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Effects of finite-system size in nonlinear optical systems:
A quantum many-body approach to parametric oscillation
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We analyze the influence of system-size effects on the quantum properties of a degenerate parametric
oscillator below, at, and above the classical threshold using a Green's-function approach. The many-body
technique permits a systematic analysis of finite-size corrections to standard linearization results. In particular
we study a “semiquantum” limit, where even above threshold only few photons are in the subharmonic mode
while the pump mode is highly populated and behaves quasiclassically. Substantial deviations from classical
and linearization predictions are found. We show that the depletion of the pump mode is rather strong and the
threshold of parametric oscillation is shifted to higher pump strength, when the subharmonic system is small.
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PACS numbe(s): 42.50.Lc, 42.50.Dv, 42.65.Ky, 42.50.Ct

I. INTRODUCTION in the immediate vicinity of the critical point, since it uses
ill-behaved linearized Green’s functions as a starting point.
The phase transition of a degenerate optical parametri€hus the scaling properties at the classical threshold could
oscillator(OPO) is an extensively studied subject in quantumnot be analyzed.
optics since one of the quadrature components of the down- In the present paper we follow the idea of Mertens,
converted field can display a complete suppression of quarKennedy, and Swain and apply many-body Green’s-function
tum fluctuations at the critical poiiL], which has a variety techniques to the OPO. Different from their approach, how-
of potential applications in low-noise communication and€Ver, We use as a starting point in the self-consistent calcu-

high-sensitivity measurements. From a theoretical point ofaion scheme expressions from a mean-field approximation,

view this phase transition is interesting because it is domi¥hich we developed in Ref13]. In this approach the lowest

nated by quantum fluctuations, which are increasingly im-order contributions are well behaved also at the critical point,

portant, when the so-called system size becomes small. Thance the b_ackactlor_1 of fluctuations on the mean coherent
: . _ amplitudes is taken into account. We are thus able to calcu-
analysis of system-size effects and their influence on th

fluctuati q lation t in the vicinity of the criti fate average values and fluctuations also at the classical
uctuations and correlation imes in the vicinity 0T the Crti~ y, osh14 and can study the scaling of fluctuations and cor-
cal point are therefore essential for the understanding of th

" . o 'felation times with the system size at this point.
phase transition. The frequently used linearization approxi- pe Green's-function(GF) formalism is an approach to

mation [2] implicitly assumes a thermodynamic limit and c4jcylate ordered correlation functions. It involves a trunca-
cannot be used to study finite-size effed$ Furthermore, tion of a hierarchy of equations, which is done here by an
the inherent small-noise aSSUmption breaks down at the Critbxpansion of the so-called vertex functim]_ This expan-
cal point. A consistent description of the quantum dynamicssion is applicable for a large range of parameters and breaks
thus requires an approach which does not resort to the stagown only in the strong quantum limit of very small photon
dard linearizations. numbers in both the pump and the subharmonic mode. Since
Analytical solutions of the nonlinear problem are known this limit can easily be treated by a numerical evaluation of
only in the limit of a fast decaying pump mode where anthe Fock-state density matrix equations, it shall not be con-
adiabatic elimination of this mode is possible. The reducegidered here. On the other hand, there are two system-size
Fokker-Planck equation for the subharmonic mode fulfillsparameters in the OPO corresponding to the two modes, and
potential conditions and can be solved analytically in steadypronounced quantum effects are to be expected if only one of
state[4—7]. Information about correlation times and scaling these parameters becomes small. We will show that the
properties in the adiabatic limit has recently been obtainedowest-order term in the vertex expansion, the bare-vertex
by Kinsler and Drummond, who mapped the dynamicalapproximation, works very well when the system-size of the
equations of the degenerate parametric oscillator onto thpump mode is kept large. However, at the same time the
cubic stochastic proce$8]. system size of the subharmonic mode may be chosen rather
A very promising approach to the general case, whictsmall. It is thus possible to study the “semiquantum” limit
goes beyond the standard linearization, has been introduced a small-sized subharmonic and quasiclassical pump mode
by Mertens, Kennedy, and Swaj8-11] and modified by in which substantial deviations from the classical and linear-
Plimak and Walld12]. They applied nonequilibrium many- ization approaches are found. This “semi-quantum” limit is
body techniques to calculate finite-size corrections close tachieved when the cavity-loss rate of the pump megdas
the classical threshold. In this approach no adiabatic elimismall compared to that of the subharmonic madea situ-
nation is required. However the convergence of the selfation complementary to the adiabatic limit studied in
consistent calculation scheme in Rdf@-11 breaks down [4-8,12.
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We will show that the range of validity of the bare-vertex | — T T T T T T T 1
approximation can go far beyond the classical threshold sub-harmonic mode
when y=vy,/y; is small and still works reasonably well at
threshold even for values of of the order of unity. In the
limit of y going to zero the bare-vertex approximation re-
duces to the mean-field approximation discussed in Ref.
[13], which can be solved analytically under stationary con-
ditions. 05 -

Above the classical threshold the bare-vertex solution un-
dergos a trifurcation. One solution follows the mean-field
result (vanishing subharmonic amplitugewhile the other TE 11
solutions approach the above-threshold classical behavior 0 02 04 06 08 1 12 14 16 18 2
with a broken symmetry. The trifurcation point, which may
be considered as the renormalized threshold of parametric
oscillation, is shifted more and more above the classical FIG. 1. Classical behavior of the scaled subharmonic amplitude
threshold, when the system size is reduced. @, in a degenerate parametric oscillator as a function of the scaled

