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Two-level atom in an electromagnetic wave of circular polarization

Gao-Jian Zeng,1,2 Shi-Lun Zhou,2 Sheng-Mei Ao,2 and Zhao-Yang Zeng2
1CCAST (World Laboratory), P.O. Box 8730, Beijing 100080, China

2Department of Physics, Hunan Normal University, Hunan 410006, China
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In this paper, we study the behavior of a two-level atom in an electromagnetic wave of circular polarization.
A general solution to the Schro¨dinger equation is obtained, and the action of the electromagnetic wave on the
atom is analyzed in detail. It is shown that the levels of the atom would be split, with the energy difference
between the split levels the same for the two states of the atom. The atom would acquire an average momen-
tum, with its direction the same as the propagating direction of the electromagnetic wave, showing the expel-
ling action of the electromagnetic wave on the atom; or with its direction opposite to the propagating direction
of the electromagnetic wave, showing the trapping action of the electromagnetic wave on the atom. The
properties of the action are dependent on the initial state of the atom. The average expelling and trapping forces
exerted on the atom by the electromagnetic wave are determined. Two cases of ‘‘resonance’’ and ‘‘strict
detuning’’ are discussed particularly. Under the resonance case, the transition probability reaches its maximum
for a given time. In the strict detuning case, the atom is not influenced by the electromagnetic wave.
@S1050-2947~97!07903-1#

PACS number~s!: 42.50.Vk, 32.80.2t, 03.65.Ge
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I. INTRODUCTION

The subject of atomic motion in an electromagnetic wa
has attracted much attention because of its important ap
cations, such as the deflection of atomic beams, the sele
of atomic species in an atomic beam~isotope separation!
@1–3#, the cooling and trapping of atoms, etc.@4–9#.

The plane electromagnetic wave is of the simplest e
tromagnetic waves. Studying the motion of an atom in
plane electromagnetic wave is a fundamental and impor
subject. However, it seems that the study of such a sub
has so far produced no good solution.

In this paper, we study the motion of an atom in an el
tromagnetic wave of circular polarization. This subject
also fundamental and important, since a circularly polariz
electromagnetic wave may be formed from two plane el
tromagnetic waves; conversely, a plane electromagn
wave may be also formed from two circularly polarized ele
tromagnetic waves.

We assume that the atom has only two levels and ass
that there is a dipole interaction between the atom and e
tromagnetic wave. In studying many problems on the int
action of atoms with electromagnetic waves, these assu
tions have been used@1–9#. Our procedure is first to solve
the Schro¨dinger equation, in which the motion of the cent
of mass of the atom is treated quantum mechanically,
then discuss in detail the physical significance of the so
tion, in particular calculate the momentum the atom acqu
from the electromagnetic wave and the force exerted on
atom by the electromagnetic wave.

We analyze particularly the two cases of ‘‘resonanc
and ‘‘strict detuning,’’ both of which are important. In th
resonance case, the transition probability reaches its m
mum ~for a given time!, and momentum transfer between t
atom and field would be effectively completed. In the str
detuning case, the transition probability tends to 0, and
state of the atom is not influenced by the electromagn
551050-2947/97/55~4!/2945~10!/$10.00
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wave. From these results, conditions for which the two-le
approximation is appropriate may be found.

The two initial conditions that the atom initially is in it
ground or excited state are separately considered. The re
show that under the different initial conditions, the distrib
tions of the momenta and energies of the atom are the sa
but the actions of the electromagnetic wave on the atom
different. It displays either expelling or trapping propertie
That the motion of the center of mass of the atom is trea
quantum mechanically is a basic reason leading to this
portant result.

The contents in the following sections are organized
follows. In Sec. II, the Schro¨dinger equation is solved and
general form of the wave function of the atom is obtained~in
momentum space!. In Secs. III and IV, assuming the atom
in its ground and excited states att50, respectively, the
concrete forms of the wave functions of the atom are giv
~in momentum and coordinate spaces! and the average mo
mentum the atom acquires from the electromagnetic w
and the average force exerted on the atom by the electrom
netic wave are determined. In Sec. V, the tuning problem
variations of the wave functions and observables with ti
are discussed further, the physical contents of the two s
tions obtained in Secs. III and IV, respectively, are co
pared, and the quantum feature of the motion of the cente
mass is shown. In Sec. VI, the contents of this paper
summed up and its significance is described.

II. GENERAL FORM OF THE SOLUTION

We consider a two-level atom of massm, transition an-
gular frequencyv, and dipole momentD. The atom starts
out moving in thez direction with momentump0 , and then
is irradiated by a circularly polarized electromagnetic wa
of wave vectork and angular frequencyvL . The electromag-
netic wave propagates along the positivez direction and its
electronic fieldE is assumed to be the formE5(E1 ,E2),
2945 © 1997 The American Physical Society
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E15A cos(vLt2kz), E252A sin(vLt2kz), where A is
the amplitude ofE.

