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Effects of finite-system size in nonlinear optical systems:
A quantum many-body approach to parametric oscillation

Oliver Veits and Michael Fleischhauer
Sektion Physik, Ludwig-Maximilians-Universita¨t München, Theresienstrabe 37, D-80333 Mu¨nchen, Germany

~Received 4 October 1996!

We analyze the influence of system-size effects on the quantum properties of a degenerate parametric
oscillator below, at, and above the classical threshold using a Green’s-function approach. The many-body
technique permits a systematic analysis of finite-size corrections to standard linearization results. In particular
we study a ‘‘semiquantum’’ limit, where even above threshold only few photons are in the subharmonic mode
while the pump mode is highly populated and behaves quasiclassically. Substantial deviations from classical
and linearization predictions are found. We show that the depletion of the pump mode is rather strong and the
threshold of parametric oscillation is shifted to higher pump strength, when the subharmonic system is small.
@S1050-2947~97!07803-7#

PACS number~s!: 42.50.Lc, 42.50.Dv, 42.65.Ky, 42.50.Ct
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I. INTRODUCTION

The phase transition of a degenerate optical parame
oscillator~OPO! is an extensively studied subject in quantu
optics since one of the quadrature components of the do
converted field can display a complete suppression of qu
tum fluctuations at the critical point@1#, which has a variety
of potential applications in low-noise communication a
high-sensitivity measurements. From a theoretical point
view this phase transition is interesting because it is do
nated by quantum fluctuations, which are increasingly
portant, when the so-called system size becomes small.
analysis of system-size effects and their influence on
fluctuations and correlation times in the vicinity of the cri
cal point are therefore essential for the understanding of
phase transition. The frequently used linearization appro
mation @2# implicitly assumes a thermodynamic limit an
cannot be used to study finite-size effects@3#. Furthermore,
the inherent small-noise assumption breaks down at the c
cal point. A consistent description of the quantum dynam
thus requires an approach which does not resort to the s
dard linearizations.

Analytical solutions of the nonlinear problem are know
only in the limit of a fast decaying pump mode where
adiabatic elimination of this mode is possible. The reduc
Fokker-Planck equation for the subharmonic mode fulfi
potential conditions and can be solved analytically in ste
state@4–7#. Information about correlation times and scalin
properties in the adiabatic limit has recently been obtai
by Kinsler and Drummond, who mapped the dynami
equations of the degenerate parametric oscillator onto
cubic stochastic process@8#.

A very promising approach to the general case, wh
goes beyond the standard linearization, has been introd
by Mertens, Kennedy, and Swain@9–11# and modified by
Plimak and Walls@12#. They applied nonequilibrium many
body techniques to calculate finite-size corrections close
the classical threshold. In this approach no adiabatic eli
nation is required. However the convergence of the s
consistent calculation scheme in Refs.@9–11# breaks down
551050-2947/97/55~4!/3059~14!/$10.00
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in the immediate vicinity of the critical point, since it use
ill-behaved linearized Green’s functions as a starting po
Thus the scaling properties at the classical threshold co
not be analyzed.

In the present paper we follow the idea of Merten
Kennedy, and Swain and apply many-body Green’s-funct
techniques to the OPO. Different from their approach, ho
ever, we use as a starting point in the self-consistent ca
lation scheme expressions from a mean-field approximat
which we developed in Ref.@13#. In this approach the lowes
order contributions are well behaved also at the critical po
since the backaction of fluctuations on the mean cohe
amplitudes is taken into account. We are thus able to ca
late average values and fluctuations also at the class
threshold and can study the scaling of fluctuations and c
relation times with the system size at this point.

The Green’s-function~GF! formalism is an approach to
calculate ordered correlation functions. It involves a trun
tion of a hierarchy of equations, which is done here by
expansion of the so-called vertex function@14#. This expan-
sion is applicable for a large range of parameters and bre
down only in the strong quantum limit of very small photo
numbers in both the pump and the subharmonic mode. S
this limit can easily be treated by a numerical evaluation
the Fock-state density matrix equations, it shall not be c
sidered here. On the other hand, there are two system
parameters in the OPO corresponding to the two modes,
pronounced quantum effects are to be expected if only on
these parameters becomes small. We will show that
lowest-order term in the vertex expansion, the bare-ver
approximation, works very well when the system-size of t
pump mode is kept large. However, at the same time
system size of the subharmonic mode may be chosen ra
small. It is thus possible to study the ‘‘semiquantum’’ lim
of a small-sized subharmonic and quasiclassical pump m
in which substantial deviations from the classical and line
ization approaches are found. This ‘‘semi-quantum’’ limit
achieved when the cavity-loss rate of the pump modeg2 is
small compared to that of the subharmonic modeg1, a situ-
ation complementary to the adiabatic limit studied
@4–8,12#.
3059 © 1997 The American Physical Society
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3060 55OLIVER VEITS AND MICHAEL FLEISCHHAUER
We will show that the range of validity of the bare-verte
approximation can go far beyond the classical thresh
wheng5g2 /g1 is small and still works reasonably well a
threshold even for values ofg of the order of unity. In the
limit of g going to zero the bare-vertex approximation r
duces to the mean-field approximation discussed in R
@13#, which can be solved analytically under stationary co
ditions.

Above the classical threshold the bare-vertex solution
dergos a trifurcation. One solution follows the mean-fie
result ~vanishing subharmonic amplitude!, while the other
solutions approach the above-threshold classical beha
with a broken symmetry. The trifurcation point, which ma
be considered as the renormalized threshold of param
oscillation, is shifted more and more above the class
threshold, when the system size is reduced.

Our paper is organized as follows. In Sec. II we descr
the model and compare the mean-field with the standard
earization approach. We also study the scaling propertie
fluctuations and correlation times at the classical threshol
the mean-field approximation. In Sec. III we give an intr
duction into nonequilibrium many-body techniques for thre
boson interactions and establish some simple notation.
reader familiar with nonequilibrium Green’s functions m
skip this part. In Sec. IV we specialize to the case of a
generate optical parametic oscillator, assuming first a van
ing mean amplitude of the subharmonic mode~i.e., not al-
lowing for symmetry breaking!. Here we analyze the
fluctuation properties below, at, and to a certain extent ab
the classical threshold within the bare-vertex approximati
Dyson equations for normal and anomalous Green’s fu
tions ~correlation functions! are derived and solved numer
cally in a self-consistent way. Squeezing and antisquee
spectra are calculated and the dependence on pump str
and system size are discussed. The range of validity of
bare-vertex approach is analyzed by numerical estima
lowest-order corrections to the bare vertex in a second pa
Sec. IV. Finally we discuss the bare-vertex solutions ab
the classical threshold relaxing the condition^a1&50 ~i.e.,
allowing for symmetry breaking!. Section V gives a sum
mary and an outlook.