Our paper is organized as follows. In Sec. Il we describe?ump strengtfe. At the classical threshold=1 the subharmonic
the model and compare the mean-field with the standard linmode undergoes a pitchfork bifurcation.
earization approach. We also study the scaling properties of _
fluctuations and correlation times at the classical threshold i{PSses are denoted by andy,. The dynamics of the system
the mean-field approximation. In Sec. Ill we give an intro- ¢an be described by Heisenberg-Langevin equations
duction into nonequilibrium many-body techniques for three- d
boson interactions and establish some simple notation. The — T
reader familiar with nonequilibrium Green’spfunctions may dtal vidatKagat \/2_71':1(0' @
skip this part. In Sec. IV we specialize to the case of a de- g
generate optical parametic oscillator, assuming first a vanish- K
ing mean amplitude of the subharmonic mddle., not al- dqre= ~ et e §a§+ V27aFa(t), ©
lowing for symmetry breaking Here we analyze the
fluctuation properties below, at, and to a certain extent aboveshereF, andF, are 5-correlated fluctuation forces. Due to
the classical threshold within the bare-vertex approximationthe invariance of the equations with respect to a sign change
Dyson equations for normal and anomalous Green's funcef a,, the subharmonic mode has in the classical limit either
tions (correlation functionsare derived and solved numeri- a vanishing amplitude or displays a bistable behavior. A
cally in a self-consistent way. Squeezing and antisqueezingansition between the two cases occurs, when the external
spectra are calculated and the dependence on pump strengifimp ratee reaches the critical valug,= v, v, /K. Here the
and system size are discussed. The range of validity of thelassical stationary solutions of Eq®) and (3) show the
bare-vertex approach is analyzed by numerical estimatingell-known pitchfork bifurcation of the subharmonic mode
lowest-order corrections to the bare vertex in a second part athown in Fig. 1. The bifurcation point is the classical thresh-
Sec. IV. Finally we discuss the bare-vertex solutions aboveld of parametric oscillation. Below threshold the subhar-
the classical threshold relaxing the condititay)=0 (i.e.,  monic amplitude is zero and the pump-mode amplitude in-
allowing for symmetry breaking Section V gives a sum- creases linearly withe. Above threshold the pump mode
mary and an outlook. stays constant and all energy is transferred into the subhar-
monic mode.

In the standard linearization approaftb], the steady-
state quantum behavior of the system is analyzed by assum-
ing small fluctuations around the classical amplitudes and

The degenerate OPO is a system of two coupled cavitgisregarding higher order noise contributions. One of the ei-
quasimodes of frequency and 2»w. The high-frequency genvalues of the linearized equations vanishes at the classical
mode with photon annihilation and creation operatyrsind  threshold indicating a critical behavior of the subharmonic
a} is driven by an external classical field. The cavity con-mode and the breakdown of the small-noise assumption. The
tains a nonlineay? crystal which splits a pump photon in linearized theory is therefore not a useful starting point for a

two subharmonic photons. The corresponding interactiofystematic derivation of corrections. Instead we here use the
Hamiltonian reads mean-field approach introduced by us in REE3] as a

lowest-order approximation. A brief outline of the mean-
K field approach will be given in the following.
Vopo=ih = (a,al?—H.c)+ifie(a,—al), (1) To characterize the scale of the quantum fluctuations in
2 the two modes we first introduce so-called system-size pa-
rameters. One is the photon number of the pump mode at
whereK is a real and positive coupling constaatjs the  threshold in the classical limit
pumping rate which we choose real, amganda] are the 5
annihilation and creation operators of the subharmonic —_— Y1 )
mode. The damping rates of the two modes due to cavity hTg?2
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II. CLASSICAL BEHAVIOR, SMALL-NOISE,
AND MEAN-FIELD APPROXIMATIONS
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and the other one the slope of the subharmonic photon num- In the standard linearization approach all second- and

ber above threshold higher-order contributions in the fluctuations of the field
5 modes around their mean amplitudes are neglected, which
Y172 corresponds to
M= —7 =27y (5) P
(@,— (@) (ai—(@1)~o, (12
Normalizing the field operators to these scales, 2~ (a2)(@1~(ay)
~ =2

’él:al/\/al (6) (a;—(ay))“=0. (13
52=a2/\/E, 7) This approximation leads to a diverging subharmonic photon

number at threshold, since it ignores the depletion of the
the pump rate to the threshold val@e= e/(y,y,/K), and ~Pump mode due to energy transfer into subharmonic fluctua-
measuring time in units ofy;! we find the scaled tions. However, we replace here the operator expressions on
Heisenberg-Langevin equations the Ief_t-hand s_lc_ie of Eqs(.lZ)_ and (13) by their average

value in the spirit of a mean-field or Hartree approximation.

d_ o 2 This amounts to the replacement
E_alz_a1+a2air+ aFl(T), (8)
3,8 ~((@A ) +(3)a | +3,(@ 1)~ (@)(E]), (14
Ld__ — — /2F o Y TR
yareT TR m NG ROD. O ag~((@D)+2(@)a~ @)? a9
where y=1,/y,. From these equations we easily see thatvhere((xy))=(xy)—(x)y). _ _
the steady-state values for the amplitudes obey Since the Heisenberg-Langevin equati¢8sand (9) be-
_ - come linear in the operators when the mean-field approxima-
(@y=(a,al), (100 tion (14) and (15) is applied, we can easily calculate the
e steady-state values ¢fa,a )) and((a?)) as a functional
(a)=€e—(ay). 1Y) of @;=(3,), @,=(@,), and 1Mm=[7;,a]]. We find
|
~ = aasy(2+2at+y)
<<a2a 1>>: ~2 ~2 ~4 ~2 2 ’ (16)
(a5—4ai—4ai;—1)(1—a5+2y+y)m
(@)= @ L+4ai+dai—aj+2y+6aiy+daly+y’+2aly an
! 2 (@2-4a2- 43— 1)(1-a2+2y+y)m ’
|
where we have made use of the fact thatand'«, are real (3,)|2
if € is real and positive. Substituting these results back into (a 151>=—~2. (20
Eqgs.(10) and(11) leads to a set of nonlinear algebraic equa- 2m(1-|(ax)[*)

tions for (a;) and(a,). For 1m=0, i.e., in the thermody-
namic limit of an infinite system size((a,a})) and
((a2)) vanish except at the critical point and the solutions

Similarly the steady-state pump-field amplitude follows from
the third-order nonlinear equation

for (a;) and(a,) are the classical ones with a bistable result L (3,)
above threshold. For any finite valuerof however, only the (ay)=e——————5, (21
2
solution 2m(1-|(az)[*)
(3))=(a,a})=0 (18)  which results from substituting E419) into Eq. (11). Only

one of the three roots of E¢21) obeys|(a,)|<1, a condi-
survives. That is in the mean-field approximation the corretion which is required for obtaining positive photon number
lation between the subharmonic and pump amplitude vanin the subharmonic modesee Eq.(20)]. In Fig. 2 we have
ishes and there are no bistable solutions. Under this condplotted this solution as a function of the scaled pump ete

tion we find for different values ofm. In the “semiquantum” limit of
- smallm values a substantial deviation from the classical re-
(3 2>: (az) (19 sult can be recognized. The mean-field theory does not show
! 2m(1—|(@,)[?) any symmetry breaking in the subharmonic mode, {&,)

stays zero also above threshold. Nevertheless the stable clas-
and sical solution{a,)=1 is approached above threshold for in-
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FIG. 2. Scaled mean amplitude of pump mddg) as function FIG. 4. System-size scaling of intracavity antisqueezed fluctua-

of scaled pump strengfhaccording to mean-field equati¢dl) for tions in mean-field approximation.
different values of system-size paramater

