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Ponderomotive control of quantum macroscopic coherence
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It is shown that because of the radiation pressure a Suaiger cat state can be generated in a resonator with
an oscillating wall. The optomechanical control of quantum macroscopic coherence and its detection is taken
into account by introducing new cat states. The effects due to the environmental couplings with this nonlinear
system are considered by developing an operator perturbation procedure to solve the master equation for the
field mode density operatofS1050-294{@7)02503-1

PACS numbsg(s): 42.50.Dv, 42.50.Vk, 03.65.Bz

[. INTRODUCTION could also be useful for revealing quantum macroscopic co-
herence.
One of the fundamental aspects of quantum mechanics is
the existence of interference among quantum states, which Il. THE MODEL

signifies a superposition of states, as opposed to a mixture of i
states. The quantum theory may adequately well describe We consider a linear Fabry-Re empty cavity with one
macroscopic Objects by means of a linear Superposition cﬁXEd partlally rIEﬂECting end mirror and one perfe-CtIy re_fleCt-
states with macroscopically distinguishable properties. Reld mirror, which can moveundergoing harmonic oscilla-
cently, due to improved technology, there has been a gro\,\;_lon.s)' under the influence of radiation pressureLlfis the
ing interest in the possibility of observing such superpositior£auilibrium cavity length, the resonant frequency of the cav-
states, commonly known as S¢tioger cat statefl]. Good Ity Will be
candidates for these macroscopic states are the coherent
states of an electromagnetic field mode. The properties of _¢c
- : = 1)
superposition of two generic coherent states have been stud-
ied in Ref.[2] and the simplest superposition of even and
odd coherent states was introduced in R8f. A review of  wheren is an integer number determined by the frequency of
these states is given in Rg#]. Within the field of optics the input light anct is the speed of light. We assume that the
several proposals for the generation of linear superpositiontetardation effects, due to the oscillating mirror, in the intra-
of coherent states in various nonlinear proce§sg and in  cavity field are negligible. We will also neglect the correc-
quantum nondemolition measuremefif$ have been made. tion to the radiation pressure force due to the Doppler fre-
It is worth noting that the field in a cat state has many ad-duency shift of the photonsl2]. Thus we are able to write
vantages in optical communicatidi8]. However, by cou- the Hamiltonian of the whole system as
pling the system to its enviroment, as in the act of measure-
ment, one always introduces dissipation and decoherence H=fwa'a+hoyb'™b+Hpy, 2
effects, which tend to destroy any quantum feat(igds
In the common scheme of the Kerr-like medium modeledwherea,a’ are the boson operators of the resonant cavity
by an anharmonic oscillator, it was sho@t0] that the pho- mode andb,b” are the boson operators of the oscillating
ton number distribution and interferences in phase space argirror with the massn and the angular frequeney,,. The
highly sensitive to even small dissipative coupling. This fact,latter will be many orders of magnitude smaller thap to
plus the smallness of thg(® nonlinearity, makes the pros- ensure that the number of photons generated by the nonsta-
pect of experimentally producing and detecting such statetonary Casimir effec{14] as a consequence of the Casimir
highly questionable in these media. forces[13] in the resonator with moving boundaries is com-
On the other hand, it is well knowfiL1] that an empty pletely negligible.H;,; accounts for the fact that the intra-
optical cavity with a moving mirror may mimic a Kerr-like cavity photon changes its energy, by, as the oscillating
medium when it is illuminated with coherent light. The ef- mirror moves[15]
fect of an intensity-dependent optical path is due, in this
case, to the radiation pressure force. Hi«=—%Ga'a(b+b") 3
In this paper we shall present such a model as an alterna-
tive one for th_e generation of_Séhﬁoger cat states. We_will with the coupling constant given by
show that, with the appropriate measurement technique, it
we % 1/2
ST @
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From the Hamiltonian$2) and(3) we can derive, using the 1 -
Baker-Campbell-Hausdorff formula for the Lie algelis], p(t*)= E[ef'”4| ag)+€'™ — ag)]
the time evolution operator in the following form:
i X[{— e—i7T/4+ ei7r/4 ® : 14
U(t):eiE(t)(aTa)zeiF(t)a*axm[e—imCaTat/wme—ibTbt] (5) [(= aol 19p1 (149
however, this is not the only way to create a quantum super-
where position in this system. In fact, let us consider the timhes
) ‘ A for which
X(t)=be"2+ble 1" (6)

v
is the mirror quadrature operator, while E(t')=35+2mm, meN. (15)

