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Ponderomotive control of quantum macroscopic coherence

S. Mancini, V. I. Man’ko,* and P. Tombesi
Dipartimento di Matematica e Fisica, Universita` di Camerino, I-62032 Camerino, Italy,
and Istituto Nazionale di Fisica della Materia, Unita` di Ricerca di Camerino, Italy

~Received 6 May 1996!

It is shown that because of the radiation pressure a Schro¨dinger cat state can be generated in a resonator with
an oscillating wall. The optomechanical control of quantum macroscopic coherence and its detection is taken
into account by introducing new cat states. The effects due to the environmental couplings with this nonlinear
system are considered by developing an operator perturbation procedure to solve the master equation for the
field mode density operator.@S1050-2947~97!02503-1#

PACS number~s!: 42.50.Dv, 42.50.Vk, 03.65.Bz
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I. INTRODUCTION

One of the fundamental aspects of quantum mechanic
the existence of interference among quantum states, w
signifies a superposition of states, as opposed to a mixtur
states. The quantum theory may adequately well desc
macroscopic objects by means of a linear superposition
states with macroscopically distinguishable properties.
cently, due to improved technology, there has been a gr
ing interest in the possibility of observing such superposit
states, commonly known as Schro¨dinger cat states@1#. Good
candidates for these macroscopic states are the coh
states of an electromagnetic field mode. The properties
superposition of two generic coherent states have been s
ied in Ref. @2# and the simplest superposition of even a
odd coherent states was introduced in Ref.@3#. A review of
these states is given in Ref.@4#. Within the field of optics
several proposals for the generation of linear superposit
of coherent states in various nonlinear processes@5,6# and in
quantum nondemolition measurements@7# have been made
It is worth noting that the field in a cat state has many
vantages in optical communication@8#. However, by cou-
pling the system to its enviroment, as in the act of measu
ment, one always introduces dissipation and decohere
effects, which tend to destroy any quantum features@9#.

In the common scheme of the Kerr-like medium mode
by an anharmonic oscillator, it was shown@10# that the pho-
ton number distribution and interferences in phase space
highly sensitive to even small dissipative coupling. This fa
plus the smallness of thex (3) nonlinearity, makes the pros
pect of experimentally producing and detecting such sta
highly questionable in these media.

On the other hand, it is well known@11# that an empty
optical cavity with a moving mirror may mimic a Kerr-like
medium when it is illuminated with coherent light. The e
fect of an intensity-dependent optical path is due, in t
case, to the radiation pressure force.

In this paper we shall present such a model as an alte
tive one for the generation of Schro¨dinger cat states. We wil
show that, with the appropriate measurement techniqu
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could also be useful for revealing quantum macroscopic
herence.

II. THE MODEL

We consider a linear Fabry-Pe´rot empty cavity with one
fixed partially reflecting end mirror and one perfectly refle
ing mirror, which can move~undergoing harmonic oscilla
tions! under the influence of radiation pressure. IfL is the
equilibrium cavity length, the resonant frequency of the ca
ity will be

vc5p
c

L
n, ~1!

wheren is an integer number determined by the frequency
the input light andc is the speed of light. We assume that t
retardation effects, due to the oscillating mirror, in the int
cavity field are negligible. We will also neglect the corre
tion to the radiation pressure force due to the Doppler f
quency shift of the photons@12#. Thus we are able to write
the Hamiltonian of the whole system as

H5\vca
†a1\vmb

†b1H int , ~2!

wherea,a† are the boson operators of the resonant cav
mode andb,b† are the boson operators of the oscillatin
mirror with the massm and the angular frequencyvm . The
latter will be many orders of magnitude smaller thanvc to
ensure that the number of photons generated by the non
tionary Casimir effect@14# as a consequence of the Casim
forces@13# in the resonator with moving boundaries is com
pletely negligible.H int accounts for the fact that the intra
cavity photon changes its energy, byvc , as the oscillating
mirror moves@15#