: R (ay)
creasing system siz@. Similarly the mean photon number Si(w)== 2 (1= (A1 (25
of the subharmonic modg,) approaches the classical value o y1+(15(az))
® ?rr:gvl\fr]uelgrlzli%ngévin equation for the subharmonic modeHere the indicest and ~ correspond to the “coordinate”
: . gevin equatior : and “momentum” quadrature of the field, respectively.
in mean-field approximation is identical to that of the stan-

dard linearization approacfil5] except that the classical Since (a,) remains smaller than unity, the subharmonic
~l pp P . - fluctuations do not diverge in contrast to the standard linear-
value a5 has to be replaced by the mean-field solution

~ ization result. We can therefore study the scale of the fluc-
(az) of Eq. (2), tuations in the squeezed and antisqueezed quadrature at the
classical threshol&=1. The squeezethntisqueezedfluc-
~ et \/5 tuations in the output spectrum at=0 scale withm™*
L —at(agast EFl' (22 (m). The intracavity fluctuations of the antisqueezed compo-
nentx; as shown in Fig. 4 as well as the subharmonic photon
Thus the squeezing spectra of the two quadrature compé‘-umb?r scalle. withm'2, While in the Iinearizgtion 'approach.
nents there is a critical slow down of the fluctuations in the anti-
squeezed quadrature, they again remain finite in the mean-
1 field approximation. We find that the decay rate of the
x,(t) = =[ay(t)+al(t)], (23)  squeezed fluctuations becomes independent on the system
2 size and that of the antisqueezed fluctuations vanishes with
m~ Y2, This is shown in Fig. 5. These results are consistent
1 with the adiabatic results of Wolinski and Carmich&é]
p1(t)= E[al(t)_al(t)] (24 and Kinsler and Drummon8].

Since(a,) monotonically approaches unity for increasing
pump rate, the maximum amount of squeezing in fhe
component or, respectively, the maximum fluctuatiorxjn
are attained only for an infinite pump rate. Clearly the valid-

Q_lo_

are given by the known Lorentzians
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FIG. 3. Scaled subharmonic photon number as a function of
pump strength in mean-field approximation according to 26) FIG. 5. System-size scaling of correlation decay of antisqueezed
for different values om. guadrature in mean-field approximation.
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ity of the mean-field approximation breaks down much ear-

lier. Nevertheless, we can conclude that the point of maxi- T (+)
mum fluctuations is shifted to higher pump strength values right C
due to finite-size quantum corrections. > N
The mean-field approach breaks down, when either the o < J ¢ >
fluctuations of the pump mode or fluctuations'éﬁ around left

its average valuéa?) become important. As we will show T )
later on, rather small values ofare required for an accurate
description of the threshold behavior by the mean-field ap-

proach. Nevertheless, also for larger valuesyothe ap- FIG. 6. Schwinger-Keldysh time conto@. To each physical

proach gives a well behayed ze_roth-order approximatioh angme correspond two contour times, on upper)(or lower branch
is therefore a useful starting point for further considerations_y gepending on whether it appears in a causal or anticausal time

Furthermore, it yields the correct system-size scaling of thygered expression.
fluctuations at the classical threshold.

To simplify the notation it is useful at this point to intro-
Il. QUANTUM MANY-BODY APPROACH _duge the §o-qalled SChWinger-KeIdy_sh t?me COﬂt@_J[l?]

indicated in Fig. 6 and a corresponding time-ordering opera-

In the present section we will give a short introductiontor T which is identical toT on the upper branch of the

into nonequilibrium many-body techniqués4] applied to  contour and toT~* on the lower one. If we furthermore
problems in nonlinear quantum optics. We also establiskjefine thafT . orders all operators on the lower branch to the

some notations which will be helpful further on. left of those on the upper branch, HQB) can be expressed

with a single time-ordering and evolution operator©n

A. Green'’s functions, Feynman graphs, =) (+) <) (+)
and perturbation theory (TlAx(ty ) Ap(ty DI =(Tc[ScA(ty ) - - - Alty, ()2]3)
The aim of the many-body approach is to derive closed

sets of equations fon-point Green’s functiongor n-time  gngd
correlation functiong which have the generic form

(T Aty T+ - - At ])- (26) sC:Tcexp{ . [ divd)}, 30
C

Here A, denotes an operator in the Heisenberg picture cor- v .
responding to some field modg,is the time-ordering opera- wheret Qenotes a “”.‘e argument on the cont@Liand the

tor, and(---) means T{po-- -}, wherep, is the density superscripts £) specify the brr:}nch. . .
operator at= —, which is assumed to fulfill the conditions We denote the exact Green's functions on the Schwinger-
for the application of Wick's theoremil4]. It should be Keldysh contour by

noted that it is sufficient to consider time-ordered correlation

functions of the form given in Eg26), since these are the Di(t) =(TcScAi(t)), (31)
only measurable quantities of the fidlth]. All relevant sta- .. . . . .
tistical information can be derived from the Green’s func- Dij (ti ,t) =(TcScAi(1)A;(t))) —Di(t)Dj(tj), (32

tions and in most cases only a few are actually needed.

In the case of a nonlinear interaction it is not possible toand the free Green's functions? and Dioj by the same ex-
obtain a closed set of equations in an exact way, but rather geressions withouSc. The subscript e {m*,m} indicates
infinite hierarchy of equations arises. To find appropriate apthatA; creates or annihilates a photon of made We note
proximations it is useful to first separate the solvable lineathat the definition(32) contains also so-called anomalous
part of the problem. For this we introduce an interactionGreen’s functions with two annihilation or creation opera-
picture, in which the field operators evolve according to thetors, which are needed to describe quadrature squeezing.
free Hamitonian plus the reservoir interactions describingSometimes we will find it useful to work with physical times,
cavity losses. The corresponding operators in the interactioi which case we explicitly denote the contour branch by
picture are denoted b¥. Any time-ordered correlation func- indices:
tion of operatord\ of the type given in Eq(26) can then be
expressed by interaction picture operators with the help of Dﬁ'g(ti ,tj)E<TCSCAi(tf‘)Aj(tf))—Df‘(ti)Df(tj),

the time-evolution operator (33
. wherea,Be{+,—}.
S= Texp{ S dt’V(t’)]. (27) At this point let us discuss some symmetry properties of
h) - the Green’s functions, as they help to substantially reduce

the calculational effort. It is immediately obvious from Eq.