II. CLASSICAL BEHAVIOR, SMALL-NOISE,
AND MEAN-FIELD APPROXIMATIONS

The degenerate OPO is a system of two coupled ca
quasimodes of frequencyv and 2v. The high-frequency
mode with photon annihilation and creation operatorsa2 and
a2
† is driven by an external classical field. The cavity co
tains a nonlinearx (2) crystal which splits a pump photon i
two subharmonic photons. The corresponding interac
Hamiltonian reads

VOPO5 i\
K

2
~a2a1

†22H.c.!1 i\e~a22a2
†!, ~1!

whereK is a real and positive coupling constant,e is the
pumping rate which we choose real, anda1 anda1

† are the
annihilation and creation operators of the subharmo
mode. The damping rates of the two modes due to ca
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losses are denoted byg1 andg2. The dynamics of the system
can be described by Heisenberg-Langevin equations

d

dt
a152g1a11Ka2a1

†1A2g1F1~ t !, ~2!

d

dt
a252g2a21e2

K

2
a1
21A2g2F2~ t !, ~3!

whereF1 andF2 ared-correlated fluctuation forces. Due t
the invariance of the equations with respect to a sign cha
of a1, the subharmonic mode has in the classical limit eith
a vanishing amplitude or displays a bistable behavior.
transition between the two cases occurs, when the exte
pump ratee reaches the critical valuee th5g1g2 /K. Here the
classical stationary solutions of Eqs.~2! and ~3! show the
well-known pitchfork bifurcation of the subharmonic mod
shown in Fig. 1. The bifurcation point is the classical thres
old of parametric oscillation. Below threshold the subh
monic amplitude is zero and the pump-mode amplitude
creases linearly withe. Above threshold the pump mod
stays constant and all energy is transferred into the sub
monic mode.

In the standard linearization approach@15#, the steady-
state quantum behavior of the system is analyzed by ass
ing small fluctuations around the classical amplitudes a
disregarding higher order noise contributions. One of the
genvalues of the linearized equations vanishes at the clas
threshold indicating a critical behavior of the subharmo
mode and the breakdown of the small-noise assumption.
linearized theory is therefore not a useful starting point fo
systematic derivation of corrections. Instead we here use
mean-field approach introduced by us in Ref.@13# as a
lowest-order approximation. A brief outline of the mea
field approach will be given in the following.

To characterize the scale of the quantum fluctuations
the two modes we first introduce so-called system-size
rameters. One is the photon number of the pump mod
threshold in the classical limit

nth5
g1
2

K2 ~4!

FIG. 1. Classical behavior of the scaled subharmonic amplit
ã1 in a degenerate parametric oscillator as a function of the sc
pump strengthẽ. At the classical thresholdẽ51 the subharmonic
mode undergoes a pitchfork bifurcation.
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and the other one the slope of the subharmonic photon n
ber above threshold

m5
2g1g2

K2 52gnth . ~5!

Normalizing the field operators to these scales,

ã15a1 /Am, ~6!

ã25a2 /Anth, ~7!

the pump rate to the threshold valueẽ5e/(g1g2 /K), and
measuring time in units ofg1

21 we find the scaled
Heisenberg-Langevin equations

d

dt
ã152ã11ã2ã 1

11A2

m
F1~t!, ~8!

1

g

d

dt
ã252ã21 ẽ2ã 1

21A 2

nth
F2~gt!, ~9!

whereg[g2 /g1. From these equations we easily see t
the steady-state values for the amplitudes obey

^ã1&5^ã2ã 1
†&, ~10!

^ã2&5 ẽ2^ã 1
2&. ~11!
nt
a

ns
ul

re
a
nd
-

t

In the standard linearization approach all second- a
higher-order contributions in the fluctuations of the fie
modes around their mean amplitudes are neglected, w
corresponds to

~ ã22^ã2&!~ ã 1
†2^ã 1

†&!'0, ~12!

~ ã12^ã1&!2'0. ~13!

This approximation leads to a diverging subharmonic pho
number at threshold, since it ignores the depletion of
pump mode due to energy transfer into subharmonic fluc
tions. However, we replace here the operator expression
the left-hand side of Eqs.~12! and ~13! by their average
value in the spirit of a mean-field or Hartree approximatio
This amounts to the replacement

ã2ã 1
†'^^ã2ã 1

†&&1^ã2&ã 1
†1ã2^ã 1

†&2^ã2&^ã 1
†&, ~14!

ã 1
2'^^ã 1

2&&12^ã1&ã12^ã1&
2, ~15!

where^^xy&&[^xy&2^x&^y&.
Since the Heisenberg-Langevin equations~8! and ~9! be-

come linear in the operators when the mean-field approxi
tion ~14! and ~15! is applied, we can easily calculate th
steady-state values of^^ã2ã 1

†&& and ^^ã 1
2&& as a functional

of ã1[^ã1&, ã2[^ã2&, and 1/m5@ ã1 ,ã 1
†#. We find
^^ã2ã 1
†&&5

ã1ã 2
2g~212ã 1

21g!

~ã 2
224ã 1

224ã 1
421!~12ã 2

212g1g2!m
, ~16!

^^ã 1
2&&52

ã2

2

114ã 1
214ã 1

42ã 2
212g16ã 1

2g14ã 1
4g1g212ã 1

2g2

~ ã 2
224ã 1

224ã 1
421!~12ã 2

212g1g2!m
, ~17!
m

er

e

re-
how

clas-
n-
where we have made use of the fact thatã1 and ã2 are real
if e is real and positive. Substituting these results back i
Eqs.~10! and~11! leads to a set of nonlinear algebraic equ
tions for ^ã1& and ^ã2&. For 1/m50, i.e., in the thermody-
namic limit of an infinite system size,̂ ^ã2ã 1

†&& and
^^ã 1

2&& vanish except at the critical point and the solutio
for ^ã1& and^ã2& are the classical ones with a bistable res
above threshold. For any finite value ofm, however, only the
solution

^ã1&5^ã2ã 1
†&50 ~18!

survives. That is in the mean-field approximation the cor
lation between the subharmonic and pump amplitude v
ishes and there are no bistable solutions. Under this co
tion we find

^ã 1
2&5

^ã2&

2m~12u^ã2&u2!
~19!

and
o
-

t

-
n-
i-

^ã 1
†ã1&5

u^ã2&u2

2m~12u^ã2&u2!
. ~20!