H int52\Ga†a~b1b†! ~3!

with the coupling constant given by

G5
vc

L S \

2mvm
D 1/2. ~4!
3042 © 1997 The American Physical Society
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55 3043PONDEROMOTIVE CONTROL OF QUANTUM . . .
From the Hamiltonians~2! and ~3! we can derive, using the
Baker-Campbell-Hausdorff formula for the Lie algebra@16#,
the time evolution operator in the following form:

U~ t !5eiE~ t !~a†a!2eiF ~ t !a†ax̂~ t !@e2 ivca
†at/vme2 ib†bt#, ~5!

where

x̂~ t !5beit /21b†e2 i t /2 ~6!

is the mirror quadrature operator, while

E~ t !5k2@ t2sint#, F~ t !52ksin~ t/2!, k5G/vm ,
~7!

with t the time scaled byvm ; i.e., we have replacedvmt by
t. Furthermore, from now on, we will consider the evolutio
operator omitting the free motion of the two modesa and
b, i.e., the term inside the square brackets in Eq.~5!.

III. GENERATION OF SCHRO¨ DINGER CAT STATES

From Eq.~5! one can immediately recognize that the tim
evolution introduces anharmonicity due to the presence
the nonlinear term (a†a)2 whose strength depends also
time @17#. It is also easy to see that at each time for wh
F(t)50 the two subsystems are disentagled. Furtherm
due to its macroscopicity we should consider the oscillat
mirror initially in a thermal state at temperatureT,

rT5~12z!(
n

znun&^nu, z5expS 2
\vm

kBT
D , ~8!

with z/(12z)5Nth representing the mean number of exci
tions of the mechanical oscillator, i.e., the number of therm
phonons. Thus starting from an initial coherent stateua0& for
the radiation mode we have

r~ t* !5eiE~ t* !~a†a!2ua0&u^a0u ^ rTe
2 iE~ t* !~a†a!2 ~9!

with

t*52pm1 , m1PN ~10!

so that

F~ t* !50, E~ t* !5k22pm1 . ~11!

Now in order to see the cat states, the following condit
must be fulfilled@5#:

E~ t* !5
p

2
12pm2 , m2PN ~12!

so that combining Eqs.~11! and ~12! one gets

k25
1

m1
S 141m2D , ~13!

which can be read as a restriction on the possible value
the various external parameters. Thus if the above condit
are satisfied, we have
of
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g

-
l

n
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r~ t* !5
1

2
@e2 ip/4ua0&1eip/4u2a0&]

3@^2a0ue2 ip/41^a0ueip/4# ^ rT ; ~14!

however, this is not the only way to create a quantum sup
position in this system. In fact, let us consider the timest8
for which

E~ t8!5
p

2
12pm, mPN. ~15!

In these cases, obviously,F(t8) is not necessarily zero the
the reconstruction of the superposed coherent states is
possible due to the entanglement between the two s
systems. One can now use a conditional measurement to
ate the desired states, performing a sort of quantum s
engineering@18#.

Let us suppose that the mirror’s quadraturex̂(t) is mea-
sured@19#, giving the resultyt . The state of the radiation
field after the measurement is found by projecting the s
tem’s state onto the eigenstateuyt&:

rafter~ t !5CeiE~ t !~a†a!2eiF ~ t !a†aytua0&^yturTuyt&

3^a0ue2 iF ~ t !a†aytue2 iE~ t !~a†a!2, ~16!

whereC is a normalization constant

C5~^yturTuyt&!21. ~17!