(TTHAN(t) - ITL - - Ap(tw) 1) (32) that

—(T7YS Aty - IT[S - Alty)]). (28 Dij(ti, ) =Dji 4 .t). (34
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Complex conjugation of a Green’s function turns an annihi- Di4j-+_DiI_:259r(ti_tj)(Di]+_Di-}—_)- (37)
lation operator into a creation operator and vice versa. In
addition, the ordering is reversed. This is done by switching Let us now consider as a generic example for a nonlinear

the time contour labels- « —, interaction a three-boson process with coherent driving. In
B . —a—p Einstein-notation, where one has to sum over all pairs of
(D"t 1))) =D+ (Li,1)). (85 indices, the interaction Hamiltonian reads

The action of the time-ordering operator can be written as . 1 L 5 .
V(t)=|ﬁ—vk| Ak(t)A|(t)A (t)"‘lﬁkak(t) (38)
TA(t)B(t2) = 0(t; ~ t) A(ty) B(to) + 0t~ 1) B(t) A(ty) 3! "

and similar for the antitime-ordering operator. With respectin order to calculate the exact two-point Green’s function for
to the two-point Green'’s functions this leads to the identitiessuch a process, we start with a perturbation approach. We
el expandSc in Dj;=(TcScAjA;) —D;D; in powers of the el-
Djj " +Dj; =Dj; +Dj ", (36)  ementary vertices;,, and ¢,

. . 1 . . . . 1 . . .
Sc=1+ fcdtkak(t)Jr afcdt Vikim T c[A(DA (DAL ]+ gj fcdtdt'€k€|Tc[Ak(t)A|(t')]

1 Tdt I M Y v ~ “
+ W EJ' fcdtdt'vk|mvnquC[Ak(t)A|(t)Am(t)An(t’)Ap(t’)Aq(t’)]
1 AT Y Y ~ ~
+ af J'Cdtdt’6kU|mnTc[Ak(t)A|(t’)Am(t')An(tr)]+ R (39)

Applying Wick’s theorem, which also holds for interaction-picture operators that include the reservoir coupling, we can now
express the exact correlation functions in terms of interaction-picture correlation functions,

0,(0)= [ 036DYAD+ 5 [ AIDUAD0DRED+ (40)

.~ .~ . o~ .~ .~ 1 . .~
Dij(l,l')=D3(1,1')+f deZdSDiOk(l,2)vk|mD|0n(2,3) en-l—zvnqugq(S,S) Dp(3.1)

+ ZJ fcdzdsD?ku, 2)0kimDh(2.3)D 3 (2,3)04pgDo;(3.1) + - - . (41)

Here we have introduced,?, ... to abbreviate time argu-
Dyj==— ments.

For a very convenient graphical notation of the involved
equations we use Feynman-diagrams. As shown in Fig. 7, we
use a single or double line to represent a free or exact two-

Jo dt v = ¥ point Green’s function. In addition there are two-end and
<A> three-end vertices denoted by circles and triangles, respec-
Jo dt v Dy = 4 tively, at which an integration over the whole Schwinger-
Keldysh contour has to be performed. Using this notation the
perturbation expansiofl) can be given the simple graphi-
cal representation also shown in Fig. 7.
1 In order to obtain a nonperturbative result for the exact
M O_ N two-point Green'’s functions one has to sum up the terms in

0
DY =

I
+

FIG. 7. Graphical representation of exadbuble ling and free —_ C
(single ling one-photon Green’s functions. Also shown are the lin- -
ear and nonlinear verticéat which an integration over the contour
C has to be performedand the graphical representation of the first ~ FIG. 8. Graphical representation of the Dyson equation with
terms in a perturbation expansion of the exact@bi terms of the  formal self-energies. The self-energies represent all diagram blocks
free GFDC. that cannot be separated in two parts by cutting a single GF line.
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the series expansion. In the general case this is not possible <A>
and one must resort to a partial summation of the series @z +§ N
which takes into account the most dominant terms. This will

be explained in the next subsection. _ _ _
FIG. 9. Representation of self-ener@yin terms of the linear

. mean-field vertex, exact Green’s functions, and vertex functions
B. Self-energy and Dyson equation r
A formal summation of all terms in the perturbation ex-
pansion of an exact Green’s function can be obtained bgontributions. One of them contains the mean amplitude and
introducing the so-called self-energy. The self-eneRgys  the other one can be written as a product of two exact
formally the sum of all diagram blocks with two external Green's functions(GF) and a so-called vertex function
vertices, which cannot be separated by cutting a single GF;;(1,2,3), which depends on three time argumeat. In
line. With these definitions one obtains a closed set of Dysomthe language of Feynman grapHs,represents all diagram
equationd 14] for the two-point Green'’s functions: blocks which cannot be separated into three parts by cutting
two GF lines:
Dij(1,1')=D?j(1,1')+f f d2d3D%(1,2) - .1 o
¢ Pi,-(1,2):vijka(1)5(1,2)+Ef fcd3d4vik|
XPu(2,3)Dy;(3,1'). (42 . . .
. : . : : . X Dkm(1,3)Din(1,4)'mnj(3,4,2). (46)
Figure 8 gives a graphical representation of this equation.

Transforming Eq(42) into physical times we find A graphical illustration of Eq(46) is given in Fig. 9. The
. vertex functiond’;;, can be expanded in powers of the cou-
Dﬁﬁ(l,l’)=Dﬂ“B(l,l’)+f f d2d3D%7(1,2) pling strengthu and_ exact Green’s _fun<_:ti0ns. The_first_ terms
—o of such an expansion are shown in Fig. 10. Taking into ac-

count only the first term results in the so-called bare-vertex

S 1 '
XyPR(2,3 5Dljﬁ(3’1 ), (43 approximation10], in which we have

where the factorgy and 6 (=*=1) come from the fact that
the integration direction is reversed on the lower branch of

the time contour. In a compact notation, where the Green's This truncation of the vertex-expansion leads to a closed
functions and the self-energies becomg 2 matrices de- P

noted byD;; andP;; . we have set of Dyson equations for the two-point Green’s functions,
J J with the self-energies

I}(1,2,3 =0, 8(1,2)5(2,3). (47)

Dij(l,l')ZDiC}(l,l')Jrf f d2d3D}(1,2Py(2,3) vy soovx 1 -~ Y x
—o0 Pij(1,2)~v;jDy(1) 6(1,2) + EUikIka(luz)DIn(lyz)Umnj-

XDy(3,1), (44) (48)

where we have incorporated the sign factors in the definitiodJnder stationary conditions we thus have
of the self-energy matri®y, .

