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Collective effects in the microlaser
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In a microlaser experiment performed by A&hal. with collaborator§Phys. Rev. Lett73, 3375(1994] an
atomic beam interacts with a microcavity field under such conditions that the average number of atoms in the
cavity is less than unity. However, due to the random statistics of atoms in the beam, the probability of two
atoms being in the cavity simultaneously in time is not negligible. This must lead to collective two-atom effects
that are not included in the standard microlaser model. We have developed a theory that incorporates such
collective effects. This theory allows a better understanding of the observed experimental results and predicts
some different features of the microlasg$1050-29477)02003-9

PACS numbg(s): 42.55-f, 42.50.Ct, 42.50.Dv

I. INTRODUCTION the authors have considered the case of the Poissonian
atomic injection and of an ideal cavity, i.e., neglected the

The micromaser and its optical counterpart, the microladamping of the field mode. Our approach is closer to that of
ser, belong to the simplest systems in quantum optics. BotRef.[7] where cavity loss was taken into account. However,
consist of just one atom interacting with a single mode of the¢he analysis of Ref.7] allows only for such two-atom events
quantized electromagnetic field. Neglecting all irreversiblefor which both atoms enter and leave the resonator simulta-
processes such as spontaneous emission of the atom Rgously. We shall consider a Poissonian beam of atoms.
damping of the field mode, Jaynes and Cummings hav&airs of atoms can then have partial overlaps of their so-
solved this problem exactljl]. A characteristic feature of journs in the cavity.
their solution is a periodic exchange of energy between the
atom and the field mode.

In the experimental realization of the micromaser or mi-
crolaser an atomic beam of excited two-level atoms is in-
jected into a microwave or optical cavity at such a low rate
that the mean number of atoms inside the cavity is less than As in the one-atom micromaser theory developed by Fili-
unity. Since the atoms are injected in their excited state, thegowicz, Javanainen, and Meystre in Rif], we consider a
are capable of supplying energy to the cavity mode and thuseam of excited two-level atoms injected into a single-mode
produce a gain. However, in contrast to the conservativeptical cavity. We assume that the velocity of the atoms in
Jaynes-Cummings model, in a real laser energy is dissipatadle beam is selected such that all atoms interact with the
due to cavity losses and atomic spontaneous emission. Thgwity mode for the same time, and that time is much
competition between gain and dissipation leads to an equihorter than the cavity decay timex1MWe can then neglect
librium photon number in the cavity. the mode damping during the flight of an atom through the

While the micromaser was realized experimentally morecavity and consider the atom-field interaction and the damp-
than ten years agf2], success in the optical domain was ing process separately.
reported only recently3]. In the experiment of Ref.3] the We also assume that the atoms are injected at so low a
mean number of atoms in the cavity was ranging from 0.1 tqate that the mean number of atoms in the cavity is smaller
1.0, resulting in a mean number of photons between 0.14 anghan unity. However, due to the random sequence of atoms
11. Standard micromaser theory is based on the assumptign the beam several atoms may be in the cavity simulta-
that at any time only one atom is present inside the cavityreously. We confine our discussion to two-atom effects.

[4]. Comparing that theory with their data the experimenters The master equation for the density mafsiof the cavity
found a discrepancy once the number of atoms was in excesgode to be derived will involve one- and two-atom genera-
of ~0.6. Intuitively one would expect that due to the randomtors u; andu,. To introduce these we consider the density
statistics of the atoms in the atomic beam the one-atomnatrix p(t+ ) at the moment+ r when an atom leaves the
model begins to break down when the mean number of atcavity without having met another one there. We can relate

oms approaches unity. For such injection rates one has tis density matrix to the one valid at the tirhat which the
take into account events with two, three, and more atomgtom entered the cavity,

inside the cavity. It was the desire to explain the discrepancy
between the experimen8] and the one-atom micromaser
theory that motivated us to take on the problem of including
collective atomic effects.

The guestion of the two-atom collective effects has beerthus defining the one-atom generatgr We take the incre-
addressed theoretically in several pagérs7|. In Refs.[5,6] mentp(t+ 7) — p(t) due to a single atom to be “small.”