At the timest8 we have, from Eqs.~15! and ~16!

rafter~ t8!5
1

2
@e2 ip/4ua0e

iF ~ t8!yt8&1eip/4u2a0e
iF ~ t8!yt8&]

^ @^2a0e
iF ~ t8!yt8ue2 ip/41^a0e

iF ~ t8!yt8ueip/4#,

~18!

which is a superposition of coherent states whose phase
pends on the measurement process; and further, if the re
of the measurement is

yt85
p

2

1

F~ t8!
, ~19!

it is possible to recover in Eq.~18! the generalized even an
odd coherent states like those discussed in@20,21#, which
show quantum interference as well as other particular f
tures.

IV. QUASIPROBABILITY AND MARGINAL
DISTRIBUTION

The evolved density operator of the whole system can
easily constructed by using the time evolution operator
Eq. ~5!:

r~ t !5U~ t !ua0&^a0u ^ rTU
†~ t !, ~20!

and then the evolution can be described, for example
terms of theQ function,
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Q~a,b,t !5^au^bur~ t !ub&ua&5e2uau22ua0u22ubu2~12z!(
j50

`

zj ubu j

3U(
n50

`
~a*a0!

n

n!
expH F iE~ t !2

1

2
F2~ t !Gn21 iF ~ t !ne2 i t /2b* J (

r50

j
~ iF ~ t !neit /2!r

r !A~ j2r !!
U2, ~21!

where the variablesa, b refer to the radiation and the mirror, respectively. However, since the distinguishing elemen
linear superposition of coherent states is the presence of interference fringes in the marginal distribution, we are inte
that for the particular times discussed in the previous section. Its definition, for a generic staterfield(t) of the radiation field,
is given by

P~X!5^Xurfield~ t !uX&, ~22!

where uX& are eigenstates of the quadrature operatorX5(a1a†)/2, while rfield should be intended as Trm$r% with Trm the
trace over the mirror degrees of freedom. In the case of Eq.~14! we can integrate over the degree of freedom of the mirro
obtain the marginal distribution of the field mode as@10#

P~X!5U^Xu
1

A2
[e2 ip/4ua0&1eip/4u2a0&]U 25 1

2
$P1~X!1P2~X!12AP1~X!P2~X!sin@4Xua0usin~arga0!#%,

P6~X!5S 2p D 1/2expF22X2ua0u272X~a01a0* !2
1

2
~a0

21a0*
2!G ; ~23!
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while in the case of Eq.~18! the marginal distribution for the
field mode is in effect a conditional probability:

P~Xuyt8!5U^Xu
1

A2
@e2 ip/4ua0e

iF ~ t8!yt8&

1eip/4u2a0e
iF ~ t8!yt8&]U2, ~24!

whose explicit expression is the same as in Eq.~23!, apart
from an extra phase factor in the coherent state, which g
the interference pattern along a direction depending on
result of the measurement as well.

V. DAMPED MODE EQUATION AND SOLUTIONS

Let us now consider the proposed model as an open
tem interacting with the ‘‘rest of the Universe’’@22#. We will
study only the case in which the radiation mode rela
much faster than the mirror~the opposite case, i.e., the mirro
that relaxes much faster than the cavity mode, does not s
any quantum features due to the thermalization effec!.
Moreover, since, in order to see the Schro¨dinger cats, we are
interested to short time behavior~i.e., times much shorte
than the typical radiation relaxation time!, we can consider
the mirror practically not affected by any damping. Hen
the master equation for the whole system will be taken in
form

ṙ5
i

\
@r,H#1x~r!, ~25!

where@23#
es
e

s-

s

w

,
e

x~r!5
g

2
@2ara†2a†ar2ra†a#, ~26!

and where we have considered the number of thermal p
tons to be negligible at optical frequencies. In our model,
damping constantg takes into account the loss of photon
through the fixed mirror, so it is related to its transmissiv
tr by the relationg5ctr/2L with c the speed of light. How-
ever, since we are using a scaled time we should rep
g/vm→g. Now, the undamped system is an exact solva
system with the free evolution operatorU(t) given by Eq.
~5! and obeying the equationiU̇ (t)5HU(t). Then, introduc-
ing a new density operatorR, in a form similar to the inter-
action representation, i.e.,r5URU†, we may rewrite Eq.
~25! as