Because the electromagnetic wave includes only the sp
variablez, the case is a question of one dimension. In t
case, the Hamiltonian of the two-level atom interacting w
the electromagnetic wave is given by

H5
P2

2m
1
1

2
\vs31V, ~1!

where P2/2m is the kinetic energy associated with th
center-of-mass momentum along thez direction, 12\vs3 is
the Hamiltonian associated with the internal motion of t
atom, andV52D•E is the interaction energy between th
atom and electromagnetic wave. We here have used di
approximation.

We denote the state vectors of the two-level atom byuc1&
and uc2&. According to the feature of the dipole transitio
@10#, the actions of V on these state vector
are Vuc1&5v21uc2& and Vuc2&5v12uc1&, where v12
5^c1uVuc2& andv215^c2uVuc1& are the nonzero matrix el
ements ofV.

Setting D65D16 iD 2 and E65E16 iE2 , V may be
written as

V52 1
2 ~D1E21D2E1!. ~2!

Noting D 12
2 5D 21

1 5^c1uD
2uc2&50 and denoting

D 12
1 5D 21

2 5^c1uD
1uc2&52^c1uD1uc2& by 2D ~which is

assumed to be real!, one shows easily tha
v1252DE252D(E12 iE2) and v2152DE152D(E1
1 iE2). Substituting the expressions ofE1 andE2 into v12
andv21, then it gets

v1252 1
2\Vei ~vLt2kz!, v2152 1

2\Ve2 i ~vLt2kz!, ~3!

where we have setDA5\V/2; V is called induced rate
which describes the interaction intensity.

In order to study the motion of the atom, we solve t
Schrödinger equation

i\
d

dt
uc&5Huc& ~4!

for an arbitrary stateuc&. Settinguc&5(uc1&,uc2&)
T, project-

ing Eq.~4! onto uc1& anduc2&, and using Eqs.~1!–~3!, Eq.~4!
is reduced to a pair of the coupled Schro¨dinger equations:

i\
d

dt
uc1&5S P2

2m
1
1

2
\v D uc1&2

1

2
\Ve2 i ~vLt2kz!uc2&,

~5!

i\
d

dt
uc2&5S P2

2m
2
1

2
\v D uc2&2

1

2
\Vei ~vLt2kz!uc1&. ~6!

Both Eqs.~5! and~6! include the momentum operatorP;
therefore,uc1& and uc2& may be expanded in terms of th
eigenvectorup& of the momentum operatorP:

uc1&5E f1~p!dpup&, uc2&5E f2~p!dpup&. ~7!
ce
s

le

Substituting these expansions into Eqs.~5! and~6! and using
the orthogonality of the eigenvectorsup&, Eqs.~5! and~6! are
reduced to

i\
df1~p!

dt
5S p22m1

1

2
\v Df1~p!

2
1

2
\Ve2 ivLtf2~p2\k!, ~8!

i\
df2~p!

dt
5S p22m2

1

2
\v Df2~p!2

1

2
\VeivLtf1~p1\k!.

~9!

Equations~8! and ~9! can be decoupled and solved e
actly. For example, eliminatingf1(p) from Eqs.~8! and~9!,
we obtain the equation forf2(p):

d2f2~p!

dt2
1 ia1

df2~p!

dt
1a2f2~p!50, ~10!

where

a15
1

\ F p22m1
~p1\k!2

2m
2\vLG , ~11!

a25
1

\2 H S p22m2
1

2
\v D F\vL2

1

2
\v2

~p1\k!2

2m G
1

\2V2

4 J . ~12!

The general solution to Eq.~10! is

f2~p,t !5c2~p!e2 iv2~p!t1c28~p!e2 iv28~p!t, ~13!

where

v2~p!5a2~p!1b~p!, v28~p!5a2~p!2b~p!, ~14!

while

a2~p!5
a1
2

5
1

2\ F p22m1
~p1\k!2

2m
2\vLG , ~15!

b~p!5AS a12 D 21a25
1

2\
@~Dep1\Dv!21\2V2#1/2,

~16!

with Dv5v2vL andDep5[(p1\k)2/2m]2p2/2m; c2(p)
andc28(p) are coefficients to be determined.

One easily sees that botha2(p) and b(p) are real and
b(p)Þ0. Thus there are two oscillators with frequenci
v2(p) andv28(p), respectively, inf2(p,t).

We have derived a solution forf2(p,t). Substituting the
expression off2(p,t) into Eq.~9!, f1(p,t) can be obtained:

f1~p1\k,t !5c1~p!e2 iv1~p!t1c18~p!e2 iv18~p!t, ~17!

where

v1~p!5a1~p!1b~p!, v18~p!5a1~p!2b~p!, ~18!
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while

a1~p!5a2~p!1vL5
1

2\ F p22m1
~p1\k!2

2m
1\vLG . ~19!