Under stationary conditions the Green’s functions and
self-energies depend only on the difference of (jhleysica)
time arguments. A Fourier transformation then turns the in-
tegral equation into an algebraic one: Defining XD (0= )vmpj- (49
X(w)=fdrX(t+ 7,t)exp{—iw7 we arrive at

1
Piof'g(“’)z @apvijDi+ EJ do’ @B Di(w’)

In order to test the validity of the bare-vertex approxima-
Dij(w)=D%(m)+D?k(w)Pk,(w)D”(w). (45)  tion one can estimate the contributions from the next-order
term in the vertex expansion to the self-energies. The
Equation(45) can be solved and the exact Green'’s func-second-order term in the vertex expansion reads
tions can be expressed in terms of free Green’s functions and
self-energies. The introduction of self-energies, however, Ffﬁ?(i,ié)=vumvjnpo(ié)qu(i,é)Dpr(é,é)vqu.
does only formally solve the problem. One has yet to find (50)
good approximations for these quantities. An established
procedure to obtain an approximate closed expression for
self-energies in many-body theory is the vertex expansion
outlined in the next subsection.

C. Vertex expansion and self-energies

in bare-vertex approximation FIG. 10. Expansion of vertex functidn in powers of coupling

) o ) ] strengthK and exact Green’s functions. The bare-vertex approxi-
In systems with nonvanishing mean amplitudes of fieldsmation corresponds to a truncation of the expansion after the first
the self-energie®;; can formally be decomposed into two term.
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This term gives rise to the second-order contribution in the <a>

4 v e
self-energies, D= => = —> + — b + _)Qﬁ + ==
v v 1 v o~ v v .~ D)= = = <——q’7:= n}«:b + <—-0=>*Z + ﬂﬁ::qu
PI(JZ)(:L,Z): EJ J d3d4vik|ka(le)DIq(lizl‘)Umnp 1 - 1 )
: C Doty = =m0 = > 4 3 >©> + 5 =
v v v v v v 1
XDnr(3,4)vqrsDpi(3,2) Dsy(4,2) vy - (51) Dy = w2 = 5 <o @;:;:> 3 4"'"@(:”
IV. MANY-BODY APPROACH TO THE OPO FIG. 11. Graphical representation of Dyson equations for OPO

. ) ) in bare-vertex approximation an@d,)=0.
We now apply the many-body techniques outlined in the

preceding section to the degenerate optical parametric oscil- P (w)=—Kad (aT>
lator with the interaction Hamiltonian given by N ap\“2
K K? rneB A eB '
Voro=ifi 5 (asaf2~H.c)itie(a—a}). (52 +Z“BJ do'Dy7y+ (@")D22(w=w’),
(56)
A comparision with the definition of,, in Eqg. (38) gives
US U1+1+2=V1+01+ =Uo1+1+ =K aNd 115t =0 1211 =0+ 11 @ 2 @ o~ ,
= —K and all others are zero. The statistical properties of the Plfl(w): - ﬁ‘maﬁj dw'lel(“’ )D2§+(‘*’_ ®'),
two modes are determined by the normal Green’s functions (57)
D;+1=(TcScaja;) and Dyip,=(TcScaja,), and the
anomalous  Green's  functions Dy;=(T:Sca;a;), N K2 o e ,
D,,=(TcScaya,) and their conjugates. Pzzﬂ(w)zﬂaﬁf do'Dy% 4 (0D (0= w),
Due to the symmetry of the problem, the mean amplitude (58)
of the subharmonic modé;) must vanish in steady state.
Correspondingly according to Eq(10) all mixed-type op K2 op op
Green’s functionsDq,+=(TcSca;a}), etc., vanish. How- P2+2(w):—ﬂa,3f do'D{l (0" )DITH(w—w').
ever, being an approximation to the exact dynamics, the (59)
bare-vertex equations may have multistable solutions above
threshold. Therefore als(a,)#0 is possible, which corre- The mean amplitude of the pump mode follows from Eq.
sponds to a symmetry braking. In the first part of this sectior(11):
we discuss the cas@,)=0, i.e., we do not allow for sym-

metry breaking. In the second part we lift this restriction and _ € L * d_w 4 60
show that the bare-vertex solutions become multistable for a (ag)= Yo 2y, 27w % (w). (60)
critical pump strengtte., > ey, following either(a,;)=0 or
approaching the classical bistable behay@y)=+a$. A graphical representation of the Dyson equations is given in
Fig. 11. Here again single lines are used for free Green’'s
A. The stationary OPO in bare-vertex approximation functions and double lines for exact ones. Dashed lines rep-
and (@;)=0 resent the pump mode and full lines the subharmonic mode.
Specifying the discussion of the preceding section to thq The sglunon of the Dyson equatiof3)—~(59) reduces to
. . S ; ) : he solution of
interaction Hamiltonian of the optical parametric oscillator
given in Eq.(52), and noting thata,)=0 implies that all D) t=DC (o) 1—pef 61
mixed-type Green’s functions vanish, we find the following (@) i) i+(@) (61
set of stationary Dyson-equations in Fourier space: with the effective self-energies,
) 0
Dy+1(@) =Dy (@) +D;+(0)Pry( ) D1y w) P () =Py (@) + Py ()[ 1
0
+D1+1(w)Pll+(w)Dl+l(w)i (53) _ Dg+(w)Pi+i(w)]7lDﬁ+(a’)
Di11(®) =D}y (0)Py+1(®)Dyy( ) XPi+i+(). (62
+ D21+(w)P1+1+(w)D1+1(w), (54 All other Green'’s functions follow fron;+; . Since the self-

energies contain convolution integrals of exact Green’s func-
and analogously for mode 2. The self-energies read in bareions, Eqs.(53)—(59) need to be solved in a self-consistent
vertex approximation way by a numerical iteration scheme. Important for the con-
vergence of such a scheme are good initial approximations to
the Green’s functions and mode amplitudes. Mertens,
Kennedy, and Swain used in their analysis expressions from
B , the linearized theory. Since the Green's functions obtained
XDyip(w—w'), (59  from a linearized theory diverge close to the classical thresh-

