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Quasiparticle instabilities in multicomponent atomic condensates
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We extend the Hartree-Bogoliubov theory to the case of a multicomponent Bose condensate and determine
the resulting quasiparticle frequency spectrum. We show that interferences resulting from cross coupling
between the condensate components can lead to a reversal of the sign of the effective two-body interaction and
to the onset of spatial instabilitiegS1050-2947@7)05004-X]

PACS numbdps): 03.75.Fi

[. INTRODUCTION trum is now characterized by energy gaps and, more impor-
tantly, by regions of complex frequencies, indicating that the
Recent demonstrations of Bose-Einstein condensation inondensate state becomes unstable.
low-density atomic vaporisl—3| have opened up the way for The stability of multicomponent Bose fluids has been dis-
the study of weakly interacting quantum degenerate atomi€ussed previously. In particular, Andreev and BasH@#
samples. It is now well established that the Gross-Pitaevskiiave analyzed the dynamics dHe in “He in a three-fluid
equation[4] gives an adequate description of the ground-model including two superfluid components and one normal
state properties of these systeffs-g]. In addition, the low- fluid component. This model leads to the appearance of a
lying excitations of the condensate have recently been studross-fluid density term, which may result in the onset of an
ied both experimentallyf9,10] and theoretically[11-16. instability. A related cross-fluid density was also discussed in
Theoretically, one proceeds by applying a linear-responséhe context of a two-component model of Bose-condensed
analysis to the Gross-Pitaevskii equation, and the quasiexcgpin-polarized hydrogef25]. In contrast to these cases, the
tations spectrum of the condensate is obtained in a Hartreéow-density atomic systems that we have in mind are ex-
Bogoliubov approachl1-18 by diagonalizing the resulting Pected to be almost entirely in their condensed phase at
set of linear equations via a Bogoliubov transformafid®].  T=0. The origin of the instability in that case is not the
The goal of the present paper is to extend these studies ®§0ss-fluid density, but rather a change in sign of the effec-
the case of multicomponent condensates. Such condensaté4 scattering length due to a quantum interference between
can, in principle, be generated in several ways. For instancéhe two components of the condensate.
one can use a double-well trap, whereby two condensates are This paper is organized as follows. Section Il formulates
coupled by quantum tunneling and ground-state collisionsour model and introduces a nonlinear Safinger equation
Another possibility involves using two different magnetic that is the generalization of the Gross-Pitaevskii equation for
sublevels of an atomic vapor, in which case the two compovector fields. Such an equation is familiar, e.g., in the context
nents of the condensate correspond to the two electronief nonlinear atom opticg26]. The elementary excitations of
states involved. Coupling between the two components this system are described in Sec. Ill, where we perform the
could result from the near-resonant dipole-dipole interactiortiartree-Bogoliubov approximation on vector fields and find
via an (adiabatically eliminatedintermediate excited elec- the quasiparticle dispersion relations from a Bogoliubov
tronic level. Further possibilities involve optically allowed transformation. We discuss this spectrum in several simple
transitions, although in that case the effects of spontaneowgfises, illustrating the appearance of gaps and instability re-
emission would certainly need to be included. gions. Finally, Sec. IV summarizes.
Multicomponent condensates are expected to play an im-
portant role in future experiments, e.g., in situations where
two condensates are made to interfere with each ¢g@3or Il. PHYSICAL MODEL

where Raman transitions are used to optically study the e consider an ensemble df atoms subjected to the
phase of a condensdtl]. It is, however, known from pre-  gingle-particle HamiltoniarH, and a two-body interaction

vious stl_Jdies of the nonlinear _Séldinger. equation, for in- \/ The corresponding second-quantized Hamiltonian is
stance, in the context of nonlinear optif&2,23, that the

stability properties of scalar and multicomponent fields can
be vastly different due to the occurrence of cross coupling
between these various components. Hence it is important and
timely to extend such an analysis to the case of a quantum-
degenerate atomic system. We find that, like in the optical n Ef d{IM1,2V[3,4TT(1)W(2)W(3)W(4)
case, the situation in Bose condensation becomes quite a bit 2 ' ' '
more complex than for scalar fields: the quasiparticle spec-

H=f d1d2(1|Ho|2)¥T(1)W(2)

