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Distribution in angle of the Bloch correction in electronic stopping
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The position in angular space of the Bloch correction to the perturbative electronic stopping power formula
of Bethe is investigated. It is demonstrated that this nonperturbative correction which originates in close
collisions between the penetrating ion and target electrons appears at small scattering angles and that its
position depends on tHadiabati¢ cutoff at large distances. In the limit of infinite range the correction moves
to infinitely small angles but remains finite and both the exact and the perturbative cross sections approach the
Rutherford value at all finite angles. The picture is consistent with the lack of a Bloch-type correction in the
energy-loss stragglingS1050-29477)08504-1]

PACS numbe(s): 34.50.Bw, 34.80-i, 03.65.Nk, 11.80.Et

I. INTRODUCTION AL=—Ref(1+ikl2)—y
When a charged particle penetrates matter at nonrelativis- _ Kzi 1 4
tic though not excessively low speed, it looses energy essen- T 45 (I D)[(1+1)%+ k2/4] @

tially due to interaction with target electrons only. The stop-

ping formula of Bethe[1] derived in first-order quantal With ¥ andy denoting Euler’s constant(=0.5772....) and
perturbation theory is a standard reference for the averagée logarithmic derivative of the gamma function, respec-
energy_|oss rate experienced_ It reads t|Ve|y. Othe-r corrections |nC|ude the SO'Ca”ed Bal’kas term
and corrections for capture and loss of electrons, as well as
for finite target electron motion.

The Bloch correction originates from close encounters be-
tween the penetrating charged particle and target electrons.
In a recent papef5], the deviation of the close-collision
contribution to the stopping from the value predicted by
quantal perturbation theory is examined for swift particles
moving at arbitrary speeds. Although the emphasifbinis

2mp? on the relativistic regime, the article is launched with a de-
=In( | ) (2)  tailed discussion of the nonrelativistic case. This discussion
is, in part, aimed at the clarification of a seeming paradox in
Rutherford scattering, namely, that despite Rutherford scat-
In Egs.(1) and(2) Ze denotes the projectile charge,is the  tering being valid both classically and in quantum theory
electron massn the average electron density, whileis  (exact theory as well as first order perturbajiciine Bloch
given in terms of dipole oscillator strengtligy and transi-  correction may be extracted by simple operations which ap-
tion frequencieso g of the target medium of atomic number pear as simple angular integrations of differences in cross
Z, as In=2Z,"S foIn(%|wn|). The quantity is the projectile  sections.
speed, which here is assumed to be significantly higher than The purpose of the present paper is to supplement the
typical target electron velocities. The Bethe formula appliegliscussion given in5] of the above-mentioned apparent
for moderate charge numbels at not too low velocities, paradox. In particular, it will be demonstrated explicitly
more precisely, it applies when where in the angular spectrum the Bloch correction appears
[6]. As a central point the dependence of the angular position
5 of this close-collision correction on thediabati¢ cutoff at
= 2Z¢ <1: 3) large distances is exhibited, and it is shown how the appear-
fiv ance of the Bloch correction in stopping still is consistent
with Rutherford scattering being valid independently of the
value of the parametet. A few comments are included on
0the lack of a Bloch effect in straggling. Throughout, the dis-

be considered. Of interest in this paper is the so-called Blocfussion is restricted to the nonrelativistic case. Transcription
correction[3], which accounts for the nonperturbative char- to the relativistic case is straightforward by application of the

acter of the interaction between the incoming particle and‘ormahsm laid out in[5].
target electrons and which bridges the gap between the Bethe

dE 477%e*

dx  mo? nL @D

with the L factor defined as

see, for instance, the discussion given by B&ir
Various corrections to the Bethe formula are in general t

\ . . s Il. FORMALISM
formula and Bohr’s classical stopping form{id, pertaining
to for large values ok. It may be written as a correction In [5] it is demonstrated that the requested correction
AL to Eq.(2) of AL to the perturbative stopping logarith(@) may be com-
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puted as a difference in transport cross sections obtained in do )
an exact and in a perturbative quantal calculation, aa ~IfO1%, ®