Similarly the steady-state pump-field amplitude follows fro
the third-order nonlinear equation

^ã2&5 ẽ2
^ã2&

2m~12u^ã2&u2!
, ~21!

which results from substituting Eq.~19! into Eq. ~11!. Only
one of the three roots of Eq.~21! obeysu^ã2&u,1, a condi-
tion which is required for obtaining positive photon numb
in the subharmonic mode@see Eq.~20!#. In Fig. 2 we have
plotted this solution as a function of the scaled pump ratẽ
for different values ofm. In the ‘‘semiquantum’’ limit of
smallm values a substantial deviation from the classical
sult can be recognized. The mean-field theory does not s
any symmetry breaking in the subharmonic mode, i.e.,^ã1&
stays zero also above threshold. Nevertheless the stable
sical solution^ã2&51 is approached above threshold for i
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3062 55OLIVER VEITS AND MICHAEL FLEISCHHAUER
creasing system sizem. Similarly the mean photon numbe
of the subharmonic modên1& approaches the classical valu
as shown in Fig. 3.

The linear Langevin equation for the subharmonic mo
in mean-field approximation is identical to that of the sta
dard linearization approach@15# except that the classica
value ã 2

cl has to be replaced by the mean-field soluti
^ã2& of Eq. ~21!,

d

dt
ã152ã11^ã2&ã 1

†1A2

m
F1 . ~22!

Thus the squeezing spectra of the two quadrature com
nents

x1~ t !5
1

2
@a1~ t !1a1

†~ t !#, ~23!

p1~ t !5
1

2i
@a1~ t !2a1

†~ t !# ~24!

are given by the known Lorentzians

FIG. 2. Scaled mean amplitude of pump mode^ã2& as function
of scaled pump strengthẽ according to mean-field equation~21! for
different values of system-size parameterm.

FIG. 3. Scaled subharmonic photon number as a function
pump strength in mean-field approximation according to Eq.~20!
for different values ofm.
e
-

o-

S6~v!56
^ã2&

v2/g1
21~17^ã2&!2

. ~25!

Here the indices1 and2 correspond to the ‘‘coordinate’
and ‘‘momentum’’ quadrature of the field, respectively.

Since ^ã2& remains smaller than unity, the subharmon
fluctuations do not diverge in contrast to the standard line
ization result. We can therefore study the scale of the fl
tuations in the squeezed and antisqueezed quadrature a
classical thresholdẽ51. The squeezed~antisqueezed! fluc-
tuations in the output spectrum atv50 scale withm21

(m). The intracavity fluctuations of the antisqueezed com
nentx1 as shown in Fig. 4 as well as the subharmonic pho
number scale withm1/2. While in the linearization approach
there is a critical slow down of the fluctuations in the an
squeezed quadrature, they again remain finite in the me
field approximation. We find that the decay rate of t
squeezed fluctuations becomes independent on the sy
size and that of the antisqueezed fluctuations vanishes
m21/2. This is shown in Fig. 5. These results are consist
with the adiabatic results of Wolinski and Carmichael@7#
and Kinsler and Drummond@8#.

Since^ã2& monotonically approaches unity for increasin
pump rate, the maximum amount of squeezing in thep1
component or, respectively, the maximum fluctuation inx1
are attained only for an infinite pump rate. Clearly the val

f

FIG. 4. System-size scaling of intracavity antisqueezed fluct
tions in mean-field approximation.

FIG. 5. System-size scaling of correlation decay of antisquee
quadrature in mean-field approximation.
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55 3063EFFECTS OF FINITE-SYSTEM SIZE IN NONLINEAR . . .
ity of the mean-field approximation breaks down much e
lier. Nevertheless, we can conclude that the point of ma
mum fluctuations is shifted to higher pump strength valu
due to finite-size quantum corrections.

The mean-field approach breaks down, when either
fluctuations of the pump mode or fluctuations ofã 1

2 around
its average valuêã 1

2& become important. As we will show
later on, rather small values ofg are required for an accurat
description of the threshold behavior by the mean-field
proach. Nevertheless, also for larger values ofg the ap-
proach gives a well behaved zeroth-order approximation
is therefore a useful starting point for further consideratio
Furthermore, it yields the correct system-size scaling of
fluctuations at the classical threshold.

III. QUANTUM MANY-BODY APPROACH

In the present section we will give a short introducti
into nonequilibrium many-body techniques@14# applied to
problems in nonlinear quantum optics. We also estab
some notations which will be helpful further on.

A. Green’s functions, Feynman graphs,
and perturbation theory

The aim of the many-body approach is to derive clos
sets of equations forn-point Green’s functions~or n-time
correlation functions!, which have the generic form

^T21@AH~ t1!•••#T@•••AH~ tm!#&. ~26!

HereAH denotes an operator in the Heisenberg picture c
responding to some field mode,T is the time-ordering opera
tor, and ^•••& means Tr$r0•••%, where r0 is the density
operator att52`, which is assumed to fulfill the condition
for the application of Wick’s theorem@14#. It should be
noted that it is sufficient to consider time-ordered correlat
functions of the form given in Eq.~26!, since these are th
only measurable quantities of the field@16#. All relevant sta-
tistical information can be derived from the Green’s fun
tions and in most cases only a few are actually needed.

In the case of a nonlinear interaction it is not possible
obtain a closed set of equations in an exact way, but rathe
infinite hierarchy of equations arises. To find appropriate
proximations it is useful to first separate the solvable lin
part of the problem. For this we introduce an interacti
picture, in which the field operators evolve according to
free Hamitonian plus the reservoir interactions describ
cavity losses. The corresponding operators in the interac
picture are denoted byA. Any time-ordered correlation func
tion of operatorsAH of the type given in Eq.~26! can then be
expressed by interaction picture operators with the help
the time-evolution operator

S5TexpH 2
i

\E2`

`

dt8V~ t8!J . ~27!

