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Collective effects in the microlaser

Mikhail I. Kolobov1,2 and Fritz Haake1
1Fachbereich Physik, Universita¨t-GH Essen, D-45117 Essen, Germany

2Physics Institute, St. Petersburg University, 198904 Petrodvorets, St. Petersburg, Russia
~Received 2 August 1996!

In a microlaser experiment performed by Anet al.with collaborators@Phys. Rev. Lett.73, 3375~1994!# an
atomic beam interacts with a microcavity field under such conditions that the average number of atoms in the
cavity is less than unity. However, due to the random statistics of atoms in the beam, the probability of two
atoms being in the cavity simultaneously in time is not negligible. This must lead to collective two-atom effects
that are not included in the standard microlaser model. We have developed a theory that incorporates such
collective effects. This theory allows a better understanding of the observed experimental results and predicts
some different features of the microlaser.@S1050-2947~97!02003-9#

PACS number~s!: 42.55.2f, 42.50.Ct, 42.50.Dv
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I. INTRODUCTION

The micromaser and its optical counterpart, the micro
ser, belong to the simplest systems in quantum optics. B
consist of just one atom interacting with a single mode of
quantized electromagnetic field. Neglecting all irreversi
processes such as spontaneous emission of the ato
damping of the field mode, Jaynes and Cummings h
solved this problem exactly@1#. A characteristic feature o
their solution is a periodic exchange of energy between
atom and the field mode.

In the experimental realization of the micromaser or m
crolaser an atomic beam of excited two-level atoms is
jected into a microwave or optical cavity at such a low ra
that the mean number of atoms inside the cavity is less t
unity. Since the atoms are injected in their excited state, t
are capable of supplying energy to the cavity mode and t
produce a gain. However, in contrast to the conserva
Jaynes-Cummings model, in a real laser energy is dissip
due to cavity losses and atomic spontaneous emission.
competition between gain and dissipation leads to an e
librium photon number in the cavity.

While the micromaser was realized experimentally m
than ten years ago@2#, success in the optical domain wa
reported only recently@3#. In the experiment of Ref.@3# the
mean number of atoms in the cavity was ranging from 0.1
1.0, resulting in a mean number of photons between 0.14
11. Standard micromaser theory is based on the assum
that at any time only one atom is present inside the ca
@4#. Comparing that theory with their data the experiment
found a discrepancy once the number of atoms was in ex
of ;0.6. Intuitively one would expect that due to the rando
statistics of the atoms in the atomic beam the one-a
model begins to break down when the mean number of
oms approaches unity. For such injection rates one ha
take into account events with two, three, and more ato
inside the cavity. It was the desire to explain the discrepa
between the experiment@3# and the one-atom micromase
theory that motivated us to take on the problem of includ
collective atomic effects.

The question of the two-atom collective effects has be
addressed theoretically in several papers@5–7#. In Refs.@5,6#
551050-2947/97/55~4!/3033~9!/$10.00
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the authors have considered the case of the Poisso
atomic injection and of an ideal cavity, i.e., neglected t
damping of the field mode. Our approach is closer to tha
Ref. @7# where cavity loss was taken into account. Howev
the analysis of Ref.@7# allows only for such two-atom event
for which both atoms enter and leave the resonator simu
neously. We shall consider a Poissonian beam of ato
Pairs of atoms can then have partial overlaps of their
journs in the cavity.

II. STATISTICS OF THE ATOMIC BEAM
AND MASTER EQUATION
FOR THE CAVITY MODE

As in the one-atom micromaser theory developed by F
powicz, Javanainen, and Meystre in Ref.@4#, we consider a
beam of excited two-level atoms injected into a single-mo
optical cavity. We assume that the velocity of the atoms
the beam is selected such that all atoms interact with
cavity mode for the same timet, and that time is much
shorter than the cavity decay time 1/k. We can then neglec
the mode damping during the flight of an atom through
cavity and consider the atom-field interaction and the dam
ing process separately.

We also assume that the atoms are injected at so lo
rate that the mean number of atoms in the cavity is sma
than unity. However, due to the random sequence of ato
in the beam several atoms may be in the cavity simu
neously. We confine our discussion to two-atom effects.