— ____per 2x2

AL=(oy— o™/ (mk*K?). ®)  where the scattering factd( #) for the Coulomb potential is
The transport cross sections, which belong to scattering gy'ven as
free electrons by the penetrating ion=2mX being the x
wavelength of the relative motion, are obtained from the cor- f(6)= = 2, (21+1)e? P (cosh); 9)
responding differential scattering cross sectidasas 21 =0
cf. [8]. The phase shifts for the Coulomb case are the famil-
O-trzj d(r(l—cosﬂ), (6) iar

where 6 denotes the scattering angle in the center-of-mass m=ard (I+1-ix/2)=—arg’(I+1+ix/2). (10
system; that is, essentially the electron scattering angle in thﬁ:
rest frame of the projectiléunless this itself is a very light
particld. In a partial-wave analysis the integration over
angles may be performed term by term to yield

is exactly this simple form which, when applied in E@),
allows a reduction to expressid4).

In order to obtain the perturbation value of the scattering
cross section, an expansion|6f6)|? to second order ik is
needed. To this order, the phase shift6) reduce to
a'tr=4777(2|_§:o (14 1)Sir(8,— 841), 7)

[
1

. 2nP=cik, C=y— 2 o, (12)

where 8, denotes the phase shift of the wave of angular mo- =

mentumlz. . .
With the Coulomb potential the suif?) is divergent if with co=1, and the perturbation value of the absolute square
extended to infinity. This holds true in the perturbative casé®f the scattering factor reads
(small k) as well as in the exact calculatidgany «). How- 2 2, a2 2
ever, by taking the difference between the two transport [£(0)|per= (So+ S1—S0S,) K°/4 (12
cross sections t(_arm.by term before summat_ior_l is pe_rformeg,ith the sumsS,, defined as
the last expression in E@4) emerges, and this is obviously
convergent. It should be noted that the procedure of produc- *
ing exactly this result by subtracting the two divergent sums Sn= sz c"(21+1)P|(cos¥), m=0,1,2. (13
relies on the fact that the adiabatic limit which determines 1=0
the effective maximum value of the angular momentum es- . .
S ) It may be noted, that besides the two terms proportional to
sentially is independent af. Had this not been the case, then , the perturbation resultl?) contains one term, the first
AL would have contained an additional term essentially pro-K , the p ' '
X ; -~ which is independent of.
portional to the sum of 1/between the two effective maxi- The difference|f(8)[2—|f(6)|2.. when integrated over
muml values, a number which of course could be large if the ' (6) (6)pert W Integ v

, per :
effective maxima were very different. angles with (-cos#) and converted according to E(p)
In the present analysis the aim is an investigation of th

éeproduces the value dfL given in Eq.(4). And since con-
angular position of the Bloch correction, hence Ef.and vergence of the in_tegrated diffgrencie with increqiimgfast

the results it produces will only be used for reference. In-W'th, terms essentially decreasing Igs”, on'ly relatlv'el'y few
stead, we need an explicit expression for the differentiaPartial waves are r12eeded to ozbtam a high precision. How-
cross section for electron scattering in a potential which i€Ver. as far af(6)|* and|f(6)[peq are concerned individu-
essentially coulombic out to a large distance where it is ef2lly, the situation is completely different. The sums foare
fectively cut off. As scattering potential, one may think of a Simply divergent. If summed up to a maximuimvalue of
Yukawa-type potential. However, if choosing so a Barkas max: the absolute squares oscillate with increasing amplitude
correction will appear and this will to some extent obscureand increasing number of zero pointslagy is increased. It
the analysis. To avoid the Barkas correction a Coulomb poMay also be noted, that for any fixed value raf however
tential with a Gaussian screening function may be chosen, cemall, the Coulomb phase shifts become large at sufficiently
[7]. A third alternative is to work directly with the Coulomb large values of, cf. Egs.(10) and(11). The Rutherford cross
potential, compute the corresponding contributions to thé€ction is never approached. The situation is clearly illus-
scattering factor for the individual partial waves, and thentrated by the value of the stopping logaritir obtained by
introduce the cutoff by artificially diminishing contributions integrating (1-cos9)|f(6)]” over angles and converting ac-
for high angular momenta. Although the Coulomb potentialcording to Eq.(5),

has its own problems this third alternative is chosen below

since it is important to realize that the only ingredients L,_'ma><+1+lmax ' I+1 (14
needed in order to produce the Bloch correction are a Cou- G < (1+1)%+ %4

lomb potential and a cutoff. Besides, this choice makes the

numerical analysis quite simple. While the second term on the right-hand side is the term that