Il. STATISTICS OF THE ATOMIC BEAM
AND MASTER EQUATION
FOR THE CAVITY MODE

p(t+7)=(1+uy)p(t), (2.)
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No. at *
©- atoms w(x)=J ds p(s)8(x—x(s))
0
, =re """ g(r—x)+ 6(x)(1—e 7). (2.6
21 This density is normalized a&dxw(x)=1.
X Next, we introduce a set of probabilities needed for the
) intended average over the atomic statistics. We first observe
Prod one spacing>7}=[7ds p(s)=e ""~1—e.
2.7
¢ bbrx bt t497x  time The productr =€ determines the mean number of atoms

inside the cavity. The smallness of that numbex1, is
almost constitutive of the microlaser and will be taken for
granted throughout what follows. Using E§.7) we proceed
to defining the probabilities

FIG. 1. Temporal structure of the two-atom event.

Similarly, we introduce a two-atom generatoj(x) for
the small increment of the field density matrix brought about \y )= prolf (n—m~—1) spacings> r,m spacings< 7}
by two atoms that have jointly interacted with the cavity
mode during an intervat, 0<x<r (see Fig. ], n—1

— m n-m-1
—( m )E (1—¢€) , (2.8
p(t+27—=x)=[1+uy(x)]p(t). (2.2
Clearly, the two-atom generatas(x) depends on the over- which are obviously binomial in character and normalized as
L) nfl _ .
lap interval x. For instance, in the limit of no overlap, >m-oWm(n)=1. Actually, we may neglect the/,(n) with
x=0, we would have m>1 since they scale a#/,(n)=e™. To within corrections
of second order ire the normalization reads
t+27)=(1+uy)%p(t)~(1+2uyp(t), (2.3
p( (1+ug)p(t)~( Dp(t) Wo(n) + Wy(n)~1. 2.9
where we have used the assumed smallness.dfrom Eq. ) )
(2.3 we observe that,(0)=2u,. In fact, it is the difference To_treat the case of a single overlap we shall need a slightly
betweenu,(x) and i, that manifests the presence of col- réfined tool,
lective two-atom effects. Another limiting case would be that
of full overlap, x= 7, for all pairs of atoms. We would then
have the ideal “two-atom microlaser” of Reff7]. +dx,0<x<r, all the other intervals>r}

For an atomic beam like the one in the experimenit3jf i _ \n-2
the arrivals of atoms in the cavity may be considered as the =(n=1)(1=e)"W(x) dx. (210
uncorrelated events of a Poissonian process. In particular, thﬁ’pon integrating the latter density over the overbapve
overlapx' is random. We_proceed to the appropriate statistivocover the probability for precisely two out of theatoms
ggleg;ir;sdldf?):atuznrsﬁoﬁzﬁ;ng the generatoysandu,(X) Un- 4 jgintly sojourn in the resonator for whatever fraction of

. L the passage time, [jdx wy(n,x)=W;(n).

Let us consider a time intervalt>r and denote by the N%W Ie? us evaligte sélp()araiely tlh(e )contributions to the
number of atoms that have entered the cavity at the moments, 4 density matrixp(t+At) from events whem atoms
t1,....t, during that interval. For a Poissonian process thenave passed through the cavity without overlap and, on the

probability density of the spacin_gs s.:t”l_t‘ ’ other hand, with one overlap of durati@nThe first of these
i=1,...n—1 between subsequent enterings is the exponen: b utions is obviously given by

tial

w4 (n,x)dx=ProH one interval betweernx and x

B(8)=re—. 530 24 po(t+ A =(1+uy) p(t)~(L+nuyp(t). (21D

. . . . The second one equals
with r the rate(in atoms/secof the atomic flux. We infer the q

probability densityw(x) of the overlapx of two atomic so- 1
journs in the cavity as follows. Let an atofsee Fig. 1 have p1(t+AD)= (n——l){[l+ Us(X)](1+uy)" 2
entered the cavity &t=0 and the next one at=s>0. As a
function of the spacing the overlapx(s) reads +(1+u)[1+uy(x)](1+u)" 3+ ..
r—s for O<s<r +(1+u)" I 1+uy(x)}p(t). (2.12
x(s)=10 for s>, (2.9

