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Quasiparticle instabilities in multicomponent atomic condensates

Elena V. Goldstein and Pierre Meystre
Optical Sciences Center, University of Arizona, Tucson, Arizona 85721

~Received 26 September 1996!

We extend the Hartree-Bogoliubov theory to the case of a multicomponent Bose condensate and determine
the resulting quasiparticle frequency spectrum. We show that interferences resulting from cross coupling
between the condensate components can lead to a reversal of the sign of the effective two-body interaction and
to the onset of spatial instabilities.@S1050-2947~97!05004-X#

PACS number~s!: 03.75.Fi
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I. INTRODUCTION

Recent demonstrations of Bose-Einstein condensatio
low-density atomic vapors@1–3# have opened up the way fo
the study of weakly interacting quantum degenerate ato
samples. It is now well established that the Gross-Pitaev
equation@4# gives an adequate description of the groun
state properties of these systems@5–8#. In addition, the low-
lying excitations of the condensate have recently been s
ied both experimentally@9,10# and theoretically@11–16#.
Theoretically, one proceeds by applying a linear-respo
analysis to the Gross-Pitaevskii equation, and the quasie
tations spectrum of the condensate is obtained in a Hart
Bogoliubov approach@11–18# by diagonalizing the resulting
set of linear equations via a Bogoliubov transformation@19#.

The goal of the present paper is to extend these studie
the case of multicomponent condensates. Such conden
can, in principle, be generated in several ways. For insta
one can use a double-well trap, whereby two condensate
coupled by quantum tunneling and ground-state collisio
Another possibility involves using two different magnet
sublevels of an atomic vapor, in which case the two com
nents of the condensate correspond to the two electr
states involved.1 Coupling between the two componen
could result from the near-resonant dipole-dipole interact
via an ~adiabatically eliminated! intermediate excited elec
tronic level. Further possibilities involve optically allowe
transitions, although in that case the effects of spontane
emission would certainly need to be included.

Multicomponent condensates are expected to play an
portant role in future experiments, e.g., in situations wh
two condensates are made to interfere with each other@20# or
where Raman transitions are used to optically study
phase of a condensate@21#. It is, however, known from pre-
vious studies of the nonlinear Schro¨dinger equation, for in-
stance, in the context of nonlinear optics@22,23#, that the
stability properties of scalar and multicomponent fields c
be vastly different due to the occurrence of cross coup
between these various components. Hence it is important
timely to extend such an analysis to the case of a quant
degenerate atomic system. We find that, like in the opt
case, the situation in Bose condensation becomes quite
more complex than for scalar fields: the quasiparticle sp

1SeeNote added.
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trum is now characterized by energy gaps and, more imp
tantly, by regions of complex frequencies, indicating that
condensate state becomes unstable.

The stability of multicomponent Bose fluids has been d
cussed previously. In particular, Andreev and Bashkin@24#
have analyzed the dynamics of3He in 4He in a three-fluid
model including two superfluid components and one norm
fluid component. This model leads to the appearance o
cross-fluid density term, which may result in the onset of
instability. A related cross-fluid density was also discussed
the context of a two-component model of Bose-conden
spin-polarized hydrogen@25#. In contrast to these cases, th
low-density atomic systems that we have in mind are
pected to be almost entirely in their condensed phase
T50. The origin of the instability in that case is not th
cross-fluid density, but rather a change in sign of the eff
tive scattering length due to a quantum interference betw
the two components of the condensate.

This paper is organized as follows. Section II formulat
our model and introduces a nonlinear Schro¨dinger equation
that is the generalization of the Gross-Pitaevskii equation
vector fields. Such an equation is familiar, e.g., in the cont
of nonlinear atom optics@26#. The elementary excitations o
this system are described in Sec. III, where we perform
Hartree-Bogoliubov approximation on vector fields and fi
the quasiparticle dispersion relations from a Bogoliub
transformation. We discuss this spectrum in several sim
cases, illustrating the appearance of gaps and instability
gions. Finally, Sec. IV summarizes.

II. PHYSICAL MODEL

We consider an ensemble ofN atoms subjected to the
single-particle HamiltonianH0 and a two-body interaction
V. The corresponding second-quantized Hamiltonian is

H5E d1 d2^1uH0u2&C†~1!C~2!

1
1

2E d$ l %^1,2uVu3,4&C†~1!C†~2!C~3!C~4!,

~1!

wherel denotes a full set of quantum numbers andC( l ) and
2935 © 1997 The American Physical Society
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2936 55ELENA V. GOLDSTEIN AND PIERRE MEYSTRE
C†( l ) are usual atomic annihilation and creation operato
which are assumed here to satisfy the bosonic commuta
relations

@C~ l !,C†~ l 8!#5d~ l2 l 8!. ~2!