The starting point is the same expression which lead teemains for unrestricted summatiéwith I,,,, tending to in-
Eq. (7), namely, finity), the first term remains due to lack of the compensating
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FIG. 1. Differential cross sections for finite value ot-X. All FIG. 2. Variation of differential cross sections with primary en-

cross sections are given in units of the Rutherford value at an§'dy for @ heavy ionz=92. The three curves stgrting out at maxi-

given angle and shown as functions of Ir(dos? ), whered denotes mum‘vglue for backward scatterlng.dlspl|eiy(0)| Wh.l|e the thzree

the scattering angle. The dashed curve corresponffx(e)|®, the ~ rémaining. curves show the difference functioffx(6)|en

dotted t0|fx(0)|sem and the full-drawn curve displays the differ- —_|fX_( 0)|°. Th_e value of the convergence parameter is O.99_and the

ence|fx(0)|2 —|fx(8)|2. The projectile atomic number B=92 kinetic energies of the electron in the rest frame of the ion are
pert .

and the convergence parameter attains the vi€.99. The ki-  0-00Inc* (dashed curves 0.0Imc® (full drawn), and 0.Inc?

netic energy of the electron in the rest frame of the ion is(chained curvescorresponding to ion kinetic energies in the labo-

0.0Im¢, i.e., the kinetic energy of the ion in the laboratory is 9.3 ratory of 0.93, 9.3, and 93 MeV/amu. The corresponding values of
MeV/amu. the parametek are 30, 9.6, and 3.2. Axes and units are as in Fig. 1.

term, which in the unrestricted summation appears fo%ﬁﬁ;ﬁgfgaettg:ﬁ]rvilofrﬁg g;g;rgg rr:ga);;R/Lérr:/;LrSZ),T\rl]v: I1!i?1ite
I =1axt 1. Obviously, the first term becomes large for Iargev | f1-X in? i P toff at r% Il anal Whil t
| max» IN particular if x is small. alue o ples @ chiall & sma’ anges. °d

Although divergent, the series fdris summable as the larger angles the Rutherford cross section is approached.

limit of a power series on its radius of convergence. This haéséaar:éngametg 2 W;?(Ia;ringrk;?clae)tstfirrlrt]r?ergg;)crt],cg:see ?#;?]ﬁ;oé;p-
been discussed and utilized by Mott in the relativistic cas . 9 g

for a different purpose, cf9]. We shall adopt the procedure he perturbative case. The difference between the two peaks

here in order to mimic an effective cutoff at some laige at rather small angles. With t_he abscissa ch_osen as
: In(1-cos¥) the area under the difference curve gives di-
value and hence in place 6fuse

rectly —2AL, hence obviously the Bloch correction, which

x " originates in close collisiongsmall 1), appears at small
fx(0)= 5 > (21+1)X'e?"P,(cosd), (15 ~angles. _ _
2i =0 The variation of the cross sectiofy(6)|? and the differ-

. o ence|fx(0)|ge,t—|fx(49)|2 with primary energy is illustrated
where the convergence parameleris a number which is in Fig. 2 for a high atomic number and in Fig. 3 for a low

slightly less than 1. The corresponding perturbation value igtomic number. As the energy is increased, the difference
still given by Eqgs.(12) and(13) except for a factor oK' to

be included in each of the sung,. It may be noted, that in

the limit X— 1~ the sumS; vanishes for any nonzero angle; 1.5[ ' ‘ ' ‘ '
see alsd8]. It may further be noted that for any finite value & i 7N
of 1—X the sum(4) giving the Bloch correction should in- g - / AN
clude a factor ofx?'. s 1or i e
z /
IIl. NUMERICAL RESULTS 3 o5 - 7 ]
Figure 1 display$fx(0)|,2)ert and|fy(6)|? as well as their 2 J/ \x\
difference, all in units of the Rutherford cross section S ool S CTee h
S 1
(dU/dQ)Rutherford:(K2/4)K2/(1_0099)21 (16) @ b
0 -
0 _O¢5 L 1 1 Il Il Il
as functions of In(*cos¥) for a standard heavy-ion case. S 12 -10 -8 -6 -4 -2 0 2