The coefficientsc1(p) andc18(p) are associated withc2(p)
andc28(p):

c1~p!5
2@«~p!2b~p!#

V
c2~p!, ~20!

c18~p!5
2@«~p!1b~p!#

V
c28~p!, ~21!

where

«~p!52
1

2\
~Dep1\Dv!. ~22!

Equations~13! and ~17! have given a general solution fo
Eqs. ~8! and ~9!, and the coefficientsc2(p), c28(p), and
c1(p), c18(p) in it may be determined from initial conditions

f1(p,t) andf2(p,t) are in fact the wave functions of th
atom in momentum space. With the help of the transform
tion

c~z,t !5
1

~2p\!1/2
E

2`

`

eipz/\f~p,t !dp, ~23!

they would be reduced to the wave functions in coordin
space.

In the following sections, we will present two differen
initial conditions to determine the concrete forms of the
lutions and discuss in detail their physical contents. The
culating processes in the two cases are the same, but
physical consequences are not totally the same. In the
cussions, one needs to use two important relations, i.e.,

@«~p!2b~p!#@«~p!1b~p!#52 1
4V2, ~24!

@«~p!2b~p!#21@«~p!1b~p!#254b2~p!2 1
2V2, ~25!

which may be derived from the properties of the roots of
algebraic equation of degree 2.

III. SOLUTION WHEN THE ATOM IS IN ITS GROUND
STATE AT t50

We assume that att50 the atom is in its ground state
i.e., one hasuc1& t5050, uc2& t50Þ0. According to this as-
sumption, one may setf1(p,0)50 andf2(p,0)5d(p2p0).
The form off2(p,0) means thatf2(p,0) is the eigenstate o
the momentum operator and the corresponding eigenvalu
p0 . Using this initial condition, a simple calculation yields

c2~p!5
«~p!1b~p!

2b~p!
d~p2p0!, ~26!

c28~p!52
«~p!2b~p!

2b~p!
d~p2p0!, ~27!
-

e

-
l-
eir
is-

n

is

c1~p!52c18~p!5
@«~p!2b~p!#@«~p!1b~p!#

Vb~p!
d~p2p0!.

~28!

Equations~13!, ~17!, and~26!–~28! have given the solution
under the above initial conditions. Using the relation~24!,
Eq. ~28! can be simplified to

c1~p!52c18~p!52
V

4b~p!
d~p2p0!. ~29!

For convenience, we substitute Eqs.~26!, ~27!, and ~29!
into Eqs.~13! and ~17!: then,f1(p,t) andf2(p,t) may be
rewritten as

f1~p1\k,t !5
V

4b~p!
@2e2 iv1~p!t1e2 iv18~p!t#d~p2p0!,

~30!

f2~p,t !5
1

2b~p!
$@«~p!1b~p!#e2 iv2~p!t

2@«~p!2b~p!#e2 iv28~p!t%d~p2p0!. ~31!

These are the wave functions of the atom in moment
space. If they are transformed into coordinate space, then
has

c1~z,t !5
V

~2p\!1/24b~p0!
$2ei @~p01\k!z2E1~p0!t#/\

1ei @~p01\k!z2E18~p0!t#/\%, ~32!

c2~z,t !5
1

~2p\!1/22b~p0!
$@«~p0!1b~p0!#e

i @p0z2E2~p0!t#/\

2@«~p0!2b~p0!#e
i @p0z2E28~p0!t#/\%. ~33!

These are the wave functions of the atom in coordin
space, where E1(p0)5\v1(p0), E18(p0)5\v18(p0),
E2(p0)5\v2(p0), and E28(p0)5\v28(p0). Using the ex-
pressions ofv1(p0), etc., thenE1(p0), etc. may be written
explicitly as

E1~p0!5
~p01\k!2

2m
1
1

2
\vL2

1

2
De0

1
1

2
@~De01\Dv!21\2V2#1/2, ~34!

E18~p0!5
~p01\k!2

2m
1
1

2
\vL2

1

2
De0

2
1

2
@~De01\Dv!21\2V2#1/2, ~35!

E2~p0!5
p0
2

2m
2
1

2
\vL1

1

2
De0

1
1

2
@~De01\Dv!21\2V2#1/2, ~36!
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E28~p0!5
p0
2

2m
2
1

2
\vL1

1

2
De0

2
1

2
@~De01\Dv!21\2V2#1/2, ~37!

where

De05
~p01\k!2

2m
2

p0
2

2m
.

We now examine the physical content of the solutio
One sees from Eqs.~32! and ~33! that bothc1(z,t) and
c2(z,t) include two plane waves, in which the momenta
the atom are the same, but the energies of the atom are
ferent. Explicitly, when the atom is in its ground state,
momentum is alwaysp0 and its energy isE2(p0) or
E28(p0), while when the atom is in its excited state, its m
mentum is alwaysp01\k and its energy isE1(p0) or
E18(p0). Thus the two levels of the atom are split, the ene
differenceDE between the split levels being the same for t
two states of the atom:DE5E1(p0)2E18(p0)5E2(p0)
2E28(p0), and

DE5@~De01\Dv!21\2V2#1/2. ~38!