^T21@AH~ t1!•••#T@•••AH~ tm!#&

5^T21@S21A~ t1!•••#T@S•••A~ tm!#&. ~28!
-
i-
s

e

-

d
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e
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To simplify the notation it is useful at this point to intro
duce the so-called Schwinger-Keldysh time contourC @17#
indicated in Fig. 6 and a corresponding time-ordering ope
tor TC which is identical toT on the upper branch of the
contour and toT21 on the lower one. If we furthermore
define thatTC orders all operators on the lower branch to t
left of those on the upper branch, Eq.~28! can be expressed
with a single time-ordering and evolution operator onC:

^TC@AH~ t1
~2 !!•••AH~ tm

~1 !!#&5^TC@SCA~ t1
~2 !!•••A~ tm

~1 !!#&
~29!

and

SC5TCexpH 2
i

\ECdťV~ ť !J , ~30!

where ť denotes a time argument on the contourC and the
superscripts (6) specify the branch.

We denote the exact Green’s functions on the Schwing
Keldysh contour by

Di~ ť i ![^TCSCAi~ ť i !&, ~31!

Di j ~ ť i , ť j ![^TCSCAi~ ť i !Aj~ ť j !&2Di~ ť i !Dj~ ť j !, ~32!

and the free Green’s functionsDi
0 andDi j

0 by the same ex-
pressions withoutSC . The subscriptiP$m1,m% indicates
thatAi creates or annihilates a photon of modem. We note
that the definition~32! contains also so-called anomalou
Green’s functions with two annihilation or creation oper
tors, which are needed to describe quadrature squee
Sometimes we will find it useful to work with physical time
in which case we explicitly denote the contour branch
indices:

Di j
ab~ t i ,t j ![^TCSCAi~ t i

a!Aj~ t j
b!&2Di

a~ t i !Dj
b~ t j !,

~33!

wherea,bP$1,2%.
At this point let us discuss some symmetry properties

the Green’s functions, as they help to substantially red
the calculational effort. It is immediately obvious from E
~32! that

Di j ~ ť i , ť j ![Dji ~ ť j , ť i !. ~34!

FIG. 6. Schwinger-Keldysh time contourC. To each physical
time correspond two contour times, on upper (1) or lower branch
(2) depending on whether it appears in a causal or anticausal
ordered expression.
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3064 55OLIVER VEITS AND MICHAEL FLEISCHHAUER
Complex conjugation of a Green’s function turns an ann
lation operator into a creation operator and vice versa
addition, the ordering is reversed. This is done by switch
the time contour labels1↔2,

„Di j
ab~ t i ,t j !…*[Di1, j1

2a2b
~ t i ,t j !. ~35!

The action of the time-ordering operator can be written

TA~ t1!B~ t2!5u~ t12t2!A~ t1!B~ t2!1u~ t22t1!B~ t2!A~ t1!

and similar for the antitime-ordering operator. With resp
to the two-point Green’s functions this leads to the identit

Di j
111Di j

225Di j
121Di j

21 , ~36!
in
r
rst
i-
n
g

s

t
s

Di j
112Di j

2252sgn~ t i2t j !~Di j
212Di j

12!. ~37!

Let us now consider as a generic example for a nonlin
interaction a three-boson process with coherent driving
Einstein-notation, where one has to sum over all pairs
indices, the interaction Hamiltonian reads

V~ ť !5 i\
1

3!
vklmAk~ ť !Al~ ť !Am~ ť !1 i\ekAk~ ť !. ~38!

In order to calculate the exact two-point Green’s function
such a process, we start with a perturbation approach.
expandSC in Di j[^TCSCAiAj&2DiD j in powers of the el-
ementary verticesvklm andek ,
n now
SC511E
C
dťekAk~ ť !1

1

3!ECdť vklmTC@Ak~ ť !Al~ ť !Am~ ť !#1
1

2!E E
C
dťdť8eke lTC@Ak~ ť !Al~ ť8!#

1
1

~3! !2
1

2!E E
C
dťdť8vklmvnpqTC@Ak~ ť !Al~ ť !Am~ ť !An~ ť8!Ap~ ť8!Aq~ ť8!#

1
1

3!E E
C
dťdť8ekv lmnTC@Ak~ ť !Al~ ť8!Am~ ť8!An~ ť8!#1•••. ~39!

Applying Wick’s theorem, which also holds for interaction-picture operators that include the reservoir coupling, we ca
express the exact correlation functions in terms of interaction-picture correlation functions,

Di~ 1̌!5E
C
d2̌ekDik

0 ~ 1̌,2̌!1
1

2!ECd2̌Dik
0 ~ 1̌,2̌!vklmDlm

0 ~ 2̌,2̌!1•••, ~40!

Di j ~ 1̌,1̌8!5Di j
0 ~ 1̌,1̌8!1E E

C
d2̌d3̌Dik

0 ~ 1̌,2̌!vklmDln
0 ~ 2̌,3̌!Fen1 1

2!
vnpqDpq

0 ~ 3̌,3̌!GDmj
0 ~ 3̌,1̌8!

1
1

2!E E
C
d2̌d3̌Dik

0 ~ 1̌,2̌!vklmDln
0 ~ 2̌,3̌!Dmp

0 ~ 2̌,3̌!vnpqDq j
0 ~ 3̌,1̌8!1•••. ~41!
ed
, we
wo-
nd
pec-
r-
the
i-

act
in

ith
cks
e.
FIG. 7. Graphical representation of exact~double line! and free
~single line! one-photon Green’s functions. Also shown are the l
ear and nonlinear vertices~at which an integration over the contou
C has to be performed! and the graphical representation of the fi
terms in a perturbation expansion of the exact GFD in terms of the
free GFD0.
Here we have introduced 1ˇ ,2̌, . . . to abbreviate time argu-
ments.

For a very convenient graphical notation of the involv
equations we use Feynman-diagrams. As shown in Fig. 7
use a single or double line to represent a free or exact t
point Green’s function. In addition there are two-end a
three-end vertices denoted by circles and triangles, res
tively, at which an integration over the whole Schwinge
Keldysh contour has to be performed. Using this notation
perturbation expansion~41! can be given the simple graph
cal representation also shown in Fig. 7.

In order to obtain a nonperturbative result for the ex
two-point Green’s functions one has to sum up the terms

-

FIG. 8. Graphical representation of the Dyson equation w
formal self-energies. The self-energies represent all diagram blo
that cannot be separated in two parts by cutting a single GF lin
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the series expansion. In the general case this is not pos
and one must resort to a partial summation of the se
which takes into account the most dominant terms. This w
be explained in the next subsection.