E(t)=«’[t—sint], F(t)=2«sint/2), «=Glwy, In these cases, obviousl(t’) is not necessarily zero then
(7)  the reconstruction of the superposed coherent states is im-
, i , possible due to the entanglement between the two sub-
with t the time scaled byr,; i.e., we have replacedn,t by gystems. One can now use a conditional measurement to cre-

t. Furthermo_rg from now on, we will consider the evolution 4ie the desired states, performing a sort of quantum state
operator omitting the free motion of the two modesand engineering 18].

b, i.., the term inside the square brackets in &. Let us suppose that the mirror's quadratu(¢) is mea-

. sured[19], giving the resulty,. The state of the radiation
IIl. GENERATION OF SCHRO DINGER CAT STATES field after the measurement is found by projecting the sys-

From Eq.(5) one can immediately recognize that the time [€M’S state onto the eigenstaig):
evolution introduces anharmonicity due to the presence of iE(h(aTa)? AiF (DaTay,
the nonlinear termg'a)? whose strength depends also on Paitel t) =Ce e Jeao)(yd prlyr)
t|me£17]. Itis also easy to see that at each time for which ><(ao|e’iF(‘)aTayt|e"E“)(aTa)z, (16)
F(t)=0 the two subsystems are disentagled. Furthermore
du_e to_|t§_mac_roscop|C|ty we should consider the oscnlatlnthereC is a normalization constant
mirror initially in a thermal state at temperatufe

C=((ydprly)) % 17
(123 2l z=exd —pen], @
P n o kgT )’ At the timest’ we have, from Eqs(15) and (16)

with z/(1—z) = Ny, representing the mean number of excita-
tions of the mechanical oscillator, i.e., the number of thermal
phonons. Thus starting from an initial coherent statg) for o . o )
the radiation mode we have ®[(— apeF e 1™y (apelF Ve ]el 4,

(18

1 i i ’ . . ,
Paielt’) = E[e 714 oelF (Y0 4 @l 74| — g el F (1]

p(t*)= eiE(t*)(aTa)2| ao)|(ay| ®pTe—iE(t*)(aTa)2 (9)
_ which is a superposition of coherent states whose phase de-
with pends on the measurement process; and further, if the result
of the measurement is
t* :27Tm1, mlE N (10)

T 1
so that Vo = 5 B (29

(t')’
it is possible to recover in Eq18) the generalized even and
odd coherent states like those discussed2i®,21, which
show quantum interference as well as other particular fea-

F(t*)=0, E(t*)=«x2mm,. (11

Now in order to see the cat states, the following condition
must be fulfilled[5]:

tures.
* an
E(t*)= >+ 2mm,, meN 12 IV. QUASIPROBABILITY AND MARGINAL
DISTRIBUTION
so that combining Eqd11) and(12) one gets The evolved density operator of the whole system can be
11 easily constructed by using the time evolution operator of
2~ | = Eq. (5):
K ml 4 + m2 y (13)
p()=U ()] ag){aol ®prUT(1), (20)

which can be read as a restriction on the possible values of
the various external parameters. Thus if the above conditiorsnd then the evolution can be described, for example, in
are satisfied, we have terms of theQ function,
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Qe B0 =(al(Blp(v|B)] @)=l ™ 1-2) 3 7|

§ ¥ " i i it/2yr
X nzo %exp{ iE(t)—%Fz(t) n2+iF(t)ne—it/2B*]r_o% 2, 21)

where the variableg, B refer to the radiation and the mirror, respectively. However, since the distinguishing element of a
linear superposition of coherent states is the presence of interference fringes in the marginal distribution, we are interested in
that for the particular times discussed in the previous section. Its definition, for a generip"8te of the radiation field,

is given by

P(X)=(X|p™(t)|X), (22)

where|X) are eigenstates of the quadrature operter(a+a')/2, while p™ should be intended as Jfp} with Tr, the
trace over the mirror degrees of freedom. In the case of &t}.we can integrate over the degree of freedom of the mirror to
obtain the marginal distribution of the field mode[4§)]

