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Distribution in angle of the Bloch correction in electronic stopping

Allan H. So”rensen
Institute of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus C, Denmark

~Received 4 December 1996!

The position in angular space of the Bloch correction to the perturbative electronic stopping power formula
of Bethe is investigated. It is demonstrated that this nonperturbative correction which originates in close
collisions between the penetrating ion and target electrons appears at small scattering angles and that its
position depends on the~adiabatic! cutoff at large distances. In the limit of infinite range the correction moves
to infinitely small angles but remains finite and both the exact and the perturbative cross sections approach the
Rutherford value at all finite angles. The picture is consistent with the lack of a Bloch-type correction in the
energy-loss straggling.@S1050-2947~97!08504-1#

PACS number~s!: 34.50.Bw, 34.80.2i, 03.65.Nk, 11.80.Et
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I. INTRODUCTION

When a charged particle penetrates matter at nonrelat
tic though not excessively low speed, it looses energy es
tially due to interaction with target electrons only. The sto
ping formula of Bethe@1# derived in first-order quanta
perturbation theory is a standard reference for the ave
energy-loss rate experienced. It reads

2
dE

dx
5
4pZ2e4

mv2
nL ~1!

with theL factor defined as

L5 lnS 2mv2I D . ~2!

In Eqs.~1! and~2! Ze denotes the projectile charge,m is the
electron mass,n the average electron density, whileI is
given in terms of dipole oscillator strengthsf n0 and transi-
tion frequenciesvn0 of the target medium of atomic numbe
Z2 as lnI5Z2

21(nfn0ln(\uvn0u). The quantityv is the projectile
speed, which here is assumed to be significantly higher t
typical target electron velocities. The Bethe formula appl
for moderate charge numbersZ at not too low velocities,
more precisely, it applies when

k5
2Ze2

\v
!1 ; ~3!

see, for instance, the discussion given by Bohr@2#.
Various corrections to the Bethe formula are in genera

be considered. Of interest in this paper is the so-called Bl
correction@3#, which accounts for the nonperturbative cha
acter of the interaction between the incoming particle a
target electrons and which bridges the gap between the B
formula and Bohr’s classical stopping formula@4#, pertaining
to for large values ofk. It may be written as a correctio
DL to Eq. ~2! of
551050-2947/97/55~4!/2896~6!/$10.00
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with g andc denoting Euler’s constant (g50.57721 . . .! and
the logarithmic derivative of the gamma function, respe
tively. Other corrections include the so-called Barkas te
and corrections for capture and loss of electrons, as we
for finite target electron motion.

The Bloch correction originates from close encounters
tween the penetrating charged particle and target electr
In a recent paper@5#, the deviation of the close-collision
contribution to the stopping from the value predicted
quantal perturbation theory is examined for swift partic
moving at arbitrary speeds. Although the emphasis in@5# is
on the relativistic regime, the article is launched with a d
tailed discussion of the nonrelativistic case. This discuss
is, in part, aimed at the clarification of a seeming paradox
Rutherford scattering, namely, that despite Rutherford s
tering being valid both classically and in quantum theo
~exact theory as well as first order perturbation!, the Bloch
correction may be extracted by simple operations which
pear as simple angular integrations of differences in cr
sections.

The purpose of the present paper is to supplement
discussion given in@5# of the above-mentioned appare
paradox. In particular, it will be demonstrated explicit
where in the angular spectrum the Bloch correction appe
@6#. As a central point the dependence of the angular posi
of this close-collision correction on the~adiabatic! cutoff at
large distances is exhibited, and it is shown how the app
ance of the Bloch correction in stopping still is consiste
with Rutherford scattering being valid independently of t
value of the parameterk. A few comments are included o
the lack of a Bloch effect in straggling. Throughout, the d
cussion is restricted to the nonrelativistic case. Transcrip
to the relativistic case is straightforward by application of t
formalism laid out in@5#.

II. FORMALISM

In @5# it is demonstrated that the requested correct
DL to the perturbative stopping logarithm~2! may be com-
2896 © 1997 The American Physical Society
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55 2897DISTRIBUTION IN ANGLE OF THE . . .
puted as a difference in transport cross sections obtaine
an exact and in a perturbative quantal calculation,

DL5~s tr2s tr
pert!/~pk2|2!. ~5!