Ṙ5U†x~URU†!U5x̃~R!, ~27!

where the operatorx̃(R) is obtained by the following re-
cepie: all the additional operatorsai in the initial operators
x(r) are replaced byãi5U†aiU, while the operatorr is
replaced byR. We could write down the solution of Eq.~27!
in the formR5R01Y, whereR0 is a constant operator, i.e
Ṙ050, and the operatorY satisfies the equation correspon
ing to Eq.~27!:

Ẏ5x̃~Y1R0!. ~28!

The operatorR0 represents to the free solution of the initi
Eq. ~25!, i.e., without the termx(r). Untill now we only
rewrote the master equation in another representation a
is still an exact equation. However, Eq.~27! is appropriate to
apply the Born iteration procedure@24# provided that the
damping termx(r) is small enough to be considered as
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perturbative one~this could be the case since the parame
g has to be small in order to achieve the Schro¨dinger cats!.
Then we could try to solve Eq.~28! simply by replacing in
the right-hand side the operatorx̃(Y1R0) by x̃(R0), i.e.,
performing the first Born approximation. The solution is im
mediate, and the operatorR assumes the form

R~ t !5R01E
0

t

x̃~R0 ,t!dt. ~29!

It means that the initial density operatorr(t) becomes

r~ t !5r0~ t !1rg~ t !, ~30!
rwhere the termr0(t) is the density operator of the free mo
tion

r0~ t !5U~ t !r0~0!U†~ t ! ~31!

with initial density matrixr0(0)[r(0). Thecorrection term
rg(t) has the form

rg~ t !5U~ t !F E
0

t

x̃~R0 ,t!dtGU†~ t !, ~32!

or more explicitly
the

quations.

presence
rg~ t !5gE
0

t

dt$e2 iF ~ t2t!x̂~ t2t!22iE~ t2t!a†aar0~ t !a
†eiF ~ t2t!x̂~ t2t!12iE~ t2t!a†a%2

g

2
t@a†ar0~ t !1r0~ t !a

†a#. ~33!

The range of validity of the above approximation is determined by the requirementrg(t)!r0(t). Below, it will become more
clear that it works forgua0u2t!1. It is also easy to check that Tr$rg%50, thenr(t) is always normalized to unity. Let us now
try to find the marginal distribution at the particular timest* andt8 discussed in Sec. III. By means of Eqs.~33!, ~22!, and~14!,
after lengthy but straightforward algebra, one obtains

P~X!5 ^XuTrm$r0~ t* !1rg~ t* !%uX&5S 2p D 1/2e2ua0u222X2 (
p,q50

`
22~p1q!/2

p!q!
Hp~A2X!Hq~A2X!eiarga0~p2q!ua0up1q

3H Aq,p

2
1

g

2 FAp,qI p,q~ t* !ua0u22Aq,p

p1q

2
t* G J , ~34!

whereHp are the Hermite polynomials,

Ap,q5@11 i ~2 !q2 i ~2 !p1~2 !p1q#, ~35!

and finally

I p,q~ t* !5E
0

t*
dte2 i [2E~ t*2t!] ~p2q!. ~36!

In Eq. ~34! the first term inside the curly brackets comes fromr0 and is related to the undamped motion, while the other is
perturbative term due to the environmental coupling. Due to the fact that at the timest* the two subsystems~i.e., radiation
cavity mode and mirror! are disentangled, the thermal effects do not destroy the cat state as can be seen in the above e
The decoherence depends only on the leakage of photons through the fixed mirror.