The master equation for the density matrixr of the cavity
mode to be derived will involve one- and two-atom gene
tors u1 andu2. To introduce these we consider the dens
matrix r(t1t) at the momentt1t when an atom leaves th
cavity without having met another one there. We can rel
this density matrix to the one valid at the timet at which the
atom entered the cavity,

r~ t1t!5~11u1!r~ t !, ~2.1!

thus defining the one-atom generatoru1. We take the incre-
mentr(t1t)2r(t) due to a single atom to be ‘‘small.’’
3033 © 1997 The American Physical Society
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Similarly, we introduce a two-atom generatoru2(x) for
the small increment of the field density matrix brought ab
by two atoms that have jointly interacted with the cav
mode during an intervalx, 0,x,t ~see Fig. 1!,

r~ t12t2x!5@11u2~x!#r~ t !. ~2.2!

Clearly, the two-atom generatoru2(x) depends on the over
lap interval x. For instance, in the limit of no overlap
x50, we would have

r~ t12t!5~11u1!
2r~ t !'~112u1!r~ t !, ~2.3!

where we have used the assumed smallness ofu1. From Eq.
~2.3! we observe thatu2(0)52u1. In fact, it is the difference
betweenu2(x) and 2u1 that manifests the presence of co
lective two-atom effects. Another limiting case would be th
of full overlap,x5t, for all pairs of atoms. We would the
have the ideal ‘‘two-atom microlaser’’ of Ref.@7#.

For an atomic beam like the one in the experiment of@3#
the arrivals of atoms in the cavity may be considered as
uncorrelated events of a Poissonian process. In particular
overlapx is random. We proceed to the appropriate stati
cal considerations, keeping the generatorsu1 andu2(x) un-
specified for the moment.

Let us consider a time intervalDt@t and denote byn the
number of atoms that have entered the cavity at the mom
t1 , . . . ,tn during that interval. For a Poissonian process
probability density of the spacings s5t i112t i ,
i51, . . . ,n21 between subsequent enterings is the expon
tial

p~s!5re2rs, s.0, ~2.4!

with r the rate~in atoms/sec! of the atomic flux. We infer the
probability densityw(x) of the overlapx of two atomic so-
journs in the cavity as follows. Let an atom~see Fig. 1! have
entered the cavity att50 and the next one att5s.0. As a
function of the spacings the overlapx(s) reads

x~s!5H t2s for 0<s<t

0 for s.t, ~2.5!

whereupon the distributionw(x) of overlaps may be written
as

FIG. 1. Temporal structure of the two-atom event.
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ds p~s!d„x2x~s!…

5re2r ~t2x!u~t2x!1d~x!~12e2r t!. ~2.6!

This density is normalized as*0
`dxw(x)51.

Next, we introduce a set of probabilities needed for t
intended average over the atomic statistics. We first obse

Prob$ one spacing.t%5*t
`ds p~s!5e2r t'12e.

~2.7!

The productr t[e determines the mean number of atom
inside the cavity. The smallness of that number,e!1, is
almost constitutive of the microlaser and will be taken f
granted throughout what follows. Using Eq.~2.7! we proceed
to defining the probabilities

Wm~n!5Prob$ ~n2m21! spacings.t,m spacings,t%

5S n21
m D em~12e!n2m21, ~2.8!

which are obviously binomial in character and normalized
(m50
n21Wm(n)51. Actually, we may neglect theWm(n) with

m.1 since they scale asWm(n)}em. To within corrections
of second order ine the normalization reads

W0~n!1W1~n!'1. ~2.9!

To treat the case of a single overlap we shall need a slig
refined tool,

w1~n,x!dx5Prob$ one interval betweenx and x

1dx,0,x,t, all the other intervals.t %

5~n21!~12e!n22w~x! dx. ~2.10!

Upon integrating the latter density over the overlapx we
recover the probability for precisely two out of then atoms
to jointly sojourn in the resonator for whatever fraction
the passage timet, *0

tdx w1(n,x)5W1(n).
Now let us evaluate separately the contributions to

field density matrixr(t1Dt) from events whenn atoms
have passed through the cavity without overlap and, on
other hand, with one overlap of durationx. The first of these
contributions is obviously given by

r0~ t1Dt !5~11u1!
nr~ t !'~11nu1!r~ t !. ~2.11!