Here we have accounted for a1 possibilities to place
the selected pair of atoms with the overlap interwamong
whereupon the distributiow(x) of overlaps may be written the total ofn atoms. Again keeping only terms linear iR
as andu,(x) we can simplify as
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pr(t+At)=[14+(n—2)u;+uy(x)]p(t) (2.13 vation since we shall use the same technique and some re-
sults to construct the two-atom generatn(x) below.

and conclude that to first order im, andu, the position of Let us consider the interaction between a two-level atom

the selected pair inside the groupmfatoms is immaterial.  with the upper statéa) and the lower statéh) and a single
To find the resulting (t+ At) allowing for both possibili- mode of an optical cavity. The interaction Hamiltonian reads

ties of zero and one overlap, we add the contributions . : "

po(t+At) and p,(t+At), weighting them with the corre- H=—-ifg(a'o—as’). CHY

sponding probabilities, o .
P gp Here a and a' are annihilation and creation operators of

photons of the cavity mode. The operatass o', and
P(HAI):[ Wo(n) +Wy(n)+[nWo(n)+(n=2)Wy(N)Jus  ¢,=(1/2)(c"o— oo™) describe the atomic polarization and
inversion; they obey the angular momentum commutation
T relations [¢',0]=20,, [0,0,]=0. The atom-field cou-
+ f dx Wl(n,X)Uz(X)] p(t). (2.149  pling constant is normalized so as to have the dimension of
0 a frequency.

We shall use the photon-number representation for the
field mode inside the cavity. In this representation only two
states of the combined atom-plus-field system become
1+[n(1-2e€)+2€]uy coupled. These are the sta#n) with the atom in the upper

level and n photons in the cavity mode, and the state
T |b,n+ 1) with the atom in the lower level ang+ 1 photons
+(n— 1)TJ dx Uz(X)]P(t)- (219  in the resonator. The wave function of the atom-field system
0 can be represented as the sum

To first order ine this yields

p(t+At)=

Finally, we must acknowledge the numlreof atoms passed

during the time intervalt,t+ At] to be random. Since for a W (1)) = C.(lam+C b n+1
Poissonian beam that number is certainly independent of ) nzo[ an(Da m+Conea(Vlb, g
p(t) the average to be performed simply amounts to replac- 3.2

ing n by its meamn=rAt. Choosing the time intervalt so )

as to accommodate a large number of atons], we can  Schralinger’s equationW (t))=—(i/2)H|¥(t)) then takes

neglect the terms of order unity compared to the terms othe form of a system of equations for the coefficients

ordern and thus arrive at Can(t) andCy, 4 4(t). For simplicity, we assume resonance
between the atom and the field mode and work in the inter-

p(t+At)—p(t) action picture where one easily finds the solutions as

A P(O=App(),
Can(t+7)=Cy,(t)coggryn+1]
Ap=(1—26)ul+rf7dx U(X). (2.16 +Cpnra(t)simgryn+1],
0

Here we have introduced a “pumping” generatdr, de- Conra(t+7)=Coper(coggryn+i]
scribing the excitative action of the atomic beam on the field —C,n(t)singryn+1]. (3.3
mode.

As a last step towards the desired master equation we adthe reduced density matri(t) of the field mode thus reads
to the time rate of change of the density maift) a term  p(t)==, , ,C% C,m(t)|n){m|. Confining the discussions
accounting for the damping of the field mode due to leakag®f the present paper to the photon statistics we need to con-
of photons through the outcoupling mirror, sider only diagonal elements,(t)=(n|p(t)|n) of the field
density matrix[8]. After the interaction with a single atom