~It is noted thatDe0 is in fact a difference of the kinetic
energies of the atom in its two states.!

Although the two states of the atom have definite m
menta,p01\k andp0 , respectively, but the probabilities o
these momenta are generally different and dependen
time. We denote the probabilities of the momentap01\k
and p0 by P15P1(p01\k) andP25P2(p0), respectively.
They are obtained easily from Eqs.~30! and~31! or Eqs.~32!
and ~33!:

P15U V

4b~p0!
@2e2 iv1~p0!t1e2 iv18~p0!t#U25 V2

4b0
2 sin

2b0t,

~39!

P25U 1

2b~p0!
$@«~p0!1b~p0!#e

2 iv2~p0!t

2@«~p0!2b~p0!#e
2 iv28~p0!t%U2

512
V2

4b0
2 sin

2b0t, ~40!

whereb05b(p0). It is clear thatP11P251, which shows
that the overall probability is conserved.

UsingP1 andP2 , the average values of the momenta a
kinetic energies of the atom are calculated to be

P̄5~p01\k!P11p0P25p01
V2

4b0
2 \k sin2b0t, ~41!

Ek5
~p01\k!2

2m
P11

p0
2

2m
P25

p0
2

2m
1

V2

4b0
2 De0 sin

2b0t.

~42!
.

f
if-

y

-

on

d

P̄Þp0 andEkÞp0
2/2m, generally, except fort5np/b0 (n

50,1,2,...). At these times, the atom is always in its grou
state, and thusP̄5p0 andEk5p0

2/2m.
SettingDP5 P̄2p0 andDEk5Ek2p0

2/2m, it gets

DP5
V2

4b0
2 \k sin2b0t, ~43!

DEk5
V2

4b0
2 De0 sin

2b0t. ~44!

DP and DEk are the average momentum and the aver
kinetic energy the atom acquires from the electromagn
wave, respectively.

It is clear thatDP>0. Therefore, ifp0.0, thenP̄.p0 ,
and the momentum and, thus, the kinetic energy of the a
increase. Ifp0,0, thenuP̄u,up0u, and the momentum and
thus, the kinetic energy of the atom decrease.

The change of the momentum of the atom is due to
action of the electromagnetic wave on the atom. Us
Ehrenfest’s theorem, the average value of the force exe
on the atom by the electromagnetic wave is obtained as

F̄5
d

dt
P̄5

d

dt
DP5

V2\k

4b0
sin2b0t. ~45!

F̄ can take positive or negative values. The positive value
F̄ show that the average momentum of the atom increa
with t, and the negative values ofF̄ show that the average
momentum of the atom decreases witht.

We have shown that whenp0.0, P̄.p0 ; when p0,0,
uP̄u,up0u. This shows that the direction of the average m
mentum the atom acquires from the electromagnetic wav
the same as the propagating direction of the electromagn
wave, the action of the electromagnetic wave on the at
showing the expelling property.

Now we examine further the significance of the probab
tiesP1 andP2 . They have been defined as the probabilit
of the momentap01\k andp0 at time t, respectively. Be-
cause the momenta of the atom at its excited state
ground state arep01\k and p0 , respectively, thereforeP1
andP2 are also the probabilities that the atom is in its e
cited state and ground state at timet, respectively. In par-
ticular, because the atom is in its ground state att50, P1 is
also the probability that the atom transits to its excited st
from its ground state at timet. It is clear that the transition
probabilityP1 is dependent on the frequency of the elect
magnetic wave. Noting expression~16! of b(p), one sees
that if the frequency of the electromagnetic wave is mod
lated such that

De01\Dv50, ~46!

then the transition probabilityP1 would reach its maximum
~for a given t!; this case is called ‘‘resonance.’’ If the fre
quency of the electromagnetic wave is modulated such t

uDe01\Dvu@\V, ~47!
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then the transition probabilityP1→0; this case is called
‘‘strict detuning.’’ In the following, we discuss these tw
cases, respectively.

A. Resonance

Under the resonance condition~46!, b(p0)5V/2,
«(p0)2b(p0)52V/2, and«(p0)1b(p0)5V/2; thus, the
wave functions of the atom have a simpler form

c1~z,t !5
1

2~2p\!1/2
$2ei @~p01\k!z2E1~p0!t#/\

1ei @~p01\k!z2E18~p0!t#/\%, ~48!

c2~z,t !5
1

2~2p\!1/2
$ei @p0z2E2~p0!t#/\1ei @p0z2E28~p0!t#/\%,

~49!

where

E1~p0!5
~p01\k!2

2m
1
1

2
\v1

1

2
\V, ~50!

E18~p0!5
~p01\k!2

2m
1
1

2
\v2

1

2
\V, ~51!

E2~p0!5
p0
2

2m
2
1

2
\v1

1

2
\V, ~52!