In the case of cat states generated by conditional measurement the expression for the conditional probability in the
of damping has almost the same structure as Eq.~34!, and can be obtained by using Eqs.~33!, ~22!, and~18!:

P~Xuyt8!5^Xu^yt8ur0~ t8!1rg~ t8!uyt8&uX&

5C8S 2p D 1/2e2ua0u222X2 (
p,q50

`
22~p1q!/2

p!q!
Hp~A2X!Hq~A2X!ei [arga01F~ t8!yt8] ~p2q!ua0up1q

3H Aq,p

2
^yt8urTuyt8&1

g

2 FAp,qĨ p,q~ t8!ua0u22Aq,p

p1q

2
t8^yt8urTuyt8&G J , ~37!

where

Ĩ p,q~ t8!5E
0

t8
dtexp$2 i @2E~ t82t!1F~ t8!F~ t82t!sin~t/2!#~p2q!%^yt82F~ t82t!sin~t/2!urTuyt82F~ t82t!sin~t/2!&,

~38!
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and, due to Eq.~8!, the following general expression hold
@25#:

^YurTuY&5S 2p D 1/2~12z!(
j50

`
zj

2 j j !
e22Y 2

Hj
2~A2Y!

5S 2p 12z

11zD
1/2

expF22Y 2
12z

11zG . ~39!

C8 is a constant needed for the normalization after the p
jection in the measurement process, and it can be obtaine
performing the integration over theX variable of Eq.~37!
with the aid of the completeness formula for the Herm
polynomials@25#

C85$^yt8urTuyt8&1gua0u2@ Ĩ p,q5p~ t8!2^yt8urTuyt8&t8#%21.
~40!

It is easy to note that the correction term in both solutio
~34! and ~37! remains smaller than the undamped term p
videdgua0u2t!1. Equation~37! shows a dependence of th
decoherence effects also on the thermal state of the m
~i.e., its temperature!. In Figs. 1 and 2, we show respective
P(X) and P(Xuyt850) ~solid lines! of Eqs. ~34! and ~37!
contrasted with the same in the absence of damping~dashed

FIG. 1. The marginal distributionP(X) is plotted as a function
of the quadrature variableX for k50.5, ua0u5A7, at t*52p and
in two different cases:g50 ~dashed line! andg5231022 ~solid
line!.

FIG. 2. The marginal distributionP(Xuyt8) is plotted as a func-
tion of the quadrature variableX for yt850, k50.52, ua0u5A7, at
t853p/2 and in three different cases:g50, Nth50 ~dashed line!;
g5231022, Nth50 ~solid line!; g5231022, Nth>20 ~dotted
line!.
-
by

s
-

or

lines!. We may see that in the case of the cat state create
t*52p, i.e., Fig. 1, the coherence has been almost tot
washed out, due to the long time needed for the formati
while the conditional measurement could be used to gene
the superposition at shorter time, in Fig. 2t853p/2, pre-
serving the coherence effects. In this case, however,
should pay attention to the thermal effect of the mirror.
this end, let us consider more closely the case ofyt850,
which is a highly probable value for the mirror quadratu
measurement. The normalization factor on the right-ha
side of Eq.~39! is a common factor that can be eliminated
Eq. ~37! by using Eq.~40!, while the exponentioal facto
remains in the integral of Eq.~38! only. As z approaches the
value 1, i.e., the temperature increases, it tends to bec
unity. This means that the thermal effects tend to destroy
coherence only up to a value of temperature, above wh
the interference fringes become insensitive~dotted line of
Fig. 2!. Of course analogous discussions can be made
other values of the mirror quadratureyt8.

We also note from both Fig. 1 and Fig. 2 that, as t
dissipation becomes relevant, two Gaussian peaks cent
around the mean number of photons, and which are typ
of the orthogonal quadrature, appear. This is essentially
to the rotation in the phase space introduced by the dam
term rg . In fact, as can be seen in Eq.~33!, it involves an
integration over the time that leads to a distribution who
contributions come from various field phases, i.e., from d
ferent quadratures.