2

= %{P+(X)+ P_(X)+ 2P, (X)P_(X)sin 4X]| ao|sin(argao) I},

1 ) )
P(X)=[(X] E[eﬂﬂﬂ ag)+€ ™| —ap)]

12
1
P.(X)= (;) ex;{ —2X—|ao?F 2X (a0 + af) — 5 (ag+ag?) ; (23

while in the case of Eq.18) the marginal distribution for the y
field mode is in effect a conditional probability: x(p)= E[Zapa*—a*ap—pa’ra], (26)

1 4 )y and where we have considered the number of thermal pho-
(X E[e | v) tons to be negligible at optical frequencies. In our model, the
damping constany takes into account the loss of photons
through the fixed mirror, so it is related to its transmissivity
+el ™ — agelF M| 2) (24)  tr by the relationy=ctr/2L with ¢ the speed of light. How-
ever, since we are using a scaled time we should replace
vl wy— v. Now, the undamped system is an exact solvable
whose explicit expression is the same as in &8), apart  system with the free evolution operatoi(t) given by Eq.
from an extra phase factor in the coherent state, which giveé—)) and obeying the equatidliJ (t)=HU(t). Then, introduc-
the interference pattern along a direction depending on thﬁ]g a new density operatd®, in a form similar to the inter-
result of the measurement as well. action representation, i.ep=URUT, we may rewrite Eq.
(25) as

P(Xlyw)=

V. DAMPED MODE EQUATION AND SOLUTIONS . _
. R=UTx(URUNU=X(R), (27)
Let us now consider the proposed model as an open sys-
tem interacting with the “rest of the Univers¢22]. We will  \yhere the operatof(R) is obtained by the following re-
study only the case in which the radiation mode relaxegepie: all the additional operatoes in the initial operators
much faster than the mirrdthe opposite case, i.e., the mirror ¥(p) are replaced by, =U"a,U, while the operatop is

that relaxes much faster than the cavity mode, does not Sho}’éplaced byR. We could write down the solution of E7)
any quantum features due to the thermalization effects;, ihe formR= Ro+Y, whereR, is a constant operator, i.e.,

Moreover, since, in order to see the Salinger cats, we are - - .
interested to short time behavigire., times much shorter R,=0, and the operatdr satisfies the equation carrespona-

than the typical radiation relaxation timeve can consider ing to Eq.(27):
the mirror practically not affected by any damping. Hence, o~
the master equation for the whole system will be taken in the Y=Xx(Y+Ry). (28)

form . I
The operatoiR, represents to the free solution of the initial

i Eqg. (25), i.e., without the termy(p). Untill now we only
p=—[p,H]+x(p), (25)  rewrote the master equation in another representation and it
fi is still an exact equation. However, BQ7) is appropriate to
apply the Born iteration proceduf@4] provided that the
where[23] damping termy(p) is small enough to be considered as a
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perturbative ondthis could be the case since the parametemhere the ternpy(t) is the density operator of the free mo-
v has to be small in order to achieve the Sclinger cats  tion
Then we could try to solve Eq28) simply by replacing in

the right-hand side the operatg(Y+R,) by X(Ry), i.e., po(t)=U(1)po(0)UT(1) (31
performing the first Born approximation. The solution is im-
mediate, and the operat®& assumes the form with initial density matrixpo(0)=p(0). Thecorrection term

. p,(t) has the form
0

t
py(t)=U(t)U03('(Ro,T)dT u'(), (32

It means that the initial density operatoft) becomes

p(1)=po(t)+p,(1), (300  or more explicitly

t . NS N _ + . S . _ + Y
py(t):')/J'OdT{e iF(t—7)x(t—7)—2iE(t—7)a aapo(t)aTelF(t TIX(t—7)+2iE(t—7)a a}_Et[aTapo(t)‘l‘po(t)aTa]. (33)