E28~p0!5
p0
2

2m
2
1

2
\v2

1

2
\V. ~53!

They are the energies of the split levels. The energy dif
ence between the split levels is

DE5\V. ~54!

Under the resonance condition, the probabilities of
momentap01\k andp0 at time t are

P15sin2
V

2
t, P25cos2

V

2
t, ~55!

and the average values of the momenta and kinetic ene
of the atom are

P̄5p01\k sin2
V

2
t, Ek5

p0
2

2m
1De0 sin

2
V

2
t. ~56!

The average momentum and the average kinetic energy
atom acquires from the electromagnetic wave are

DP5\k sin2
V

2
t ~57!

and

DEk5De0 sin
2

V

2
t, ~58!
r-

e

ies

he

respectively, and the average value of the force exerted
the atom by the electromagnetic wave is

F̄5
V\k

2
sinVt. ~59!

Under the resonance condition, the energy and mom
tum transport between the atom and electromagnetic w
would be effectively completed, because whent5[(2n
11)p]/V (n50,1,2,...), theatom must transit to its excited
state from its ground state, and the average momentum
atom acquires from electromagnetic wave reaches its m
mum \k.

B. Strict detuning

In the strict detuning case~47!, it is easy to show that
V/b(p0).0, «(p0)2b(p0).22b(p0), and«(p0)1b(p0)
.0; thus, the wave functions of the atom would be simp
fied in form

c1~z,t !.0, c2~z,t !.
1

~2p\!1/2
ei @p0z2E29~p0!t#/\, ~60!

where

E29~p0!5~p0
2/2m!2 1

2\v,

which is just the total energy of the atom before it is irrad
ated by the electromagnetic wave. Equations~60! are just the
wave functions of the atom before it is irradiated by t
electromagnetic wave, and so we conclude that in the s
detuning case, the atom is not influenced by the electrom
netic wave.

IV. SOLUTION WHEN THE ATOM IS IN ITS EXCITED
STATE AT t50

We now change the initial condition, assuming that
t50 the atom is in its excited state and its momentum
p01\k ~it is the same as the momentum of the atom in
excited state in Sec. III!, i.e., one has f1(p,0)
5d(p2p02\k) andf2(p,0)50. Using the same procedur
as that used in Sec. III, one may obtain the following resu
The solutions forf1(p,t) andf2(p,t) are

f1~p1\k,t !5
1

2b~p!
$2@«~p!2b~p!#e2 iv1~p!t

1@«~p!1b~p!#e2 iv18~p!t%d~p2p0!,

~61!

f2~p,t !5
V

4b~p!
@2e2 iv2~p!t1e2 iv28~p!t#d~p2p0!. ~62!

Their transformations in coordinate space are

c1~z,t !5
1

~2p\!1/2
1

2b~p0!

3$2@«~p0!2b~p0!#e
i @~p01\k!z2E1~p0!t#/\

1@«~p0!1b~p0!#e
i @~p01\k!z2E18~p0!t#/\%, ~63!
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c2~z,t !5
1

~2p\!1/2
V

4b~p0!
$2ei @p0z2E2~p0!t#/\

1ei @p0z2E28~p0!t#/\%, ~64!

whereE1(p0), etc., are the same as those expressed in
~34!–~37!.

According to Eqs.~61!–~64!, when the atom is in its ex
cited state, its momentum always isp01\k and its energy is
E1(p0) or E18(p0); when the atom is in its ground state, i
momentum always isp0 and its energy isE2(p0) or
E28(p0). These relations between the momenta and ener
are the same as those in Sec. III. The probabilities of
momentap01\k andp0 are

P15P1~p01\k!512
V2

4b0
2 sin

2b0t ~65!

and

P25P2~p0!5
V2

4b0
2 sin

2b0t, ~66!

respectively. The average values of the momenta and kin
energies of the atom are

P̄5p01\k2
V2

4b0
2 \k sin2b0t ~67!

and

Ek5
~p01\k!2

2m
2

V2

4b0
2 De0 sin

2b0t, ~68!

respectively. The average momentum and average kin
energy the atom acquires from the electromagnetic wave

DP52
V2

4b0
2 \k sin2b0t ~69!

and

DEk52
V2

4b0
2 De0 sin

2b0t, ~70!

respectively. Whenp0.0, the momentum and, thus, the k
netic energy of the atom decrease. Conversely, ifp0,0, the
momentum and, thus, the kinetic energy of the atom
crease. The average value of the force exerted on the ato
the electromagnetic wave is

F̄52
V2\k

4b0
sin2b0t. ~71!