VI. DETECTION OF QUANTUM COHERENCE

In this section we will show that the above discuss
model could also be used to reveal the quantum coheren

According to Ref.@26#, the photon number statistics o
the radiation field could be opportunely used as signature
the presence of Schro¨dinger cat states. On the other hand,
the presented model, a measurement of the mirror’s mom
tum p̂ allows us to get the photon number statistics in
indirect way @27#. In particular the signal could be repre
sented by the numbera†a of photons of the radiation mode
and the meter by the momentum of the movable mirror;
out of phase quadrature coupled to the photon number@see
Eq. ~3!#.

FIG. 3. The correlation coefficientCs,m is plotted against time
for k50.5 in the case of g50, Nth50 ~dashed line!;
g51022, Nth50 ~solid line!; g51022, Nth52 ~dotted line!.
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55 3047PONDEROMOTIVE CONTROL OF QUANTUM . . .
Our purpose should be to detect the Schro¨dinger cat im-
mediately after its generation inside the cavity, at timet* ~or
t8 if one uses conditional measurement generation!; never-
theless in both cases the two subsystems, i.e., the mirror
the radiation mode, are disentangled@as can be seen in Eqs
~14! and ~18!#, so no information can be extracted in a
indirect way. Then, we must address the measurement to
something that is slightly different from the Schro¨dinger cat
state, but still having quantum coherence features. To
end, let us consider at first the entanglement between
s
ch
e
p
a

f
th
ti
te
de
lle
es
-

g

r-
e
e
y.
nd

et
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he

signal and the meter, which could be described by the co
lation function defined as follows@28#

Cs,m5
u^a†ap̂&2^a†a&^ p̂&u2

Va†aVp̂

, ~41!

whereV means the variance. This quantity shows how go
is the scheme as a measurement device, and should be
to one for a perfect scheme. By performing the expetact
values using Eqs.~33! and ~5! we obtain
re 3
gure

, by Eq.
Cs,m5
2ua0u2k2@sin2t14gsin2~ t/2!sint#

@ 1
21Nth12ua0u2k2sin2t#~12gt !1ua0u2k2

g

2
@2t28sint13sin~2t !#

. ~42!

ThusCs,m is a function oft depending also onk, which is a constant that contains all the external parameters. Figu
illustrates the typical behavior ofCs,m versust, showing the effects of dissipation as well as the thermal ones. From this fi
it is obvious that higher values ofCs,m for times closer to 0,p, 2p could be achieved by increasing the value ofk or
ua0u, but we must take into account that the number of photons plays a delicate role in the dissipation effect.

Let us now consider a time at which the radiation is entangled with the mirror, then its state, in the absence of loss
~20!, will be

r0
field~ t !5Trm$r0~ t !%5E dyt^yturTuyt&eiE~ t !~a†a!2ua0e

iF ~ t !yt&^a0e
iF ~ t !ytue2 iE~ t !~a†a!2, ~43!

and furthermore ifE(t) satisfies the condition~12! for that time, it becomes

r0
field~ t !5

1

2E dyt^yturTuyt&~e2 ip/4ua0e
iF ~ t !yt&1eip/4u2a0e

iF ~ t !yt&)~e2 ip/4^2a0e
iF ~ t !ytu1eip/4^a0e

iF ~ t !ytu!, ~44!
t, so
re-

-

to
s.

by
which represents not a ‘‘pure’’ cat state, but one who
phase is still convoluted with the mirror motion and to whi
we may refer as a ‘‘pseudo-cat’’ state. The latter, howev
has the advantage of being detected, since it does not im
any disentanglement. It is worth remarking that the deph
ing effect due to the factor exp(iFyt), which degrades the
pure cat into a pseudo-cat state, is considerable only
those values ofyt contained under the Gaussian state of
mirror. Then the temperature can emphasize this nega
effect, since it introduces the highest mirror number sta
i.e., Gaussians with larger width. On the other hand, in or
to reduce this effect, it is also preferable to have the sma
possible values ofF(t). These are accessible only at tim
near to 2p @see Eq.~7!#. Thus, in order to realize the mea
surement, the choice of the mesurement timet and the value
of k should be made to fulfill simultaneously the followin
requirements: Eq.~12!, the highest value ofCs,m , and the
smallest value ofF. Of course the detection should be pe
formed at time much shorter than the typical cavity lifetim
g2152L/ctr, but also longer than the photon cavity fly tim
2L/c, to ensure the presence of photons inside the cavit