The range of validity of the above approximation is determined by the requirgmént< py(t). Below, it will become more
clear that it works fory|ap|?t<1. It is also easy to check that{fr,} =0, thenp(t) is always normalized to unity. Let us now
try to find the marginal distribution at the particular tinté&sandt’ discussed in Sec. lll. By means of E¢33), (22), and(14),
after lengthy but straightforward algebra, one obtains

= o= (p+a)2

1/2
P(X)=(X|Tru{po(t*)+p (t*)}|X>=(E) e leol® -2 3 —Hp(ﬁX)Hq(JEX)ei""“’”‘o(p“”laolp+q
Y T pa=o p!q!

q,p ]
_— 4=
2

X
2

p+q
Ap,qlp,q(t*)|a0|2_Aq,th*Ha (34)

whereH, are the Hermite polynomials,
Apq=[1+i(—)I=i(=)P+(—)P71], (35

and finally
I q(t*)= ft*dTe*iIZE“**fﬂw*m. (36)
p.q 0

In Eq. (34) the first term inside the curly brackets comes frpgrand is related to the undamped motion, while the other is the
perturbative term due to the environmental coupling. Due to the fact that at thetfinbke two subsystem§.e., radiation
cavity mode and mirrgrare disentangled, the thermal effects do not destroy the cat state as can be seen in the above equations.
The decoherence depends only on the leakage of photons through the fixed mirror.

In the case of cat states generated by conditional measurement the expression for the conditional probability in the presence
of damping has almost the same structure as(84), and can be obtained by using E33), (22), and(198):

P(Xlye)=(X[{ye'[po(t") + p(t)]yi )] X)

2\ 12 s s < 27 (PrON2 _
=c’(_) el S g He(N2X)Hg(V2X) el o sl g P
p.q=0 M

X

Aq, Y ~ p+q .,
2 elprlye) +5 | Apalpg(t)aol* = Agp——t <ytr|pletf>”, (37

where

Toq(t)= fot’drexp{—i[ZE(t’ —7)+F(t")F(t' = 7)sin(7/2)J(p— o) Kyp — F(t' — 7)sin( 7/2)| prly, — F(t' — 7)sin(7/2)),
(38
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P(X) lines). We may see that in the case of the cat state created at
t* =2, i.e., Fig. 1, the coherence has been almost totally
washed out, due to the long time needed for the formation;
while the conditional measurement could be used to generate
the superposition at shorter time, in Fig.t2=3x/2, pre-
serving the coherence effects. In this case, however, one
should pay attention to the thermal effect of the mirror. To
this end, let us consider more closely the caseyet0,
which is a highly probable value for the mirror quadrature
measurement. The normalization factor on the right-hand
side of EQ.(39) is a common factor that can be eliminated in
Eq. (37) by using Eq.(40), while the exponentioal factor
remains in the integral of Eq38) only. As z approaches the
value 1, i.e., the temperature increases, it tends to become
unity. This means that the thermal effects tend to destroy the
coherence only up to a value of temperature, above which
the interference fringes become insensitigotted line of
and, due to Eq(8), the following general expression holds Fig- 2). Of course analogous discussions can be made for
[25]: other values of the mirror quadratuye .
We also note from both Fig. 1 and Fig. 2 that, as the
12 S ) dissipation becomes relevant, two Gaussian peaks centered
<y|PT|y>=(—) (1-2) >, 5-—,6723) H( V2Y) around the mean number of photons, and which are typical
T i=o < of the orthogonal quadrature, appear. This is essentially due
2 1—7\12 1—7 to the rotation in the phase space introduced by the damping
=<; m) eXF{—Zyzm . (39  termp,. In fact, as can be seen in E@®3), it involves an
integration over the time that leads to a distribution whose
C’ is a constant needed for the normalization after the procontributions come from various field phases, i.e., from dif-
jection in the measurement process, and it can be obtained B§rent quadratures.
performing the integration over th¥ variable of Eq.(37)
with the.aid of the completeness formula for the Hermite V1. DETECTION OF QUANTUM COHERENCE
polynomials[25]

1.5

m—memme T3
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FIG. 1. The marginal distributioR(X) is plotted as a function
of the quadrature variablg for k=0.5, |ao|= 7, att* =27 and
in two different casesy=0 (dashed lingand y=2x10"? (solid
line).

