factor. This result is ana
gous to that obtained for the setup with a single imperf
detector, and is due to the fact thatQ describes normally
ordered field fluctuations.

We have shown in this section, that there is a one-to-
correspondence between the powers of the photon-num
operator and the operational observables describing the
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modyne setup with the random phase. However, the PO
representing this scheme does not have properties of a s
tral measure due to missing information about the phas
the local oscillator. Consequently, the intrinsic quantum
servable cannot be identified. In contrast, the family of
operational observables is well defined, and reflects the
ture of the experimental data collected in a realistic setu

VI. CONCLUSIONS

We have presented the operational description of the
anced homodyne detection scheme with imperfect photo
tectors. For homodyne detection it is possible to derive ex
expressions for the POVM and the corresponding algebr
operational operators. The result of these calculations sh
that a whole family of operational observables rather tha
single operator should to be used to discuss a realistic se
This family allows one to relate easily the experimenta
observed fluctuations to the intrinsic properties of the m
sured system.
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APPENDIX

In this Appendix we present mathematical details of m
nipulations with the generating operatorẐR(l) for homo-
dyne detection with the random phase. First we will sh
how to convert it into the form that does not contain t
normal ordering symbol. Let us start by rewriting Eq.~12! to
the form :exp(«â†â):5(11«)n̂ and decomposing its right
hand side in the Fock basis$un&%

:e«â†â:5 (
n50

`

~11«!nun&^nu

5 (
n50

`

(
k50

n S nkD «kun&^nu

5 (
k50

`

«k(
n5k

` S nkD un&^nu. ~A1!

If we now assume the convention that (k
n)50 for n,k, the

lower bound of the second sum in the last expression ca
changed ton50. It is then natural to denote this sum as
binomial coefficient of the operatorn̂. Comparing the equa
powers of« in Eq. ~A1! yields a very compact representatio
of the normally ordered powers ofâ†â in terms ofn̂

~ â†!kâk5k! S n̂
k
D . ~A2!
M
ec-
of
-
e
a-

l-
e-
ct
of
ws
a
p.

-

.

-
.
S

-

be

Expanding the normally ordered Bessel function in Eq.~27!
and applying the above identity gives

:J0~lA2hâ†â!:5 (
k50

`
~2hl2/2!k

~k! !2
~ â†!kâk

5 (
k50

` S n̂
k
D ~2hl2/2!k

k!

5Ln̂~hl2/2!, ~A3!

where the Laguerre polynomial with the photon-number o
erator index

Ln̂~x!5 (
n50

`

Ln~x!un&^nu ~A4!

is defined analogously to the binomial coefficient via deco
position in the Fock basis.

We will now express the normally ordered moments
the photon-number operator in terms of the operational
servablesx̂R

(2m) . We start from the integral formula for th
Bessel function@19#

E
0

`

:J0~lA2hâ†â!:exp~2ql2!ldl5
1

2q
:expS 2

hâ†â

2q
D :.

~A5!

Substituting q51/2z and :J0(lA2hâ†â):5ẐR(l)exp(l
2/

4) gives

:exp~2zhâ†â!:5
1

zE0
`

ẐR~l!expF2S 12z
2
1

4Dl2Gldl.

~A6!

We now insert the expansion of the generating operato
l

ẐR~l!5 (
m50

`
~21!ml2m

~2m!!
x̂R

~2m! ~A7!

and perform the integrals overl, which gives

:exp~2zhâ†â!:5 (
m50

`
~21!mm!

~2m!!

~2z!m

~12z/2!m11x̂R
~2m! .

~A8!

Expanding both sides of this equation into the power se
in z, and comparing coefficients multiplying equal powers
z yields Eq.~32!.
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