K2
Pflﬂ(w)ZKaéaﬁ(a2>+ ﬂaﬁf dw'fo(w')
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FIG. 12. Pump-mode amplitude&) and subharmonic photon FIG. 13. Squeezing spectra from bare-vertex approach at classi-

number(b) as a function of pump rate from bare-vertex and mean-cal threshold form=5 andm=>500.
field approximations for a system-size parameter5.

tively large range of pump values for smaller valuesyoAs
old, this method failed when the critical point was ap-we will show in the next subsection, this can easily be un-
proached. We use here expressions from the mean-field agerstood when we compare the mean-field and bare-vertex
proach of Sec. Il for the initial value of the mean pump contributions to the self-energies.
amplitude(a,) ((a;)=0 in mean-field approximationand In Fig. 13 we have shown our numeric results for the
for the zeroth-order Green’s functions. In order to improvesqueezing spectrum of the subharmonic mode at the classical
the convergence of the iteration scheme, we did not use thiéaresholde=1 for a small and a large system size of the
Dyson equations in the form given in Eq§3)—(59), but a  subharmonic modenf=5 andm=500) and different values

modified version with the generic structure: of y (correponding to different system sizes of the pump
mode. For a small system size of both modes émall, y
Dis1=7[(D®) =P ] *+(1—9)[(D® 1-P_,] 1, large the squeezing at the classical threshold is substantially

(63)  reduced due to finite-size effects. However, a reduction of
squeezing is already present, if only the subharmonic system
wherek is the iteration index and; is some appropriately is small. Correspondingly, the antisqueezed fluctuations do
chosen parameter between 0 and 1. After each step we obot diverge as opposed to the linearization result. One further
tain updated expressions for the Green’s functions from théecognizes that the one-loop contributions may lead to a
solution of Eq.(63) and updated expressions for the pump-double-peak structure of the squeezing spectrum already at
mode amplitude from Eq60). In this way we were able to the classical threshold.
achieve convergence at and also above the classicial thresh- Figure 14 shows the squeezing spectrarfe:5 and dif-
old. ferent values ofy slightly below, at, and slightly above the
In Fig. 12 we have plotted the coherent amplitude of theclassical threshold. Corresponding plots for=50 are
pump mode and the subharmonic photon number as a funshown in Fig. 15. One recognizes that for small system sizes
tion of the pumping strengttall in scaled unitsfor different  of both modes ih small, y=1) a maximum in the output
values of y=1v,/y,, i.e., for different ratios of pump and squeezing spectrum is achieved below the classical thresh-
subharmonic decay rates. For pump rates below or in theld. Decreasingy, i.e., increasing the pump-mode system
vicinity of the classical threshold the bare-vertex solutionssize, shifts the point of maximum squeezing to higher pump
agree with the mean-field results. If the pump rate is furthevalues. Moreover, the double-peak structure known from the
increased, the bare-vertex results start to depart from thabove-threshold linearizatiorj15] becomes visible for
mean-field solutions. One recognizes agreement over a rel&= 1.2, despite the fact that there is no symmetry breaking in
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FIG. 14. Squeezing spectra fan=5 and y=0.1 below FIG. 15. Same as Fig. 14 fon=50.
(e=0.8), at =1), and slightly above the classical threshold
€e=1.2). -+
(=13 ) y 1

~ 0— ~ —_ .
this calculation and@,)=0. (Since the width of the central ~ K%(82)|?D11= (0)  y+(1—(32)) 4npy(1—(@,))
dip scales withy, it is not resolved fory=1.) (64)

Hence the one-loop corrections to the self-energy are small
o ~compared to the mean-field or Hartree terms, when the right-
In order to analyze the range of validity of the mean-fieldhand sider.h.s) of Eq. (64) is small compared to unity.
approximation and to understand the good agreement be- A similar condition has been found by Merteasal. in
tween mean-field and bare-vertex results for small values ofef, [11] for the convergence of the Dyson equation. We
v, we estimate the self-energy contributions from both aphere note, however, two essential differences: First Mertens
proximations. For this it is sufficient to compare the effectivegt 51, and also Plimak and Walls ii12] considered a case in
self-energy of the mean-field caslé,2|<a2)|2D21+, with a  which the effective decay rate of the subharmonic mode is
representative bare-vertex correctiBp-; for o=0. Substi- smaller than that of the pump mode where the first factor on
tuting the mean-field results, we find the r.h.s. of Eq(64) is close to unity. Second, they approxi-

B. Validity of mean-field and bare-vertex approach
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mated(a,) in the denominator by the classical expression

0)]]

‘e. This second approximation, however, strongly underesti-
mates the radius of convergence of the Green’s function ap- |l
proach, since in the vicinity and above the classical threshold 3 038 |
(a,) deviates frome substantiallycompare Fig. 12 In par- A
ticular, if we use mean-field results, we find in contrast to ~ (¢}
Mertenset al. that the second term in Eq64) never di- =
verges, I 04 F
_ 3
P,1(0 =
s (NENY Y)Y g
K |<a2>| Dyg+ (0) 7+(1_<a2>) o
A 0

Y
—~2
y+(1-(az))
in the vicinity or above threshold. Thus an estimated upper FIG. 16. Relative contribution of two-loop terms to self ener-

limit for the pump rate up to which the mean-field approachdies.
is accurate is given by

(e-1) (69 :

solutions become bistable. There is of course no bistable

steady state in the quantum dynamics. However, the phase-
) (66) space distribution of the subharmonic mode becomes double

peaked. This situation is qualitatively different from the be-

havior below threshold, where the true state can be charac-

We recognize that in the case opposite to that studied by, ;0 1y a Gaussian distribution around a well-defined clas-
Mertenset al. and Plimak and Walls, namely for a fast de- gj.g amplitude. An approach based on semiclassical

caying subharmonic mode, such tha&(1-(ay)), the up-  expansions must clearly break down in a bistable regime.

per limit for the pump rate is considerably higher. ~ However, if the system size is small, the transition from a
In order to test the validity of the bare-vertex approxima-single-peaked to a double-peaked distribution is smeared out

tion we now have to analyze under what conditions higherand the bare-vertex approach works reasonably well also

order contributions to the self-energy are negligible. Assomewhat above the classical threshold.

pointed out by Mertenst al.[11], a consistent way of doing

this is to take into account the first-order corrections in the C. Bare-vertex approximation for the above-threshold OPO

vertex expansion of’, given in Eg.(50). Mertenset al. with symmetry breaking

evaluated these contributions by replacing the exact Green’s From the preceding discussions it is clear that a semiclas-
functions by the linearized expressions. This, however, consjcal expansion fails to describe the true steady-state behav-
siderably overestimates the two-loop contributions and doefr of the parametric oscillator above threshold. However,

not allow one to test the approach at threshold. We use hergince the tunneling time rapidly increases when one moves
the well-behaved expressions from the mean-field approaciway from the threshold, there are two metastable states,