The second one equals

r1~ t1Dt !5
1

~n21!
$@11u2~x!#~11u1!

n22

1~11u1!@11u2~x!#~11u1!
n231•••

1~11u1!
n22@11u2~x!#%r~ t !. ~2.12!

Here we have accounted for alln21 possibilities to place
the selected pair of atoms with the overlap intervalx among
the total ofn atoms. Again keeping only terms linear inu1
andu2(x) we can simplify as
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55 3035COLLECTIVE EFFECTS IN THE MICROLASER
r1~ t1Dt !'@11~n22!u11u2~x!#r~ t ! ~2.13!

and conclude that to first order inu1 andu2 the position of
the selected pair inside the group ofn atoms is immaterial.

To find the resultingr(t1Dt) allowing for both possibili-
ties of zero and one overlap, we add the contributio
r0(t1Dt) and r1(t1Dt), weighting them with the corre
sponding probabilities,

r~ t1Dt !5H W0~n!1W1~n!1@nW0~n!1~n22!W1~n!#u1

1E
0

t

dx w1~n,x!u2~x!J r~ t !. ~2.14!

To first order ine this yields

r~ t1Dt !5H 11@n~122e!12e#u1

1~n21!r E
0

t

dx u2~x!J r~ t !. ~2.15!

Finally, we must acknowledge the numbern of atoms passed
during the time interval@ t,t1Dt# to be random. Since for a
Poissonian beam that number is certainly independen
r(t) the average to be performed simply amounts to rep
ing n by its meann̄5rDt. Choosing the time intervalDt so
as to accommodate a large number of atoms,n̄@1, we can
neglect the terms of order unity compared to the terms
order n̄ and thus arrive at

r~ t1Dt !2r~ t !

Dt
→ ṙ~ t !5Lpr~ t !,

Lp5~122e!u11r E
0

t

dx u2~x!. ~2.16!

Here we have introduced a ‘‘pumping’’ generatorLp de-
scribing the excitative action of the atomic beam on the fi
mode.

As a last step towards the desired master equation we
to the time rate of change of the density matrixr(t) a term
accounting for the damping of the field mode due to leak
of photons through the outcoupling mirror,

Ldr~ t !5~k/2!~nth11!~2ara†2a†ar2ra†a!

1~k/2!nth~2a
†ra2aa†r2raa†!. ~2.17!

The cavity decay constant is here denoted byk while nth is
the thermal number of photons in the cavity mode. We h
thus arrived at our master equation

ṙ~ t !5~Lp1Ld!r~ t !. ~2.18!

III. ONE- AND TWO-ATOM GENERATORS

A. One-atom generatoru1

The explicit form of the one-atom generatoru1 defined in
Eq. ~2.1! can be found in Ref.@4#. We sketch here its deri
s

of
c-

f

d

dd

e

e

vation since we shall use the same technique and some
sults to construct the two-atom generatoru2(x) below.

Let us consider the interaction between a two-level at
with the upper stateua& and the lower stateub& and a single
mode of an optical cavity. The interaction Hamiltonian rea

H52 i\g~a†s2as†!. ~3.1!

Here a and a† are annihilation and creation operators
photons of the cavity mode. The operatorss, s†, and
sz5(1/2)(s†s2ss†) describe the atomic polarization an
inversion; they obey the angular momentum commutat
relations @s†,s#52sz , @s,sz#5s. The atom-field cou-
pling constantg is normalized so as to have the dimension
a frequency.

We shall use the photon-number representation for
field mode inside the cavity. In this representation only tw
states of the combined atom-plus-field system beco
coupled. These are the stateuan& with the atom in the upper
level and n photons in the cavity mode, and the sta
ub,n11& with the atom in the lower level andn11 photons
in the resonator. The wave function of the atom-field syst
can be represented as the sum

uC~ t !&5 (
n50

`

@Can~ t !ua n&1Cb,n11~ t !ub, n11&#.

~3.2!