Let us now assume to have found the desiredt and k,
then we revise the measurement strategy of Ref.@26# for the
detection of quantum macroscopic coherence.
e

r,
ly
s-

or
e
ve
s,
r
st

A coherent fieldua r&, the ‘‘reference,’’ is added to the
pseudo-cat state, immediately before the measuremen
that the resulting field in the cavity at the time of measu
ment is

r̃ field~ t !5
1

ND~a r !r
fieldD21~a r !, ~45!

whereD is the displacement operator andN is a normaliza-
tion constant.

After the injection of the reference field, the photon num
ber distribution in the cavity becomes

P~n!5^nur̃ field~ t !un&5
1

N
1

2E dyt^yturTuyt&

3$ue2 ip/4^nua0e
iF ~ t !yt1a r&

1eip/4^nu2a0e
iF ~ t !yt1a r&u2%1O~g!, ~46!

whereO(g) indicates the perturbative terms proportional
the first power ofg that we have omitted for space reason

Let us now consider separately two cases. Whena0 and
a r have the same phase the photon distribution, denoted
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Pin(n), as a consequence of the first term in Eq.~46!, which
is the dominant one, should appear as the sum of two qu
Poissonian distributions peaked aroundn5ua01a r u2 and
n5u2a01a r u2, with the tails due to the smearing effect
the Gaussian integral. In fact, in Eq.~46!, the interference
part will be negligible providedua r u@1. An interesting situ-
ation arises whena0 anda r have the same amplitude, the

Pin~n!5
1

N
1

2

ua0u2n

n! E dyt^yturTuyt&

3„@c1
n e2ua0u2c11c2

n e2ua0u2c212c1
n/2c2

n/2e22ua0u2

3Re$2 i ~ i !n%#…1O~g!, ~47!

where

c65262cos@F~ t !yt#. ~48!

In that case, neglecting the perturbation terms,Pin(n) con-
sists of a very sharp distribution centered atn50, which is a
d-like peak for a pure cat state, and a distribution pea
aroundn54ua0u2. The existence of two separate peaks
the in-phase sum field is the proof of the existence of t

FIG. 4. The distributionPin(n) vs the photon number is plotte
for a pseudo-cat state withk50.5, ua0u5A7, andt50.8432p in
the case of ~a! g50, Nth50; ~b! g51022, Nth50; ~c!
g51022, Nth52.
si-

d

o

FIG. 5. The same as Fig. 4, but forPout(n).

FIG. 6. The marginal distributionPpc(X) is plotted fork50.5,
ua0u5A7, t50.8432p and the values ofg andNth indicated in the
figure. It is also compared with the distribution for a pure cat sta
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classical fields within the cavity. However, it does not pro
that these two fields are in a coherent quantum mechan
superposition. So we need to consider also the case w
a0 anda r arep/2 out of phase, for which we have

Pout~n!5
1

N
1

2

ua0u2n

n! E dyt^yturTuyt&

3„@s1
n e2ua0u2s11s2

n e2ua0u2s212s1
n/2s2

n/2e22ua0u2

3Re$2 i ~2 i !n%#…1O~g!, ~49!
where now

s65262sin@F~ t !yt#. ~50!