(o
!SeeNote added wherel denotes a full set of quantum numbers ah@l) and
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P1(1) are usual atomic annihilation and creation operators,
which are assumed here to satisfy the bosonic commutation ﬁwod’('):J d2(1[Ho|2)p(2)+(N—1)
relations

’ ’ X y s * .
[w(), w1 ]=6(1-1"). ) fd1d2d3(| 1V[2,3¢"(1)#(2) H(3)
The state of the system is given by tNeparticle wave func- ©)
tion £(1,2,... I, ....N), which, in the Hartree approxima- SinceR is assumed to be a constant, we seek spatially ho-
tion, is assumed to factorize as a product of normalizeqnogeneous solutions. For the model at hand, they are solu-
single-particle wave functions tions of the coupled algebraic equations

N 1

f(1,...N;H=IT #0,1). 3) woha=7 dbat Ry T (Ve bal >+ Vy bl?)
=1

. . . . . 1
The equation of motion for the effective single-particle wave = — Z5brt+ R+ (V 24y 2 7
function results from the Hartree variational principle and Woby= = 5 0Pt Rebat ( sl el Vil @l g, (D

takes the form of the nonlinear Schiinger equation )
whereVg and V, are the self- and cross-phase modulation

ad(l,t) matrix elements of the two-body potenti&l. These two
ih P :f d2<I|H0|2)¢(2,t)+(N—1)f d1d2d3 equations, together with the condition that the total number
of particles is equal td\, are readily solved to yield the
X(1,1V]2,3) ¢*(11) p(2,t) p(31). (4 spatially homogeneous densities
For scalar particles and in the limit sfwave scattering, PaE|¢a|2:B(1+E L)
the potential is of the formV=(4x#2a/m)é(ry,), where 2 2 wo—Vgp
m is the particle mass,;, the relative position of the atoms,
anda thes-wave scattering length. Equatiof) reduces then —|¢ |2:B(1_E 6 ) ®
to the Gross-Pitaevskii equation. In the present situation, Po=1Pol" =5 2 wo—Vep )’

however, we consider the case of a multicomponent field _
|={i,r}, wherei labels the component of the fielfor ex- ~ as well aswy. The total number of atoms in the two compo-
ample an internal degree of freedom of the atparsdr is ~ Nents of the condensate I§;=p;V, i=a,b, V being the
the center-of-mass coordinate. For the specific case of a twéiuantization volume, antl=pV=(p,+pp)V. The explicit
component field that we consider in the following, we have form of wq is rather combersome and we do not reproduce it
here since it is not needed in the following.

ba(X) We note, however, that substituting E¢R) into Egs.(7)
& (x))' (5)  vyields the quartic equation favg

b

¢(|)=<

2

1 1

We assume that in the absence of any interaction and ignolmo— 5 (VstVidp (wo—Vsp)®— 152 =R*(wo—Vsp)?.
ing the effects of kinetic energy, the eigenenergies of th )
single-particle wave functiong,(x) and ¢,(x) are £4 5,
respectively. We further include a single-particle couplingin the caseR#0, it follows from the positivity of the right-
between these two states, with matrix elemBytwhich is  hand side of this equation that
taken to be constant in space in the present discussion. Ex-
amples of such coupling include the electric-dipole interac- 2|wo—Vep|>| 4| (10
tion between ground and excited electronic states, Raman . . .
transitions between Zeeman sublevels, and tunneling béi"d hence the densities appearing in Egsare positive for
tween condenstates in a double-well tram the case of &ll Solutionsw,. ForR=0, o can be given either by
optical couplings, the approximatigR=const implies that lwo—Vep|=| 812 (11)
the condensates are assumed to be small compared to the 0™ VsP
spatial variations of the light fieldsFinally, the two-body by
interaction has nonzero matrix elements both between equal
and between different components of the single-particle wo=(Vs+Vy)pl2. (12
wave function. These are the “self-phase modulation” and
“cross-phase modulation” terms of nonlinear optics, respec-The first solution implies that only one of the two compo-
tively. We assume as in the scalar case thatsti@ve scat- nents of the condensate is populated. Specifically; p and
tering approximation is adequate, so that the two-body interpp,=0 for wy—Vep=46/2, and p,=0 and p,=p for
action is proportional ta5(r 15). wo—Vgp=—6/2. In both cases, the condensate is stable, as