B. Self-energy and Dyson equation

A formal summation of all terms in the perturbation e
pansion of an exact Green’s function can be obtained
introducing the so-called self-energy. The self-energyP is
formally the sum of all diagram blocks with two extern
vertices, which cannot be separated by cutting a single
line. With these definitions one obtains a closed set of Dy
equations@14# for the two-point Green’s functions:

Di j ~ 1̌,1̌8!5Di j
0 ~ 1̌,1̌8!1E E

C
d2̌d3̌Dik

0 ~ 1̌,2̌!

3Pkl~ 2̌,3̌!Dl j ~ 3̌,1̌8!. ~42!

Figure 8 gives a graphical representation of this equat
Transforming Eq.~42! into physical times we find

Di j
ab~1,18!5Di j

0 ab~1,18!1E E
2`

`

d2d3Dik
0 ag~1,2!

3gPkl
gd~2,3!dDl j

db~3,18!, ~43!

where the factorsg andd (561) come from the fact tha
the integration direction is reversed on the lower branch
the time contour. In a compact notation, where the Gree
functions and the self-energies become 232 matrices de-
noted byDi j andPi j , we have

Di j ~1,18!5Di j
0 ~1,18!1E E

2`

`

d2d3Dik
0 ~1,2!Pkl~2,3!

3Dl j ~3,18!, ~44!

where we have incorporated the sign factors in the defini
of the self-energy matrixPkl .

Under stationary conditions the Green’s functions a
self-energies depend only on the difference of the~physical!
time arguments. A Fourier transformation then turns the
tegral equation into an algebraic one: Defini
X(v)5*dtX(t1t,t)exp$2ivt% we arrive at

Di j ~v!5Di j
0 ~v!1Dik

0 ~v!Pkl~v!Dl j ~v!. ~45!

Equation~45! can be solved and the exact Green’s fun
tions can be expressed in terms of free Green’s functions
self-energies. The introduction of self-energies, howev
does only formally solve the problem. One has yet to fi
good approximations for these quantities. An establis
procedure to obtain an approximate closed expression
self-energies in many-body theory is the vertex expans
outlined in the next subsection.

C. Vertex expansion and self-energies
in bare-vertex approximation

In systems with nonvanishing mean amplitudes of fiel
the self-energiesPi j can formally be decomposed into tw
ble
s
ll

y

F
n

n.

f
’s

n

d

-

-
nd
r,
d
d
or
n

,

contributions. One of them contains the mean amplitude
the other one can be written as a product of two ex
Green’s functions~GF! and a so-called vertex functio
G i jk(1,2,3), which depends on three time arguments@14#. In
the language of Feynman graphs,G represents all diagram
blocks which cannot be separated into three parts by cut
two GF lines:

Pi j ~ 1̌,2̌!5v i jkDk~ 1̌!d~ 1̌,2̌!1
1

2!E E
C
d3̌d4̌v ikl

3Dkm~ 1̌,3̌!Dln~ 1̌,4̌!Gmn j~ 3̌,4̌,2̌!. ~46!

A graphical illustration of Eq.~46! is given in Fig. 9. The
vertex functionsG i jk can be expanded in powers of the co
pling strengthv and exact Green’s functions. The first term
of such an expansion are shown in Fig. 10. Taking into
count only the first term results in the so-called bare-ver
approximation@10#, in which we have

G i jk
~1!~ 1̌,2̌,3̌!5v i jkd~ 1̌,2̌!d~ 2̌,3̌!. ~47!

This truncation of the vertex-expansion leads to a clo
set of Dyson equations for the two-point Green’s functio
with the self-energies

Pi j ~ 1̌,2̌!'v i jkDk~ 1̌!d~ 1̌,2̌!1
1

2!
v iklDkm~ 1̌,2̌!Dln~ 1̌,2̌!vmn j .

~48!

Under stationary conditions we thus have

Pi j
ab~v!5adabv i jkDk

a1
1

4pE dv8abv iklDkm
ab~v8!

3Dln
ab~v2v8!vmn j . ~49!

In order to test the validity of the bare-vertex approxim
tion one can estimate the contributions from the next-or
term in the vertex expansion to the self-energies. T
second-order term in the vertex expansion reads

G i jk
~2!~ 1̌,2̌,3̌!5v i lmv jnpDln~ 1̌,2̌!Dmq~ 1̌,3̌!Dpr~ 2̌,3̌!vqrk .

~50!

FIG. 9. Representation of self-energyP in terms of the linear
mean-field vertex, exact Green’s functions, and vertex functi
G.

FIG. 10. Expansion of vertex functionG in powers of coupling
strengthK and exact Green’s functions. The bare-vertex appro
mation corresponds to a truncation of the expansion after the
term.
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This term gives rise to the second-order contribution in
self-energies,

Pi j
~2!~ 1̌,2̌!5

1

2!E E
C
d3̌d4̌v iklDkm~ 1̌,3̌!Dlq~ 1̌,4̌!vmnp

3Dnr~ 3̌,4̌!vqrsDpt~ 3̌,2̌!Dsu~ 4̌,2̌!v tu j . ~51!

IV. MANY-BODY APPROACH TO THE OPO

We now apply the many-body techniques outlined in
preceding section to the degenerate optical parametric o
lator with the interaction Hamiltonian given by

VOPO5 i\
K

2
~a2a1

†22H.c.!1 i\e~a22a2
†!. ~52!

A comparision with the definition ofvklm in Eq. ~38! gives
us v111125v112115v211115K and v11215v12115v2111
52K and all others are zero. The statistical properties of
two modes are determined by the normal Green’s functi
D1115^TCSCa1

1a1& and D2125^TCSCa2
†a2&, and the

anomalous Green’s functions D115^TCSCa1a1&,
D225^TCSCa2a2& and their conjugates.

Due to the symmetry of the problem, the mean amplitu
of the subharmonic modêã1& must vanish in steady state
Correspondingly according to Eq.~10! all mixed-type
Green’s functionsD1215^TCSCa1a2

†&, etc., vanish. How-
ever, being an approximation to the exact dynamics,
bare-vertex equations may have multistable solutions ab
threshold. Therefore alsôã1&Þ0 is possible, which corre
sponds to a symmetry braking. In the first part of this sect
we discuss the casêã1&[0, i.e., we do not allow for sym-
metry breaking. In the second part we lift this restriction a
show that the bare-vertex solutions become multistable f
critical pump strengthecr.e thr , following either^ã1&50 or
approaching the classical bistable behavior^ã1&56ã 1

cl .