_ In this section we will show that the above discussed
C'={{yvlptlye )+l a0|2[lpyq:p(t’)—<yt,|pT|ytr)t’]}‘1. model could also be used to reveal the quantum coherence.
(4 According to Ref.[26], the photon number statistics of

the radiation field could be opportunely used as signature of

It is easy to note that the correction term in both solutions[he presence of Schilnger cat states. On the other hand, in
(34) and(37) remains smaller than the undamped term PrO+ne presented model, a measurement of the mirror’s mor,nen-

vided y|ap|?t<1. Equation(37) shows a dependence of the Sl he oh b o
decoherence effects also on the thermal state of the mirrdl™ P &llows Us to get the photon number statistics in an
(i.e., its temperatupeIn Figs. 1 and 2, we show respectively indirect way[27]. In particular the signal could be repre-
P(X,) and P(X|y, =0) (solid lines of Egs. (34) and (37) sented by the number'a of photons of the radiation mode,

contrasted with the same in the absence of damfiiaghed and the meter by the momentum of the movable mirror; the
out of phase quadrature coupled to the photon nurdee

Eqg. .
P(Xly) q. (3]
1.5 ,".I Cs,m
o8l AT
0.6
0.4
X 0.2
4 2 2 4
t
FIG. 2. The marginal distributio®(X|y,/) is plotted as a func- 0 n 2m
tion of the quadrature variabbé for y,, =0, k=0.52,| ag| = /7, at
t'=3x/2 and in three different caseg=0, N;,=0 (dashed ling FIG. 3. The correlation coefficier@; ,, is plotted against time

y=2X10"2, Nyp=0 (solid ling; y=2x10"2, Nu=20 (dotted for «=05 in the case of y=0, Ny,=0 (dashed Iling
line). y=10"2, Nyp=0 (solid line); y=10"2, Ny=2 (dotted ling.
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Our purpose should be to detect the Sclimger cat im-  signal and the meter, which could be described by the corre-

mediately after its generation inside the cavity, at tithéor  lation function defined as follow28]

t’ if one uses conditional measurement generatiaever- . ~

theless in both cases the two subsystems, i.e., the mirror and _ (a’ap)—(a'a)(p)|?

the radiation mode, are disentangled can be seen in Egs. Csm= V.1V~ ' (41)

(14) and (18)], so no information can be extracted in an aare

indirect way. Then, we must address the measurement to gethereV means the variance. This quantity shows how good

something that is slightly different from the ScHinger cat is the scheme as a measurement device, and should be equal

state, but still having quantum coherence features. To thito one for a perfect scheme. By performing the expetaction

end, let us consider at first the entanglement between thealues using Eq933) and(5) we obtain

2| ao|?k?[ SirPt+ 4 ysiré(t/2)sint]

Com= (42

[14 Ny 2] erg| 2e2sirPt] (1— 1) + | a0|2,<2%[2t— 8sirt + 3sin(2t)]

Thus Cs 1, is a function oft depending also o, which is a constant that contains all the external parameters. Figure 3
illustrates the typical behavior @, ., versust, showing the effects of dissipation as well as the thermal ones. From this figure
it is obvious that higher values &, , for times closer to 0,7, 2 could be achieved by increasing the valuexobr
|ao|, but we must take into account that the number of photons plays a delicate role in the dissipation effect.

Let us now consider a time at which the radiation is entangled with the mirror, then its state, in the absence of loss, by Eq.
(20), will be

' ; t.)2 ; ; i t2)2
Pe(t) = Trulpo(t)} = f dy(yil prlye)€E V@ D agem V) apeF (VYo EN@T (43)

and furthermore iE(t) satisfies the conditiofil2) for that time, it becomes

pgeld(t) — Ef dyt<yt|p_l_|yt>(ef|ﬂ'/4| aoelF(t)yt>+ e 7r/4| _ aOeIF(t)yt>)(e*|77/4< _ aoelF(t)yt| +él 77/4< aOeIF(t)YtD’ (44

which represents not a “pure” cat state, but one whose A coherent field|«,), the “reference,” is added to the
phase is still convoluted with the mirror motion and to which pseudo-cat state, immediately before the measurement, so
we may refer as a “pseudo-cat” state. The latter, howeverthat the resulting field in the cavity at the time of measure-
has the advantage of being detected, since it does not impiyient is

any disentanglement. It is worth remarking that the dephas-

ing effect due to the factor exipfy;), which degrades the _ 1 ,

pure cat into a pseudo-cat state, is considerable only for Bf'e'd(t)=ND(ar)pf'e'dD_l(ar). (45
those values ofy; contained under the Gaussian state of the

mirror. Then the temperature can emphasize this negatiV\S?/hereD is the displacement operator andis a normaliza-
effect, since it introduces the highest mirror number state