The stationary state of the nonlinear Salinger equation further discussed later on. For the second solu(i®), the
(4), which describes the condensate state, is the solution gfositivity of the populationsp, and p, imposes that
the equation [(Vs—V,)pl>]4d.
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In the next section, we perform a linear-response analysisical condensate wave functignand fluctuating field opera-
of this homogeneous two-component condensate. We fintbrs §i(l,t), which are assumed to be small perturbations,
that in contrast to the scalar situation, where the condensate
solution is always stable for repulsive potentials>0), this W(l,t)=¢(1)+oy(l,0), (13
no longer needs to be the case here due to the combin

?He fluctuating field operators satisfying the Bose commuta-
effects of self- and cross-phase modulation. g P fying

tion relations[4]
lIl. ELEMENTARY EXCITATIONS [Sy(l,0), 8411, 0)]=8(1—1"). (14)

In order to study the spectrum of elementary excitationsThe second-quantized Hamiltonian of the many-particle sys-
above the condensate state, we proceed in the usual fashitem can then be linearized in terms of these operators, lead-
by expressing the pure condensate state as the sum of a clasg in a straightforward fashion to the effective Hamiltorfian

1
H= J d1d2(1|H|2)p* (1) H(2) + Ef d1d2d3d4(1,2V|3,4 ¢*(1)d*(2) p(3) p(4)

+J d1d2(1|H0|2)5¢T(1)5¢(2)+%f d1d2 d3d4(1,2V|3,4)

X[y (1) 8T (2) B(3) p(4)+ ¢ (1) p*(2) () ¢h(4) + 64" (1) ¢*(2) p(3) 5y(4)
+0yT(1) 9" (2) 5(3) p(4) + ¢*(1) 54 (2) 4(3) Sub(4) + ¢* (1) 84 (2) S(3) p(4) . (15

No first-order contribution inS¢s appears in Eg(15), a con- M=2 in our particular case. Since the generalized Bogoliu-
sequence of the fact that the condensate wave functiobov transformation should be canonical, the matrideand
¢(l) satisfies the nonlinear Schiinger equation. Hence the V must satisfy the relation28]

effective Hamiltonian(15) is quadratic in the operators

Sy(1) and 8¢7(1). In order to determine the spectrum of uuT-wvt=1, uvT=vuT. (19
elementary excitations of the condensate, this Hamiltonian is

diagonalized via a generalized Bogoliubov transformation torhese properties allow one to expresg(l) and s4'(1) in
yield terms of the quasi-particle operatdsél) andb(l)" as

— t

H—ﬁfd'w(')b(') b(l), (16) 5lfl(|,t):fdl’[U*(l',|,t)b(")_v(|',|,t)bT(|,)],

. . (20
wherew(l) is the frequency of the elementary mode associ-
ated with the complete set of quantum numberghe anni- where u*(I,1,t) and v(l’,l,t) are matrix elements of
hilation and creation operatoits(l) and b'(1") satisfy the ut(t) and V(t), respectively. The functiona(l,!’,t) and
boson commutation relations v(l,1",t) can be determined by substituting Ef8) into the

T\ T= S| —1" commutator b(1),H]=Aw(l)b(l).
[b(h),b7()]=a=1"). (17) Since we are considering specifically the case of elemen-

ary excitations above a two-componehgmogeneouson-

We recall that in the scalar case these operators are Iineéensate it is advantageous to work in the momentum repre-
combinations of the original fluctuation operatasg and sentatio}r hence 9 P

5y, obtained via the canonical-v transformation[19].
They describe “quasiparticle excitations,” whose spectrum

is directly apparent from the Hamiltonid6). u(hl",H—ui(p,p",HH=Uj;(p,1), (21)
A similar transformation can be introduced in the case of ) )
a multicomponent field28] and reads the last step resulting from the fact that the problem is local

in momentum space. Assuming that the matrix elem&hts
; V¢, andV, are real, it is possible to take the classical con-
b(|)=f dl’fu(l,1",0) (1", ) +o(1,17,1) 47 (17,1)] densate wave functionsp, and ¢, to be real, with

(18 ¢i=\pi. Introducing Sy (l,t)=8y(l,t)explwgt), Txi(p,t)

the integration being performed over the full set of quantunt——
numbersl’={j,r}. The coefficientsu(l,l’,t) andv(l,l’,t) 2This is a generalization of the linearization scheme used in a
are the matrix elements of thel XM matricesU(t) and recent study of matter wave phase conjugation off Bose conden-
V(t), whereby M is the number of field components; sateq27].