A. The stationary OPO in bare-vertex approximation
and Šã1‹[0

Specifying the discussion of the preceding section to
interaction Hamiltonian of the optical parametric oscillat
given in Eq.~52!, and noting that̂ ã1&[0 implies that all
mixed-type Green’s functions vanish, we find the followin
set of stationary Dyson-equations in Fourier space:

D111~v!5D111
0

~v!1D111
0

~v!P11~v!D11~v!

1D111
0

~v!P111~v!D111~v!, ~53!

D11~v!5D111
0

~v!P111~v!D11~v!

1D111
0

~v!P1111~v!D111~v!, ~54!

and analogously for mode 2. The self-energies read in b
vertex approximation

P11
ab~v!5Kadab^a2&1

K2

2p
abE dv8D11

ab~v8!

3D2121
ab

~v2v8!, ~55!
e

e
il-

e
s

e

e
ve

n

d
a

e

e-

P1111
ab

~v!52Kadab^a2
†&

1
K2

2p
abE dv8D1111

ab
~v8!D22

ab~v2v8!,

~56!

P111
ab

~v!52
K2

2p
adabE dv8D111

ab
~v8!D221

ab
~v2v8!,

~57!

P22
ab~v!5

K2

4p
abE dv8D1111

ab
~v8!D1111

ab
~v2v8!,

~58!

P212
ab

~v!52
K2

4p
abE dv8D111

ab
~v8!D111

ab
~v2v8!.

~59!

The mean amplitude of the pump mode follows from E
~11!:

^a2&5
e

g2
2

K

2g2
E

2`

` dv

2p
D11

21~v!. ~60!

A graphical representation of the Dyson equations is given
Fig. 11. Here again single lines are used for free Gree
functions and double lines for exact ones. Dashed lines
resent the pump mode and full lines the subharmonic mo

The solution of the Dyson equations~53!–~59! reduces to
the solution of

Di1 i~v!215Di1 i
0

~v!212Pi i1
eff

~v! ~61!

with the effective self-energies,

Pi i1
eff

~v!5Pi i1~v!1Pi i ~v!@1

2 Di i1
0

~v!Pi1 i~v!#21Di i1
0

~v!

3Pi1 i1~v!. ~62!

All other Green’s functions follow fromDi1 i . Since the self-
energies contain convolution integrals of exact Green’s fu
tions, Eqs.~53!–~59! need to be solved in a self-consiste
way by a numerical iteration scheme. Important for the co
vergence of such a scheme are good initial approximation
the Green’s functions and mode amplitudes. Merte
Kennedy, and Swain used in their analysis expressions f
the linearized theory. Since the Green’s functions obtain
from a linearized theory diverge close to the classical thre

FIG. 11. Graphical representation of Dyson equations for O
in bare-vertex approximation and^ã1&50.
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old, this method failed when the critical point was a
proached. We use here expressions from the mean-field
proach of Sec. II for the initial value of the mean pum
amplitude^ã2& (^ã1&50 in mean-field approximation! and
for the zeroth-order Green’s functions. In order to impro
the convergence of the iteration scheme, we did not use
Dyson equations in the form given in Eqs.~53!–~59!, but a
modified version with the generic structure:

Dk115h@~D0!212Pk#
211~12h!@~D0!212Pk21#

21,
~63!

wherek is the iteration index andh is some appropriately
chosen parameter between 0 and 1. After each step we
tain updated expressions for the Green’s functions from
solution of Eq.~63! and updated expressions for the pum
mode amplitude from Eq.~60!. In this way we were able to
achieve convergence at and also above the classicial th
old.

In Fig. 12 we have plotted the coherent amplitude of
pump mode and the subharmonic photon number as a f
tion of the pumping strength~all in scaled units! for different
values ofg5g2 /g1, i.e., for different ratios of pump and
subharmonic decay rates. For pump rates below or in
vicinity of the classical threshold the bare-vertex solutio
agree with the mean-field results. If the pump rate is furt
increased, the bare-vertex results start to depart from
mean-field solutions. One recognizes agreement over a

FIG. 12. Pump-mode amplitude~a! and subharmonic photon
number~b! as a function of pump rate from bare-vertex and me
field approximations for a system-size parameterm55.
p-

he

b-
e
-

sh-

e
c-

e
s
r
he
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tively large range of pump values for smaller values ofg. As
we will show in the next subsection, this can easily be u
derstood when we compare the mean-field and bare-ve
contributions to the self-energies.

In Fig. 13 we have shown our numeric results for t
squeezing spectrum of the subharmonic mode at the clas
thresholdẽ51 for a small and a large system size of t
subharmonic mode (m55 andm5500) and different values
of g ~correponding to different system sizes of the pum
mode!. For a small system size of both modes (m small, g
large! the squeezing at the classical threshold is substant
reduced due to finite-size effects. However, a reduction
squeezing is already present, if only the subharmonic sys
is small. Correspondingly, the antisqueezed fluctuations
not diverge as opposed to the linearization result. One fur
recognizes that the one-loop contributions may lead to
double-peak structure of the squeezing spectrum alread
the classical threshold.

Figure 14 shows the squeezing spectra form55 and dif-
ferent values ofg slightly below, at, and slightly above th
classical threshold. Corresponding plots form550 are
shown in Fig. 15. One recognizes that for small system s
of both modes (m small, g51) a maximum in the outpu
squeezing spectrum is achieved below the classical thr
old. Decreasingg, i.e., increasing the pump-mode syste
size, shifts the point of maximum squeezing to higher pu
values. Moreover, the double-peak structure known from
above-threshold linearization@15# becomes visible for
ẽ51.2, despite the fact that there is no symmetry breaking

-
FIG. 13. Squeezing spectra from bare-vertex approach at cla

cal threshold form55 andm5500.



l

ld
b
s
ap
ve

all
ht-

e
ens

is
on
i-

ld
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this calculation and̂ã1&50. ~Since the width of the centra
dip scales withg, it is not resolved forg51.!

B. Validity of mean-field and bare-vertex approach

In order to analyze the range of validity of the mean-fie
approximation and to understand the good agreement
tween mean-field and bare-vertex results for small value
g, we estimate the self-energy contributions from both
proximations. For this it is sufficient to compare the effecti
self-energy of the mean-field case,K2u^a2&u2D111

0 , with a
representative bare-vertex correctionP111 for v50. Substi-
tuting the mean-field results, we find

FIG. 14. Squeezing spectra form55 and g50.1 below
( ẽ50.8), at (ẽ51), and slightly above the classical thresho
( ẽ51.2).
e-
of
-

P111
21

~0!