Agp(t)=(x/2)(nyy+1)(2apa’—a'ap—pa'a) the diagonal element,(t+ 7) is given by

+(kl2)ng(2a’pa—aa’p—paa’). (2.1
(w2)na(28 pa=adip=paa)). (217 Pult+ 1) =|Canlt+ D2+ [Con(t+ M2 (3.9
The cavity decay constant is here denoted«byhile ny, is

the thermal number of photons in the cavity mode. We have At the mom_entt when the atom In its upper stat_e)
thus arrived at our master equation enters the cavity, the density matr$(t) of the atom-field

system represents a tensor product of the field density matrix
(= (A + . . p(t) and the atom density matrpa)(a|. At that momentt
P(O=(Ap+ Ag)p(V) (218 e therefore have

ll. ONE- AND TWO-ATOM GENERATORS [Can(D)|?=pn(t), Cpa(t)=0, (3.5

A. One-atom generatoru, and thus obtain the following relation between the diagonal

The explicit form of the one-atom generatoy defined in  elements of the field density matrix before and after interac-
Eq. (2.1) can be found in Refl4]. We sketch here its deri- tion with a single atom,
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— i T _ T
ot )= S (St Us )P Ao Tthdlal o) ale o] G

At the momentt+ 7 the first atom leaves the cavity. For a

=[1=ani1]pa(t) +anpp-1(1), time spant—x the cavity mode then interacts with the sec-
) ond atom only according to the Hamiltoni&B.1) now with
an=sirf{gryn], B8  g=g,,0,=0,. The two-atom event ends when the second

atom leaves the cavity at the tinhe- 27—x.
Now four states of the atoms-plus-field system must be

reckoned with. These are the stfe n) with both atoms in
"the upper level andh photons in the cavity; the state
|ba,n+ 1) with the first atom in the lower level, the second
one in the upper level, and+ 1 photons in the cavity; the
state|ab,n+ 1) resulting from the former by exchanging the

We now proceed to the interaction of two atoms with thetwo atoms; and finally the statbéb,n+2) with both atoms
cavity mode. To distinguish the atoms we shall denote theleexcited and two photons delivered to the cavity mode. We
atomic polarization and inversion operatorsaas aiT, and  write the joint wave function as the superposition
o, with i=1,2. Let us imagine the first atom to enter the
cavity in its upper stat¢a) at the moment and to interact ©
alone with the cavity field until at the time+ 7—x the sec-  |W(t))= >, [Caan(t)|aa ny+Cupni1(t)|ab,n+1)
ond atom flies in(see Fig. 1L The interaction Hamiltonian n=0

where a, is the one-atom coherent gain. The relati@®)
defines the single-atom generator with respect to the di-
agonal elements of the density matrix in the Fock represe
tation, i.e., as a matriy .

B. Two-atom generator u,(x)

for the time interval[t,t+7—x] is given by Eq.(3.1) with +C t)ban+1)+C ) bb.n+2)1.
the substitutions= o1 ,0,= o,;. Once the second atom has ban+1(0[BANT1)+ Copnio(H)[0DN+2)]
entered the cavity in its upper std&), both atoms interact (3.9

with the cavity mode together during the overlap time
X, 0<x<r. For this interval the interaction Hamiltonian is The coefficientsC,,4(t) satisfy the Schrdinger equation

Caan 0 gyn+tl gyn+l O Caan
d| Capn+1 _ _g\/m 0 0 g\/m Cabn+1
dt| Coans1| —gvn+1 O 0 gyVn+2|| Coans1]|

Chbn+2 0 -—gJnt2-g/n+t2 0O Cobn+2

We first employ this for the interval fromh to t+7—x when only the first atom is present. Then only two coefficients,
Caan(t) andCy,, 5+ 1(t) are involved. Taking into account that at the titnenly the amplitudeC , z4(t) is nonzero,

|Caan(t)|2:pn(t)r Cabn(t) =Cpan(t) =Cppn(t) =0, (3.10

we can use the solutiof8.3) to find the coefficientsC ,z4(t+7—X). These serve as initial conditions for the subsequent
interaction of both atoms during the interfah- 7—Xx,t+ 7]. Solving the systent3.9) we find the coefficient€ ,z4(t+ 7) in
terms of theC ,gq(t+ 7—X),