Now the direction of the average momentum the atom
quires from the electromagnetic wave is converse to
propagating direction of the electromagnetic wave, a
therefore the action of the electromagnetic wave on the a
shows the trapping property.
s.
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A. Resonance

In the present case, the transition probability that the at
transits to its ground state from its excited state at timet is
P2 . If the frequency of the electromagnetic wave satisfies
condition ~46!, i.e., De01\Dv50, then P2 reaches its
maximum~for a given timet!. In this case,b05V/2, and the
wave functions of the atom have the forms

c1~z,t !5
1

2~2p\!1/2
$ei @~p01\k!z2E1~p0!t#/\

1ei @~p01\k!z2E18~p0!t#/\%, ~72!

c2~z,t !5
1

2~2p\!1/2
$2ei @p0z2E2~p0!t#/\1ei @p0z2E28~p0!t#/\%,

~73!

whereE1(p0), etc., are the same as those expressed in E
~50!–~53!. The probabilities of the momentap01\k andp0
are

P15cos2
V

2
t, P25sin2

V

2
t. ~74!

The average values of the momenta and kinetic energie
the atom are

P̄5p01\k2\k sin2
V

2
t,

Ek5
~p01\k!2

2m
2De0 sin

2
V

2
t, ~75!

and the average momentum and average kinetic energy
atom acquires from the electromagnetic wave are

DP52\k sin2
V

2
t ~76!

and

DEk52De0 sin
2

V

2
t, ~77!

respectively. The average value of the force exerted on
atom by the electromagnetic wave is

F̄52
V\k

2
sinVt. ~78!

Under the resonance condition, the energy and mom
tum transport between the atom and the electromagn
wave would be effectively completed as well.

B. Strict detuning

If the frequency of the electromagnetic wave satisfies
~47!, i.e., uDe01\Dvu@\V, the transition probability
P2→0. In this case, the wave functions of the atom have
forms
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c1~z,t !.
1

~2p\!1/2
ei @~p01\k!z2E19~p0!t#/\, c2~z,t !.0,

~79!

where

E19~p0!5
~p01\k!2

2m
1
1

2
\v,

which is just the total energy of the atom in its excited st
before it is irradiated by the electromagnetic wave. Equati
~79! are the wave functions of the atom before it is irradia
by the electromagnetic wave; it shows also that in the st
detuning case the atom is not influenced by the electrom
netic wave.

V. DISCUSSION

We have used two different initial conditions to obta
two different solutions and discussed their physical conte
in detail. In this section, we show still the following point

A. Variation of transition probability with frequency vL

We have shown that when the ground state of the atom
taken as the initial state, the transition probability
P1(p01\k), but if the excited state of the atom is taken
the initial state, the transition probability isP2(p0). They
have the same form. Now we denote unitedly the transit
probability byPt , i.e., set

Pt5
V2

4b2~p0!
sin2b~p0!t5 f sin2b~p0!t ~80!

and make further analysis forPt , where f5V2/[4b2(p0)],
which represents the maximumPt can reach when it varie
with t.

Substituting Eq.~16! into f , one has

f5
V2

@~De0 /\!1Dv#21V2 . ~81!

f varies withvL . In general,f,1. When condition~46!, i.e.,
De01\Dv50, is satisfied,f reaches its maximum 1. Whe
condition ~47!, i.e., uDe01\Dvu@\V, is satisfied,f tends
to 0.

Substituting further the expression forDe0 into Eq. ~81!
and notingmc2@\vL for an arbitraryvL , then f may be
reduced to

f5
V2

~v2svL!21V2 , ~82!

wheres512(p0/mc!. According to Eq.~82!, the condition
that f reaches its maximum also may be written as

v2svL50. ~83!

In general,mc@p0 , s.1, and thusvL.v. If p0 is greater,
then there would be some difference betweenvL andv. For
example, ifs50.9, thenvL5v/0.9. On the other hand, if

~v2svL!2@V2, ~84!
e
s
d
t
g-

ts

is

n

then f tends to 0.
For the transition probability under the resonance con

tion, which is very important, we now give a sum@noting
b(p0)5V/2 in this case#.

Theorem 1. The transition probabilityPt of the two-level
atom interacting with the electromagnetic wave of circle p
larization reaches its maximum~for a given timet! under the
resonance conditionv2svL50 and

Pt5sin2
V

2
t. ~85!

The transition probability in the general case is given
Eqs.~80! and~82!. In Fig. 1, we plot the variation off with
vL . The curves are dependent on the parameters and the
interaction intensityV. The widthDvL of a curve may be

FIG. 1. This figure plots the variation off with vL, in which
v51,V51,0.8,0.6 ~from up to down!. The units ofvL,v and
V are 1016 sec21.
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2952 55ZENG, ZHOU, AO, AND ZENG
defined as the distance between the two pointsvL8 andvL9 at
which f5 1

2 , i.e.,DvL5vL92vL8 . From Eq.~82!, one easily
obtains

DvL5
2V

s
. ~86!

It is clear that the greaters, the smallerV, and then the
narrower the curve.