K2u^a2&u2D111
021

~0!
5

g

g1~12^ã2&!

1

4nthg~12^ã2&!
.

~64!

Hence the one-loop corrections to the self-energy are sm
compared to the mean-field or Hartree terms, when the rig
hand side~r.h.s.! of Eq. ~64! is small compared to unity.

A similar condition has been found by Mertenset al. in
Ref. @11# for the convergence of the Dyson equation. W
here note, however, two essential differences: First Mert
et al.and also Plimak and Walls in@12# considered a case in
which the effective decay rate of the subharmonic mode
smaller than that of the pump mode where the first factor
the r.h.s. of Eq.~64! is close to unity. Second, they approx

FIG. 15. Same as Fig. 14 form550.



ion
st
a
o

to

pe
ch

b
e-

a
e
A

th

en
o
oe
he
a

p-

n

1
op

a
o

o
ee
a

ble
ase-
uble
e-
rac-
las-
ical
e.
a
out
lso

las-
hav-
er,
ves
tes,
the
ba-
kes
dis-
-
ove
ot
ion

pli-
oxi-

eral-
.

of

he
for
o
or a

r-

55 3069EFFECTS OF FINITE-SYSTEM SIZE IN NONLINEAR . . .
mated^ã2& in the denominator by the classical express
ẽ. This second approximation, however, strongly undere
mates the radius of convergence of the Green’s function
proach, since in the vicinity and above the classical thresh
^ã2& deviates fromẽ substantially~compare Fig. 12!. In par-
ticular, if we use mean-field results, we find in contrast
Mertenset al. that the second term in Eq.~64! never di-
verges,

P111
21

~0!

K2u^a2&u2D111
021

~0!
5

g

g1~12^ã2&!
2~ ẽ2^ã2&!

'
g

g1~12^ã2&!
2~ ẽ21! ~65!

in the vicinity or above threshold. Thus an estimated up
limit for the pump rate up to which the mean-field approa
is accurate is given by

ẽ21<
1

2 F11
12^ã2&

g G . ~66!

We recognize that in the case opposite to that studied
Mertenset al. and Plimak and Walls, namely for a fast d
caying subharmonic mode, such thatg!(12^ã2&), the up-
per limit for the pump rate is considerably higher.

In order to test the validity of the bare-vertex approxim
tion we now have to analyze under what conditions high
order contributions to the self-energy are negligible.
pointed out by Mertenset al. @11#, a consistent way of doing
this is to take into account the first-order corrections in
vertex expansion ofG, given in Eq. ~50!. Mertenset al.
evaluated these contributions by replacing the exact Gre
functions by the linearized expressions. This, however, c
siderably overestimates the two-loop contributions and d
not allow one to test the approach at threshold. We use
the well-behaved expressions from the mean-field appro
instead.

As an indicator of the reliability of the bare-vertex a
proximation we may use the quantity

DPtwo-loop
eff [Ptwo-loop

eff 2Pone-loop
eff , ~67!

which is a 23 2 matrix in physical times. In order to obtai
a single real number, we introduce the norm

uuPuu[APabPab. ~68!

Note that here again the Einstein notation applies. In Fig.
we have plotted the relative contributions of the two-lo
terms to the effective self-energy forv50,

q5uuDP2-loop
eff ~v50!uu/uuP1-loop

eff ~v50!uu ~69!

as a function of the pump parameter forg50.1 and different
values ofm. One recognizes that the bare-vertex approxim
tion works well up to 20% above the classical threshold. F
larger values of the pump strength it becomes unreliable
particular for larger system-size parametersm.

The breakdown of the vertex expansion above thresh
can easily be understood. When the pump strength exc
the critical value for the pitchfork bifurcation, the classic
i-
p-
ld

r

y

-
r-
s

e

’s
n-
s
re
ch

6

-
r
in

ld
ds
l

solutions become bistable. There is of course no bista
steady state in the quantum dynamics. However, the ph
space distribution of the subharmonic mode becomes do
peaked. This situation is qualitatively different from the b
havior below threshold, where the true state can be cha
terized by a Gaussian distribution around a well-defined c
sical amplitude. An approach based on semiclass
expansions must clearly break down in a bistable regim
However, if the system size is small, the transition from
single-peaked to a double-peaked distribution is smeared
and the bare-vertex approach works reasonably well a
somewhat above the classical threshold.

C. Bare-vertex approximation for the above-threshold OPO
with symmetry breaking

From the preceding discussions it is clear that a semic
sical expansion fails to describe the true steady-state be
ior of the parametric oscillator above threshold. Howev
since the tunneling time rapidly increases when one mo
away from the threshold, there are two metastable sta
with a mean subharmonic amplitude close to one of
bistable classical values. An external asymmetric pertur
tion can force the system into one of these states and it ta
a long time before tunneling reestablishes the symmetric
tribution. This property gives also the justification for a lin
earization around one of the two classical solutions ab
threshold@15#. Since the Green’s-function approach does n
include tunneling, it also corresponds to such a situat
when applied to the above-threshold case with^ã1&Þ0.

In the present subsection we analayze the mean am
tudes and fluctuation spectra within the bare-vertex appr
mation above threshold lifting the restriction^ã1&50, which
implies that also mixed-type Green’s functionsD12, etc.,
need to be considered. Thus we need to resort to the gen
case Dyson Equation~45! with self-energies given in Eq
~48!. By using a nonvanishing value of^ã1& in the first step
of iteration of the~now much more involved! Dyson equa-
tions we enforce a symmetry breaking. The true value
^ã1& in the ~metastable or quasi!steady state then follows
from the self-consistent iteration scheme.

In Fig. 17 we have plotted the mean amplitude of t
subharmonic mode as a function of the pump strength
m55 andm550 andg50.1 and 1. For comparision als
the classical solution is shown. One can recognize that f
larger system size of both modes (m550, nth525) bare-

FIG. 16. Relative contribution of two-loop terms to self ene
gies.
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3070 55OLIVER VEITS AND MICHAEL FLEISCHHAUER
vertex and classical solutions are virtually the same. Fo
smaller system size (m55 andnth52.5) or for a small value
of g5g2 /g1 (m550,nth5250, i.e.,g50.1) the phase tran
sition between̂ ã1&50 and^ã1&Þ0 occurs at a substantiall
higher value of the pump rate. The point of the phase tr
sition can be considered as renormalized threshold of p
metric oscillation and finite-size effects shift this point t
wards a higher pump strength. It is interesting to note that
the range of the pump parameter shown, the mean valu
the subharmonic mode stays below the classical value e
for relatively large pump strength.