The state of the system is given by theN-particle wave func-
tion f (1,2, . . . ,l , . . . ,N), which, in the Hartree approxima
tion, is assumed to factorize as a product of normaliz
single-particle wave functions

f ~1, . . . ,N;t !5)
l51

N

f~ l ,t !. ~3!

The equation of motion for the effective single-particle wa
function results from the Hartree variational principle a
takes the form of the nonlinear Schro¨dinger equation

i\
]f~ l ,t !

]t
5E d2^ l uH0u2&f~2,t !1~N21!E d1 d2 d3

3^ l ,1uVu2,3&f!~1,t !f~2,t !f~3,t !. ~4!

For scalar particles and in the limit ofs-wave scattering,
the potential is of the formV5(4p\2a/m)d(r12), where
m is the particle mass,r12 the relative position of the atoms
anda thes-wave scattering length. Equation~4! reduces then
to the Gross-Pitaevskii equation. In the present situat
however, we consider the case of a multicomponent fi
l5$ i ,r %, wherei labels the component of the field~for ex-
ample an internal degree of freedom of the atoms! and r is
the center-of-mass coordinate. For the specific case of a
component field that we consider in the following, we ha

f~ l !5S fa~x!

fb~x!
D . ~5!

We assume that in the absence of any interaction and ig
ing the effects of kinetic energy, the eigenenergies of
single-particle wave functionsfa(x) and fb(x) are6\d,
respectively. We further include a single-particle coupli
between these two states, with matrix elementR, which is
taken to be constant in space in the present discussion.
amples of such coupling include the electric-dipole inter
tion between ground and excited electronic states, Ra
transitions between Zeeman sublevels, and tunneling
tween condenstates in a double-well trap.~In the case of
optical couplings, the approximationR5const implies that
the condensates are assumed to be small compared t
spatial variations of the light fields.! Finally, the two-body
interaction has nonzero matrix elements both between e
and between different components of the single-part
wave function. These are the ‘‘self-phase modulation’’ a
‘‘cross-phase modulation’’ terms of nonlinear optics, resp
tively. We assume as in the scalar case that thes-wave scat-
tering approximation is adequate, so that the two-body in
action is proportional tod(r12).

The stationary state of the nonlinear Schro¨dinger equation
~4!, which describes the condensate state, is the solutio
the equation
s,
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\v0f~ l !5E d2^ l uH0u2&f~2!1~N21!

3E d1 d2 d3^ l ,1uVu2,3&f!~1!f~2!f~3!.

~6!

SinceR is assumed to be a constant, we seek spatially
mogeneous solutions. For the model at hand, they are s
tions of the coupled algebraic equations

v0fa5
1

2
dfa1Rfb1~Vsufau21Vxufbu2!fa ,

v0fb52
1

2
dfb1Rfa1~Vsufbu21Vxufau2!fb , ~7!

whereVs andVx are the self- and cross-phase modulati
matrix elements of the two-body potentialV. These two
equations, together with the condition that the total num
of particles is equal toN, are readily solved to yield the
spatially homogeneous densities

ra[ufau25
r

2 S 11
1

2

d

v02Vsr
D ,

rb[ufbu25
r

2 S 12
1

2

d

v02Vsr
D , ~8!

as well asv0. The total number of atoms in the two comp
nents of the condensate isNi5r iV, i5a,b, V being the
quantization volume, andN[rV5(ra1rb)V. The explicit
form of v0 is rather combersome and we do not reproduc
here since it is not needed in the following.

We note, however, that substituting Eqs.~8! into Eqs.~7!
yields the quartic equation forv0

Fv02
1

2
~Vs1Vx!rG2F ~v02Vsr!22

1

4
d2G5R2~v02Vsr!2.

~9!

In the caseRÞ0, it follows from the positivity of the right-
hand side of this equation that

2uv02Vsru.udu ~10!

and hence the densities appearing in Eqs.~8! are positive for
all solutionsv0. ForR50, v0 can be given either by

uv02Vsru5udu/2 ~11!

or by

v05~Vs1Vx!r/2. ~12!