2938

=uj(p.)explwgt), and vy;(p,t) =v,;(p,t)exp(—iwgt) , we
obtain the four coupled equations

B 02 pp| 12 _
holja(p,t)= ﬁ—R( o] TVsPa Uja(p,t)
+(Vilpapy + R)Tjp(P,t) = Vspalja(P,t)
~Vs\papsUjp(P.b), (22
_ p2 1/2 _
fioujp(p,t)= ﬁ—R< +Vspp [Ujp(P,t)
+(me+n)ﬁja(p,t)_Vspb;jb(pyt)
~VspapuUja(Pib), (23
B 02 112 N
—hovj(p,t)= %—R< o +Vspa|vja(p,t)
+(Vx\papp+ R0 jp(p,t) = Vepalija(p,t)
=V Vpapplip(P,t), (24)
_ p2 1/2 _
—hwvjp(p,t)= ﬁ_R( +Vspp [Vjp(P,t)

+(VxVpappt R)Vja(P,t) — Veppljp(p,t)
— Vi \/Papbﬁja(p,t), (25)

wherej={a,b}.

The spectrum of eigenvalues p) of this system of equa-
tions consists of four branches, but from the time-revers
symmetry of the problem, i.e., symmetry under the transfor-

mation U~ —V, it follows that if w(p) is a solution, so is

—w(p). Hence we limit our discussion to the physically rel-

evant positive-frequency branches.

Consider first the situation of degenerate condensate
5= O In this case the two condensates are equally populat

pa=pp=p/2 and the eigenenergies satisfy the dispersion re:
Iat|0ns
pz pz 12
and
p2 p2 12
ho(p)= {—+2R+(V Vx)p) —+2R} .
(27)

The first branch of the spectrum_(p) behaves exactly
as in the case of a scalar Sctiimger field[4], except for the
trivial substitutionV—V+V,.

cies. For attractive potentials, in contrast, (p) can become
pure imaginary, illustrating the instability offree spacg

It is gapless and for repul-
sive interactions Vs,V,>0) it corresponds to real frequen-
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The second branch , (p) exhibits a considerably differ-
ent behavior. It has a gap pt=0 and, more importantly, the
frequencyw . can become imaginary even though the poten-
tial is repulsive, provided that the cross-phase modulation
matrix element is larger than self-phase modulation. In order
to gain some insight into this spectrum, we introduce the new
set of states|y,)=(|ve)+|¥e)/V2 and | )= (|1
—|¢//g>)/ﬁ We mentioned earlier that the classical conden-
sate wave function is real and that,=p,, so that
¢a=* ¢p. This implies that the unperturbed system is in
either the|, ) or the|y_) state. For concreteness, assume
that the latter situation holds, so that, =0. Thus linear
perturbations of the condensates give the wave function

\PJr(rrt): 6‘/’+(r1t)e_iwoty
W _(r,t)=[\pl2+ S¢r_(r,t)]e w0, (28)

In this basis, the nonlinear Scliinger equation becomes

(V+ %)

hweh =—Rep_+-——"pd_, (29)

L A5y [ PP VetV VetV

' T‘[ﬁ 2 POVt POy,
(30)

. a5¢+_ p V X S_V)( t
|ﬁ ot = ﬁ‘FZR‘F 2 p 5¢'++ 2 p5lﬂ'+
(31)

aln the new basis, the linearized nonlinear Sclimger equa-

ions are decoupled, and one can understand the stability of
the system in terms of the two uncoupled scalar figigs
and 8¢ _ . Itis straightforward to identify the brand6) as
the spectrum associated with EQ). It corresponds to el-
ementary excitations of atoms in the same state as the con-
Sensate state. In contrast, the bra2® is the spectrum of

g. (31); it corresponds to the elementary excitations in a
state different from the condensate state. This explains the
gap inw, (p), which corresponds to the energy required to
excite that state.