The transport cross sections, which belong to scattering
free electrons by the penetrating ion,l52p| being the
wavelength of the relative motion, are obtained from the c
responding differential scattering cross sectionsds as

s tr5E ds~12cosu!, ~6!

whereu denotes the scattering angle in the center-of-m
system; that is, essentially the electron scattering angle in
rest frame of the projectile~unless this itself is a very ligh
particle!. In a partial-wave analysis the integration ov
angles may be performed term by term to yield

s tr54p|2(
l50

~ l11!sin2~d l2d l11!, ~7!

whered l denotes the phase shift of the wave of angular m
mentuml\.

With the Coulomb potential the sum~7! is divergent if
extended to infinity. This holds true in the perturbative ca
~small k) as well as in the exact calculation~any k). How-
ever, by taking the difference between the two transp
cross sections term by term before summation is perform
the last expression in Eq.~4! emerges, and this is obviousl
convergent. It should be noted that the procedure of prod
ing exactly this result by subtracting the two divergent su
relies on the fact that the adiabatic limit which determin
the effective maximum value of the angular momentum
sentially is independent ofk. Had this not been the case, the
DL would have contained an additional term essentially p
portional to the sum of 1/l between the two effective maxi
mum l values, a number which of course could be large if
effective maxima were very different.

In the present analysis the aim is an investigation of
angular position of the Bloch correction, hence Eq.~7! and
the results it produces will only be used for reference.
stead, we need an explicit expression for the differen
cross section for electron scattering in a potential which
essentially coulombic out to a large distance where it is
fectively cut off. As scattering potential, one may think of
Yukawa-type potential. However, if choosing so a Bark
correction will appear and this will to some extent obscu
the analysis. To avoid the Barkas correction a Coulomb
tential with a Gaussian screening function may be chosen
@7#. A third alternative is to work directly with the Coulom
potential, compute the corresponding contributions to
scattering factor for the individual partial waves, and th
introduce the cutoff by artificially diminishing contribution
for high angular momenta. Although the Coulomb poten
has its own problems this third alternative is chosen be
since it is important to realize that the only ingredien
needed in order to produce the Bloch correction are a C
lomb potential and a cutoff. Besides, this choice makes
numerical analysis quite simple.

The starting point is the same expression which lead
Eq. ~7!, namely,
in

of
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dV
5u f ~u!u2, ~8!

where the scattering factorf (u) for the Coulomb potential is
given as

f ~u!5
|

2i (
l50

`

~2l11!e2ih lPl~cosu!; ~9!

cf. @8#. The phase shifts for the Coulomb case are the fam
iar

h l5argG~ l112 ik/2!52argG~ l111 ik/2!. ~10!

It is exactly this simple form which, when applied in Eq.~7!,
allows a reduction to expression~4!.

In order to obtain the perturbation value of the scatter
cross section, an expansion ofu f (u)u2 to second order ink is
needed. To this order, the phase shifts~10! reduce to

2h l
pert5clk, cl[g2 (

k51

l
1

k
, ~11!

with c0[g, and the perturbation value of the absolute squ
of the scattering factor reads

u f ~u!upert
2 5~S0

21S1
22S0S2!|

2/4 ~12!

with the sumsSm defined as

Sm5km(
l50

`

cl
m~2l11!Pl~cosu!, m50,1,2. ~13!

It may be noted, that besides the two terms proportiona
k2, the perturbation result~12! contains one term, the first
which is independent ofk.

The differenceu f (u)u22u f (u)upert
2 when integrated over

angles with (12cosu ) and converted according to Eq.~5!
reproduces the value ofDL given in Eq.~4!. And since con-
vergence of the integrated difference with increasingl is fast
with terms essentially decreasing asl23, only relatively few
partial waves are needed to obtain a high precision. Ho
ever, as far asu f (u)u2 and u f (u)upert

2 are concerned individu-
ally, the situation is completely different. The sums forf are
simply divergent. If summed up to a maximuml value of
lmax, the absolute squares oscillate with increasing amplit
and increasing number of zero points aslmax is increased. It
may also be noted, that for any fixed value ofk, however
small, the Coulomb phase shifts become large at sufficie
large values ofl , cf. Eqs.~10! and~11!. The Rutherford cross
section is never approached. The situation is clearly ill
trated by the value of the stopping logarithmL8 obtained by
integrating (12cosu )uf(u)u2 over angles and converting ac
cording to Eq.~5!,

L85
lmax11

k2 1 (
l50

lmax21
l11

~ l11!21k2/4
. ~14!