The first solution implies that only one of the two comp
nents of the condensate is populated. Specifically,ra5r and
rb50 for v02Vsr5d/2, and ra50 and rb5r for
v02Vsr52d/2. In both cases, the condensate is stable
further discussed later on. For the second solution~12!, the
positivity of the populationsra and rb imposes that
u(Vs2Vx)ru.udu.
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In the next section, we perform a linear-response anal
of this homogeneous two-component condensate. We
that in contrast to the scalar situation, where the conden
solution is always stable for repulsive potentials (V.0), this
no longer needs to be the case here due to the comb
effects of self- and cross-phase modulation.

III. ELEMENTARY EXCITATIONS

In order to study the spectrum of elementary excitatio
above the condensate state, we proceed in the usual fas
by expressing the pure condensate state as the sum of a
ti
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sical condensate wave functionf and fluctuating field opera
tors dc( l ,t), which are assumed to be small perturbation

C~ l ,t !5f~ l !1dc~ l ,t !, ~13!

the fluctuating field operators satisfying the Bose commu
tion relations@4#

@dc~ l ,t !,dc†~ l 8,t !#5d~ l2 l 8!. ~14!

The second-quantized Hamiltonian of the many-particle s
tem can then be linearized in terms of these operators, le
ing in a straightforward fashion to the effective Hamiltonia2
H5E d1d2^1uH0u2&f!~1!f~2!1
1

2E d1 d2d3d4^1,2uVu3,4&f!~1!f!~2!f~3!f~4!

1E d1 d2^1uH0u2&dc†~1!dc~2!1
1

2E d1d2 d3 d4^1,2uVu3,4&

3@dc†~1!dc†~2!f~3!f~4!1f!~1!f!~2!dc~3!dc~4!1dc†~1!f!~2!f~3!dc~4!

1dc†~1!f!~2!dc~3!f~4!1f!~1!dc†~2!f~3!dc~4!1f!~1!dc†~2!dc~3!f~4!#. ~15!
liu-
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n-
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No first-order contribution indc appears in Eq.~15!, a con-
sequence of the fact that the condensate wave func
f( l ) satisfies the nonlinear Schro¨dinger equation. Hence th
effective Hamiltonian ~15! is quadratic in the operator
dc( l ) and dc†( l ). In order to determine the spectrum
elementary excitations of the condensate, this Hamiltonia
diagonalized via a generalized Bogoliubov transformation
yield

H5\E dlv~ l !b~ l !†b~ l !, ~16!

wherev( l ) is the frequency of the elementary mode asso
ated with the complete set of quantum numbersl . The anni-
hilation and creation operatorsb( l ) and b†( l 8) satisfy the
boson commutation relations

@b~ l !,b†~ l 8!#5d~ l2 l 8!. ~17!

We recall that in the scalar case these operators are li
combinations of the original fluctuation operatorsdc and
dc†, obtained via the canonicalu-v transformation@19#.
They describe ‘‘quasiparticle excitations,’’ whose spectru
is directly apparent from the Hamiltonian~16!.

A similar transformation can be introduced in the case
a multicomponent field@28# and reads

b~ l !5E dl8@u~ l ,l 8,t !dc~ l 8,t !1v~ l ,l 8,t !dc†~ l 8,t !#

~18!

the integration being performed over the full set of quant
numbersl 85$ j ,r%. The coefficientsu( l ,l 8,t) and v( l ,l 8,t)
are the matrix elements of theM3M matricesU(t) and
V(t), whereby M is the number of field components
on

is
o

i-

ar

f

M52 in our particular case. Since the generalized Bogo
bov transformation should be canonical, the matricesU and
V must satisfy the relations@28#

UU†2VV†5I , UVT5VUT. ~19!

These properties allow one to expressdc( l ) anddc†( l ) in
terms of the quasi-particle operatorsb( l ) andb( l )† as

dc~ l ,t !5E dl8@u!~ l 8,l ,t !b~ l 8!2v~ l 8,l ,t !b†~ l 8!#,

~20!

where u!( l 8,l ,t) and v( l 8,l ,t) are matrix elements o
U†(t) andVT(t), respectively. The functionsu( l ,l 8,t) and
v( l ,l 8,t) can be determined by substituting Eq.~18! into the
commutator@b( l ),H#5\v( l )b( l ).