. : : . , Yion constant.
i.e., Gaussians with larger width. On the other hand, in order ™ ¢ 1,0 injection of the reference field, the photon num-

to reduce this effect, it is also preferable to have the smalle%er distribution in the cavity becomes
possible values oF(t). These are accessible only at times
near to 27 [see Eq.7)]. Thus, in order to realize the mea-

surement, the choice of the mesurement tiraed the value P(n)={n[p™d(t)|n)= %/%j dy(yilprlye)

of k should be made to fulfill simultaneously the following

requirements: Eq(12), the highest value o€, ,,, and the x{|e ™4 n|apeF WYt + )

smallest value of-. Of course the detection should be per-

formed at time much shorter than the typical cavity lifetime +e' ™| — age'F Wi+ )2+ 0(y), (46)

y~1=2L/ctr, but also longer than the photon cavity fly time

2L/c, to ensure the presence of photons inside the cavity. whereO(y) indicates the perturbative terms proportional to
Let us now assume to have found the desireahd «, the first power ofy that we have omitted for space reasons.

then we revise the measurement strategy of & for the Let us now consider separately two cases. Whgrand

detection of quantum macroscopic coherence. a, have the same phase the photon distribution, denoted by
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Pin(n), as a consequence of the first term in EH), which P (n)
is the dominant one, should appear as the sum of two quasi- ot
Poissonian distributions peaked aroune:|ao+ ,|? and
n=|— ay+ a,|?, with the tails due to the smearing effect of
the Gaussian integral. In fact, in EG6), the interference
part will be negligible provideda,|>1. An interesting situ-

a)
ation arises whewy and «, have the same amplitude, then
n
11 |ag®™ 0 50
Pi(M=35 "1 dy(yi prlye)
X ([c" e lol’c+ 4 ¢ g laol’c- 4 2cM2en2g 2 agl?
XRe{—i(i)")+0O(y), (47) b)
where
n
C.=2*2cogF(t)y;]. (48 0 50
In that case, neglecting the perturbation terfig{(n) con-
sists of a very sharp distribution centerechatO, which is a
&like peak for a pure cat state, and a distribution peaked
aroundn=4|a,|?. The existence of two separate peaks in
the in-phase sum field is the proof of the existence of two
(Pm(n) n
0 S0
FIG. 5. The same as Fig. 4, but &, (n).
a)
n
¢} 50
pure cat
pseudo cat y=0 Ny =0
b) pseudo cat 10" N =0
pseudo cat “FlU’Z Ny, =2
— n
0 50 P(X)
1.5 fﬂi
i
0) L
n
0 50
X

4
FIG. 4. The distributiorP;,(n) vs the photon number is plotted

for a pseudo-cat state with=0.5, | ag|= \7, andt=0.84x 27 in FIG. 6. The marginal distributioPP(X) is plotted forx=0.5,
the case of (8 7y=0, Ny=0; (b) y=102, Ny=0; (0 |ag|=[7,t=0.84x 27 and the values of andNy, indicated in the
y=10"2, Nyp=2. figure. It is also compared with the distribution for a pure cat state.
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classical fields within the cavity. However, it does not prove In Fig. 4 we showPi,(n) for a pseudo-cat stat@) that
that these two fields are in a coherent quantum mechanicagésembles that for a pure cat state, contrasted with the same
superposition. So we need to consider also the case when the presence of damping at zero temperafimeand at