While the second term on the right-hand side is the term
remains for unrestricted summation~with lmax tending to in-
finity!, the first term remains due to lack of the compensat
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2898 55ALLAN H. SO”RENSEN
term, which in the unrestricted summation appears
l5 lmax11. Obviously, the first term becomes large for lar
lmax, in particular ifk is small.

Although divergent, the series forf is summable as the
limit of a power series on its radius of convergence. This
been discussed and utilized by Mott in the relativistic ca
for a different purpose, cf.@9#. We shall adopt the procedur
here in order to mimic an effective cutoff at some largel
value and hence in place off use

f X~u!5
|

2i (
l50

`

~2l11!Xle2ih lPl~cosu!, ~15!

where the convergence parameterX is a number which is
slightly less than 1. The corresponding perturbation valu
still given by Eqs.~12! and ~13! except for a factor ofXl to
be included in each of the sumsSm . It may be noted, that in
the limit X→12 the sumS0 vanishes for any nonzero angl
see also@8#. It may further be noted that for any finite valu
of 12X the sum~4! giving the Bloch correction should in
clude a factor ofX2l .

III. NUMERICAL RESULTS

Figure 1 displaysu f X(u)upert
2 and u f X(u)u2 as well as their

difference, all in units of the Rutherford cross section

~ds/dV!Rutherford5~|2/4!k2/~12cosu!2, ~16!

as functions of ln(12cosu ) for a standard heavy-ion cas
The convergence parameter is chosen to beX50.99, and
summation is performed up to a largel value ~10 000! in
order to ensure convergence at all angles. Scattering into
backward hemisphere corresponds to positive values of

FIG. 1. Differential cross sections for finite value of 12X. All
cross sections are given in units of the Rutherford value at
given angle and shown as functions of ln(12cosu ), whereu denotes
the scattering angle. The dashed curve corresponds tou f X(u)u2, the
dotted tou f X(u)upert

2 , and the full-drawn curve displays the diffe
enceu f X(u)upert

2 2u f X(u)u2. The projectile atomic number isZ592
and the convergence parameter attains the valueX50.99. The ki-
netic energy of the electron in the rest frame of the ion
0.01mc2, i.e., the kinetic energy of the ion in the laboratory is 9
MeV/amu.
r

s
e
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he
he

abscissa~the interval from 0 to the maximum of ln2), while
forward scattering corresponds to negative values. The fi
value of 12X implies a cutoff at small angles, while a
larger angles the Rutherford cross section is approac
Starting in the wide-angle scattering region, the cutoff a
pears earlier~i.e., at larger angles! for the exact case than fo
the perturbative case. The difference between the two pe
at rather small angles. With the abscissa chosen
ln(12cosu ) the area under the difference curve gives
rectly 22DL, hence obviously the Bloch correction, whic
originates in close collisions~small l ), appears at smal
angles.

The variation of the cross sectionu f X(u)u2 and the differ-
enceu f X(u)upert

2 2u f X(u)u2 with primary energy is illustrated
in Fig. 2 for a high atomic number and in Fig. 3 for a lo
atomic number. As the energy is increased, the differe

y

FIG. 2. Variation of differential cross sections with primary e
ergy for a heavy ion,Z592. The three curves starting out at max
mum value for backward scattering displayu f X(u)u2 while the three
remaining curves show the difference functionu f X(u)upert

2

2u f X(u)u2. The value of the convergence parameter is 0.99 and
kinetic energies of the electron in the rest frame of the ion
0.001mc2 ~dashed curves!, 0.01mc2 ~full drawn!, and 0.1mc2

~chained curves! corresponding to ion kinetic energies in the lab
ratory of 0.93, 9.3, and 93 MeV/amu. The corresponding values
the parameterk are 30, 9.6, and 3.2. Axes and units are as in Fig