Since we are considering specifically the case of elem
tary excitations above a two-component,homogeneouscon-
densate, it is advantageous to work in the momentum re
sentation; hence

u~ l ,l 8,t !→ui j ~p,p8,t ![ui j ~p,t !, ~21!

the last step resulting from the fact that the problem is lo
in momentum space. Assuming that the matrix elementsR,
Vs , andVx are real, it is possible to take the classical co
densate wave functionsfa and fb to be real, with
f i5Ar i . Introducing d̃c( l ,t)[dc( l ,t)exp(iv0t), ũk j(p,t)

2This is a generalization of the linearization scheme used i
recent study of matter wave phase conjugation off Bose cond
sates@27#.
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2938 55ELENA V. GOLDSTEIN AND PIERRE MEYSTRE
5ukj(p,t)exp(iv0t), and ṽk j(p,t)5vk j(p,t)exp(2iv0t) , we
obtain the four coupled equations

\vũ ja~p,t !5F p22m2RS rb
ra

D 1/21VsraG ũ ja~p,t !
1~VxArarb1R!ũ jb~p,t !2Vsraṽ ja~p,t !

2VxArarbṽ jb~p,t !, ~22!

\vũ jb~p,t !5F p22m2RS ra
rb

D 1/21VsrbG ũ jb~p,t !
1~VxArarb1R!ũ ja~p,t !2Vsrbṽ jb~p,t !

2VxArarbṽ ja~p,t !, ~23!

2\v ṽ ja~p,t !5F p22m2RS rb
ra

D 1/21VsraG ṽ ja~p,t !
1~VxArarb1R!ṽ jb~p,t !2Vsraũja~p,t !

2VxArarbũjb~p,t !, ~24!

2\v ṽ jb~p,t !5F p22m2RS ra
rb

D 1/21VsrbG ṽ jb~p,t !
1~VxArarb1R!ṽ ja~p,t !2Vsrbũjb~p,t !

2VxArarbũja~p,t !, ~25!

where j5$a,b%.
The spectrum of eigenvaluesv(p) of this system of equa

tions consists of four branches, but from the time-rever
symmetry of the problem, i.e., symmetry under the trans
mationU↔2V, it follows that if v(p) is a solution, so is
2v(p). Hence we limit our discussion to the physically re
evant positive-frequency branches.

Consider first the situation of degenerate condens
d50. In this case the two condensates are equally popul
ra5rb5r/2 and the eigenenergies satisfy the dispersion
lations

\v2~p!5F p22m S p22m1~Vs1Vx!r D G1/2 ~26!

and

\v1~p!5F S p22m12R1~Vs2Vx!r D S p22m12RD G1/2.
~27!

The first branch of the spectrumv2(p) behaves exactly
as in the case of a scalar Schro¨dinger field@4#, except for the
trivial substitutionV→Vs1Vx . It is gapless and for repul
sive interactions (Vs ,Vx.0) it corresponds to real frequen
cies. For attractive potentials, in contrast,v1(p) can become
pure imaginary, illustrating the instability of~free space!
condensates for attractive interactions. In the following,
therefore concentrate on the more interesting situation of
pulsive interactions.
al
r-

es
ed
-

e
e-

The second branchv1(p) exhibits a considerably differ-
ent behavior. It has a gap atp50 and, more importantly, the
frequencyv1 can become imaginary even though the pote
tial is repulsive, provided that the cross-phase modulat
matrix element is larger than self-phase modulation. In or
to gain some insight into this spectrum, we introduce the n
set of states uc1&5(uce&1ucg&)/A2 and uc2&5(uce&
2ucg&)/A2. We mentioned earlier that the classical conde
sate wave function is real and thatra5rb , so that
fa56fb . This implies that the unperturbed system is
either theuc1& or the uc2& state. For concreteness, assum
that the latter situation holds, so thatf150. Thus linear
perturbations of the condensates give the wave function

C1~r ,t !5dc1~r ,t !e2 iv0t,

C2~r ,t !5@Ar/21dc2~r ,t !#e2 iv0t. ~28!

In this basis, the nonlinear Schro¨dinger equation becomes

\v0f252Rf21
~Vs1Vx!

2
rf2 , ~29!

i\
]dc2

]t
5F p22m1

Vs1Vx

2
rGdc21

Vs1Vx

2
rdc2

† ,

~30!

i\
]dc1

]t
5F p22m12R1

Vs2Vx

2
rGdc11

Vs2Vx

2
rdc1

† .

~31!

In the new basis, the linearized nonlinear Schro¨dinger equa-
tions are decoupled, and one can understand the stabilit
the system in terms of the two uncoupled scalar fieldsdc1

anddc2 . It is straightforward to identify the branch~26! as
the spectrum associated with Eq.~30!. It corresponds to el-
ementary excitations of atoms in the same state as the
densate state. In contrast, the branch~27! is the spectrum of
Eq. ~31!; it corresponds to the elementary excitations in
state different from the condensate state. This explains
gap inv1(p), which corresponds to the energy required
excite that state.