@ and &, are 7/2 out of phase, for which we have finite temperaturéc). Figure 5 illustrates the same situations
11 |ag® for Pyu(n). Both figures are obtained usirtg=0.84X2 7
Poul M= 155 f dy(yd prlye) and k=0.5 for which one ha$=0.48 andC; ,,=0.85 (at
' zero temperature, while it is reduced to 0.55 witgp=2).
X ([s" e~ laols+ 4 g g laols- 4 pgNI2gI2g—2|aol? The P,,(n) andP,,(n) distributions can actually be mea-
o sured detecting the momentum of the mirror, of course the
where nowX Re[—i(—=1)"D+0O(), (49 measurement process is destructive, hence the state has to be

reprepared for each measurement, and a large number of
measurements should be performed to reach the desired sta-
S.=2+2sifF(t)y,]. (50) tistics. Then, from these output distributions, one can recog-
nize a signature of quantum coherence as in Fig. 4 and Fig.
5, provided there is a small dissipation and a very low tem-
In this case the interference in the term in E46) becomes  perature, which is needed also to guarantee a sufficient signal
important, in factP,,{n), again neglecting the perturbation meter correlatior(Fig. 3.
terms, exhibits a Poisson envelope with strong oscillations, Finally, to effectively visualize the presence of interfer-

signaling the coherence effect. The above discussed dephag;.e fringes in the phase space, we would consider the mar-

ing effect in the pseudo-cat state tends to wash out the OSCi?’inal distribution for the pseudo-cat. This probability, ob-
lations and to transform the Poisson envelope into a Gaus dined  through the expectation  valudX|Tr.{po(t)

ian one. Of course in both casdm and ouj also the +p,(t)}]X) and using Eqs(44) and (33), will be

damping terms cause a degradation of the signal.

|
o= (pta)2

pc, 2|12 —|ag|?—2x2
PPUX)=|—| e lal™2" >

e p,q=0 plq'

Hp(V2X)Hq(V2X) 200?94

A 0
q,p 2
-ty Ap gl p.a(D]aol>=Agp

X (51

p+q, ~F(p-9)*(1+2)
2 X 8(1-2) '

where the superscript pc refers to the pseudo-cat state. It the movable mirrof29]. The above used values f«, and
clear from the last exponential factor how the thermaly (in the various figures could be reached, for example,
phonons of the mirror tend to rapidly destroy the coherencavith the following set of parametersw,~10° s71,
effect. om~10* s71, m~10"%* kg, L~1.5 m, t~107° and

In Fig. 6 we show the marginal distributid®$(X) of Eq.  T~10 K. Of course, other choices satisfying the above
(51) for various situations, using the above discussed valuegentioned criteria can be made that give the same qualitative
of parameters, i.et=0.84x 27, x=0.5. From this picture results. We are aware that a delicate point could be the real-
we may note that the interference pattern of the pseudo-céation of the mechanical oscillator with a very small mass,
state is almost the same as the pure one and is still preservB¥t We would remark that the mass parameter could also be
at the time of measurement, even in the presence of |O§Eterpreted as an effective value coming from the density of

provided to have a very small number of thermal excitationdn€ vibrational mOdeS of the mechanical QSC'""’[m]' Fur-
thermore, the discussed model could be improved by insert-

ing an active Kerr medium inside a cavity. This would en-
hance the nonlinear effects and slow down the decoherence.
Finally, even if we have not coupled the system under
VIl. CONCLUSION study with an external readout apparatus able to measure the
We have proposed the use of an optomechanical modd&nomentum of the moving mirror, we think that the presented

for the generation of optical Schiimger cat states. We have model represents an interesting alternative way to approach,

also presented a scheme to reveal the quantum macrosco;algo in the experimental sense, the quantum macroscopic co-

coherence, based on the pseudo-cat states that could be [fEréNce phenomena.
tended as a sort of cat state, which could be recognized be-
fore their “natural birth.” Thus the model is substantially
able to produce and also to detect interference effects with- This work has been partially supported by European
out introducing different couplings, but one should pay at-Community under the Human Capital and MobilitdCM)
tention to the different sources of dissipation. programme. One of ud/.1.M.) also gratefully acknowledges
We would also point out that the studied system could behe University of Camerino for the kind hospitality and the
implemented for example by using a piezoelectric crystal aginancial support of the Istituto Nazionale di Fisica Nucleare.

in the mechanical oscillator.
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