(3.9

Caan(tt7)=[1— ansﬁ]caan(t+ T—X)+vV2€rCnSnChan+1(t+ 7—X),
Capnra(tt )= _Sﬁcab,n+l(t+ T—X) — V2€rCnSnCaan(t+ 7—X), (3.1
Chan+1(tt7)= Cr21cba,n+ 1(t+7=X) = V2€,C,SpCaan(t+ 7—X),

Cbb,n+2(t+ T)=2\en(1— En)sﬁcaan(t"' T—X)—V2(1— En)cnsncba,n+1(t+ T—X),

where we have introduced the shorthand When at the time + 7 the first atom leaves the cavity the
further evolution proceeds among the field and the second
ch=coggxyn+3/2], Sh=singxyn+3/2], atom only. We can then again employ the results of the pre-

vious subsection. Now two coupled pairs of coefficients are

to be treated, namelyC,,(t+ 7) with Cyp n41(t+7) and
(3.12 Cba,n_+1(t+ 7) with Cpp i o(t+ 7). Us_ing th_e single-gt(_)m

solution (3.3) for both cases we obtain the final coefficients

_ n+1
T on+3”
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Capg(t+27—x) after the second atom has left the cavity.to reduce to 2, for x=0. Indeed, forx=0 we have
Similarly to the one-atom case we find the diagonal elemeng = q,, i.e., R,=R,, while all three coefficients3,, vy,
pn(t+27—Xx) of the field density matrix by taking the trace and §, vanish.

over the atomic Hilbert space,

IV. MASTER EQUATION AND ITS STATIONARY
Pa(t+27—x)= X [Cupn(t+27—x)[% (3.13 SOLUTION
a,

=a,b

g Having worked out the single-atom and two-atom genera-
We omit the intermediate algebra and go directly to the finatorsu, ,u,(x) as matricesiy n,,U2nm(X) With respect to the
result. However, before we give the explicit expression forevolution of the diagonal elements of the density matrix in
the two-atom generatou,(x), we would like to write its the Fock representation for the field mode, it remains to in-
limiting case in which two atoms pass through the cavitysert these into the pumping generatby, defined in Eq.
with x=0, i.e., without overlap. The pertinent result is easily (2.16),
obtained from Eq(3.6) as

Pn(t+27) =R +[—aps 1Ryt apRy_1],  (3.14 Ap,nm:r[(l_ze)ul,nm+rf0dXUZ,nm(X) .4
where o .
Similarly, we extract from the damping generat@:.17) a
Ro=[1—an+1]Pnt+ @nPn_1- (3.15 matrix of transition rates\ 4 ,, [9],
Quite similar is the structure op,(t+27—x) with
x>0, " 2 AgamPm= k(N DL(N+1)Py 1= NPy]

+ KN NPp_1—(N+1 . 4.2
Po(t+27-3)= 3 [Synrt Uz 1PV “e(NPr-y =N+ Dpal- - (42
_ _ The master equation for the probabilitipg(t) can then be
=Qnt[—an+1Si+anSi-1], (3.1  written with the help of the following rates of single-step
downward and upward transitions and two-step upward tran-

where sitions (“up” and “down” the ladder of photon numbejs
Qn=Rn+[— BaPn+ Ba-1Pn-1]+[— ¥Pn+ ¥n_2Pn—2]: ratgn—n—1)=s; = k(ngp+1)n,
Sn=Rot [ BoPrt Br-1Pn-1] ratgn—n+1)=s} =r(ay 1+ €v,) + kNp(N+1),
—[(yat80)Pnt+ (¥n-1tn-1)Pn-1], (3.17) (4.3
R (1~ lon T . ratein—n+2)=t; =rew,

In Egs.(3.16 and (3.17 we have introduced a single-atom With~ v, and w, composed of the rate constants
gain coefficienta,, pertaining to the interaction time—x an,an(X),Bh(X), vn(X),5,(X) introduced above as
just asa, as given in Eq.3.6) pertains to the interaction
time 7, 1 - - -
vn==| dX[(an+1tBr)(l-ani1—ani2)

~ ) TJo
an=sirf[g(r—x)Vn]. (3.18
. . . —apr(l-ap1—angp)
The coefficientss,,, v,, andé, in Eq. (3.17) are defined as _ _