In this case the interference in the term in Eq.~46! becomes
important, in factPout(n), again neglecting the perturbatio
terms, exhibits a Poisson envelope with strong oscillatio
signaling the coherence effect. The above discussed dep
ing effect in the pseudo-cat state tends to wash out the o
lations and to transform the Poisson envelope into a Ga
ian one. Of course in both cases~in and out! also the
damping terms cause a degradation of the signal.
It
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In Fig. 4 we showPin(n) for a pseudo-cat state~a! that
resembles that for a pure cat state, contrasted with the s
in the presence of damping at zero temperature~b! and at
finite temperature~c!. Figure 5 illustrates the same situation
for Pout(n). Both figures are obtained usingt50.8432p
and k50.5 for which one hasF50.48 andCs,m50.85 ~at
zero temperature, while it is reduced to 0.55 whenNth52).

ThePin(n) andPout(n) distributions can actually be mea
sured detecting the momentum of the mirror, of course
measurement process is destructive, hence the state has
reprepared for each measurement, and a large numbe
measurements should be performed to reach the desired
tistics. Then, from these output distributions, one can rec
nize a signature of quantum coherence as in Fig. 4 and
5, provided there is a small dissipation and a very low te
perature, which is needed also to guarantee a sufficient si
meter correlation~Fig. 3!.

Finally, to effectively visualize the presence of interfe
ence fringes in the phase space, we would consider the m
ginal distribution for the pseudo-cat. This probability, o
tained through the expectation valuêXuTrm$r0(t)
1rg(t)%uX& and using Eqs.~44! and ~33!, will be
Ppc~X!5S 2p D 1/2e2ua0u222X2 (
p,q50

`
22~p1q!/2

p!q!
Hp~A2X!Hq~A2X!eiarga0~p2q!ua0up1q

3H Aq,p

2
1

g

2 FAp,qI p,q~ t !ua0u22Aq,p

p1q

2
tG J expF2

F2~ t !~p2q!2~11z!

8~12z! G , ~51!
,
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where the superscript pc refers to the pseudo-cat state.
clear from the last exponential factor how the therm
phonons of the mirror tend to rapidly destroy the cohere
effect.

In Fig. 6 we show the marginal distributionPpc(X) of Eq.
~51! for various situations, using the above discussed va
of parameters, i.e.,t50.8432p, k50.5. From this picture
we may note that the interference pattern of the pseudo
state is almost the same as the pure one and is still prese
at the time of measurement, even in the presence of
provided to have a very small number of thermal excitatio
in the mechanical oscillator.

VII. CONCLUSION

We have proposed the use of an optomechanical m
for the generation of optical Schro¨dinger cat states. We hav
also presented a scheme to reveal the quantum macros
coherence, based on the pseudo-cat states that could b
tended as a sort of cat state, which could be recognized
fore their ‘‘natural birth.’’ Thus the model is substantial
able to produce and also to detect interference effects w
out introducing different couplings, but one should pay
tention to the different sources of dissipation.

We would also point out that the studied system could
implemented for example by using a piezoelectric crysta
is
l
e

es

at
ed
ss
s

el

pic
in-
e-

h-
-

e
s

the movable mirror@29#. The above used values oft, k, and
g ~in the various figures!, could be reached, for example
with the following set of parameters:vc'1016 s21,
vm'104 s21, m'10214 kg, L'1.5 m, tr'1026, and
T'1027 K. Of course, other choices satisfying the abo
mentioned criteria can be made that give the same qualita
results. We are aware that a delicate point could be the r
ization of the mechanical oscillator with a very small ma
but we would remark that the mass parameter could also
interpreted as an effective value coming from the density
the vibrational modes of the mechanical oscillator@30#. Fur-
thermore, the discussed model could be improved by ins
ing an active Kerr medium inside a cavity. This would e
hance the nonlinear effects and slow down the decohere

Finally, even if we have not coupled the system und
study with an external readout apparatus able to measure
momentum of the moving mirror, we think that the presen
model represents an interesting alternative way to appro
also in the experimental sense, the quantum macroscopic
herence phenomena.
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