Note that in contrast to the fieli_ , which is subjected

to the mean-field energy proportional tv{+V,)p as ex-
pected, thedy, field is subjected to a mean-field energy
proportional to ¥s—V,)p. This difference in signs can be
interpreted as resulting from the interferences between the
two condensates, which are constructive for one of the field
superpositions and destructive for the other. These interfer-
ences can have a dramatic effect since they can reverse the
sign of the nonlinearity effectively acting ofy, . If that is
the case, this field behaves as if subjected tcatiractive
interaction and thereby becomes unstdi@@]. Figure 1 il-
lustrates the gain spectra of this cross-phase-induced modu-
lation instability for various strengths of the matrix element
R. Note that this spectrum becomes gapless/er0 as
should be expectedhe fact that two values R lead to the

condensates for attractive interactions. In the following, wesame frequency gi=0 is accidental
therefore concentrate on the more interesting situation of re- As another limiting case, we consider the situation where

pulsive interactions.

the coupling between the two components of the Sdiiger



55 QUASIPARTICLE INSTABILITIES IN . .. 2939
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FIG. 1. Gain spectra of cross-phase induced modulation insta-
bility for R=0,0.5,1.0,1.5,2.0. Herep is scaled to ym#,
V¢ /h=2.5, andV, /% =5.0 in arbitrary units.

FIG. 2. Gain spectra of cross-phase modulation instability for
6=0,0.5,1.0,1.5,2.0. Hergp is scaled toym#, V¢/A2=5.0, and
V, /i =10.0 in arbitrary units.

field results solely from two-body interactiofi&=0. In this

case the two quasiparticle branches have the dispersion rela- FOr 9=0, we have as beforg, = p,=p/2, so that condi-
tions tion (33) becomes

2
p
[Vip|>| 5=+ Vep

2 2
hw+<p)=[2p—[(p—+vsp

m|\2m : (36)

2m

1/2
+[Vi(pa—pp)2+4Viy 1/2} . (32
[Vs(pa=py) xVPapy] 32 expressing the fact that the mean energy resulting from the

. cross-coupling between condensates must be able to over-
Both branches are now gapless and the branclip) is  come the energy of the scalar condensate, including its mean
always stable. However, the other branch can become uRmergy correction. In the Thomas-Fermi limit, this becomes
stable if the cross-modulation matrix element is large enougRimply |v,|>|V| .
that For the wave vectors in the range defined by E2B)
2 2 fluctuations above the condensate grow exponentially in time
2 lp lp or, in other words, a spatial instability develops in the sys-
Vipapn™> 52_+Vspa 52_+Vspb . (33 ! . ’ . L L.
m m tem. Again, the present situation is reminiscent of the cross-

. hase modulation instability in nonlinear optics. For in-
We note that in the case when only one component of thé y P

condensate is populated, the system always remains stables - honjinearities are known to lead to the onset of tempo-
Assuming for concretenegs, =0, we find that the elemen- o jngapilities. This is illustrated in Fig. 2, which shows the
tary excitations in theb state above the condensate satisfyyenendence of the gain on the detuningnd is very similar
the dispersion relation to the gain dependence on the ratio between light intensities
2 112 in coupled optical fibergFig. 7.8 in[22]). One noticeable
p—+2vsp” , (34)  difference between the two situations is that the predicted
2m instabilities in coupled condensates are spatial, whereas they
are temporal in the case of optical fibers.

tance, small perturbations in coupled optical fibers with

2
ﬁer(p):[zp—m

while excitations in thea state satisfy

2

p
ho_(p)= o (35 IV. CONCLUSION

In this paper we have extended the Bogoliubov-Hartree
These relations are in agreement with R@0], where el-  approach to the case of coupled condensates. We determined
ementary excitations above a multicomponent condensatie spectrum of elementary excitations above an initially ho-
with only one component populated were considered. In parmogeneous condensate and examined its main features. We
ticular, the branch Eq(34) is phononlike at long wave- found the appearance of imaginary frequencies, which indi-
lengths, while the branch E¢35) describes a single “impu- cate that the condensate state becomes unstable. The ques-
rity” quasiparticle with a free-particle dispersion. tion remains to determine which state the condensate will
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