- _ 5 o —(Ynt ) (ans1—ansa)],

Bn(X)=4e€nCisp(1l—any1) —2CSpny1,

1(~ — _ _
Yn(X)=26n0ﬁsﬁ(1—'&n+l)+sﬁ’&n+l, (3.19 Wn:;fodx[7n+a’n+2an+l_a’n+2an+l+ﬂnan+2
Sn(X)=4€n(1—€)Sp(1— @i 1) +2(1— €,)C2820 01, —(Yn+ Sn) @2l (4.9

with c,,s,, ande, from Eq.(3.12. We have indicated the Clearly, the loss of photons through the outcoupling mirror
dependence on the overlaphere by writing 8,(x), etc.;  entails single-step downward transitions as wellatsfinite
however, in order not to overburden the notation we shaltemperatures such that;>0) single-step upward transi-
mostly waive such decoration below. tions. On the other hand, only upward transitions can be
We have thus defined, in Eg&.16), (3.17), and(3.19), enforced by the atoms since these enter, by our assumption,
the two-atom evolution operatortlu,(x) with respect to the the cavity in their upper state and can thus deposit but not
diagonal elements of the field density matrix, i.e., as a matrippick up photons. Single-atom passes can only increase the
Snmt Uznm(X). It may be worth noting that the expression photon number by one while two-atom events with overlaps
(3.1 for p,(t+27—x) readily reveals the generatap(x) may leave behind either one or two added photons. In con-
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templating the rates the reader will appreciate that all term&inued fraction,

due to two-atom effects are proportional to the small param-
etere=rr. Fp=n+ boy |Gp-1+ bp_2|Gno+---+ Mal
In terms of these transition rates the master equation
(2.18 reads + bo/ 70, (4.12
] where _| demands division by everything that follows. The
Pn=Sn+1Pn+1—(Sn TS, +t )PntSy_1Pn-1+ta_2Pn-2. stationary probability,, is obtained from the, as the prod-
(4.5) uct
. -1
The time rate of changp, occurring here can be repre- —_—nl—[ 41
sented in terms of two probability currents, p”_pok:0 M (413
Jn=8,Pn—Sn-1Pn-1, wherep, is determined by normalizings_,p,=1. Using
this stationary probability distribution of the photon number
in=—tm_oPn_2, (4.6 in the cavity we can calculate the mean photon number and
its fluctuations.
as
q V. MEAN PHOTON NUMBER AND PHOTON STATISTICS
giPr=Ins1"Intinea"ln. (4.7) In the one-atom theory of the micromageee Ref[4]),

the photon statistics are determined by three physical param-
eters. These ar€) the average number of atoms passed
ethrough the cavity during the lifetime of the field,
Ney=r/k; (i) the dimensionless pump parameter,
6=N%gr; and (i) the mean number of thermal photons

second currerit, has its origin entirely in the two-atom col- INSide the cavityn,. In addition to these we here incur a
fourth parametere=rr, which gives the mean number of

lective effects. In the absence of pair effects the currgnt side th .
does not arise. The stationary regime is then governed b§loms Inside the cavity. - :
— . . Using the stationary distribution functigm, found in the
in=0, i.e., detailed balance of upward and downward tran-___~: . . . :

n o previous section we have numerically investigated the mean
sitions,n—n—1. The two-step transitions brought about by hoton numbetn)
pair effects destroy detailed balance since they allow probP '
ability to flow in loopsn—n—1—n—2—n [10]. o

To find the stationary probabilitiep, we first formally ()=, Kpx, (5.1)

treati,.,—i, as an inhomogeneity in Eq4.7) and solve k=0
recursively to getj,=—i,—in.1 for n>2 after jo=0,
j1=—l», o= —i3. Upon substituting the definitiond.6) in
that formal solution we arrive at a three-step recursion rela-
tion for thep,, o=

As seen from Eq(4.3), the first curreng,, stems chiefly from
the coherent interaction of the field with one atom and th
incoherent decay of the field mode, apart from a small two
atom correction irs, proportional toev,. Conversely, the

and its normalized standard deviation
{(n—(n))?
(n)

for different values of the four parameters mentioned above.
We can even further simplify to a two-step recursion relation  Figureé 2 compares the normalized mean number of pho-