Schrödinger’s equationuĊ(t)&52( i /\)HuC(t)& then takes
the form of a system of equations for the coefficien
Can(t) andCb,n11(t). For simplicity, we assume resonanc
between the atom and the field mode and work in the in
action picture where one easily finds the solutions as

Can~ t1t!5Can~ t !cos@gtAn11#

1Cb,n11~ t !sin@gtAn11#,

Cb,n11~ t1t!5Cb,n11~ t !cos@gtAn11#

2Can~ t !sin@gtAn11#. ~3.3!

The reduced density matrixr(t) of the field mode thus read
r(t)5(a,m,nCan* Cam(t)un&^mu. Confining the discussions
of the present paper to the photon statistics we need to
sider only diagonal elementspn(t)[^nur(t)un& of the field
density matrix@8#. After the interaction with a single atom
the diagonal elementpn(t1t) is given by

pn~ t1t!5uCan~ t1t!u21uCbn~ t1t!u2. ~3.4!

At the momentt when the atom in its upper stateua&
enters the cavity, the density matrixS(t) of the atom-field
system represents a tensor product of the field density ma
r(t) and the atom density matrixua&^au. At that momentt
we therefore have

uCan~ t !u25pn~ t !, Cbn~ t !50, ~3.5!

and thus obtain the following relation between the diago
elements of the field density matrix before and after inter
tion with a single atom,
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pn~ t1t!5(
m

~dnm1u1,nm!pm~ t !

5@12an11#pn~ t !1anpn21~ t !,

an5sin2@gtAn#, ~3.6!

wherean is the one-atom coherent gain. The relation~3.6!
defines the single-atom generatoru1 with respect to the di-
agonal elements of the density matrix in the Fock repres
tation, i.e., as a matrixu1,nm .

B. Two-atom generatoru2„x…

We now proceed to the interaction of two atoms with t
cavity mode. To distinguish the atoms we shall denote
atomic polarization and inversion operators ass i , s i

† , and
szi with i51,2. Let us imagine the first atom to enter t
cavity in its upper stateua& at the momentt and to interact
alone with the cavity field until at the timet1t2x the sec-
ond atom flies in~see Fig. 1!. The interaction Hamiltonian
for the time interval@ t,t1t2x# is given by Eq.~3.1! with
the substitutions5s1 ,sz5sz1. Once the second atom ha
entered the cavity in its upper stateua&, both atoms interac
with the cavity mode together during the overlap tim
x, 0,x,t. For this interval the interaction Hamiltonian i
n-

e

H52 i\g@a†~s11s2!2a~s11s2!
†#. ~3.7!

At the momentt1t the first atom leaves the cavity. For
time spant2x the cavity mode then interacts with the se
ond atom only according to the Hamiltonian~3.1! now with
s5s2 ,sz5sz2. The two-atom event ends when the seco
atom leaves the cavity at the timet12t2x.

Now four states of the atoms-plus-field system must
reckoned with. These are the stateuaa n& with both atoms in
the upper level andn photons in the cavity; the stat
uba,n11& with the first atom in the lower level, the secon
one in the upper level, andn11 photons in the cavity; the
stateuab,n11& resulting from the former by exchanging th
two atoms; and finally the stateubb,n12& with both atoms
deexcited and two photons delivered to the cavity mode.
write the joint wave function as the superposition

uC~ t !&5 (
n50

`

@Caan~ t !uaa n&1Cab,n11~ t !uab,n11&

1Cba,n11~ t !uba,n11&1Cbb,n12~ t !ubb,n12&#.

~3.8!

The coefficientsCabq(t) satisfy the Schro¨dinger equation
ts,

ent
d

dt F Caan

Cab,n11

Cba,n11

Cbb,n12

G5F 0

2gAn11

2gAn11

0

gAn11

0

0

2gAn12

gAn11

0

0

2gAn12

0

gAn12

gAn12

0

GF Caan

Cab,n11

Cba,n11

Cbb,n12

G . ~3.9!

We first employ this for the interval fromt to t1t2x when only the first atom is present. Then only two coefficien
Caan(t) andCba,n11(t) are involved. Taking into account that at the timet only the amplitudeCabq(t) is nonzero,

uCaan~ t !u25pn~ t !, Cabn~ t !5Cban~ t !5Cbbn~ t !50, ~3.10!

we can use the solution~3.3! to find the coefficientsCabq(t1t2x). These serve as initial conditions for the subsequ
interaction of both atoms during the interval@ t1t2x,t1t#. Solving the system~3.9! we find the coefficientsCabq(t1t) in
terms of theCabq(t1t2x),

Caan~ t1t!5@122ensn
2#Caan~ t1t2x!1A2encnsnCba,n11~ t1t2x!,

Cab,n11~ t1t!52sn
2Cab,n11~ t1t2x!2A2encnsnCaan~ t1t2x!, ~3.11!