B. Variations of wave functions and observables with timet

The results in Secs. III and IV show that the probabiliti
P1 andP2 , and the measurement values for an observa
for example,DP, DEk, and F̄, etc., vary with time. The
variations appear in an oscillator form, and the oscillat
frequency depends on onlyb0. Under the resonance cond
tion, the oscillating frequency depends on onlyV, the inter-
action intensity, sinceb05V/2 in this case.~Because\V
52DA, therefore, the oscillating frequency in turn depen
on the dipole moment of the atom and the intensity of
electromagnetic wave.! If the interaction intensity is weaker
the oscillator is slower.

This feature of observables comes from the feature of
wave functions. From Eqs.~48!, ~49!, ~72!, and ~73!, one
sees that under the resonance condition, the wave func
may be reduced to the forms

c1~z,t !5
i

~2p\!1/2
sin

V

2
tei @~p01\k!z2E19~p0!t#/\, ~87!

c2~z,t !5
1

~2p\!1/2
cos

V

2
tei @p0z2E29~p0!t#/\, ~88!

when the ground state is taken as the initial state, and

c1~z,t !5
1

~2p\!1/2
cos

V

2
tei @~p01\k!z2E19~p0!t#/\, ~89!

c2~z,t !5
i

~2p\!1/2
sin

V

2
tei @p0z2E29~p0!t#/\, ~90!

when the excited state is taken as the initial state, where

E19~p0!5
~p01\k!2

2m
1
1

2
\v

and

E29~p0!5
p0
2

2m
2
1

2
\v.

They are all the sum of the center-of-mass kinetic energy
internal energy. Equations~87!–~90! show that the center-of
mass kinetic energy and internal energy influence the ph
of the wave functions, but do not influence the absolute v
ues of the wave functions. The latter are dependent on o
the interaction intensityV, and thus the probability densitie
r15uc1u

2 and r25uc2u
2 and the measurement values of o

servables are dependent also on only the interaction inten
V.
e,

g

s
e
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d
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l-
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C. Physical consequences and initial conditions

Now we compare the solutions obtained under two diff
ent initial conditions. This is important and interesting.

In the two solutions, the distributions of the momenta
the atom in its two states are the same: If the momentum
the atom in its ground state isp0 , then the momentum of the
atom in its excited state must bep01\k. This result does not
depend on the initial conditions. In fact, it does not depe
on tuning as well.

In the two solutions, the distributions of the energies
the atom in its two states are also the same: Each leve
split into two levels; the level in the excited state is split in
E1(p0) andE18(p0), and the level in the ground state is sp
into E2(p0) andE28(p0). The energy differences between th
two split levels are the same for the two states of the atom
particular, under the resonance condition, the energies o
split levels in the excited state are

E1~p0!5
~p01\k!2

2m
1
1

2
\v1

1

2
\V, ~91!

E18~p0!5
~p01\k!2

2m
1
1

2
\v2

1

2
\V, ~92!

and the energies of the split levels in the ground state ar

E2~p0!5
p0
2

2m
2
1

2
\v1

1

2
\V, ~93!

E28~p0!5
p0
2

2m
2
1

2
\v2

1

2
\V. ~94!

These energies are all the algebraic sum of the cente
mass kinetic energy, internal energy, and interaction ene
the energy difference between the two split levels in ea
state is

DE5\V. ~95!

SinceV is dependent on the amplitude of the electric fie
the split of the levels in fact represents a kind of ac St
effect.

Figure 2 gives a concrete example, in which a modera
massive atom of massm.10223 G, transition angular fre-
quencyv51016 sec21, original velocityv0.20 m sec21, and

FIG. 2. The energies of the split levels, calculated in un
10218 J.
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dipole momentD.1.6310229 C m, and a circularly polar-
ized electromagnetic wave of amplitudeA.1.531010

V m21 and angular frequencyvL.v51016 sec21 are con-
sidered. When the atom is irradiated by the electromagn
wave, the system would reach its resonance state, s
p0.2310219 N sec, mc.3310212 N sec, mc@p0 ; the
resonance condition isvL.v, which is satisfied. In this
case, the energies of the split levels areE1(p0)
.2.75310218 J, E18(p0).2.25310218 J, E2(p0).1.75

310218 J, andE28(p0).1.25310218 J. The energy differ-
ence between the two split levels isDE50.50310218 J for
each state of the atom.

However, in the two solutions, the wave functions of t
atom are not the same, and the momentum and energy t
fers between the atom and the electromagnetic wave are
ferent as well. In particular, under the resonance condit
the average momentum the atom acquires from the elec
magnetic wave and the average force exerted on the atom
the electromagnetic wave are

DP5 1
2\k~12cosVt !, F̄5 1

2\kV sinVt, ~96!

if the ground state is taken as the initial state, and

DP52 1
2\k~12cosVt !, F̄52 1

2\kV sinVt, ~97!

if the excited state is taken as the initial state. There i
difference of a sign between the two results, which me
that when the initial state of the atom is its ground state,
direction of the average momentum the atom acquires f
the electromagnetic wave is the same as the propagatin
rection of the electromagnetic wave; this shows the expel
action of the electromagnetic wave on the atom. When
initial state of the atom is its excited state, the direction
the average momentum the atom acquires from the elec
magnetic wave is opposite to the propagating direction of
electromagnetic wave; this shows the trapping action of
electromagnetic wave on the atom. The property of the
tion of the electromagnetic wave on the atom is depend
on the initial state of the atom.