12
, (5.2

SEHEH:(SrTHrT)EHrilﬁfl- (4.8

by introducing the ratio tons(n)/Ney as a function of the dimensionless pump param-
eter # without and with collective effects. Both curves have
F'=Pns1/Pn- (4.9  common features such as the threshold valeel, when a
finite mean photon number emerges, and the abrupt jumps,
Indeed, by dividing both sides of E.8) by p,, we get which for Ngy,—o are customarily associated with phase
transitions. Two-atom collective effects shift these transi-
b1 tions towards smaller values @f. For large values of the
r,=a,+ L (410  pump parameter the jumps become less pronounced and the

normalized mean photon number)/N, approaches a con-

with the coefficients stant value. That limiting value is increased by two-atom

effects.
Sttt . Apparently the influencg of two-atom collective effects on
a,= n_n b= n_ (4.11) the mean photon number is opposite to the role of the two-
Sni1 Sni2 photon absorption studied by Ellinger and Ritsch in Ref.

[11]. There it was found that the nonlinear absorption delays
The ratiosr , are obtained recursively. First, puttimg=0 in  the “phase transitions” to higher pump parameters. Also the
Eq. (4.8 and requiring thap_,=0 we getro=a,. Then, mean photon number for highwas found to be smaller with
starting withr,=a; +b,/r, we obtainr, as then-fold con-  nonlinear absorber than without.
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3 FIG. 2. Stationary mean photon number
JE: {n)/Ng, inside the cavity vs the pump parameter
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= fects; Ng,=200, ny,=0.1, ande=0.4.
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In Fig. 3 we have drawn the normalized standard deviaone-atom curve then shows a specific fine structure with nar-
tion o as a function of the dimensionless pump parameterow deep resonances at certain valueg @hese resonances
0 without and with collective effects. We recall that the are not properly resolved on Fig).4This fine structure is
value o=1 corresponds to Poissonian statistics of photonsassociated with the so-called trapping states. They were ini-
Both without and with collective effects we see sharp supertially predicted in Ref[12] for a lossless micromaser, i.e.,
Poissonian peaks at the values @fcorresponding to the one with ideal mirrors. Later it was understold®] that the
jumps of the mean photon number shown in Fig. 2. Forsignature of these states persists even when dissipation
pump parameters between these peaks the variarteéses  through the outcoupling mirror is included, provided one
on values less than unity and thus signals sub-Poissoniasticks to very low temperatures.
statistics. However, the values efbetween the peaks onthe  For the lossless micromaser the trapping states are the
curve with collective effects are higher then those on thé~ock statesng) of the cavity field with such number of
one-atom curve. We conclude, therefore, that collective efphotonsn, that an atom entering the cavity in its excited
fects increase the photon fluctuations in sub-Poissonian restate undergoeg full Rabi cycles before leaving the cavity
gions. Again, this is contrary to the case of the two-photonin the excited state,
absorption, which was founld 1] to decreaser.

As in Fig. 2, Fig. 4 compares the normalized mean photon KkT\Ng+ 1= mq. (5.3
number without and with collective effects, but now for zero
temperature of the external reservoir, i.e., fgg=0. The Inthe absence of dissipation and when the atoms are injected

4.0
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3071

257}

FIG. 3. Normalized standard deviatian of
the photon number inside the cavity vs the pump
parameterd without (dot9 and with (solid) col-
lective effects)Ng,=200, ny,=0.1, ande=0.4.
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107+

FIG. 4. Stationary mean photon number
{n)/Ng, inside the cavity vs the pump parameter
6 without (dotg and with (solid) collective ef-
fects for zero temperatur&l,=50 ande=0.4.