Cba,n11~ t1t!5cn
2Cba,n11~ t1t2x!2A2encnsnCaan~ t1t2x!,

Cbb,n12~ t1t!52Aen~12en!sn
2Caan~ t1t2x!2A2~12en!cnsnCba,n11~ t1t2x!,
e
ond
re-
are

ts
where we have introduced the shorthand

cn5cos@gxAn13/2#, sn5sin@gxAn13/2#,

en5
n11

2n13
. ~3.12!
When at the timet1t the first atom leaves the cavity th
further evolution proceeds among the field and the sec
atom only. We can then again employ the results of the p
vious subsection. Now two coupled pairs of coefficients
to be treated, namely,Caan(t1t) with Cab,n11(t1t) and
Cba,n11(t1t) with Cbb,n12(t1t). Using the single-atom
solution ~3.3! for both cases we obtain the final coefficien
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Cabq(t12t2x) after the second atom has left the cavi
Similarly to the one-atom case we find the diagonal elem
pn(t12t2x) of the field density matrix by taking the trac
over the atomic Hilbert space,

pn~ t12t2x!5 (
a,b5a,b

uCabn~ t12t2x!u2. ~3.13!

We omit the intermediate algebra and go directly to the fi
result. However, before we give the explicit expression
the two-atom generatoru2(x), we would like to write its
limiting case in which two atoms pass through the cav
with x50, i.e., without overlap. The pertinent result is eas
obtained from Eq.~3.6! as

pn~ t12t!5Rn1@2an11Rn1anRn21#, ~3.14!

where

Rn5@12an11#pn1anpn21 . ~3.15!

Quite similar is the structure ofpn(t12t2x) with
x.0,

pn~ t12t2x!5(
m

@dnm1u2,nm~x!#pm~ t !

5Qn1@2ãn11Sn1ãnSn21#, ~3.16!

where

Qn5R̃n1@2bnpn1bn21pn21#1@2gnpn1gn22pn22#,

Sn5R̃n1@2bnpn1bn21pn21#

2@~gn1dn!pn1~gn211dn21!pn21#, ~3.17!

R̃n5@12ãn11#pn1ãnpn21 .

In Eqs. ~3.16! and ~3.17! we have introduced a single-ato
gain coefficientãn pertaining to the interaction timet2x
just asan as given in Eq.~3.6! pertains to the interaction
time t,

ãn5sin2@g~t2x!An#. ~3.18!

The coefficientsbn ,gn , anddn in Eq. ~3.17! are defined as

bn~x!54encn
2sn

2~12ãn11!22cn
2sn

2ãn11 ,

gn~x!52encn
2sn

2~12ãn11!1sn
4ãn11 , ~3.19!

dn~x!54en~12en!sn
4~12ãn11!12~12en!cn

2sn
2ãn11 ,

with cn ,sn , anden from Eq. ~3.12!. We have indicated the
dependence on the overlapx here by writingbn(x), etc.;
however, in order not to overburden the notation we sh
mostly waive such decoration below.

We have thus defined, in Eqs.~3.16!, ~3.17!, and ~3.19!,
the two-atom evolution operator 11u2(x) with respect to the
diagonal elements of the field density matrix, i.e., as a ma
dnm1u2,nm(x). It may be worth noting that the expressio
~3.16! for pn(t12t2x) readily reveals the generatoru2(x)
.
nt

l
r

ll

ix

to reduce to 2u1 for x50. Indeed, for x50 we have
ãn5an , i.e., R̃n5Rn , while all three coefficientsbn ,gn ,
anddn vanish.

IV. MASTER EQUATION AND ITS STATIONARY
SOLUTION

Having worked out the single-atom and two-atom gene
torsu1 ,u2(x) as matricesu1,nm ,u2,nm(x) with respect to the
evolution of the diagonal elements of the density matrix
the Fock representation for the field mode, it remains to
sert these into the pumping generatorLp defined in Eq.
~2.16!,

Lp,nm5r F ~122e!u1,nm1r E
0

t

dxu2,nm~x!G . ~4.1!