1-(a)
Y

€1 11+
_g_
€ 2

instead. with a mean subharmonic amplitude close to one of the
As an indicator of the reliability of the bare-vertex ap- bistable classical values. An external asymmetric perturba-
proximation we may use the quantity tion can force the system into one of these states and it takes
a long time before tunneling reestablishes the symmetric dis-
AP 1005=Pio-00p— Pome-ioop (67)  tribution. This property gives also the justification for a lin-

o o o ~earization around one of the two classical solutions above
which is a 2X 2 matrix in physical times. In order to obtain threshold 15]. Since the Green’s-function approach does not

a single real number, we introduce the norm include tunneling, it also corresponds to such a situation
when applied to the above-threshold case Wdh) # 0.
||P[|=VPPPr, (68) In the present subsection we analayze the mean ampli-

, . . ) ) . tudes and fluctuation spectra within the bare-vertex approxi-
Note that here again the Einstein notation applies. In Fig. 16,ation above threshold lifting the restrictiéa,)=0, which

we have plotted the relative contributions of the two-loopjmplies that also mixed-type Green’s functioBs.,, etc.,

terms to the effective self-energy far=0, need to be considered. Thus we need to resort to the general-
off off case Dyson Equatiofd5) with self-energies given in Eq.
q=[APZood @=0)|[/||PTjo0i @=0)]| (69 (48). By using a nonvanishing value 6&,) in the first step

. . of iteration of the(now much more involvedDyson equa-
as a function of the pump parameter fpr-0.1 and different  tjons we enforce a symmetry breaking. The true value of

values ofm. One recognizes that the bare-vertex approxima(él) in the (metastable or quasteady state then follows
tion works well up to 20% above the classical threshold. Fokgm the self-consistent iteration scheme.
larger values of the pump strength it becomes unreliable in |n Fig. 17 we have plotted the mean amplitude of the

particular for larger system-size parameters subharmonic mode as a function of the pump strength for
The breakdown of the vertex expansion above thresholgh=5 andm=50 andy=0.1 and 1. For comparision also

can easily be understood. When the pump strength exceedse classical solution is shown. One can recognize that for a
the critical value for the pitchfork bifurcation, the classical larger system size of both modem+£ 50, n,=25) bare-
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0.2 | m=50 my=2 -0.22
0 1 1 ] 1 -0.24
0 0.5 1 15 2 2.5 3
(@) é w/m
14 ! J ! ! ! FIG. 18. Squeezing spectrum above classical threshold
- (e=1.4) from linearization, bare-vertex approach with and without
1.2 barzliisrlf; — symmetry breaking.
br aroundw =0 which is narrower and more pronounced when
1/@: 0.8 [- . v is small. As can be seen from Fig. 18, finite size effects_
~ sk B tend to smear out the sharp spectral structures. For compari-
’ son we have shown also the squeezing spectrum without
0.4 - 1 symmetry breaking in Fig. 18, in which case the peak is
02 ; m=5 nwm=25 - much less pronounced. The antisqueezing spectrum
} is initially a Lorentzian which rapidly decreases
0 : ' . ' in height with increasing pump strength until it becomes
0 0.5 1 1.5 2 2.5 3 , 52 3 oy
double peaked at frequencieso/(y,) = (wq/y1)°=—7y
(b) € + yV2y[(a.)|?+4|(a)|* as in the linearization approach.
An interesting effect of the one-loop contributions to the
1. F T T T T T fluctuation spectra above threshold was pointed out in Ref.
’ [18]. Sufficiently far above threshold and for small values of
12 - classical — v additional small spectral peaks occur at frequencies
b bare vertex —-- _ w=0 andw=* 2wy, Wherew is the peak-frequency in the
linearized antisqueezed spectrum. For higher pump values
Z/g 0.8 - N these structures disappear again. We also find these struc-
~ 6L i tures in the antisqueezed spectrum as indicated in Fig. 19.
The appearance of these peaks in a nonlinear theory is easily
0.4 = 7 understood. As mentioned before, the fluctuations become
0.2 | m=50 np =250 - spectrally condensed at frequenciesw, sufficiently far
0 . ! | A A above threshold. The nonlinear terms in the equations of mo-

(©

2

2.5 3

tion then result in beat-note terms at frequencies0 and
*2wy. In the Dyson equations this effect is generated by the
quadratic contributions in the self-energies. If we assume, for

example, thaD;'fl+(w) has sharp peaks at=* wg, the

FIG. 17. Mean value of subharmonic amplitude in bare-vertex
approximation with symmetry breaking fon;=25, m=50
(y=1) shown in(a), for n,=2.5,m=5 (y=1) shown in(b), and
for ny,=250,m=50 (y=0.1) in(c).

vertex and classical solutions are virtually the same. For a
smaller system sizenf="5 andny,=2.5) or for a small value

of y=1v,/y; (m=50, ny,=250, i.e.,y=0.1) the phase tran-
sition betweer{@;)=0 and(a;)+ 0 occurs at a substantially
higher value of the pump rate. The point of the phase tran-
sition can be considered as renormalized threshold of para-
metric oscillation and finite-size effects shift this point to-
wards a higher pump strength. It is interesting to note that for
the range of the pump parameter shown, the mean value of
the subharmonic mode stays below the classical value even

for relatively large pump strength. FIG. 19.
The squeezing spectrum above threshold shows the samg-= + 2w, in antisqueezing spectrum far above the classical thresh-

features as known from linearization. It develops a peak old.

bare vertex ——
linearized ---_]

Generation of beat-note contributions «a=0 and
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convolution integral in the one-loop contribution to the self- energies, we used well-behaved mean-field values which are
energy all-order expressions in . In this way we were able to
achieve convergence also at and above threshold.