mean number of photons

o 1 2 3 4 5 6 7 8 9 10
pump parameter 6/7

in their upper state the stationary state of the micromasefor fixed Ng, this gives the resonance conditions for the
field inside the cavity is a mixture of trapping states. Whenpump parameteé for different values oh, andqg. Now we

the dissipation is allowed with finitey, the probabilityp,  can easily understand why with two-atom effects there is no
flows between these trapping states according to(E®  signature of the trapping states in #f@) curve(solid line in

and the signature of trapping states rapidly becomes washetlg. 4). With two atoms in the cavity at the same time there
out. However, fomy,= 0 the probability can flow only down- is a possibility of both one-photon and two-photon transi-
ward [see Eq(4.3)]. Therefore, dissipation at zero tempera- tions. The Rabi frequencies of these transitions are different.
ture does not allow the probability distribution to grow pastTo see the remnants of trapping states with collective effects
the trapping statfng). If condition (5.3) is fulfilled for some  one would have to satisfy two conditions: E&.4) and an
photon numbek then the probability distributiop,=0 for  analogous condition for the two-photon transition. It is easy

n>k. to see that these two conditions cannot be satisfied simulta-
The condition(5.3) written in terms of parametefé,,and  neously. Therefore, the signature of trapping states disap-
0 reads[13] pears in the curvé( ) with collective effects.

To compare the prediction of our theory with the results
of the experimen{3] we have drawn in Fig. 5 the mean
photon numbern) as a function of the mean number of
atoms(N) inside the cavity without and with collective ef-

Ney Ng+1

02 = q2772 . (54)

10 | (a)-without collective effects, (b)-with collective effects

(c)-with total overlaps

FIG. 5. Mean photon numbem) vs mean
number of atomgN) inside the cavity without
(a) and with (b) collective effects. The dotted
curve(c) results in admitting only complete over-
laps of pairs of atoms. All parameters are taken
from experiment3], i.e., g7=0.52, k7=0.28,
andny,=0.

mean number of photons

mean number of atoms
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fects. The mean number of atoms in the cavity for the Pois- It is important to recall that our pumping generatog in

sonian atomic flux is given by Eqg.(2.16 was constructed in the lim{fN)<1 and can there-
fore not be trusted foe~(N)=r 7 as large as 0.6 or even
(N)=rr. (5.9 beyond. Amusingly, however, the final results as portrayed

in Fig. 5 do not become manifestly nonsensical if extrapo-
fated to (N)~1; rather, they maintain a reasonable trend
from the single-atom theory towards the experimental points.

feature of the experimental findin§i8] was a rapid increase : o . .

) A . To obtain quantitative agreement of theory with experiment

in (n) at about(N)~0.6, a behavior not predicted by the : :
we would, of course, have to account for higher orders in

one-atom theory. Fo{N) approaching unity the value of as well as for larger clusters of atoms in the resonator.

ﬁ:gr:l ;Sagog:]eddit:c;etcjlebsp'zﬁgoégre]?;fgn1t?1égrt§/0m three times In Ref.[14] it was argued that the standing-wave structure
In order to underscore the importance of the statistics of fhthe r?eld inside thbe ca;nt);] may ptl)ay an |m|portanthrole

overlaps we have included a third curi@otted in Fig. 5.  '/nch (e mean number of p otofts) becomes larger than

That curve was obtained by accounting only for Completeumty. Possibly, a further improved agreement of theory and

overlaps of pairs of atoms, i.e., by replacing the Poissoniarﬁaxperlment can be reached by accounting for such spatial

- : . . inhomogeneities together with the collective two-atom ef-
overlap probability(2.6) with w(x) = §(x— 7) while keeping . ) o
the PoissoniaWg(n), W,(n) given in Eq.(2.8). Such an fects discussed here. A recent analysis of normal mode split

. . . ting in standing-wave optical cavitigd5] further supports
{ahpepzjoaailfzf\;\éﬁsadvocated[ﬁ‘l], it considerably overestimates our belief that collective effects become even more impor-

Our curves in Fig. 5 suggest the following further conclu—tant. \_/vhen the coupling of the atom with the cavity mode is
Lo . . position dependent.
sions: (i) two-atom collective effects tend to increase the

mean number of photons with respect to the prediction of the
one-atom theory for all values @N); (ii) the slope of the

The values of all other physical parameters in play, namely
g,k, and 7, were taken from the experimef&]. The main
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