Similarly, we extract from the damping generator~2.17! a
matrix of transition ratesLd,nm @9#,

(
m

Ld,nmpm5k~nth11!@~n11!pn112npn#

1knth@npn212~n11!pn#. ~4.2!

The master equation for the probabilitiespn(t) can then be
written with the help of the following rates of single-ste
downward and upward transitions and two-step upward tr
sitions ~‘‘up’’ and ‘‘down’’ the ladder of photon numbers!,

rate~n→n21![sn
25k~nth11!n,

rate~n→n11![sn
15r ~an111evn!1knth~n11!,

~4.3!

rate~n→n12![tn
15r ewn ,

with vn and wn composed of the rate constan
an ,ãn(x),bn(x),gn(x),dn(x) introduced above as

vn5
1

tE0
t

dx @~ ãn111bn!~12ãn112ãn12!

2an11~12an112an12!

2~gn1dn!~ ãn112ãn12!#,

wn5
1

tE0
t

dx @gn1ãn12ãn112an12an111bnãn12

2~gn1dn!ãn12#. ~4.4!

Clearly, the loss of photons through the outcoupling mir
entails single-step downward transitions as well as~at finite
temperatures such thatnth.0) single-step upward transi
tions. On the other hand, only upward transitions can
enforced by the atoms since these enter, by our assump
the cavity in their upper state and can thus deposit but
pick up photons. Single-atom passes can only increase
photon number by one while two-atom events with overla
may leave behind either one or two added photons. In c
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templating the rates the reader will appreciate that all te
due to two-atom effects are proportional to the small para
etere5r t.

In terms of these transition rates the master equa
~2.18! reads

ṗn5sn11
2 pn112~sn

11sn
21tn

1!pn1sn21
1 pn211tn22

1 pn22 .
(4.5)

The time rate of changeṗn occurring here can be repre
sented in terms of two probability currents,

j n5sn
2pn2sn21

1 pn21 ,

i n52tn22
1 pn22 , ~4.6!

as

d

dt
pn5 j n112 j n1 i n122 i n . ~4.7!

As seen from Eq.~4.3!, the first currentj n stems chiefly from
the coherent interaction of the field with one atom and
incoherent decay of the field mode, apart from a small tw
atom correction insn

1 proportional toevn . Conversely, the
second currenti n has its origin entirely in the two-atom co
lective effects. In the absence of pair effects the curreni n
does not arise. The stationary regime is then governed
j̄ n50, i.e., detailed balance of upward and downward tr
sitions,n↔n21. The two-step transitions brought about
pair effects destroy detailed balance since they allow pr
ability to flow in loopsn→n21→n22→n @10#.

To find the stationary probabilitiesp̄n we first formally
treat i n122 i n as an inhomogeneity in Eq.~4.7! and solve
recursively to get j̄ n52 ī n2 ī n11 for n.2 after j̄ 050,
j̄ 152 ī 2, j̄ 252 ī 3. Upon substituting the definitions~4.6! in
that formal solution we arrive at a three-step recursion re
tion for the p̄n ,

sn11
2 p̄n115~sn

11tn
1! p̄n1tn21

1 p̄n21 . ~4.8!

We can even further simplify to a two-step recursion relat
by introducing the ratio

r n5 p̄n11 / p̄n . ~4.9!

Indeed, by dividing both sides of Eq.~4.8! by p̄n we get

r n5an1
bn21

r n21
, ~4.10!

with the coefficients

an5
sn

11tn
1

sn11
2 , bn5

tn
1

sn12
2 . ~4.11!

The ratiosr n are obtained recursively. First, puttingn50 in
Eq. ~4.8! and requiring thatp̄2150 we getr 05a0. Then,
starting withr 15a11b0 /r 0 we obtainr n as then-fold con-
s
-

n

e
-

by
-

b-

-

n

tinued fraction,

~4.12!

where 4 demands division by everything that follows. Th
stationary probabilityp̄n is obtained from ther k as the prod-
uct

p̄n5 p̄0)
k50

n21

r k , ~4.13!

where p̄0 is determined by normalizing,(n50
` p̄n51. Using

this stationary probability distribution of the photon numb
in the cavity we can calculate the mean photon number
its fluctuations.