The convergence parameter is chosen toxi3€0.99, and In(1-cos#)

summation is performed up to a largevalue (10 00Q in

order to ensure convergence at all angles. Scattering into the FIG. 3. As Fig. 2 but for a light ionZ=10. The parametek
backward hemisphere corresponds to positive values of thatains the values 3.3, 1.0, and 0.35 in the three cases.
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FIG. 4. Variation of difference cross  section FIG. 5. As Fig. 4 but displaying the exact cross section

|£x(6) |per— | £x(6)|? with projectile atomic number. The value of |fx(6)|2. The lowest full-drawn curve is fa =92. The upper solid
the convergence parameter is 0.99 and the kinetic energy of thl?ne which applies foZ=2, peaks with a maximum of 3.55.
electron in the rest frame of the ion is 0B, i.e., the kinetic ' '

energy of the ion in the laboratory is 9.3 MeV/amu. The chargedecreased by a factor of 10, only the perturbation curves for
numbers are 92upper full-drawn curvg 54 (dotted, 36 (dashedl the two lowest charge numbers separate from the rest, but in
18 (chained, 10 (triple-dotted-dashed4 (long dashes and 2(full- this case without developing a peak.
drawn curve near 0.0 at all anglegéxes and units are as in Fig. 1. All the numerical results discussed above were obtained
for the same value of the convergence paramétaramely,
function becomes smaller, yielding a lower value-oAL, 1-X=0.01. The introduction of the convergence parameter
and Rutherford scattering holds to smaller angles. Note thdt Eq. (15 mimics an effective cutoff at some largevalue,
increasing energy implies decreasing value of the paramet@nd the lower the value of-1X the higher is the effective
k, cf. Eq. (3). For the high charge, the perturbation value maximuml. A major point of this investigation is to demon-
closely follows that displayed in Fig. 1 at all three energiesstrate how the angular spectrum is influenced by the cutoff
For the low charge, on the other hand, the perturbation crosdnd, in particular, to see how the close-collision Bloch cor-
section develops a peak structure at the highest energgction moves about in angular space as the long distance
closely resembling the structure of the exact cross section #teraction is altered. Furthermore, it is the aim to demon-
this energy(the difference curve attaining low values at high strate that the appearance of the Bloch correction does not
energiek The appearance of the peak will be discussed furprevent differential cross sections, both perturbative and ex-
ther below. Although a comparison with experiments is notact ones, to approach the Rutherford value. Hence, the varia-
the aim of the current investigation a warning should betion with the convergence paramet¥ris to be exploited
issued before the discussion of Figs. 2 and 3 is closed: At theext.
highest energy, relativistic corrections, which are not in- Figure 6 demonstrates the variation of the difference func-
cluded in the present study, are important; for the higher ofion |fx(9)|,23en—|fx(9)|2§ that is, the variation of the Bloch
the two charges they reduce the valueAdf to roughly half  correction as + X varies between 0.016 and 0.001. What is
of the nonrelativistic value and for the lower of the two immediately apparent is that the correction moves left; that is
charges they closely balance the nonrelativistic result tdao smaller angles, as-1X decreases. The shape of the curve
yield a AL which nearly vanishes, cf5]. At the lower en- is essentially the same in all cases, only small changes ap-
ergies the heavier ion will carry electrons and additional corpear due to the cutoff of the wide-angle scattering tail for the
rections apply. Besides, in a study of stopping powers, shehigher values of + X [this is reflected in a slight variation of
correctiong(finite electron velocitigsand the Barkas correc- AL of Eq. (4) when a factor ofX? is included. For the
tion should be included. considered heavy-ion case, the maximum of the difference
The variation with projectile atomic number at fixed en- curve appears at angles ef7.8(1—X); that is, it varies
ergy is demonstrated by Figs. 4 and 5. The difference funchetween 7° and 0.4° in Fig. 6. So, what the figure demon-
tion, Fig. 4, is seen to be concentrated in the same angulatrates explicitly is that the close-collision Bloch correction
region for all Z values with a slight drift towards larger is always present some place in angular space when an ef-
angles for largec. The exact cross section, Fig. 5, is againfective cutoff at large distances is introduced. The correction
seen to follow the Rutherford law closely to still lower just wanders around, its position depending on how far out
angles as the value &f is decreased. For very small charge the effective cutoff appears, such that increasing range im-
numbers(small k) a peak structure similar to that seen in plies migration towards smaller angles.
Fig. 3 at the highest energy appears in the exact cross sec- As the Bloch correction moves to smaller angles with
tion. On a plot similar to Fig. 5, the perturbation cross sec-decreasing value of 41X and otherwise remains undis-
tions are hardly distinguishable for the three higher chargeurbed, Fig. 6, the cross sectipfy(6)|? approaches the Ru-
numberd36, 54, and 9%, whereas for lower charge numbers therford value over an increasing range of angles starting in
differences appear with the peak structure developing for théhe wide-angle scattering domain. This is demonstrated in
two lowest charges displaye@ and 2. If the energy is Fig. 7, which shows the exact cross section for the same case
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FIG. Variation  of cross FIG. 8. Contributions to the perturbative cross section at two