The squeezing spectrum above threshold shows the s
features as known from linearization. It develops a pe

FIG. 17. Mean value of subharmonic amplitude in bare-ver
approximation with symmetry breaking fornth525, m550
(g51) shown in~a!, for nth52.5,m55 (g51) shown in~b!, and
for nth5250,m550 (g50.1) in ~c!.
a

-
a-

r
of
en

me

aroundv50 which is narrower and more pronounced wh
g is small. As can be seen from Fig. 18, finite size effe
tend to smear out the sharp spectral structures. For com
son we have shown also the squeezing spectrum with
symmetry breaking in Fig. 18, in which case the peak
much less pronounced. The antisqueezing spect
is initially a Lorentzian which rapidly decrease
in height with increasing pump strength until it becom
double peaked at frequencies (v/g1)

25(v0 /g1)
252g2

1gA2gu^ã1&u214u^ã1&u4 as in the linearization approach.
An interesting effect of the one-loop contributions to t

fluctuation spectra above threshold was pointed out in R
@18#. Sufficiently far above threshold and for small values
g additional small spectral peaks occur at frequenc
v50 andv562v0, wherev0 is the peak-frequency in the
linearized antisqueezed spectrum. For higher pump va
these structures disappear again. We also find these s
tures in the antisqueezed spectrum as indicated in Fig.
The appearance of these peaks in a nonlinear theory is e
understood. As mentioned before, the fluctuations beco
spectrally condensed at frequencies6v0 sufficiently far
above threshold. The nonlinear terms in the equations of
tion then result in beat-note terms at frequenciesv50 and
62v0. In the Dyson equations this effect is generated by
quadratic contributions in the self-energies. If we assume,
example, thatD1111

ab (v) has sharp peaks atv56v0, the
x

FIG. 18. Squeezing spectrum above classical thresh
( ẽ51.4) from linearization, bare-vertex approach with and witho
symmetry breaking.

FIG. 19. Generation of beat-note contributions atv50 and
v562v0 in antisqueezing spectrum far above the classical thre
old.
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convolution integral in the one-loop contribution to the se
energy

P22
ab~v!5

K2

4p
abE dv8D1111

ab
~v8!D1111

ab
~v2v8!

~70!

leads to large contributions atv50 andv562v0. When
the pump strength is further increased, the absolute valu
the fluctuations decreases and therefore the one-loop co
butions to the self-energies become small compared to
mean-field terms. Thus the additional peaks in the fluctua
spectra disappear again.

V. SUMMARY

In the present paper we have analyzed the quantum
tistical properties of a degenerate parametric oscillator w
the help of a many-body approach. This approach does
make use of the small-noise assumption in linearization
proaches and thus allows one to study the near-thres
behavior and effects from finite system sizes character
by the two parametersm andnth .

We have shown in Sec. II that the quantum dynamics
the parametric oscillator can be accurately described be
at, and to a certain degree above the classical threshold
a mean-field approach in the limit of a fast decaying subh
monic mode. The mean-field equations take into account
depletion of the pump mode due to energy transfer into s
harmonic fluctuations, which is ignored in linearization a
proaches and can be solved analytically. The approach
require a large threshold photon number of the pump m
nth in order for the pump mode to be treated quasiclassic
but not a large system-size of the subharmonic mode.
can therefore study a semiquantum limit, with a highly qua
tum subharmonic mode. In this limit a large deviation n
only of the fluctuations but also of the mean amplitudes
the fields from the linearization results can be found.
opposed to the linearization results, the intracavity a
squeezed fluctuations as well as the subharmonic ph
number remain finite at threshold and scale with the squ
root ofm.

Yielding well-behaved results for mean values and cor
lation functions, the mean-field approach is an appropr
starting point for more accurate approaches. Following
idea of Mertens, Kennedy, and Swain@9–11# we derived a
closed set of Dyson equations for two-point Green’s fu
tions or field correlation functions in Sec. IV using the ba
vertex approximation. The Dyson equations are integ
equations and are solved numerically by a self-consisten
eration scheme. As opposed to Mertenset al., who used di-
verging linearized Green’s functions for the initial se
.
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energies, we used well-behaved mean-field values which
all-order expressions in 1/m. In this way we were able to
achieve convergence also at and above threshold.

In the first part of our analysis we assumed a vanish
mean amplitude of the subharmonic mode and studied
influence of finite-size effects on the squeezing in the thre
old area. We found that with decreasing system size
amount of squeezing is generally reduced and the poin
maximum intracavity fluctuations of thex component is
shifted to pump strength larger than the threshold pump r
Also the spectrum of squeezed fluctuations in the outpu
changed. For small values ofg, the double-peak structur
known from linearization above threshold~with broken sym-
metry, i.e.,^ã1&Þ0) appears already below threshold.

We have analyzed the range of validity of the bare-ver
approximation with vanishing subharmonic amplitude by
timating higher-order vertex corrections. For this, Gree
functions from the mean-field approach were used as
posed to the analysis in Ref.@11#, where linearized expres
sions were applied. We showed that the bare-vertex appr
mation works well at and to a certain degree above
classical threshold for small values ofg and small values of
m. For higher pump strength the stationary phase-space
tribution of the subharmonic mode becomes double pea
and the vertex expansion breaks down. The smaller the
tem size and the larger the decay of the subharmonic m
the slower is the transition from the single to the doub
peaked distribution and the longer the bare-vertex appro
works.

In the second part of our analysis we studied the stati
ary OPO above the classical threshold relaxing the condi
^a1&50 and thus allowing for symmetry breaking. Sinc
tunneling between the two classical stable states is not
counted for by the bare-vertex approach, this correspond
an analysis of fluctuations in a metastable state. We sho
that the critical pump strength for which a metastable stat
possible is in general larger than the classical threshold v
if the system size of the modes or the ratio of decay ra
g5g2 /g1 are small. This can be considered as a renorm
ization of threshold due to finite-size effects.

In conclusion, the many-body technique is a useful too
study quantum fluctuations beyond the level of linearizat
in particular finite-size effects whenever a well-defin
single-peaked stationary phase-space distribution exists.
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