FIG. 3. As Fig. 2 but for a light ion,Z510. The parameterk
attains the values 3.3, 1.0, and 0.35 in the three cases.
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55 2899DISTRIBUTION IN ANGLE OF THE . . .
function becomes smaller, yielding a lower value of2DL,
and Rutherford scattering holds to smaller angles. Note
increasing energy implies decreasing value of the param
k, cf. Eq. ~3!. For the high charge, the perturbation val
closely follows that displayed in Fig. 1 at all three energi
For the low charge, on the other hand, the perturbation c
section develops a peak structure at the highest en
closely resembling the structure of the exact cross sectio
this energy~the difference curve attaining low values at hig
energies!. The appearance of the peak will be discussed
ther below. Although a comparison with experiments is n
the aim of the current investigation a warning should
issued before the discussion of Figs. 2 and 3 is closed: At
highest energy, relativistic corrections, which are not
cluded in the present study, are important; for the highe
the two charges they reduce the value ofDL to roughly half
of the nonrelativistic value and for the lower of the tw
charges they closely balance the nonrelativistic result
yield aDL which nearly vanishes, cf.@5#. At the lower en-
ergies the heavier ion will carry electrons and additional c
rections apply. Besides, in a study of stopping powers, s
corrections~finite electron velocities! and the Barkas correc
tion should be included.

The variation with projectile atomic number at fixed e
ergy is demonstrated by Figs. 4 and 5. The difference fu
tion, Fig. 4, is seen to be concentrated in the same ang
region for all Z values with a slight drift towards large
angles for largek. The exact cross section, Fig. 5, is aga
seen to follow the Rutherford law closely to still lowe
angles as the value ofk is decreased. For very small charg
numbers~small k) a peak structure similar to that seen
Fig. 3 at the highest energy appears in the exact cross
tion. On a plot similar to Fig. 5, the perturbation cross s
tions are hardly distinguishable for the three higher cha
numbers~36, 54, and 92!, whereas for lower charge numbe
differences appear with the peak structure developing for
two lowest charges displayed~4 and 2!. If the energy is

FIG. 4. Variation of difference cross sectio
u f X(u)upert

2 2u f X(u)u2 with projectile atomic number. The value o
the convergence parameter is 0.99 and the kinetic energy o
electron in the rest frame of the ion is 0.01mc2, i.e., the kinetic
energy of the ion in the laboratory is 9.3 MeV/amu. The cha
numbers are 92~upper full-drawn curve!, 54 ~dotted!, 36 ~dashed!,
18 ~chained!, 10 ~triple-dotted-dashed!, 4 ~long dashes!, and 2~full-
drawn curve near 0.0 at all angles!. Axes and units are as in Fig. 1
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decreased by a factor of 10, only the perturbation curves
the two lowest charge numbers separate from the rest, b
this case without developing a peak.

All the numerical results discussed above were obtai
for the same value of the convergence parameterX, namely,
12X50.01. The introduction of the convergence parame
in Eq. ~15! mimics an effective cutoff at some largel value,
and the lower the value of 12X the higher is the effective
maximuml . A major point of this investigation is to demon
strate how the angular spectrum is influenced by the cu
and, in particular, to see how the close-collision Bloch c
rection moves about in angular space as the long dista
interaction is altered. Furthermore, it is the aim to demo
strate that the appearance of the Bloch correction does
prevent differential cross sections, both perturbative and
act ones, to approach the Rutherford value. Hence, the va
tion with the convergence parameterX is to be exploited
next.

Figure 6 demonstrates the variation of the difference fu
tion u f X(u)upert

2 2u f X(u)u2; that is, the variation of the Bloch
correction as 12X varies between 0.016 and 0.001. What
immediately apparent is that the correction moves left; tha
to smaller angles, as 12X decreases. The shape of the cur
is essentially the same in all cases, only small changes
pear due to the cutoff of the wide-angle scattering tail for
higher values of 12X @this is reflected in a slight variation o
DL of Eq. ~4! when a factor ofX2l is included#. For the
considered heavy-ion case, the maximum of the differe
curve appears at angles of.7.8(12X); that is, it varies
between 7° and 0.4° in Fig. 6. So, what the figure dem
strates explicitly is that the close-collision Bloch correcti
is always present some place in angular space when an
fective cutoff at large distances is introduced. The correct
just wanders around, its position depending on how far
the effective cutoff appears, such that increasing range
plies migration towards smaller angles.