The variations ofDP and F̄ with time t depend onV. In
the above example, the angular frequencies correspondin
E1(p0), etc., arev1(p0).2.7531016 sec21, v18(p0).2.25
31016 sec21, v2(p0).1.7531016 sec21, andv28(p0).1.25
31016 sec21, respectively, whileV.0.531016 sec21. Com-
paringV with v1(p0), etc., one sees that the variations
DP and F̄ with time are slower than that of the wave fun
tions.

D. Quantum feature of the motion of the center of mass

We have treated the motion of the center of mass quan
mechanically. Now we show the physical consequence
this treatment. As in the above description, the momenta
the atom in its two states are not the same, and there
difference of\k between them. For this difference, the a
erage momentum of the atom varies with time, and the
erage force exerted on the atom by the electromagnetic w
does not equal generally 0. The force is proportional to\k
and appears in different signs under different initial con
tic
ce
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tions, which show different properties of the action und
different initial conditions. These results mirror sufficient
the quantum features of the motion of the center of ma
They come from the quantum-mechanical treatment for
motion of the center of mass. If one sets\→0 ~which means
the transition to classical case!, then the above quantum fea
tures would vanish.

The above result—that the force exerted on a two-le
atom by an electromagnetic wave of circle polarization do
not equal 0 generally and is dependent on the initial state
the atom—is very important and may be generalized t
system interacting with any electromagnetic running wa
therefore, it is fundamental for studying more complicat
cases.

It is useful to compare our work with Ref.@11#, which
concluded that if spontaneous emission is not conside
then the force exerted on a two-level atom by a plane e
tromagnetic wave equals 0. We have not considered spo
neous emission, but our result clearly is not the same as
conclusion. In considering this difference, we recall that R
@11# used the wave function derived for the case that
kinetic energy term in the Hamiltonian was dropped; in oth
words, there the motion of the center of mass of the at
was not treated quantum mechanically.

The quantum feature of the motion of the center of m
is observable. One has already found experimentally
when an atomic beam is irradiated by an electromagn
standing wave, it would be split and deflected@1–3#. This is
a kind of momentum diffusion phenomenon. When the m
tion of the center of mass is treated quantum mechanica
this phenomenon can be explained theoretically. In the pr
lem studied in this paper, the average force exerted on
atom by the electromagnetic wave is very small, and so
average momentum the atom acquires from the electrom
netic wave is also very small. However, if we consider
system~gas, liquid, or solid! which consists of many atoms
the action of the electromagnetic wave on the system wo
generate an observable~macroscopic! effect, provided the
two-level atoms in the system are initially prepared in a de
nite state—their ground states or their excited states.

In our work, although the electromagnetic wave is trea
classically, the momentum exchange between the atom
the field occurs in a definite quantity\k. This result, which
comes from the quantum-mechanical treatment for the m
tion of the center of mass, is very interesting.

VI. CONCLUSION

We have studied the motion of a two-level atom in
electromagnetic wave of circle polarization, given a gene
solution, and discussed in detail its physical significance

In studying the force exerted on an atom by an elect
magnetic wave, the deflection of an atomic beam in an e
tromagnetic standing wave, and other problems, one usu
separates first high-frequency oscillating factor from t
wave function, then omits the high-frequency oscillati
terms in the result. This approximation method~which could
possibly lose some useful information! has not been used in
this paper, because it is not needed. For this reason, one
think that our solution is exact.

At the beginning of this paper, we have assumed that
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atom has only two levels. From the previous sections
may find the condition in which the two-level approximatio
may be used for a many-level atom. For example, we c
sider a three-level atom with the internal levelsE1 , E2 , and
E3 , and assume that there is dipole transition between
levels 1 and 2, and 1 and 3, the corresponding transi
angular frequencies are v215(E22E1)/\ and
v315(E32E1)/\, respectively. Ifv21, v31, and the laser
angular frequency vL satisfy v212vL.0 and
(v312vL)

2@V31, whereV31 is the induced rate betwee
n,
e

-

ts
n

levels 3 and 1~for simplicity s here is assumed.1!, then,
the atom, which initially is in level 1, could transit to level 2
but cannot transit to level 3 from level 1. In this case, leve
may be ignored, and thus the three-level atom may be tre
as a two-level atom. These arguments may be general
clearly to any many-level atom.

A plane wave may be formed from two circularly pola
ized waves, while an arbitrary wave may be expanded
terms of plane waves. Therefore, in studying generally
interaction of atom with electromagnetic waves, one m
find that our work would be useful.
er,

.
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