V. MEAN PHOTON NUMBER AND PHOTON STATISTICS

In the one-atom theory of the micromaser~see Ref.@4#!,
the photon statistics are determined by three physical par
eters. These are~i! the average number of atoms pass
through the cavity during the lifetime of the field
Nex5r /k; ~ii ! the dimensionless pump paramete
u5Nex

1/2gt; and ~iii ! the mean number of thermal photon
inside the cavity,nth . In addition to these we here incur
fourth parameter,e5r t, which gives the mean number o
atoms inside the cavity.

Using the stationary distribution functionp̄n found in the
previous section we have numerically investigated the m
photon number̂n&,

^n&5 (
k50

`

kp̄k , ~5.1!

and its normalized standard deviations,

s5F Š~n2^n&!2‹

^n& G1/2, ~5.2!

for different values of the four parameters mentioned abo
Figure 2 compares the normalized mean number of p

tons^n&/Nex as a function of the dimensionless pump para
eteru without and with collective effects. Both curves hav
common features such as the threshold valueu51, when a
finite mean photon number emerges, and the abrupt jum
which for Nex→` are customarily associated with pha
transitions. Two-atom collective effects shift these tran
tions towards smaller values ofu. For large values of the
pump parameter the jumps become less pronounced an
normalized mean photon number^n&/Nex approaches a con
stant value. That limiting value is increased by two-ato
effects.

Apparently the influence of two-atom collective effects
the mean photon number is opposite to the role of the tw
photon absorption studied by Ellinger and Ritsch in R
@11#. There it was found that the nonlinear absorption dela
the ‘‘phase transitions’’ to higher pump parameters. Also
mean photon number for highu was found to be smaller with
nonlinear absorber than without.
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FIG. 2. Stationary mean photon numb
^n&/Nex inside the cavity vs the pump paramet
u without ~dots! and with ~solid! collective ef-
fects;Nex5200, nth50.1, ande50.4.
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In Fig. 3 we have drawn the normalized standard dev
tion s as a function of the dimensionless pump parame
u without and with collective effects. We recall that th
values51 corresponds to Poissonian statistics of photo
Both without and with collective effects we see sharp sup
Poissonian peaks at the values ofu corresponding to the
jumps of the mean photon number shown in Fig. 2. F
pump parameters between these peaks the variances takes
on values less than unity and thus signals sub-Poisso
statistics. However, the values ofs between the peaks on th
curve with collective effects are higher then those on
one-atom curve. We conclude, therefore, that collective
fects increase the photon fluctuations in sub-Poissonian
gions. Again, this is contrary to the case of the two-pho
absorption, which was found@11# to decreases.

As in Fig. 2, Fig. 4 compares the normalized mean pho
number without and with collective effects, but now for ze
temperature of the external reservoir, i.e., fornth50. The
-
r

s.
r-

r

an

e
f-
e-
n

n

one-atom curve then shows a specific fine structure with n
row deep resonances at certain values ofu ~these resonance
are not properly resolved on Fig. 4!. This fine structure is
associated with the so-called trapping states. They were
tially predicted in Ref.@12# for a lossless micromaser, i.e
one with ideal mirrors. Later it was understood@13# that the
signature of these states persists even when dissipa
through the outcoupling mirror is included, provided o
sticks to very low temperatures.

For the lossless micromaser the trapping states are
Fock statesunq& of the cavity field with such number o
photonsnq that an atom entering the cavity in its excite
state undergoesq full Rabi cycles before leaving the cavit
in the excited state,

ktAnq115pq. ~5.3!