As the Bloch correction moves to smaller angles w
decreasing value of 12X and otherwise remains undis
turbed, Fig. 6, the cross sectionu f X(u)u2 approaches the Ru
therford value over an increasing range of angles startin
the wide-angle scattering domain. This is demonstrated
Fig. 7, which shows the exact cross section for the same

he

e

FIG. 5. As Fig. 4 but displaying the exact cross secti
u f X(u)u2. The lowest full-drawn curve is forZ592. The upper solid
line, which applies forZ52, peaks with a maximum of 3.55.
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2900 55ALLAN H. SO”RENSEN
andX values as in Fig. 6. Hence, when the effective cutof
increased (12X decreased!, the Rutherford value applie
way down to small angles. In the limitX→12 the Bloch
correction has moved to zero angle, and the Rutherford c
section is found at all finite angles.

While the main point of this investigation is illustrated b
Fig. 1 and, in particular, Figs. 6 and 7, the behavior of
perturbative cross sectionu f X(u)upert

2 also deserves a few
words. Figure 8 displays the variation of the ingredie
(12cosu )2S0

2 and (12cosu )2(S1
22S0S2)/k

2 with angle for
two different values ofX. The sumsSm are given by Eq.~13!
with a factor ofXl included on each term. The plotted qua
tities are universal insofar as they do not depend on the
jectile and the chained curve plus the full drawn divided

FIG. 6. Variation of difference cross sectio
u f X(u)upert

2 2u f X(u)u2 with the convergence parameter. The cro
section is given in units of the Rutherford value and shown a
function of ln@(12cosu )/2#. Backward scattering corresponds
values of the abscissa varying between2 ln2 and 0. The values o
12X are 0.001~solid curve!, 0.002~dotted curve!, 0.004~dashed!,
0.008 ~chained!, and 0.016~triple-dotted-dashed!. The projectile
atomic number isZ592 and the kinetic energy of the electron in th
rest frame of the ion attains the value 0.01mc2, i.e., the kinetic
energy of the ion in the laboratory is 9.3 MeV/amu. The maxim
l value is chosen to be 100 000 except for 12X50.016, where
10 000 suffices.

FIG. 7. As Fig. 6 but displaying the exact cross secti
u f X(u)u2.
s

ss

e

s

o-

k2 make upu f X(u)upert
2 in units of the Rutherford cross sec

tion, cf. Eqs.~12! and~16!. For high values ofk the monotic
curves obviously dominate, and we encounter essentially
Rutherford value down to a smallX-dependent cutoff angle
~considerably smaller than the cutoff angle for the ex
case!. For low values ofk, the peak, which was evident i
Figs. 3 and 5, develops. TheS0

2 peak moves with 12X with
essentially undisturbed shape much like the Bloch corr
tion, Fig. 6, and in the limitX→12 its contribution is zero at
all finite angles. In this limit, Fig. 8 clearly demonstrates th
the perturbative cross section equals the Rutherford valu
all finite angles.

IV. CONCLUDING REMARKS

No correction similar to the Bloch correction appears
the average square fluctuation in energy loss, cf.@5#. To get
the straggling, the differential cross sections should be m
tiplied by (12cosu )2 rather than just by 12cosu. Indeed, if
the exact and perturbative cross sections are computed
cording to Eqs.~8! and ~9!, respectively, and~12! and ~13!,
then the difference between the straggling contributions
sentially vanishes already for modest values of the maxim
l value applied in the summation. It is easy to see how
lack of a Bloch-type correction in straggling fits with th
angular distributions displayed above. To get such corr
tion, the difference curves should be multiplied by 12cosu
before integration. However, as difference curves peak in
region of very low values of this factor, and as the differen
curve furthermore moves to even smaller angles as the v
of 12X is increased, the resulting correction vanishes in
limit X→12.
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FIG. 8. Contributions to the perturbative cross section at t
different values ofX. The solid curves display (12cosu )2S0

2 and
the chained curves show (12cosu )2(S1

22S0S2)/k
2; cf. text for de-

tails. The solid curve showing maximum at the lowest angle and
chained curve showing a cutoff at the lowest angle are compu
for X50.999 while the remaining curves are forX50.99. The ab-
scissa is chosen as in Fig. 1 and the quantities plotted are dim
sionless.
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