Note that in contrast to the fielddc2 , which is subjected
to the mean-field energy proportional to (Vs1Vx)r as ex-
pected, thedc1 field is subjected to a mean-field energ
proportional to (Vs2Vx)r. This difference in signs can b
interpreted as resulting from the interferences between
two condensates, which are constructive for one of the fi
superpositions and destructive for the other. These inter
ences can have a dramatic effect since they can reverse
sign of the nonlinearity effectively acting ondc1 . If that is
the case, this field behaves as if subjected to anattractive
interaction and thereby becomes unstable@29#. Figure 1 il-
lustrates the gain spectra of this cross-phase-induced m
lation instability for various strengths of the matrix eleme
R. Note that this spectrum becomes gapless forR50 as
should be expected~the fact that two values ofR lead to the
same frequency atp50 is accidental!.

As another limiting case, we consider the situation wh
the coupling between the two components of the Schro¨dinger
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55 2939QUASIPARTICLE INSTABILITIES IN . . .
field results solely from two-body interactionsR50. In this
case the two quasiparticle branches have the dispersion
tions

\v6~p!5H p2

2m F S p22m1Vsr D
6@Vs

2~ra2rb!
214Vx

2Ararb#
1/2G J 1/2. ~32!

Both branches are now gapless and the branchv1(p) is
always stable. However, the other branch can become
stable if the cross-modulation matrix element is large eno
that

Vx
2rarb.S 12 p2

2m
1VsraD S 12 p2

2m
1VsrbD . ~33!

We note that in the case when only one component of
condensate is populated, the system always remains st
Assuming for concretenessra50, we find that the elemen
tary excitations in theb state above the condensate sati
the dispersion relation

\v1~p!5F p22m S p22m12Vsr D G1/2, ~34!

while excitations in thea state satisfy

\v2~p!5
p2

2m
. ~35!

These relations are in agreement with Ref.@30#, where el-
ementary excitations above a multicomponent conden
with only one component populated were considered. In p
ticular, the branch Eq.~34! is phononlike at long wave
lengths, while the branch Eq.~35! describes a single ‘‘impu-
rity’’ quasiparticle with a free-particle dispersion.

FIG. 1. Gain spectra of cross-phase induced modulation in
bility for R50,0.5,1.0,1.5,2.0. Herep is scaled to Am\,
Vs /\52.5, andVx /\55.0 in arbitrary units.
la-

n-
h

e
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For d50, we have as beforera5rb5r/2, so that condi-
tion ~33! becomes

uVxru.U p22m1VsrU, ~36!

expressing the fact that the mean energy resulting from
cross-coupling between condensates must be able to o
come the energy of the scalar condensate, including its m
energy correction. In the Thomas-Fermi limit, this becom
simply uVxu.uVsu .

For the wave vectors in the range defined by Eq.~33!
fluctuations above the condensate grow exponentially in t
or, in other words, a spatial instability develops in the s
tem. Again, the present situation is reminiscent of the cro
phase modulation instability in nonlinear optics. For i
stance, small perturbations in coupled optical fibers w
Kerr nonlinearities are known to lead to the onset of tem
ral instabilities. This is illustrated in Fig. 2, which shows th
dependence of the gain on the detuningd and is very similar
to the gain dependence on the ratio between light intens
in coupled optical fibers~Fig. 7.8 in @22#!. One noticeable
difference between the two situations is that the predic
instabilities in coupled condensates are spatial, whereas
are temporal in the case of optical fibers.

IV. CONCLUSION

In this paper we have extended the Bogoliubov-Hart
approach to the case of coupled condensates. We determ
the spectrum of elementary excitations above an initially
mogeneous condensate and examined its main features
found the appearance of imaginary frequencies, which in
cate that the condensate state becomes unstable. The
tion remains to determine which state the condensate

a-
FIG. 2. Gain spectra of cross-phase modulation instability

d50,0.5,1.0,1.5,2.0. Herep is scaled toAm\, Vs /\55.0, and
Vx /\510.0 in arbitrary units.
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evolve into under the influence of these instabilities. In p
ticular, it will be important to find the true ground state of th
system in those situations where the homogeneous solu
is unstable. This is planned to be the subject of a fut
paper, together with the extension of this work to the case
trapped condensates and of spatially dependent coup
R(r ).

Note added. Recently, an experimental realization of tw
overlapping condensates in a87Rb vapor was reported b
Myatt et al. @31#.
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