|f(8)|2er—|Tx(8)|? with the convergence parameter. The crossdifferent values ofX. The solid curves display (tcow)?S; and
section is given in units of the Rutherford value and shown as dhe chained curves show Icosd)(S—S,S,)/«% cf. text for de-
function of If(1—cos9)/2]. Backward scattering corresponds to tails. The solid curve showing maximum at the lowest angle and the

values of the abscissa varying betweeim2 and 0. The values of
1— X are 0.001(solid curve, 0.002(dotted curve 0.004(dashed,
0.008 (chained, and 0.016(triple-dotted-dashed The projectile

chained curve showing a cutoff at the lowest angle are computed
for X=0.999 while the remaining curves are 8§=0.99. The ab-
scissa is chosen as in Fig. 1 and the quantities plotted are dimen-

atomic number i€ =92 and the kinetic energy of the electron in the sionless.

rest frame of the ion attains the value &, i.e., the kinetic

energy of the ion in the laboratory is 9.3 MeV/amu. The maximum 2 make Up|fx( ,9)|r2)ert in units of the Rutherford cross sec-

| value is chosen to be 100 000 except for X=0.016, where
10 000 suffices.

tion, cf. Eqs.(12) and(16). For high values ok the monotic
curves obviously dominate, and we encounter essentially the
Rutherford value down to a smafl-dependent cutoff angle

andX values as in Fig. 6. Hence, when the effective cutoff is(considerably smaller than the cutoff angle for the exact
increased (* X decreasex the Rutherford value applies casg. For low values ofx, the peak, which was evident in

way down to small angles. In the limX—1~ the Bloch

Figs. 3 and 5, develops. TI% peak moves with X with

correction has moved to zero angle, and the Rutherford crossssentially undisturbed shape much like the Bloch correc-

section is found at all finite angles.

tion, Fig. 6, and in the limiX— 1~ its contribution is zero at

While the main point of this investigation is illustrated by all finite angles. In this limit, Fig. 8 clearly demonstrates that
Fig. 1 and, in particular, Figs. 6 and 7, the behavior of thethe perturbative cross section equals the Rutherford value at
perturbative cross sectioHX(0)|§en also deserves a few all finite angles.
words. Figure 8 displays the variation of the ingredients

(1-cos9)’S and (1-cosd )(S—SS)/«* with angle for
two different values oK. The sumsS,, are given by Eq(13)
with a factor ofX' included on each term. The plotted quan-

IV. CONCLUDING REMARKS

No correction similar to the Bloch correction appears in

tities are universal insofar as they do not depend on the prdhe average square fluctuation in energy loss{5if. To get

jectile and the chained curve plus the full drawn divided by

the straggling, the differential cross sections should be mul-

tiplied by (1— cos9)? rather than just by * coss. Indeed, if
the exact and perturbative cross sections are computed ac-

1.0[ ‘ P cording to Eqs(8) and (9), respectively, and12) and (13),
i //./;.: ] then the difference between the straggling contributions es-
0.8 A sentially vanishes already for modest values of the maximum
Va | value applied in the summation. It is easy to see how the
B 7 ] lack of a Bloch-type correction in straggling fits with the
T i angular distributions displayed above. To get such correc-
E L tion, the difference curves should be multiplied by ¢os?
o 04T ] before integration. However, as difference curves peak in the
e region of very low values of this factor, and as the difference
0.2 . curve furthermore moves to even smaller angles as the value
I of 1— X is increased, the resulting correction vanishes in the
0.0l e limit X—1".
-15 0

-10 -5
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