In the absence of dissipation and when the atoms are inje
p

FIG. 3. Normalized standard deviations of

the photon number inside the cavity vs the pum
parameteru without ~dots! and with ~solid! col-
lective effects;Nex5200, nth50.1, ande50.4.
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FIG. 4. Stationary mean photon numb
^n&/Nex inside the cavity vs the pump paramet
u without ~dots! and with ~solid! collective ef-
fects for zero temperature;Nex550 ande50.4.
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in their upper state the stationary state of the microma
field inside the cavity is a mixture of trapping states. Wh
the dissipation is allowed with finitenth the probabilitypn
flows between these trapping states according to Eq.~4.3!
and the signature of trapping states rapidly becomes wa
out. However, fornth50 the probability can flow only down
ward @see Eq.~4.3!#. Therefore, dissipation at zero temper
ture does not allow the probability distribution to grow pa
the trapping stateunq&. If condition ~5.3! is fulfilled for some
photon numberk then the probability distributionp̄n50 for
n.k.

The condition~5.3! written in terms of parametersNex and
u reads@13#

Nex

u2
5
nq11

q2p2 . ~5.4!
er
n

ed

t

For fixed Nex this gives the resonance conditions for t
pump parameteru for different values ofnq andq. Now we
can easily understand why with two-atom effects there is
signature of the trapping states in thel (u) curve~solid line in
Fig. 4!. With two atoms in the cavity at the same time the
is a possibility of both one-photon and two-photon tran
tions. The Rabi frequencies of these transitions are differ
To see the remnants of trapping states with collective effe
one would have to satisfy two conditions: Eq.~5.4! and an
analogous condition for the two-photon transition. It is ea
to see that these two conditions cannot be satisfied simu
neously. Therefore, the signature of trapping states dis
pears in the curvel (u) with collective effects.

To compare the prediction of our theory with the resu
of the experiment@3# we have drawn in Fig. 5 the mea
photon number̂ n& as a function of the mean number o
atoms^N& inside the cavity without and with collective ef
-
en
FIG. 5. Mean photon number̂n& vs mean
number of atomŝN& inside the cavity without
~a! and with ~b! collective effects. The dotted
curve~c! results in admitting only complete over
laps of pairs of atoms. All parameters are tak
from experiment@3#, i.e., gt50.52, kt50.28,
andnth50.
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55 3041COLLECTIVE EFFECTS IN THE MICROLASER
fects. The mean number of atoms in the cavity for the Po
sonian atomic flux is given by

^N&5r t. ~5.5!

The values of all other physical parameters in play, nam
g,k, andt, were taken from the experiment@3#. The main
feature of the experimental findings@3# was a rapid increase
in ^n& at about^N&'0.6, a behavior not predicted by th
one-atom theory. For̂N& approaching unity the value o
^n& was found to be approximately 10, about three tim
more than predicted by the one-atom theory.

In order to underscore the importance of the statistics
overlaps we have included a third curve~dotted! in Fig. 5.
That curve was obtained by accounting only for compl
overlaps of pairs of atoms, i.e., by replacing the Poisson
overlap probability~2.6! with w(x)5d(x2t) while keeping
the PoissonianW0(n), W1(n) given in Eq. ~2.8!. Such an
approach was advocated in@7#; it considerably overestimate
the pair effects.

Our curves in Fig. 5 suggest the following further conc
sions: ~i! two-atom collective effects tend to increase t
mean number of photons with respect to the prediction of
one-atom theory for all values of^N&; ~ii ! the slope of the
curve ^n& as a function of^N& is steeper with collective
effects than without; and~iii ! collective effects do not yield
any abrupt change of the mean photon number, and in
ticular none near̂N&'0.6.
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It is important to recall that our pumping generatorLp in
Eq. ~2.16! was constructed in the limit^N&!1 and can there-
fore not be trusted fore'^N&5r t as large as 0.6 or eve
beyond. Amusingly, however, the final results as portray
in Fig. 5 do not become manifestly nonsensical if extrap
lated to ^N&'1; rather, they maintain a reasonable tre
from the single-atom theory towards the experimental poin
To obtain quantitative agreement of theory with experim
we would, of course, have to account for higher orders ine
as well as for larger clusters of atoms in the resonator.

In Ref. @14# it was argued that the standing-wave structu
of the field inside the cavity may play an important ro
when the mean number of photons^n& becomes larger than
unity. Possibly, a further improved agreement of theory a
experiment can be reached by accounting for such sp
inhomogeneities together with the collective two-atom
fects discussed here. A recent analysis of normal mode s
ting in standing-wave optical cavities@15# further supports
our belief that collective effects become even more imp
tant when the coupling of the atom with the cavity mode
position dependent.
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