) In the first part of our analysis we assumed a vanishing
K_ do' D DA N mean amplitude of the subharmonic mode and studied the
47raﬁ ©'Dy¥y(@)DyF (0= o) influence of finite-size effects on the squeezing in the thresh-

(70 old area. We found that with decreasing system size the
. amount of squeezing is generally reduced and the point of
leads to large contributions @i=0 andw=*2wo. When  mayimum intracavity fluctuations of the component is
the pump s_trength is further increased, the absolute value %fhifted to pump strength larger than the threshold pump rate.
the fluctuations decreases and therefore the one-loop contliysq the spectrum of squeezed fluctuations in the output is
butions to the self-energies become small compared to théhanged. For small values af, the double-peak structure
mean-field terms. Thus the additional peaks in the fluctuation,o\wn from linearization above threshdldith broken sym-

P35(w)=

spectra disappear again. metry, i.e.,(d;)#0) appears already below threshold.
We have analyzed the range of validity of the bare-vertex
V. SUMMARY approximation with vanishing subharmonic amplitude by es-

In the present paper we have analyzed the quantum st . .
b pap Y d unctions from the mean-field approach were used as op-

tistical properties of a degenerate parametric oscillator wit - . :
the help of a many-body approach. This approach does n&osed to the analy3|s in Refl1], where linearized expres- .
make use of the small-noise assumption in linearization ap§'°ns were applied. We showed that the bare-vertex approxi-

proaches and thus allows one to study the near-thresho ation works well at and to a certain degree above the

behavior and effects from finite system sizes characterizefl assmal_threshold for small values pfand small values of .
by the two parametens andn,, m. For higher pump strength the stationary phase-space dis-

We have shown in Sec. Il that the quantum dynamics O]tribution of the subharmonic mode becomes double peaked
the parametric oscillator can be accurately described beIOV\?}nd the vertdexhexlpansmr;] brgaks do;xvu. Th%smaller.the sgs-
at, and to a certain degree above the classical threshold wi m size and the larger the decay of the subharmonic mode,

a mean-field approach in the limit of a fast decaying subhart"® slowe_r i$ th_e transition from the single to the double-
monic mode. The mean-field equations take into account thBe2ked distribution and the longer the bare-vertex approach

depletion of the pump mode due to energy transfer into subWOIrkS'h d ¢ vsi died th .
harmonic fluctuations, which is ignored in linearization ap- n the second part of our analysis we studied the station-
proaches and can be solved analytically. The approach do@%Y OPO above the classical threshold relaxing the condition

require a large threshold photon number of the pump mod&®) =0 and thus allowing for symmetry breaking. Since

ng, in order for the pump mode to be treated quasiclassicall);unne“ng between the two classical stable states is not ac-

but not a large system-size of the subharmonic mode. On(éounted fc_:r by the bar.e-vertex approach, this corresponds to
can therefore study a semiquantum limit, with a highly quan-2" analysis of fluctuations in a metastable state. We showed

tum subharmonic mode. In this limit a large deviation notthat the critical pump strength for which a metastable state is

only of the fluctuations but also of the mean amplitudes 01possible is in general larger than the classical threshold value
the fields from the linearization results can be found. Ag'f the System size of the modes or the ratio of decay rates

opposed to the linearization results, the intracavity anti-Y— Y2/Y1 areé small. This can be considered as a renormal-

squeezed fluctuations as well as the subharmonic photdﬁat'On of Thrgsholg due 1o Enl(;e-smerz] e_ffect_s. ful tool
number remain finite at threshold and scale with the square_'N conclusion, the many-body technique is a useful tool to
root of m. study quantum fluctuations beyond the level of linearization

Yielding well-behaved results for mean values and corre-ir? particular finitg—size effects whene\_/er. a .weII—d.efined
lation functions, the mean-field approach is an aplorOloriatélngle—peaked stationary phase-space distribution exists.
starting point for more accurate approaches. Following the
idea of Mertens, Kennedy,_and Swa['@r—ll]_we derived a ACKNOWLEDGMENTS
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j{'_mating higher-order vertex corrections. For this, Green’s

[1] Ling An Wu, H. J. Kimble, J. L. Hall, and Huifa Wu, Phys. [2] M. J. Collett and D. F. Walls, Phys. Rev. 22, 2887(1985);
Rev. Lett. 57, 2520 (1986; see also the special issues on C. W. Gardiner,Handbook of Stochastic MethodSpringer,
“squeezed light”: J. Opt. Soc. Am. B, no. 10(1987 and J. Berlin, 1985; C. W. GardinerQuantum Nois€Springer, Ber-
Mod. Opt. 37, no. 6/7(1987. lin, 1989.



3072 OLIVER VEITS AND MICHAEL FLEISCHHAUER 55

[3] R. Schack and A. Schenzle, Phys. Rev4R 3847(1990; F. [13] O. Veits and M. Fleischhauer, Phys. Rev52 4344(1995.
Kartner, R. Schack, and A. Schenzle, J. Mod. C§f, 917 [14] See, for example, L. P. Kadanoff and G. Bay@yantum Sta-

(1992. tistical Mechanics(Benjamin, New York, 1962 V. Bonch-
[4] P. D. Drummond, K. J. McNeil, and D. F. Walls, Opt. A@8, Bruevich and S. TjablikovThe Green's Function Method in
211(1982). Statistical MechanicéNorth Holland, Amsterdam, 1962A. L
[5] G. J. Milburn and D. F. Walls, Opt. Commug9, 401(1981). Fetter and J. D. Waleck&uantum Theory of Many-Particle
[6] L. A. Lugiato and G. Strini, Opt. Commurl, 67 (1982). SystemgMcGraw Hill, New York, 1973; D. J. Amit, Field

[7] M. Wolinsky and H. J. Carmichael, Phys. Rev. L@&®, 1836

Theory, the Renormalization Group and Critical Phenomena
(198_8' (World Scientific, Singapore, 1984
[8] P. Kinsler and P. D. Drummond, Phys. Rev5& 783(1995. 15\ 3. Collett and D. F. Walls, Phys. Rev. 22, 2887(1985.
El Eéttl;\lﬂezrgeln:(’lgég B. Kennedy, and S. Swain, Phys. Revr g o 3 Glauber, Phys. Rev. Left0, 84 (1963; P. L. Kelley and
S ' _ W. H. Kleiner, Phys. Rev136 A316 (1964).
[10] Sé Jz's'\gjr(tfg;;' A B. Kennedy, and S. Swain, Phys. ReV.- A, 21| '/ keldysh, zh. Esp. Teor. Fiz.47, 1515 (1964 [Sov.
‘ ' Phys. JETR20, 1018(1965].

[11] C. J. Mertens, J. Hasty, H. H. Roark Ill, D. Nowakowski, and
T. A. B. Kennedy, Phys. Rev. A2, 742 (1995 [18] C. J. Mertens and T. A. B. Kennedy, Phys. Rev53, 3497

[12] L. I. Plimak and D. F. Walls, Phys. Rev. B0, 2627 (1994 (1996.



